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All-electron density functional theory and time-dependent density
functional theory with high-order finite elements
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FIN-02015 TKK, Finland
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We present for static density functional theory and time-dependent density functional theory
calculations an all-electron method which employs high-order hierarchical finite-element bases. Our
mesh generation scheme, in which structured atomic meshes are merged to an unstructured
molecular mesh, allows a highly nonuniform discretization of the space. Thus it is possible to
represent the core and valence states using the same discretization scheme, i.e., no pseudopotentials
or similar treatments are required. The nonuniform discretization also allows the use of large
simulation cells, and therefore avoids any boundary effects. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3176508�

I. INTRODUCTION

The density functional theory �DFT� has become the
workhorse in electronic structure theory.1 Its success derives
from the ability to produce accurate results with reasonable
computational effort. Instead of solving for the many-body
wave function it relies on Hohenberg–Kohn2 theorem, which
states that all ground-state properties—most importantly the
total energy—are functionals of the electron density. Actu-
ally, the total energy functional is not exactly known, but
there exists several approximations, the accuracy of which
can be systematically improved according to the demands of
the applications in question.3,4 The most important issue is
that the number of dimensions in a problem does not depend
on the number of electrons, and thus DFT scales much better
than many-body wave function methods, up to hundreds or
thousands of atoms on the present supercomputers.

The DFT is bound to the ground-state properties and
cannot be used to explore excited states. This drawback can
be overcome by using the time-dependent DFT �TDDFT�.5 It
is based on the Runge–Gross6 theorem, which states that
�physically� different external potentials �e.g., those due to
laser fields� lead to different time-evolutions of the density.
The present functionals for TDDFT are known to be unable
to describe certain phenomena, such as charge transfer exci-
tations. However, in recent years it has been successfully
applied to describe several other problems, for example, the
optical absorption spectra of a broad variety of systems, the
nonlinear optical response �e.g., harmonic generation� of at-
oms and molecules, and coherent control of molecules by
laser fields.5

For numerical solution, the partial differential equations
arising from DFT and TDDFT must be discretized in space.
In the present-day codes, the most popular choices are
atomic orbital bases,7–9 planewaves,10,11 and uniform real-
space grids.12,13 In the atomic orbital bases the solution is
represented as a linear combination of atomic solutions,

which can be accurate �e.g., numerical atomic orbitals7� or
approximate �e.g., Gaussians8�. These bases are widely used
and can be very fast and efficient. However, the atomic or-
bital bases are sensitive to the type of the problem in the
sense that an efficient discretization for the ground-state
properties is not well-suited for the calculation of optical
absorption spectra. In particular, when the solution is not
representable as slightly perturbed atomic solutions the
atomic orbital bases become unfavourable. For example, this
can happen in the case of nonlinear time-dependent phenom-
ena.

The plane-wave bases and uniform real-space grids �i.e.,
the finite-difference method� are both uniform discretizations
of the space and closely related to each other through the
Fourier transform. These discretizations are not dependent on
the type of the problem, but they require a large number of
degrees of freedom �DOFs�. Especially, the core regions
around nuclei, where solutions have very sharp features, can-
not be represented well by uniform discretization, but
pseudopotentials14–16 or similar treatments �e.g., projector-
augmented wave method17� must be employed. The pseudo-
potentials lead to additional parameters and may be hard to
construct accurately for certain types of atoms, e.g., transi-
tion metals. Another drawback in uniform discretizations is
their inability to adapt to the underlying geometry of the
atoms. For example, sparse matter interstitial regions should
require much less DOFs than regions near atoms. This is also
the case in simulations of nonlinear time-dependent phenom-
ena, where the distant regions in space should still be ac-
counted for but the solution is smooth in this region so that
the discretization can be coarse.

The finite-element basis18,19 is a linear combination of
continuous, piece-wise polynomials and provides a nonuni-
form real-space discretization of the space. It inherits the
good properties of the real-space methods, such as flexible
boundary conditions and efficient parallelization via domain
decomposition, while still allowing nonuniform discretiza-
tion of the space. In this paper, we use high-order hierarchi-a�Electronic mail: lauri.lehtovaara@hut.fi.

THE JOURNAL OF CHEMICAL PHYSICS 131, 054103 �2009�

0021-9606/2009/131�5�/054103/10/$25.00 © 2009 American Institute of Physics131, 054103-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.233.216.237 On: Wed, 23 Sep 2015 09:58:40

http://dx.doi.org/10.1063/1.3176508
http://dx.doi.org/10.1063/1.3176508
http://dx.doi.org/10.1063/1.3176508


cal finite elements, which �i� provide a better rate of conver-
gence than low-order elements and �ii� result in better
conditioned systems of linear equations than the nodal-based
elements of the same order. As finite elements can adapt to
the local feature size, they can be used to describe solutions
of core and valence electrons equally well. Also naturally,
they are adaptable to the geometry of the system to avoid
overdiscretization. The finite-element basis is also varia-
tional, such as planewaves and atomic bases, which is not the
case for finite-difference discretizations. The finite-element
basis is extensively used in civil and mechanical engineering,
and in many fields it has surpassed finite-difference
methods.20 There exists several earlier implementations of
the finite-element methodology to electronic structure
calculations.21–29 However, none of these uses high-order hi-
erarchical elements on unstructured meshes or apply the
method to TDDFT. The closest work to our approach is the
spectral element method implementation of Batcho.22 The
spectral element method uses high-order tensor product
bases, which enable fast evaluation of matrix elements and
provide good convergence rates. However, the element types
are restricted to brick �i.e., parallelepiped� elements and
mapped brick elements �i.e., coordinate transformations of
brick elements�.

The rest of the paper is structured as follows. In the next
section, we briefly review the DFT, linear-response TDDFT,
and finite-element method. We also describe our mesh gen-
eration algorithm. In Sec. III, we show several examples of
applying our DFT and linear-response TDDFT method to
small molecules �CO, Na2, C6H6� and discuss the conver-
gence of the method. In the final section, we draw the con-
clusions and set directions for future research.

II. THEORY

A. DFT

In the DFT, the total energy E�n�r�� is a functional of the
electron density n�r�, and the ground state of the system is
found by minimizing it. However, the functional is not
known in general and must be approximated. This is usually
done by employing the Kohn–Sham30 scheme where the
functional is divided into four parts

E�n� = Ts�n� +� d3rn�r�vext�r� + U�n� + Exc�n� , �1�

where Ts�n� is the kinetic energy of the noninteracting elec-
tron system with density n�r�, �d3rn�r�vext�r� is the interac-
tion energy with an external field �usually that due to the
ions�, U�n� is the mean electron-electron repulsion energy
�Hartree energy�, and Exc�n� is the electron exchange-
correlation energy functional. The first three parts are known
but the last one, the exchange-correlation functional, is not,
and the quality of its approximation is the key to accurate
results. The Kohn–Sham30 scheme uses a set of orthonormal
auxiliary functions �k�r�, i.e., the Kohn–Sham30 orbitals,
which satisfy

n�r� = �
k=1

Nstates

fk��k�r��2, �2�

where fk are the occupation numbers, and Nstates is the num-
ber of occupied Kohn–Sham30 orbitals. By taking the func-
tional derivative of the energy functional with respect to
these functions, we obtain the Kohn–Sham30 equations

ĤKS�k�r� = 	−
�2

2me
�2 + veff�r�
�k�r� = �k�k�r� , �3�

where

veff�r� = vH�n��r� + vxc�n��r� + vext�r� , �4�

is the effective potential, and

vH�n��r� =
e2

4��0
� d3r�

n�r��
�r − r��

, �5�

is the Hartree potential. Furthermore, vxc�n��r� is the
exchange-correlation potential, and vext�r� is the external po-
tential, which is usually a sum of electron-nucleus interac-
tions, i.e.,

vext�r� =
− e2

4��0
�
a=1

Nnuclei Za

�r − ra�
, �6�

where Za is the atomic number and ra is the position of the
nucleus a. Nnuclei is the number of nuclei in the system. In the
three-dimensional space R3, the Hartree potential can be re-
written as the solution of the Poisson equation

�2vH�r� = − 4�
e2

4��0
n�r� , �7�

where the boundary condition for isolated systems is vH

→0 when �r�→�. �Also periodic and other boundary condi-
tions are possible but are not discussed in this paper.�

As the Hartree potential, the density and thus the
Kohn–Sham30 wave functions vanish at the infinity �or in
practice at the boundary �� of the computational domain ��,
the above Eqs. �3� and �7� can be cast into the weak varia-
tional formulation using integration by parts, i.e.,

���ĤKS��k� = �
R3

��r�	− �2

2me
�2 + veff�r�
�k�r�d3r

= �
R3
	 �2

2me
� ��r� · ��k�r�

+ ��r�veff�r��k�r�d3r
 , �8�

and

����2�vH� = �
R3

��r��2vH�r�d3r

= − �
R3

���r� · �vH�r�d3r , �9�

where ��r� is a test function which has a square integrable
gradient ���r�. The weak formulation is required by the
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finite-element method, and in practice, ��r� will be a finite-
element basis function �in the so-called Ritz–Galerkin
method,31 see Eq. �21��.

As the Hartree potential for charged systems decays
slowly as r−1, we have applied counter charges to neutralize
the density. The counter charges are added to the electronic
density n�r� in Eq. �9� and are then cancelled in Eq. �8� by
the corresponding analytically calculated potential. This pro-
vides the r−2 decay of the Hartree potential, which is suffi-
cient for our purposes. However, if required, higher order
�e.g., dipole and quadrupole� corrections can be applied as
well.22

B. Linear-response TDDFT

In the TDDFT, there exists no variational principle, but
the quantum mechanical action

A��� = �
t0

t1

dt���t��i�
�

�t
− Ĥ�t����t�� , �10�

provides an analogous quantity to the total energy of the
ground-state DFT. The time-dependent Kohn–Sham30

Schrödinger equation reads as

i�
�

�t
�k�r,t� = 	−

�2

2me
�2 + veff�n��r,t�
�k�r,t� . �11�

This equation is an initial value problem and can be solved
using a time-propagation scheme.32 However, if the external
perturbation is small, the density response of the system can
be written as a series

n�r,	� = n�0��r� + n�1��r,	� + n�2��r,	� + . . . , �12�

with the linear-response term

n�1��r,	� =� d3r�
�r,r�,	�v�1��r�,	� . �13�

Above, 
 is the linear-response function and v�1� is the ex-
ternal perturbation �e.g., a laser field�. The transitions can be
found by finding the poles of the response function

�r ,r� ,	�. However, if we are interested only in the excita-
tion energies and corresponding oscillator strengths, we can
use the so-called Casida33,34 method. He showed that the
problem can be solved as an eigenvalue equation

�
j�k�

�� jk� j�k�� jk
2 + 2fkj� jkfk�j�� j�k�Kjk,j�k��� j�k�

= �2� jk, �14�

where fkj = fk− f j, � jk=� j −�k, and the coupling matrix

Kjk,j�k��	� =� d3r� d3r�� j
��r��k�r�� j��r���k�

� �r��

 	 e2

4��0

1

�r − r��
+ fxc�r,r�,	�
 . �15�

Moreover,

fxc�r	,r�	�� =
�vxc�r,	�
�n�r�,	��

, �16�

is the exchange-correlation kernel. The oscillator strengths
are then

f̃ x/y/z
�m� =

2m

�2e2� �
jk

fk�f j

�� jk�x/y/z�fk − f j��� j − �k�� jk
�m��2

, �17�

where �� jk�x/y/z is the x /y /z component of the dipole moment
vector between the Kohn–Sham30 states k and j, and the
index �m� refers to the mth transition.

1. Confinement potential

The linear-response Kohn–Sham30 equations use the
Kohn–Sham30 states as a basis. Above the ionization limit of
the system, the spectrum becomes continuous causing nu-
merical problems. The eigenvalues of the discretized prob-
lem bunch together just above the ionization limit. For a
practical calculation this is not desirable because certain tran-
sitions have very many different contributions due to the
eigenstates in the Kohn–Sham30 continuum and the impor-
tance of most of them is minor because the states have a
relatively small amplitude near the molecule.

To spread the eigenvalue spectrum above the ionization
limit, and to increase the relative importance of the relevant
unoccupied states, we use a modified Kohn–Sham30 basis

��̃k�r��. The basis is constructed by applying an auxiliary
confinement potential in the ground-state calculation. The
choice of the potential is in principle arbitrary, but in order to
fill the above requirements, we have chosen the form

vconf�r� = �1

2
kc�rmin�r� − Rc�2, if rmin�r� � Rc,

0, otherwise,
� �18�

where rmin�r�=minRa
�r−Ra� is the distance to the closest

atom, and kc and Rc are parameters to be chosen. Thus, the
auxiliary potential is zero close to the atoms but becomes
gradually more repulsive further away. Far away from the
system, the auxiliary potential is a spherically symmetric
harmonic potential. Now, all states are bound.

After the ground-state calculation with the auxiliary con-

finement potential the resulting Kohn–Sham30 states ��̃k�r��
are taken as the new basis, the auxiliary confinement poten-
tial is removed, and the ground-state calculation is repeated
in the new basis. Finally, the linear-response calculation is
carried out in the new basis.

Introducing the auxiliary confinement potential allows us
to balance between the number of unoccupied states and the
quality of the low energy part of the spectrum. We want to
stress out that this is purely a mathematical trick in order to
alter the basis of the linear-response calculation in such a
way that the low energy transitions converge more quickly.
The physics is not altered. The calculated linear-response
spectrum with and without an auxiliary confinement poten-
tial should give the same result when all the Kohn–Sham30

states �occupied and unoccupied� are used as they span the
same original finite-element space Vh. Also, as the confine-
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ment potential determines the linear-response basis, the final
result of a converged calculation is independent of the origi-
nal basis where the Kohn–Sham30 states were solved, e.g.,
converged atomic orbital and real-space calculations should
give the same result.

The choice of the parameters Rc and kc is not an obvious
task and some testing is required to find appropriate values.
However, the testing can be done as a linear problem by
fixing the density, because the confinement should not
change the ground-state.

C. Finite-element discretization

In the finite-element method the computational domain
� is divided into small, polyhedral regions called elements.
This division is denoted by Th. For our purposes it is suffi-
cient to use tetrahedra. Other popular choices are hexahedra,
pyramids, and prisms. The division of � is handled by an
external mesh-generator that can either �i� generate the mesh
for a given geometry or �ii� calculate the Delaunay tetrahe-
dralization of a given set of points. We have chosen the latter
option and the points for the mesh are generated as specified
in Sec. II C 1.

Once the division of the domain � is complete the space
of approximation, Vh, can be defined. For the finite-element
method this is taken to be continuous, piecewise polynomial
functions, i.e.,

Vh = �vh � C�����vh��K � �p� ∀ K � Th, �19�

where K is an element, �p denotes polynomials of order p, h
refers to the size of the elements in the mesh, and C���
refers to continuous functions in the domain. In general, the
order p can vary from one element to another as long as the
continuity condition vh�C��� is respected but in our calcu-
lations we choose to keep p fixed throughout the mesh. The
value of p decides if the method is considered to be of high-
order and the usual requirement is p�3 for a high-order
method. Also, if the convergence is obtained via increasing
the order of polynomials rather than refining the mesh, the
method is called the p-method. The mesh refinement ap-
proach gives an h-method and combining these approaches
leads to an hp-method.35

Next, a basis for the space Vh must be chosen. The ca-
nonical way for the high-order method is to divide the local
basis functions of a single element into four disjoint sets:
nodal functions, edge functions, face functions, and bubble
functions. The nodal functions are first order polynomials
that have a value of 1 at one of the vertices and 0 at others.
The edge functions are polynomials up to an order p and
they are nonzero only on one of the edges of the element.
The face functions are similar to the edge functions but they
are in correspondence with the faces of the element. Finally,
the bubble functions are zero on all the vertices, edges and
faces of the element but nonzero inside the element. The
actual basis functions are generated using products of one-
dimensional integrated Legendre polynomials over the inter-
val ��1,1�. Note that due to the continuity requirements the
basis functions actually extend over several elements that
share the same geometrical feature �see Fig. 1�.

In practice, the basis functions for an element K in the

mesh are generated using a reference element, K̂, and �affine�
mappings F : K̂→K. Then the basis functions on an element
K can be written as images of the basis functions on the
reference element, i.e.,

��r� = �̂�F−1�r�� , �20�

reducing the programming effort to K̂.
Once the basis �� j� j=1

Nb for the space Vh is ready for use
an approximation to the Kohn–Sham30 orbitals can be looked
for in the form �k�r�=� j=1

Nb cj
k� j�r�. There are many ways to

find the coefficients ci but in the finite-element method the
variational approach is used. This leads to an equation for the
state k

�
j=1

Nb

��i�ĤKS�� j�cj
k = �k�

j=1

Nb

��i�� j�cj
k, i = 1, . . . ,Nb, �21�

that reads in matrix form as

Hck = �kSck, �22�

where

Hij = ��i�ĤKS�� j�, Sij = ��i�� j� = �
R3

�i�r�� j�r�dr .

�23�

A few observations are in order. First, since the finite-
element basis functions are strictly localized in space the
matrices H and S are sparse. This not only allows for, but
also actually dictates the use of sparse matrix technologies.
Second, if the domain � is large enough so that selecting the
zero boundary conditions on �� is justified the variational
formulation �21� holds and consequently the matrix H is also
symmetric. In this case the fact that the basis functions �i

don’t have continuous derivatives across the element borders
is not an obstacle since in Eq. �21� only a square integrable
gradient is required for the basis functions �see Eq. �8��.

1. Mesh generation

The mesh is generated by merging structured atomic
meshes to a molecular mesh. The nodes of atomic meshes
consist of layers of vertices of polyhedra. The radius of the
layer rk is changed as rk=qkr0 with r0 and q as parameters,
and k�Z �−n�k�m ;n ,m�N�. The choice of polyhedra is
arbitrary, but they should provide tetrahedra of good quality
�our quality requirements are explained below in this sec-
tion�. We have chosen to use deltoidal icositetrahedron and
its dual, rhombicuboctahedron, both shown in Fig. 2.

FIG. 1. Schematic view of finite-element basis functions in 2D: �a� vertex,
�b� edge, and �c� bubble basis functions.
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The zeroth layer is chosen relative to the size of the
highest occupied atomic orbital r0= �2I�−1/2 /4, where I is the
first ionization energy. The layers with negative indices are
created until the radius of the layer is of the order of the
lowest state rkmin

�Za
−1 /128. The factors 1/4 and 1/128 are

somewhat arbitrary at the moment, but are sufficient for sys-
tems under study. If necessary one extra layer is added, as
the last layer should be deltoidal icositetrahedron to ensure
good quality of the elements around the nuclei. The inner
part of the mesh is finalized by adding one node to the
nucleus Ra.

The nodes of the layers with positive indices are added
only if the node is inside the atomic mesh region, i.e., not in
the molecular mesh region. The node of atom a is in the
molecular region if

gab�Rb − Ra�/�r − Ra� −
r − Ra

�r − Ra�
·

Rb − Ra

�Rb − Ra�
� ��q − 1� ,

�24�

for all other nuclei b, where gab=r0
a / �r0

a+r0
b� are the relative

sizes with respect to the other nuclei, and � is chosen to be
1/3. In practice, this procedure creates an empty space be-
tween atoms, which reaches closer to smaller atoms than
larger ones, and its thickness is proportional to the distance
between the closest pair of atoms. For each pair of atoms the
atomic regions are inside two halves of an elliptical hyper-
boloid.

The nodes for the molecular mesh region are then cre-
ated by first adding a spherical layer of nodes around the
center of atomic charges Rcc. The layer forms the boundary
of the simulation cell and has a radius equal to r��

=q maxi�ri−Rcc�, the radius of the furthest node from the
center of atomic charged multiplied by the layer ratio q.
Then an initial molecular mesh is created by a Delaunay
tetrahedralization36 of the nodes �see Fig. 3�. The molecular
mesh is then refined by Delaunay refinement,37 i.e., by in-
serting nodes at the circumcenters �the center of circum-
sphere� of too large elements one at the time and repeating
Delaunay tetrahedralization after each insertion. An element

is deemed too large, if its longest edge is longer than the
longest edge of an element in the atomic mesh with the same
distance from the closest atom. Or, if its average edge length
is longer than the average edge length of an element in the
atomic mesh with the same distance from the closest atom.
�Obviously, the elements, which are connected to the nuclei,
are ignored.� After refining the mesh to fill the size con-
straints, the quality of the elements is ensured. All elements
with too small a ratio s=3rin /rcirc, where rin is the radius of
the inscribing sphere, and rcirc is the radius of the circum-
sphere, are Delaunay refined as above until no elements with
low quality are present. Keeping the ratio s relatively close to
one will ensure that all angles �dihedral and face� are neither
too large nor too small.38,39 This is one of the standard mea-
sures for the quality of an element. The elements which are
connected to the boundary nodes are not currently being re-
fined. However, the quality of these elements is not very
important because the solution is practically zero in this re-
gion.

The resulting molecular mesh is somewhat finer than the
atomic meshes, but because the main interest is in the mo-
lecular region, we consider it justified to slightly overdis-
cretize this region. An example of a molecular mesh for ben-
zene C6H6 with q=2, s=1 /3, and 15 outer layers is shown
in Fig. 4. The diameter of mesh is 55 Å.

D. Implementation

Our current implementation is based on the ELMER

finite-element software package,40 and the Delaunay tetrahe-
dralization is done using TETGEN.41,42 The ground-state
Kohn–Sham30 system was solved with the self-consistent it-
eration scheme. The locally optimal block preconditioned
conjugated gradient43 method was applied to the linearized
Kohn–Sham30 eigenvalue problem �Eq. �8��, and the conver-
gence rate of the nonlinear system was enhanced with the
Pulay mixing44 procedure for the density. The electronic
charge was compensated by Gaussian countercharges at nu-
clei in the Poisson equation �Eq. �9��, and then a canceling
potential for the counter-charges was added in the assembly
of the Hamiltonian matrix �in Eq. �21��. Preconditioner for
the eigenvalue problem was chosen to be the incomplete
Cholesky factorization45 for T+�S, where T is the kinetic
energy operator and � was chosen to be 13.6 eV.

FIG. 2. Polyhedra used in atomic meshes of �a� deltoidal icositetrahedron
and �b� rhombicuboctahedron.

FIG. 3. Initial molecular mesh for the CO molecule before refinement and
improvement. The elements of the molecular region are shown in pink.

FIG. 4. Cut plane of the molecular mesh of the C6H6 molecule with param-
eters q=2, s�1 /3, and 15 outer layers �see text�: �a� the complete mesh
�diameter of 55 Å�, �b� the atomic mesh near a carbon nucleus, and �c� the
close-up of the molecular region.
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In the linear-response calculation, the main effort is in
calculating the integrals of the matrix elements in Eq. �15�.
Each row of the matrix is independent of the other rows, and
thus the problem is trivial to parallelize over the rows of the
matrix. Also, some of the matrix elements �and rows� can be
ignored beforehand as their eigenvalue difference is clearly
outside the relevant energy interval, e.g., transitions from
core states. The exchange-correlation kernel fxc�r ,r� ,	� re-
quires the second functional derivative of the exchange-
correlation functional with respect to the density. However,
when the second derivative is not available, the finite-
difference approximation

� d3r
�Exc

n�r�n�r��
njk�r��

= lim
�→0

vxc�n + �njk��r� − vxc�n − �njk��r�
2�

, �25�

can be used. Above,

njk�r� = � j
��r��k�r� , �26�

is the pair density.

III. RESULTS AND DISCUSSION

We demonstrate our ground-state DFT and linear-
response TDDFT methods by applying them to atoms and
small molecules. We calculated hydrogen, carbon, and oxy-
gen atoms, and hydrogen, carbon monoxide, and benzene
molecules. We calculated optical absorption spectra for a be-
ryllium atom, sodium dimer, and benzene molecule. The
convergence properties are discussed in both cases.

A. Ground-state DFT

We applied the local density approximation �LDA� func-
tional with the Perdew–Wang parametrization46 in all calcu-
lations, and all results are for spin-compensated systems. In
all calculations, the simulation cell diameter was approxi-
mately 50 Å, and the geometrical coarsening factor q=2.

The total energies of the atoms and molecules calculated
with increasing polynomial degree are shown in Tables I and
II, and the atomization energies of the molecules in Table III.
We have used for H2 and CO the bond lengths of 0.75 and
1.1 Å, respectively. C6H6 has a planar geometry with atomic
positions of C: �0.000, �1.396� Å, ��1.209, �0.698� Å, and
H: �0.000, �2.479� Å, ��2.147, �1.240� Å used. The H2

mesh had 12103, 41103, and 96103 DOFs; the CO
mesh had 14103, 46103, and 109103 DOFs; and the

C6H6 mesh had 59103, 199103, and 470103 �DOFs�,
for element degrees p=2, p=3, and p=4, respectively.
The corresponding results calculated with very high accuracy
��1 meV� using the electronic structure program FHI-aims7

are shown on the last rows of the tables. As one can see, the
total energy requires a high polynomial degree �p�3� to
converge within an error below 100 meV. However, in prac-
tice one is interested in the atomization energy of the system,
which is the difference of the total energies between the sys-
tem and the corresponding isolated atoms. The cancellation
of errors leads to a significant improvement in the accuracy,
and already the 2nd and 3rd degree polynomials produce
results with errors around 100 and 10 meV, respectively. The
maximal cancellation was obtained by using the same mesh
for isolated atoms as for the molecule, which can be consid-
ered as a kind of a basis set superposition error, �i.e., a coun-
terpoise� correction.47 The energies of the isolated atoms are
lower in the molecular mesh than in the atomistic mesh. This
is because the molecular mesh is denser than the atomistic
mesh as one wants to guarantee the good description of the
bonding regions. The total and atomization energies are well
converged with respect to the simulation cell diameter. We
found less than 1 meV difference in range from 21 to 151 Å
for the CO molecule.

We performed nonrelativistic calculations for elements
Zn, I, Hg, and At in order to test the quality of the discreti-
zation in the case of heavy elements. We found that elements
with d-electrons perform relatively well, e.g., the atomization
energy of the I2 molecule ��2.400, �3.015, and �3.031 eV,
for p=2,3 ,4, respectively, and �3.037 eV for FHI-aims� has
approximately two to four times larger errors than the C6H6

molecule. Elements with f-electrons perform much worse,
e.g., At2 has one order of magnitude larger errors than C6H6

molecule. This is due to insufficient angular DOFs as the
eigenvalues of the f-orbitals split �and d-orbitals split
slightly� in energy, whereas p-orbitals do not. Our estimate is
that one would need �2–4 times more angular DOFs for

TABLE I. Total energies of H, C, and O atoms calculated using elements
with degrees p=2–4.

ELDA �eV�

H C O

p=2 �12.0509 �1011.1067 �2011.1970
p=3 �12.1245 �1018.1042 �2025.8759
p=4 �12.1271 �1018.3581 �2026.4268
FHI-aims �12.127 �1018.369 �2026.451

TABLE II. Total energies of H2, CO, and C6H6 molecules calculated using
elements with degrees p=2–4.

ELDA �eV�

H2 CO C6H6

p=2 �30.8407 �3039.5322 �6226.5746
p=3 �30.9510 �3059.7776 �6262.5718
p=4 �30.9542 �3060.5009 �6263.7841
FHI-aims �30.954 �3060.529 �6263.829

TABLE III. Atomization energies of H2, CO, and C6H6 molecules calcu-
lated using elements with degrees p=2–4.

�ELDA �eV�

H2 CO C6H6

p=2 �6.6838 �15.7573 �81.0894
p=3 �6.6996 �15.7162 �80.8599
p=4 �6.6999 �15.7114 �80.8541
FHI-aims �6.700 �15.709 �80.852
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heavy elements, which in addition to �50% more radial
DOFs is �3–6 times more DOFs than for carbon.

Tables IV and V show the convergence of the potential
energy surface and the dipole moment, respectively, calcu-
lated with elements with degrees p=2–4. The potential en-
ergy surface shows no “egg-box effect,” known to exists in
uniform real-space grids.48 However, there exists a similar
kind of effect. For example in a diatomic molecule, when the
bond length is changed, new elements are created into or old
ones are removed from the mesh. In improperly generated
meshes, this can cause severe problems as the potential en-
ergy surface may have significant artificial oscillations and
discontinuities. For this reason, we recommend a slightly
denser discretization of the bonding regions compared to the
atomic regions. Based on our experimentations on diatomic
molecules, this is sufficient and forces with a quality compa-
rable to that from commonly used codes, such as the real-
space code GPAW,13 are obtained.

Note that we have given two different values for the
atomization energy of CO at the bond length of RCO

=1.1 Å for each element degree p �see Tables III and IV�.
Because the mesh generation is not unique for a given mol-
ecule but rather for given Cartesian positions and the order in
which the atoms are given, the difference is due to different
meshes obtained from two different generator inputs. How-
ever, the difference is one order of magnitude smaller than
the error in the atomization energy. The dipole moment
shows errors less than 0.01 and 0.001 eÅ when using 2nd
and 3rd order polynomials, respectively.

In Table VI, we show the Kohn–Sham30 eigenvalues of
the C6H6 molecule. The core eigenvalues exhibit much larger

absolute errors than the valence eigenvalues, but the relative
errors are of same order. The valence eigenvalues converge
similarly to the atomization energies, which is reasonable as
the errors in the core eigenvalues cancel when taking the
differences. The remaining error is mainly due to the valence
states and the molecular orbitals which they form.

B. Linear-response TDDFT

For the linear-response TDDFT calculations we used ac-
tually a slightly different mesh generation scheme than that
described above in Sec. I. This old scheme, developed also
by us, uses �i� different alternating polyhedra, i.e., tetrakis
hexahedron and slightly compressed �larger cubic faces�
truncated cuboctahedron, for atomic meshes, and �ii� differ-
ent quality measures, i.e., dihedral angles and aspect ratio
�longest edge/smallest side height�, than the current one.
Compared to the old one, the current mesh generation
scheme is simpler and it produces higher quality atomic
meshes. However, the difference in quality is negligible
when applying to the linear-response TDDFT.

First, we consider a simple test system, a beryllium
atom, to demonstrate the convergence properties. We begin
with the polynomial degrees p=2 and p=3, 150 states, the
confinement radius Rc=8.0a0, and the force constant kc

=10−3Eh /a0
2. The resulting spectra are shown in Fig. 5. In-

creasing the polynomial degree of the elements has only a
small effect of �20 meV for the first peak position, and of
�70 meV for the second peak position �h�p=3�h�p=2�. The
effect of different confinement potentials can be seen in Figs.
6 and 7. A stronger confinement provides a faster conver-

TABLE IV. Atomization energy of the CO molecule at different bond
lengths calculated using elements with degrees p=2–4.

�ELDA �eV�

RCO �Å� p=2 p=3 p=4 FHI-aims

0.8 �0.1272 �0.6514 �0.6648 �0.660
1.0 �14.4446 �14.4495 �14.4464 �14.444
1.1 �15.7584 �15.7175 �15.7115 �15.709
1.2 �15.6235 �15.4910 �15.4845 �15.482
1.4 �13.5165 �13.3027 �13.2934 �13.292
1.8 �8.5848 �8.3963 �8.3875 �8.386
2.4 �4.0303 �3.9093 �3.9043 �3.903

TABLE V. Dipole moment of the CO molecule at different bond lengths
calculated using elements with degrees p=2–4.

�LDA �eÅ�

RCO �Å� p=2 p=3 p=4 FHI-aims

0.8 0.2454 0.2402 0.2400 0.2398
1.0 0.1390 0.1311 0.1307 0.1305
1.1 0.0745 0.0669 0.0666 0.0663
1.2 0.0064 �0.0010 �0.0013 �0.0015
1.4 �0.1330 �0.1397 �0.1399 �0.1399
1.8 �0.3792 �0.3792 �0.3791 �0.3790
2.4 �0.6084 �0.5996 �0.5992 �0.5991

TABLE VI. Kohn–Sham orbital energies �eigenvalues� of the C6H6 mol-
ecule calculated using elements with degrees p=2–4.

�LDA �eV�

State p=2 p=3 p=4 FHI-aims

1 �264.6616 �266.3819 �266.4388 �266.4382
¯

6 �264.6087 �266.3585 �266.4156 �266.4150
7 �21.1552 �21.1155 �21.1557 �21.1560
8 �18.3474 �18.3608 �18.3616 �18.3619
9 �18.3404 �18.3597 �18.3609 �18.3612
¯

18 �8.2867 �8.2915 �8.2915 �8.2917
19 �8.2839 �8.2895 �8.2895 �8.2897
20 �6.5401 �6.5341 �6.5343 �6.5338
21 �6.5385 �6.5339 �6.5342 �6.5338

FIG. 5. Optical absorption spectra of the beryllium atom calculated using
elements with degrees p=2 �solid� and p=3 �dashed�. The inset shows a
magnification of the high-energy region.
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gence with respect to the number of states, but at the same
time, the converged transition energies are shifted to slightly
higher energies. A weaker confinement provides energies
which are better converged, but the convergence may not be
reached with the available number of states, as in the case of
kc=10−4Eh /a0

2 in Fig. 7. In Fig. 6, the number of states was
increased to 250 which yields an error less than 30 meV s.
Obviously, the transitions at higher energies are more sensi-
tive to confinement than transitions at low energies. The con-
vergence with respect to the number of states included in the
calculation is not smooth, but rather has a step every time a
new state contributing to the transition is included in the
basis. The step is not always smaller than the previous one,
and it can be hard to decide whether the spectrum has con-
verged by observing the convergence with respect to the
number of states.

Next, we examined two molecular test systems, the so-
dium dimer Na2 and the benzene molecule C6H6. The simu-
lated photoabsorption spectrum of the Na2 is shown in Fig. 8.
The calculation included 250 states, and two different con-
finement potentials were used: one with Rc=8.0a0 and kc

=10−2Eh /a0
2, and one with Rc=8.0a0 and kc=10−3Eh /a0

2.
Practically, the same result of 2.15 eV was obtained for the
first peak with the two sets of parameters. For the second one
there is a small shift from 2.69 to 2.72 eV. In contrast, the
third clearly visible peak in the spectrum shows a remarkable
shift from 3.4 to 4.3 eV.

The photoabsorption spectrum of the benzene molecule
is shown in Fig. 9. Again two different confinement poten-
tials were used, one with Rc=4.0a0 and kc=10−2Eh /a0

2, and
one with Rc=4.0a0 and kc=10−3Eh /a0

2. The spectrum with
the weaker confinement �kc=10−3� is not converged yet with
250 states, which corresponds already nearly 4 million ma-
trix elements. The spectrum with the stronger confinement
and 150 states is converged in the lower energy part of the
spectrum, and reproduces correctly the main experimental
peak around 7 eV. It also shows the beginning of a broad
feature above 9 eV in agreement with the experiment.

C. Computational details

The ground-state DFT calculations were performed as
serial calculations, and the time consumed ranged from min-
utes �hydrogen atom� to tens of hours �benzene with p=4�.
All calculations were done on 2.6 GHz AMD Opteron dual-
core processors. As the systems were relatively small, the
storage requirements of the matrices were much larger than
those of the wave functions. The number of nonzero entries
in the matrices ranged from 1105 �H, p=2� to 4107

�C6H6, p=4�. The number of DOFs ranged from 5000 �H,
p=2� to 5105 �C6H6, p=4�. The linear-response TDDFT
was parallelized over the rows of the Casida matrix, and the
absorption spectrum of benzene was calculated using several
hundreds of processors.

FIG. 6. Optical absorption spectrum of the beryllium atom calculated using
the confinement potential parameters �from the highest curve to the lowest
one�: kc=10−2Eh /a0

2, Rc=4.0a0; kc=10−3Eh /a0
2, Rc=4.0a0; kc=10−4Eh /a0

2,
Rc=4.0a0; kc=10−2Eh /a0

2, Rc=8.0a0; kc=10−3Eh /a0
2, Rc=8.0a0; and kc

=10−4Eh /a0
2, Rc=8.0a0. The spectra are separated by shifting the zero level.

FIG. 7. Convergence of the position of the first transition peak in the optical
absorption spectrum of the beryllium atom with respect to the number of
states included in the calculation. The confinement potential parameters used
are: kc=10−2Eh /a0

2, Rc=4.0a0 �dash-dotted�; kc=10−3Eh /a0
2, Rc=4.0a0

�dashed�; and kc=10−4Eh /a0
2, Rc=4.0a0 �solid�.

FIG. 8. Optical absorption spectra of the sodium dimer calculated with the
confinement potential parameters of kc=10−2Eh /a0

2, Rc=8.0a0 �solid� and
kc=10−3Eh /a0

2, Rc=8.0a0 �dashed�.

FIG. 9. Optical absorption spectra of the benzene molecule: �a� the spectra
calculated using the confinement potential parameters kc=10−2Eh /a0

2,
Rc=4.0a0 �solid� and kc=10−3Eh /a0

2, Rc=4.0a0 �dashed�; �b� the spectrum
calculated using the confinement potential parameters kc=10−2Eh /a0

2,
Rc=4.0a0 �solid� and the experimental spectrum �Ref. 49� �dashed�.
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We consider the performance attained adequate for an
initial “proof-of-concept” implementation. Moreover, we ex-
pect to increase the speed substantially by employing more
sophisticated methods. Especially, the preconditioning of the
eigenvalue problem and improved initial guesses for
Kohn–Sham30 wave functions are expected to result in re-
markable improvements.

IV. CONCLUSIONS

We have described and implemented a high-order hier-
archical finite-element method on unstructured meshes for
all-electron DFT and TDDFT method. Our finite-element
mesh generation scheme assures the quality of the elements
in the mesh by merging high-quality, structured atomic
meshes to an initial molecular mesh, which is then refined to
meet the size and shape requirements by applying the De-
launay refinement method. The ground-state DFT calcula-
tions were performed using elements with degrees p=2–4,
which provide increasing levels of accuracy down to a few
meV s.

We also described a flexible way to construct a basis for
the finite-element linear-response TDDFT calculation. By
applying an auxiliary confinement potential to the ground-
state calculation, the basis can be tuned to balance between
accuracy and computational cost. The convergence proper-
ties of the optical absorption spectrum were discussed in the
cases of the beryllium atom, and the sodium dimer and ben-
zene molecules.

The initial implementation has proved the applicability
of the hierarchical finite-element method on unstructured
meshes to all-electron DFT and TDDFT. However, there ex-
ist several open questions which must be further studied and
improved, for example, the preconditioning of the eigenvalue
problem. As the finite-element method is well-suited for the
domain decomposition, the parallel implementation would
provide access to much larger systems within reasonable ex-
ecution times. As most of the applications do not need full
all-electron solutions, the projector-augmented wave method
or a similar treatment should speed up calculations remark-
ably in these cases. Magnetic fields, relativistic effects, and
quantum mechanical forces for atoms will be implemented in
order to broaden the applicability of the method. Finally, we
believe that the most promising application areas for our
method are beyond the ground-state and linear-response cal-
culations, for example, in the time-propagation TDDFT
scheme.
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