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We present an all-electron method for time-dependent density functional theory which employs hier-
archical nonuniform finite-element bases and the time-propagation approach. The method is capable
of treating linear and nonlinear response of valence and core electrons to an external field. We also
introduce (i) a preconditioner for the propagation equation, (ii) a stable way to implement absorb-
ing boundary conditions, and (iii) a new kind of absorbing boundary condition inspired by perfectly
matched layers. © 2011 American Institute of Physics. [doi:10.1063/1.3651239]

I. INTRODUCTION

The introduction of attosecond lasers has provided ex-
perimental access to electron dynamics.1 Attosecond pulses
have a time span of the same order as classical periods of
electrons on valence shells. Therefore, they can be used to
take “snapshots” of electron dynamics. For example, in a re-
cent experiment, the motion of valence electrons was recorded
in real-time.2 A krypton atom was excited (pumped) by a
high intensity near-infrared (NIR) femtosecond laser pulse
and then probed by following extreme-ultraviolet (EUV) at-
tosecond laser pulses with different delays with respect to the
NIR pulse. Modelling such an experiment theoretically poses
several difficulties. The high intensity of the NIR pulse causes
nonlinear effects and therefore perturbative approaches be-
come questionable. The EUV pulse has an average energy of
∼80 eV and the short duration of the pulse (≤150 as) implies
a broad energy range. Therefore, not only the valence elec-
trons are excited (or ionized), but actually the measurement
process itself relies on the excitation of a core electron to a
hole in valence states. Even though the experiment was per-
formed with krypton atoms, the systems of interest are not
only atoms or simple molecules, but for example, complex
biological systems and surfaces with adsorbed molecules.
Therefore, it is crucial to develop theoretical and computa-
tional methods which are able to treat the dynamics of both
the bond-forming valence as well as that of the rather inert
core electrons beyond the linear response regime.

The density functional theory (DFT) is widely used in
the electronic structure theory of materials, surfaces, and
molecules.3 Its success derives from its ability to provide ac-
curate results with a reasonable computational effort. How-
ever, DFT is bound to static systems. While some recent ad-
vances in DFT, such as hybrid exchange-correlation (XC)
functionals, are capable of reproducing some excited state
properties (e.g., band gaps) relatively well, DFT cannot de-
scribe the dynamics of electrons on excited states. The
time-dependent DFT (TDDFT) is based on the Runge-Gross

a)Electronic mail: lauri.lehtovaara@iki.fi.

theorem4 which states that any two (physically) different
time-dependent external potentials (e.g., laser fields) give
disparate time evolutions of the electron density. The theo-
rem extends DFT to excited states and to the dynamics of
electrons under time-dependent external fields in a justified
way.

The time-propagation (TP) approach to TDDFT,5 where
time-dependent Kohn-Sham (TDKS) equations are propa-
gated in real-time (in contrast to solving them in frequency
space), allows modelling of laser pulses of any frequency,
shape, and intensity.6 The nonlinear effects can be modelled
without any changes to the underlying equations and the only
theoretical limiting factor is the quality of the approximated
XC functional. The current XC functionals for TDDFT are
known not to perform well in all cases, but they perform ade-
quately in many cases and are under active development.7, 8

The time-propagation approach has also advantages from
the numerical point of view, which makes it suitable for large
systems. The computational cost scales well with respect to
increasing system size,9 and it allows efficient parallelization
over TDKS states.

When modelling electron dynamics, especially in the
nonlinear response limit (e.g., harmonic generation), absorb-
ing boundary conditions10, 11 decrease unwanted scattering
from the boundaries of the simulation cell significantly, and
therefore, reduce artificial boundary effects. Mainly two ap-
proaches have been used with TDDFT: the negative imagi-
nary potential and the mask function.12 These methods are
simple to implement and they can be tuned to absorb one fre-
quency efficiently. However, their performance begins to de-
teriorate as a wider range of frequencies reach the boundary.
The perfectly matched layers (PMLs) method13 is an absorb-
ing boundary which adapts to the incoming wave. It is widely
used, for example, in field of electromagnetic scattering. It
has also been applied to Schrödinger equation,14 but the equa-
tions become tedious and the propagation matrix is no longer
complex symmetric, which slows down the numerical solu-
tion process.

The computer implementation of TP-TDDFT formalism
requires a discretization scheme, for example, planewaves,15

0021-9606/2011/135(15)/154104/8/$30.00 © 2011 American Institute of Physics135, 154104-1
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real-space grid,12, 16 or atomic orbital basis.17 Desirable prop-
erties for a TP-TDDFT discretization scheme include (i) ac-
curacy which is insensitive to external field, (ii) systemati-
cally improvable accuracy, (iii) efficient use of degrees of
freedom (DOF), and (iv) efficient parallelization. Atomic or-
bital bases are fast and efficient for the ground state of a
system, but their performance begins to deteriorate when the
system evolves far from the ground state. Increasing the de-
grees of freedom does not necessarily increase the accuracy
in a systematic way. With planewaves and finite-difference
(FD) discretization (i.e., uniform real-space grids), the in-
herent accuracies for the ground and excited states do not
significantly differ, and by increasing the degrees of free-
dom, accuracy increases systematically. However, in prac-
tice, planewaves and FD scheme require pseudo-potentials18

(or similar approaches, such as the projector-augmented wave
(PAW) method19) in order to avoid sharp wave function oscil-
lations and large electron density gradients near nuclei. This
leads to additional error, which is not straightforward to es-
timate and control. Moreover, an artificial division to “core”
and “valence” states must be made, which sets limits for accu-
racy. In most systems, the choice of “core” states is clear, but
still in many other system it is not clear beforehand, especially
in the time-dependent case. A single “semi-core” state might
require a much denser discretization than that required by
other states contributing to the phenomenon under study. As a
consequence, efficiency drops because of significant overdis-
cretization. Also large vacuum regions inside simulation cells
are inefficiently handled by uniform discretizations.

The finite element (FE) discretization20, 21 can be used for
nonuniform discretization of the real-space. It is a linear com-
bination of continuous, piecewise polynomial functions. It in-
herits the good properties of the real-space methods, such as,
flexible boundary conditions and efficient parallelization via
domain decomposition, while still allowing a nonuniform dis-
cretization. As finite elements can adapt to the local feature
size, they can be used to describe solutions of core and va-
lence electrons equally well. Moreover, they can adapt to the
geometry of the system to avoid overdiscretization. We have
described our FE discretization in our previous paper.22 The
FE mesh is created by merging highly nonuniform but sym-
metric atomic meshes to a global, nonuniform, and unstruc-
tured mesh.

There exists a few earlier attempts to apply the
FE methodology to time-dependent electronic structure
calculations.23–26 However, none of these uses hierarchical el-
ements on unstructured meshes. Moreover, these are either
single particle calculations or Hartree-Fock calculations for a
few electrons, not TDDFT calculations for tens of electrons.

The rest of the paper is structured as follows. In the
next section, we briefly review TDDFT, TP-TDDFT, and
the FE method. In Sec. III, we present a preconditioner for
TP-TDDFT, discuss propagation with absorbing boundary
conditions, and describe a PML like boundary condition. In
Sec. IV, we apply our implementation to a set of well known
systems in the linear response regime, namely, sodium dimer
Na2, benzene C6H6, and fullerene C60 molecules. For Na2, we
calculate semi-core excitations in addition to valence excita-
tions. Furthermore, we apply an intense laser pulse to a Mg

atom in order to test the nonlinear regime. Finally, we probe
the valence electrons of a Mg atom by semi-core excitations
before and after an intense laser pulse. In the final section, we
draw the conclusions and set directions for future research.

We will use the atomic units throughout the article.

II. THEORY

A. Time-dependent density functional theory

In the TDDFT, no variational principle exists, but the
quantum mechanical action

A[ψ] =
∫ t1

t0

dt〈ψ(t)|i ∂

∂t
− Ĥ (t)|ψ(t)〉, (1)

defined by the time-dependent Hamiltonian Ĥ (t) of the sys-
tem, provides an analogous quantity to the total energy of the
ground-state DFT.27 The TDKS equation reads

i
∂

∂t
ψk(r, t) = ĤKS[n](r, t)ψk(r, t)

=
(

−1

2
∇2 + vKS[n](r, t)

)
ψk(r, t), (2)

where ψk(r, t) are the TDKS orbitals and vKS[n](r, t) is the
effective TDKS potential. The TDKS orbitals ψk are or-
thonormal 〈ψ i|ψ j〉 = δij and provide the time-dependent den-
sity n(r, t) = ∑

k fk|ψk(r, t)|2, where fk is the occupation of
kth state. The density is normalized to the total number of elec-
trons Nel = ∫

n(r, t)d3r in the system.
The time-dependent effective potential vKS[n](r, t) reads

as

vKS(r, t) = vH [n](r, t) + vxc[n](r, t) + vext (r, t), (3)

where vH [n](r, t) is the Hartree potential, vext (r, t) is the
external potential, and vxc[n](r, t) is the XC potential. The
Hartree potential reads as

vH [n](r, t) =
∫

d3r ′ n(r′, t)
|r − r′| . (4)

The external potential includes the electron-nucleus attraction
vne(r, Ra, t) and a possible external field (e.g., a laser field)
vf ield (r, t). The electron-nucleus attraction

vne(r) =
Nnuc∑
a=1

−Za

|r − �Ra|
, (5)

depends on the nuclear positions �Ra and nuclear charges Za.
Nnuc is the number of nuclei in the system. The external field
vf ield (r, t) can be, for example, a simple monochromatic laser
pulse within the dipole approximation

vpulse(r, t) = −( �E0 · �r)g(t) sin(ωt), (6)

where �E0 gives the strength and polarization direction of the
electric field and g(t) is an envelope function, which should
be chosen so that the total pulse area is zero.28, 29

The true time-dependent exchange-correlation potential
vxc[n](�r, t) is nonlocal in space and it depends on all previ-
ous densities, i.e., it has memory. However, it is unknown and
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must be approximated. In this work, we apply the adiabatic
local density approximation (ALDA),30 which is local both in
space and in time.

B. Finite elements

The present FE discretization scheme and mesh gener-
ation approach have been described in detail in our earlier
paper.22 Thus, we only briefly review the FE method here.

The FE method divides a computation domain into poly-
hedra, for example, tetrahedra which are used in our im-
plementation. Inside each polyhedron, a set of polynomials
forms a local basis. This basis can be chosen hierarchically
in which case a higher order basis includes all the lower or-
der bases. In a conforming method the global basis is then
constructed by forcing continuity of the basis functions over
vertices, edges, and faces of polyhedra. Still, the global basis
functions remain local and span only elements sharing a face,
an edge, or a vertex. The resulting basis is a variational, hier-
archical, local, continuous, and piecewise polynomial basis,
which can be used for nonuniform discretization.

Our mesh generation scheme (for details, see Ref. 22)
first constructs symmetric atomic meshes by adding spherical
layers of vertices with exponentially increasing layer radius.
The vertices of each layer are vertices of highly symmetric
polyhedra. The symmetric atomic meshes are then merged to-
gether by a Delaunay tetrahedralization31 and finally refined
by a Delaunay refinement.32 Our choice for a local basis is a
hierarchical basis, where local basis functions are generated
using products of one-dimensional integrated Legendre poly-
nomials over the interval [−1, 1].33

Once the global basis functions χk(r) are available, the
KS states can be written as a linear combination

ψk(r, t) =
∑

j

Ck,j (t)|χj (r)〉. (7)

By substituting this into the TDKS Eq. (2), multiplying from
left by 〈χi(r)|, and integrating over the space we obtain the
matrix equation

iS
∂

∂t
C(t) = HKS(t)C(t), (8)

where the overlap matrix is

Sij = 〈χi |χj 〉, (9)

and the Hamilton matrix is

H KS
ij = 1

2
〈∇χi |∇χj 〉 + 〈χi |vKS[n](r, t)|χj 〉. (10)

C. Time propagation

The TDKS equation is an initial value problem and can
be solved using the TP scheme.5 The partial differential equa-
tion (Eq. (2)) can be solved formally

ψk(r, t) = Û (t, t0)ψk(r, t0)

= T̂ exp

[
−i

∫ t

t0

ĤKS[n](r, t ′)dt ′
]

ψk(r, t0), (11)

where Û (t1, t0) is the time-propagation operator and T̂ is the
time-ordering operator. In practice, it is impossible to solve
the above equation exactly for any physically relevant sys-
tem. However, the total propagator Û (t1, t0) can be rewrit-
ten as a product of propagators over short time intervals
�t, i.e.

Û (T , 0) = �
Nt−1
p=0 Û (tp + �t, tp), (12)

where Nt = T/�t, and T is the total propagation time. In the
limit of a short time-step, �t → 0, several approximations for
the propagator Û (tp + �t, tp) can be found.34

The FE basis is not an orthonormal basis, which restricts
the choice of the propagator in practice. In the FE discretized
form, the original propagation Eq. (11) reads

Ck(r, t) = T̂ exp

[
−i

∫ t

t0

S−1(t ′)HKS[n](r, t ′)dt ′
]

Ck(r, t0),

(13)

in which the inverse of the overlap matrix occurs inside the in-
tegral. Many of the propagators suitable for orthogonal bases
would require the inverse S−1(t) to be calculated, which is
prohibitively expensive for the FE basis. However, the well-
known Crank-Nicolson (CN) method, which is also known as
the implicit mid-point rule,35

ÛCN(t + �t, t) =
[

1̂ + i

2
�tĤ (t + �t/2)

]−1

×
[

1̂ − i

2
�tĤ (t + �t/2)

]
, (14)

is suitable for nonorthogonal bases.36 Instead of actually cal-
culating the inverse, the propagation equation can be cast into
a set of matrix equations

[
S(t + �t/2) + i

2
�tHKS(t + �t/2)

]
C(t + �t)

=
[
S(t + �t/2) − i

2
�tHKS(t + �t/2)

]
C(t)

+O(�t3). (15)

The Hamilton matrix at the middle of the time-interval
HKS(t + �t/2) is unknown beforehand, but it can be ap-
proximated by taking the average of the Hamiltonian at the
beginning and at the end of the time-interval and using a
self-consistent cycle (i.e., fixed point iteration) to solve the
equation. In practice, instead of a full self-consistent cycle,
it is sufficient to do only a single predict and a single correct
step in order to achieve the third-order local convergence.
The third-order local convergence provides the second-order
global convergence, i.e., the error after the whole propaga-
tion, t = T, converges as O(�t2). We call the Crank-Nicolson
propagator with one predict-correct step as the semi-implicit
Crank-Nicolson (SICN).
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1. Optical spectra

The optical absorption spectrum can be obtained from
TP-TDDFT by first applying a weak delta pulse

E(t) = �K0δ(t), (16)

at time t = 0 to the system. The pulse excites all possible
frequencies with equal intensity, i.e.

ψk(t = 0+) = exp

[
i

∫ 0+

t=0−
�K0 · rδ(t)dt

]
ψk(t = 0−)

= exp[i �K0 · r]ψk(t = 0−), (17)

and then the system is let to evolve freely in time. The time-
evolution of the time-dependent dipole moment (TDDM)

�μ(t) = −〈ψk(t)|�r|ψk(t)〉, (18)

is recorded. Then the Fourier transform of the TDDM gives
the optical absorption spectrum37 (parallel to electric field)

S‖(ω) = 2ω

π

1

| �K0|

∫ T

0
(μ‖(t) − μ‖(0−)) sin(ωt)g(t)dt,

(19)
where ω is the excitation energy, and g(t) is an envelope func-
tion (e.g., Gaussian).

TP-TDDFT is also capable of handling nonlinear
phenomena. The nonlinear response of a system to a
continuous-wave (CW) laser field with frequency ωf causes
optical emission spectrum to include higher harmonics, i.e.,
integer multiples of the field frequency ωf

38. The nonlinear
optical emission spectrum is proportional to the power
spectrum of the acceleration of TDDM,38, 39

H‖(ω) ∝
∣∣∣∣ω2

∫ T

0
(μ‖(t) − μ‖(0−)) exp(−iωt)g(t)dt

∣∣∣∣
2

.

(20)

III. TIME-PROPAGATION AND FINITE-ELEMENT BASIS

In this section, we will address specific issues by apply-
ing the time-propagation approach together with all-electron
FE basis. The most essential part of a practical FE-TP method
is the preconditioning of the propagation equation, which will
be discussed next.

A. Preconditioning

The propagation matrix in Eq. (15) is relatively ill-
conditioned on an all-electron FE basis as small elements
near nuclei allow large kinetic energy values whereas large
simulation cells allow very low kinetic energy values.
Iterative methods, like conjugate gradient, applied to ill-
conditioned systems converge slowly. However, the condi-
tioning and thereby the convergence rate can be improved by
preconditioning. If we write the propagation equation in the
form

(γ S + H )C(t + �t) = (γ S − H )C(t), (21)

where γ = −2i/δt , it is fairly intuitive to choose an approx-
imation of (αS + T)−1 as the preconditioner. The kinetic en-

ergy operator T compresses the high-energy end of the spec-
trum towards unity, whereas the shift αS prevents too aggres-
sive smoothing in the low-energy end. Deeply bound core
states are not an issue here, as those are few and well sep-
arated from the rest of the eigenvalue spectrum. Instead of
using γ as shift, α is chosen to be a positive real number.
With this choice, the preconditioner is symmetric positive def-
inite, which is a desirable property from the numerical point
of view. We have not yet tried to found a systematic way to
chose the optimal value for α. However, according to our tests
α should have the same order of magnitude as the excitation
energy range of interest, i.e., it should be proportional to the
inverse of the time-step.

The preconditioner (αS + T)−1 is approximated by a
multilevel scheme, which first applies a multi-p scheme
continued by the algebraic multigrid (AMG) scheme40 for
linear elements (p refers here to the polynomial degree
of basis functions). The preconditioning cycle begins with
weighted Jacobi relaxation sweeps with the weight of 0.25 for
the whole system. Then the projection to the (p − 1)th level
is made, i.e., the basis functions of the order p are excluded,
and the Jacobi relaxation is repeated. These projection-
relaxation steps are made until all basis functions are linear
(p = 1). From this point onward, we continue with the AMG
method,40 which is known to work well with linear basis func-
tions and the shifted Laplacian operator (αS + T). We use the
smoothed aggregation AMG41 implementation of the Trilinos
library.42, 43

B. Absorbing boundary conditions

In simulations where excitations occur to continuum
states, the boundaries of a simulation cell must be treated
properly. At the boundary of a simulation cell, a boundary
condition (BC) must be chosen. For example, wave functions
can be chosen to be zero at the boundary (Dirichlet BC), their
derivative can be chosen to be zero (Neumann BC), or a pe-
riodic boundary condition can be applied. If the boundary
is set to lie infinitely far from a system, all the three above
boundary conditions are equal and do not cause any artifi-
cial boundary effects. However, an infinitely large simula-
tion cell is computationally clearly unfeasible. On the other
hand, without proper treatment a finite simulation cell causes
artificial boundary effects, e.g., reflections and confinement
effects.

Absorbing boundary conditions (ABC) try to mimic an
infinitely large simulation cell (or open boundary) by trying
to absorb all the outgoing electrons, which would never return
to the simulation cell in the real system. In practice, ABC can-
not differentiate between outgoing electrons which would re-
turn and which would not return. Nevertheless, a well-chosen
ABC can significantly reduce unwanted artificial boundary
effects.

A classic ABC used in quantum mechanics is the nega-
tive imaginary potential (NIP) method,10 which applies a neg-
ative imaginary potential in a region near the cell boundaries.
For example, inside a sphere of radius R the imaginary po-
tential is zero, and outside the sphere, the potential changes
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linearly from zero to negative imaginary infinity

VNIP (r) =
{

0, if r ≤ R

−iα|r − R|, if r > R.
(22)

Another approach is the mask function approach,12 in which
wave functions are multiplied by a mask function. The value
of the mask function is unity inside the sphere and decays
smoothly to zero outside the sphere. This is in practice, the
same method as NIP, but operates directly on wave functions
instead of the influence through the potential.

The perfectly matched layers method13 is a widely used
ABC, for example, in simulations of electromagnetic scatter-
ing. The basic idea is to tune the absorbing boundary dynam-
ically based on the properties of outgoing waves. As waves
can be absorbed without significant reflections in a distance
which is proportional to their wavelength, waves with high
momenta (i.e., those with small wavelengths), are absorbed
stronger than waves with low momenta. In PML, this is done
by modifying the kinetic energy operator as

−1

2

∂2

∂2x
→ −1

2

1

1 + iγ (x)

∂

∂x

1

1 + iγ (x)

∂

∂x
, (23)

within the boundary layers. Above, γ (x) is a parametrization
function determining the strength of the absorption.

The direct use of the PML method would lead to an ad-
vection term. In general, advection terms have tendency to re-
duce stability and convergence of the propagation. Moreover,
the advection term would break the (complex) symmetry of
the SICN propagator. Therefore, we apply a simplified ver-
sion of the PML method. We add an imaginary part to our
kinetic energy

〈∇χi |1

2
|∇χj 〉 → 〈∇χi |1

2
+ iσ (r)|∇χj 〉, (24)

where σ (r) is a parametrization function decreasing from
zero towards negative infinity. We call this approach nega-
tive imaginary kinetic energy (NIK) method, which can be
seen as dynamic NIP where the strength of the imaginary po-
tential depends on the kinetic energy of the outgoing wave.
It could be also seen as a simplified version of the external
complex scaling method.44, 45 This approach leads to complex
symmetric matrices which allows complex symmetric conju-
gate gradient (CSCG) to be used with the SICN propagator.
It is also clear how to implement a stable propagation scheme
with NIK-ABC. This is discussed in Subsection III B 1. This
is not the case for PML, as it changes the real part of the ki-
netic energy operator in addition to the imaginary part and it
includes the complex advection term.

1. Stable propagation with absorbing boundaries

When the NIP or NIK method is applied with TP-
TDDFT, the stability and qualitative behavior of the propa-
gator must be investigated as the propagation is not unitary.
For example, if NIP or NIK Hamiltonian is applied to both
sides (left hand side (LHS) and right-hand-side (RHS)) of the
SICN propagation equation, the propagation becomes unsta-
ble and its qualitative behavior is wrong when the imaginary
component of the Hamiltonian is large. For small imaginary

components, the polynomial expansion is accurate, the propa-
gation is stable, and its qualitative behavior is correct, i.e., the
norm of wave functions decreases. However, when the imag-
inary component is large, the norm does not decrease. More-
over, the sign of the wave function changes on each iteration.
The simplified form

1 − i(a − ib)

1 + i(a − ib)
= −b2 − a2 − 2ia + 1

b2 + 2b + a2 + 1
, (25)

based on Eqs. (14), (21) and (23) demonstrates the issue.
When b → ∞, this ratio approaches −1 as O(b−1). We
have found this effect to cause numerical instabilities also in
practice.

To restore the correct qualitative behavior, we apply the
ABC Hamiltonian HABC only to the implicit part of the
propagation equation (i.e., to the LHS of Eq. (15)):{

S(t + �t/2) + i

2
�t

[
H (t + �t/2) + HABC

]}
C(t + �t)

=
{
S(t + �t/2) − i

2
�tĤ (t + �t/2)

}
C(t). (26)

In principle, the propagation is missing one half of the absorb-
tion, but the parametrization function σ (r) can be multiplied
by factor of two to approximately compensate the missing one
half. If we use the same simplified notation (form) as before,
we get

lim
b→∞

1 − ia

1 + i(a − ib)
= b−1 + O(b−2). (27)

And we see that the norm decreases always as b increases, i.e.,
the correct qualitative behavior is restored. With this modifi-
cation, the above-mentioned numerical instability is removed
also in practice.

C. Implementation

Our original FE-DFT implementation was based on the
ELMER finite-element library.46 However, for further devel-
opment we chose to replace it by a more specialized code.
Our implementation consists of three different parts: (i) a par-
allel sparse linear algebra library, (ii) a parallel FE library, and
(iii) a (TD)DFT code which we have built on top of the first
two ingredients. The parallel sparse linear algebra library is
mostly a wrapper library based on Trilinos library developed
in the Sandia National Laboratory.43 The FE library com-
pleted in the present work employs hierarchical p-type tetra-
hedral elements. For parallelization, it uses a domain decom-
position method.47 In addition to the domain decomposition,
TP-TDDFT is parallelized over KS states.

IV. PERFORMANCE

We apply our implementation to a set of systems within
the linear response regime, namely, to the sodium dimer Na2,
benzene C6H6, and fullerene C60 molecules. For Na2, we cal-
culate semi-core excitations in addition to valence excitations.
Furthermore, we apply an intense laser pulse to the Mg atom
in order to test within the nonlinear regime. Finally, we probe
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valence electrons of the Mg atom by semi-core excitations be-
fore and after an intense laser pulse.

In all simulations, we use the polynomial degree
p = 2, ALDA exchange-correlation function, and NIK ab-
sorbing boundary conditions with

σ (r) =
{

−γ |rmin(r) − Rcut |2, if rmin(r) > Rcut

0, otherwise,
(28)

where rmin(r) is the distance to the closest atom nucleus.
The parameter Rcut was chosen to be 5.0a0 ≈ 2.6 Å and
γ = 0.01a−2

0 . The Rcut might seem as a short distance, but a
small γ makes ABC very weak in the vicinity of nuclei. These
parameters were found to be a good compromise in order
to prevent artificial reflections while not disturbing electron
dynamics.

To demonstrate the difference between NIK and NIP
absorbing boundary conditions (Eqs. (22) and (24), respec-
tively), we show their effect on the photoabsorption spectrum
of a hydrogen atom in Fig. 1. The NIK is more efficient in
absorbing high energy waves as the strength of the absorption
increases with the momentum. This is clearly demonstrated in
the case of weak absorbing boundaries, where artificial peaks
at higher energies smooth out much more efficiently for NIK
than NIP. Moreover, if we increase the strength of the absorp-
tion, the NIP begins to shift the low end of the spectrum to
higher energies, whereas the NIK has no apparent shift. The
NIK is especially useful for our FE method as high frequency
waves are absorbed soon after they propagate away from nu-
clei, which allows us to reduce degrees of freedom as the dis-
tance from nuclei increases.

The preconditioner was used in all calculations with the
shift α = 1.0 hartree. In general, without a preconditioner, the
CSCG iteration will fail to converge within 1000 iterations,
whereas with the preconditioner, CSCG will take around
100 iterations depending somewhat on the system. Fine
tuning α can slightly reduce the number of CSCG iterations
required. To further emphasize the importance of the pre-
conditioning, we remark that even such a simple system as

(c)

(b)

(a)

FIG. 1. Optical absorption spectra of a hydrogen atom with different bound-
ary conditions: (a) without absorbing boundary condition, (b) with weak NIP
(solid) and NIK (dashed) absorbing boundaries, and (c) with strong absorbing
boundaries.

FIG. 2. Optical absorption spectrum of C6H6 calculated using the FE-TP-
TDDFT (solid line), its out-of-molecular-plane component (dashed line), and
the experimental spectrum (dotted line).

a hydrogen atom does not converge without preconditioning,
whereas with preconditioning it converges on average with
55 iterations per time-step. If we loosen the convergence
criterion several orders of magnitude and use a reduced mesh
which leads to a better conditioning number (but to uncon-
verged results), the unpreconditioned propagation converges
on average with 420 iterations per time-step, whereas the
preconditioned propagation converges with only eight itera-
tions. Clearly, preconditioning is necessary in any practical
simulation.

A. Valence excitations

Figure 2 shows the optical absorption spectrum of C6H6

calculated using our FE method. C6H6 has a planar geome-
try with the C–C bond length of 1.396 Å and the C–H bond
length of 1.083 Å. The total simulation time is 24 fs, time-step
8 as, and only valence states are propagated. ALDA is know to
perform well in this case and the experimental spectrum48 is
in excellent agreement with the calculated spectrum. The es-
sential features are seen clearly, for example, the first peak at
∼7 eV. Yet, the continuum of the spectrum is smooth without
artificial peaks, which indicates that our NIK-ABC method is
working properly.

A computationally more challenging test for the method
and the code is C60. Figure 3 shows a comparison of our FE

FIG. 3. Optical absorption spectra of C60 calculated using the FE-TP-
TDDFT (solid line) and FD-PAW-TP-TDDFT (dotted line) methods.
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FIG. 4. Emission spectrum of the Mg atom when hit by an long, intense NIR
laser pulse (178 fs, 1064 nm ↔ 1.165 eV). The solid straight line corresponds
to an exponential decay.

method with the FD-PAW method calculated using the GPAW

program package.16, 49 Both spectra are calculated with the
time step of 8 as. The diameter of C60 is 7.1 Å. The low en-
ergy parts of the spectra are practically identical. The peak
positions begin to differ slightly above 30 eV but the spectra
have still the same structure. This is a remarkable agreement
between two different methods and implementations.

To simulate an intense CW laser field, we apply a long
(178 fs) NIR (λ = 1064 nm ↔ ω = 1.165 eV) laser pulse
to the Mg atom. The nonlinear response of the atom creates
odd integer multiples of the laser frequency, called harmon-
ics. Their intensity should decay exponentially, unless the fre-
quency of a harmonic is close to a resonant transition fre-
quency. Near a resonance the harmonic is enhanced. This can
also be seen in Fig. 4 in the emission spectrum for the Mg
atom. The intensity decays exponentially except for the 5th
harmonic near 6 eV, which is slightly enhanced because of
nearby resonances (the shoulder of the main peak, similar to
what is seen in Fig. 5 for a sodium atom.)

B. Core excitations

As the above examples show, our method performs ex-
tremely well for valence states. Next, we demonstrate our

FIG. 5. Optical absorption spectra of Na (solid line) and Na2 calculated with
FE-TP-TDDFT. For the dimer, components perpendicular (dashed line) and
parallel (dotted line) to the molecular axis have been separated.

FIG. 6. Semi-core absorption spectrum of the Mg atom before (solid line)
and after (dashed line) a short, intense NIR laser pulse (3.6 fs, 1064 nm).

method for semi-core states of the Na atom and the sodium
dimer Na2. The absorbtion spectra of the Na and Na2 are
shown in Fig. 5. In addition to the 3s state of Na, we in-
clude the 2s and 2p semi-core states to the calculation. For
Na2, we include the 2σ g, 2σ u, 3σ g, 1πu, 1πg, 3σ u, and 4σ g

states. The 4σ g state is the HOMO valence state and the rest
are semi-core states. The atomic and dimer semi-core states
are almost degenerate, but a change in the chemical envi-
ronment changes the semi-core absorption spectrum in addi-
tion to the valence absorption spectrum. As can be seen from
Fig. 5, this is captured by our method.

Unfortunately, ALDA does not perform well for semi-
core and core electrons, mainly due to self-interaction of elec-
trons on localized states. For example, the first semi-core peak
of the sodium atom is approximately 5 eV below the ex-
perimental value.50 Several approximations for the exchange-
correlation functional have been proposed, which address the
self-interaction. Probably the simplest self-interaction cor-
rection was proposed by Perdew and Zunger,51 but most
likely more appropriate for our purposes would be the time-
dependent KLI approximation of the exact exchange.52 Even
though the self-interaction error has to be addressed in simu-
lations of real systems, it is a deficiency of the model, not that
of our discretization method. For this reason, it is not in the
scope of this work, but will be addressed in future.

As the final test, we simulate the semi-core spectrum of
the Mg atom before and after a short, intense NIR laser pulse
(3.6 fs, 1064 nm). Figure 6 shows how the laser pulse creates
a hole to the 3s valence state and a new excitation from the 2p
state to the 3s state becomes allowed. Moreover, other excita-
tions from the 2p state move now to higher energies. Again,
we have the self-interaction problem and the semi-core exci-
tations are at too low energies. Nevertheless, this test clearly
demonstrates that our method is able to track changes in va-
lence states by using semi-core excitations as probes.

V. CONCLUSIONS

We have presented an all-electron method for TDDFT
using the time-propagation approach. The method employs
highly nonuniform finite-element bases, which allow a full 3D
all-electron discretization. We introduced a preconditioner for
the propagation equation improving the conditioning of the
equation and making the propagation viable in these bases.
We also discussed how absorbing boundary conditions should
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be implemented and we described a new boundary condition
inspired by the perfectly matched layers method.

The method was verified to work within the linear re-
sponse regime for valence states by comparing its results to
a known experimental result (C6H6) and to those obtained by
another code (GPAW). The semi-core excitations were shown
to react to the chemical environment. The nonlinear response
reproduced the expected behavior. The method was also able
to probe nonlinear dynamics of valence states by using semi-
core excitations as probes, i.e., simulating an experiment in
which an atom undergoes successively valence and core elec-
tron excitations.

However, semi-core excitations were found to be several
eVs too low, which is clearly unacceptable for simulations of
real systems. The error arises mainly from the ALDA func-
tional which suffers from a significant self-interaction error.
The ALDA has also incorrect asymptotic behavior leading
to significantly too low ionization thresholds. Therefore, we
will implement more advanced XC functionals in near future.
Moreover, we will examine how to efficiently simulate deeper
core states. Especially, how the difference in time-scales of
deep core states and valence states can be addressed without
a significant increase in the computational effort.

Nevertheless, our code can handle hundreds of electrons,
it works on the linear and nonlinear regimes, and in addition
to valence states, it can handle dynamics of semi-core elec-
trons. The required degrees of freedom for FE discretization
do not depend significantly on states of interest, in contrast to,
for example, finite-difference or planewave discretizations,
where semi-core states of sodium atom require ten times
larger planewave cutoff than valence states (i.e., over 30 times
more DOFs).53 Moreover, our systematically improvable
all-electron basis is excellent benchmarking, for example,
exchange-correlation functionals, and pseudo-potentials.
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