
Bagus Adiwiluhung Riwanto

CubeSat Attitude System Calibration and
Testing

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 29.07.2015

Thesis supervisor:

Jaan Praks

Thesis advisor:

Tuomas Tikka

Nemanja Jovanović

Aalto-2 satellite attitude control system

School of Electrical Engineering

Thesis submitted in partial fulfilment of the requirements for
the degree of Master of Science in Technology.
Espoo, 18.8.2014

Thesis supervisors:

Professor Emeritus Aarne Halme

Professor Thomas Gustafsson

Thesis instructor:

Msc. Osama Khurshid

Bagus Adiwiluhung Riwanto

CubeSat Attitude System Calibration and Testing

School of Electrical Engineering
Department of Electrical Engineering and Automation
Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Technology

Espoo, 17.08.2015

Instructor: Tuomas Tikka, M.Sc.

Aalto University
School of Electrical Engineering

Supervisors: Jaan Praks, D. Sc. Dr. Thomas Kuhn

Aalto University Luleå University of Technology
School of Electrical Engineering



aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Bagus Adiwiluhung Riwanto

Title: CubeSat Attitude System Calibration and Testing

Date: 17.08.2015 Language: English Number of pages: 13+95

Department of Electrical Engineering and Automation

Professorship: Space Technology (S-92)

Aalto Supervisor: Jaan Praks, D. Sc.

Luleå Supervisor: Dr. Thomas Kuhn

Instructor: Tuomas Tikka, M.Sc.

This thesis concentrates on the development of Aalto-2 CubeSat attitude system
calibration and testing methods. The work covers the design and testing phase of
the calibration algorithms to the analysis of experimental data in order to verify the
performance of the attitude instruments. The instruments under test are two-axis
digital Sun sensor, three-axis magnetometer, three-axis gyroscope, and three-axis
magnetorquer. These devices are all commercial off-the-shelf components which
are selected for their cost-to-performance efficiency.
The Sun sensor and gyroscope were calibrated with linear batch least squares
method and the results showed that only minor corrections were required for the
Sun angle and angular velocity readings, while the brightness readings from the Sun
sensor required more corrections. For magnetometer calibration, a specific particle
swarm optimization algorithm was developed with novel approach to estimate the
full calibration parameters, without having to simplify the sensor model. The
calibration results were evaluated with simulation data with satisfying results, while
the results from experimental data itself showed heading error improvement from
5.24°–13.24° to 1.9°–7.3° for unfiltered data. Besides the magnetometer calibration
parameters estimation, the magnetic properties of the spacecraft were also analyzed
using inverse multiple magnetic dipole modeling approach, where multiple magnetic
dipoles positions and moments are estimated using particle swarm optimization
from the magnetic field strength readings around the spacecraft. The estimated total
residual magnetic moment of the spacecraft is 58.5 mA m2, lower than the maximum
magnetorquer moment which is 0.2 A m2 in each axis. The magnetorquer was tested
for verifying the validity of magnetic moment generated by the magnetorquer. The
result shows that the magnetorquer moment is nonlinear, in contrast to the linear
theoretical model.
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1 Introduction

1.1 Background

Nanosatellites, which typically weigh 1 to 10 kg, have become a popular platform for
developing low-cost space missions using commercial off-the-shelf (COTS) components
and simplified design process. The most popular nanosatellite form factor so far
is CubeSat, a 10 × 10 × 10 cm3 satellite platform with typical weight of 1 kg for
one unit (1U-CubeSat), which can be stacked together to form a multiple-units
CubeSat [11]. Initially, CubeSat was developed for educational purposes, although
recent developments show that more CubeSats are launched with actual science
and practical missions for their primary objectives as the platform matures [68].
Consequently, the demand for performance reliability also increases in order to fulfill
more advanced mission requirements. The focus of this thesis is the development of
calibration methods for attitude determination and control system (ADCS) sensors
and actuators typically used in nanosatellites. The performance of ADCS could
greatly affect the overall performance of the satellite, especially for instruments that
depend on the accuracy of the spacecraft attitude (e. g., pointing a payload, solar
panels, or antenna to a target).

The system under study is mainly based on the ADCS of Aalto-2, a 3U-CubeSat
which is currently being developed in Aalto University. However, the calibration
procedure was tested on Aalto-1 engineering model (EM), which is developed in
parallel with Aalto-2. The instrument configuration of the two spacecraft is similar,
and the specific Aalto-1 instruments that were tested will demonstrate the results of
the calibration procedure equally well. The sensors are two-axis Sun angle sensors,
three-axis magnetometers, and three-axis gyros; and the actuator is a three-axis
magnetorquer, all of which are COTS components with some in-house developed
parts.

Calibration of sensors and actuators, in the context of estimation of model pa-
rameters, can be performed in two ways: preflight calibration, which is performed
in a lab environment in its design and integration phase, and on-orbit calibration,
which is performed when the spacecraft is in its operational phase in space. With
the demonstrated capabilities of various computational calibration algorithm, Spring-
mann et al. argues that on-orbit calibration can (eventually) replace the need
for preflight calibration [80], and consequently, the requirement for highly precise
testing facility can be minimized: current trend is to replace the requirements for
high-precision testing facilities and rigorous procedure in performing calibration
and system simulation with more autonomous computational approach and software
simulation [8, 51, 56, 83, 84]. However, it is important to note, that for a ‘perfect’
calibration algorithm to be developed, an exact knowledge of the ideal mathematical
model for the corresponding instrument is required, and ground-based calibration
process is still needed to verify it to a certain extent. Thus, it can be argued that
preflight and on-orbit (real-time) calibration procedure is complementary by nature,
rather than one fully substituting the other.

Another importance in developing both preflight and on-orbit calibration methods
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is that it can reduce the risk factors in space missions. Studies by Hoffman et al.
have shown, based on several long term space mission data, that faults and anomalies
in space mission operations are dominated by software-related sources. Their studies
also indicated that the majority of them occurred in Launch and Early Orbit Phase
(LEOP) and critical mission phases, correlated to the increase in activity and execution
of new procedures [31, 32]. Therefore, this redundancy in procedures can help reduce
faults in development process and provide options in the case of fault isolation and
failure analysis.

This thesis focuses on the development of preflight calibration procedure for
Aalto-1 and Aalto-2 EM. However, some of the algorithms is developed with possible
on-orbit calibration capabilities. Different advantages and limitations associated with
preflight calibration is discussed later in this thesis. After the calibration process,
evaluating the results requires a verification method: this includes software-based
simulation and hardware-based simulation, and can be implemented in the instrument-
or system-level of the spacecraft.

1.2 Structure Overview

The goal of this thesis is to develop calibration procedures that are suitable for
preflight calibration of CubeSat ADCS. For that, this thesis is structured as follows:
First, section 1 introduces the global overview of the thesis content. Next, section 2
explains an overview on satellite ADCS and the role of calibration process in affecting
the performance of the instruments in the system. Then, section 3 explains the basic
theory of attitude system instruments calibration. This includes the definition of
different terms used for categorizing different calibration approaches and algorithms.
It also explains the definition of the mathematical models of the ADCS instruments,
including their underlying assumptions/simplifications and an overview on the respec-
tive state-of-the-art calibration methods from literature. Section 4 introduces the
common estimation concepts and algorithms developed in this thesis, covering their
basic characteristics and some insights on the improvements of the algorithms applied
in this thesis. Section 5 explains the mission requirements of the first generation
Aalto-series nanosatellites, which are used as the groundwork for this thesis, as they
affect the simulation and experiment setups covered in sections 6 and 7. Specifically,
more specific version of optimization algorithm developed for magnetic instruments
calibration procedure is explained in section 6, while the actual tests setups and
procedures as well as their results are reported and analyzed in section 7. Finally,
key findings in the development process are summarized: the conclusions as well as
suggestions for future work are presented in section 8.
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2 Attitude Determination and Control System
The attitude of a spacecraft is defined as its orientation in space relative to a reference
frame [88: 1]. To perform its mission, some requirements are imposed on its attitude:
e. g. stabilizing the spacecraft from a tumbling condition, orienting the solar panels
towards the Sun, pointing its payloads towards certain target, or periodically changing
its orientation relative to the Sun for thermal control. There are many possibilities
for these ADCS operation modes, and they are derived from the analysis and design
of each mission. Achieving these requirements requires the ability in estimating the
current attitude of the spacecraft and controlling it in order to stabilize and point
the spacecraft to a certain direction, which is the role of the spacecraft ADCS. This
section gives an overview of the concepts and mechanism of a spacecraft ADCS in
order to understand the role of its instruments calibration process in affecting its
performance.

2.1 Coordinate System

An important concept in spacecraft ADCS is the coordinate system which will become
the basis for every attitude representation in the system. This covers an overview of
the reference frames commonly used to define spacecraft attitude and the way the
attitude information is represented mathematically. Several reference frames, usually
denoted as right-handed triads in three-dimensional space, are commonly used in
spacecraft ADCS and some of them are especially useful to understand the calibration
process of different ADCS instruments. A brief overview of those reference frames
and attitude representations are presented; more exhaustive lists and explanations
on those concepts are available in literature. [52, 88]

Spacecraft-specific reference frame. A reference frame defined by its origin
fixed at a point relative to the spacecraft body. Also called spacecraft-fixed [88: 26] or
spacecraft body [52: 31] frame, this reference frame is used as the reference for aligning
various spacecraft components. However, it is also useful for the purpose of ADCS
instruments calibration by deriving this concept for each individual component itself:
every instrument, where necessary, has its own reference frame. This is necessary,
because some calibration parameters such as misalignment factor can be represented
as the relative orientation between the instrument reference frame with the spacecraft
body reference frame.

Inertial reference frame. A reference frame fixed in the inertial space, where
Newton laws are valid, and can be extended to any frame that is moving at constant
velocity without rotation with respect to an inertial frame [52: 31–32]. Because of
this characteristic, the basic form of spacecraft dynamic equations are defined in the
inertial frame. Best approximation for a true inertial frame is the celestial reference
frame, where the frame is defined relative to some distant ‘fixed’ stars, although
other less-accurate approximations such as the geocentric inertial frame is accurate
enough for attitude analysis [52: 31–32, 88: 26–28].
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Earth-fixed reference frame. Also called the Earth-Centered/Earth-Fixed Frame
(ECEF), this is a reference frame centered at the Earth center of mass with its axes
aligned with the mean North pole and Earth prime meridian, forming a right-handed
system [52: 32]. This reference frame rotates along with Earth, and is useful as the
base reference frame in defining earthbound phenomenon. An example is for mapping
the geomagnetic field, which is a useful information for attitude estimation using
magnetometer data.

Orbit-specific reference frame. A reference frame defined in relation to the
spacecraft orbit, centered in the spacecraft frame. Commonly known as the Local-
Vertical/Local-Horizontal (LVLH) frame or the roll-pitch-yaw system [52: 28–29,
88: 36–37]. The frame axes are aligned with the nadir vector (pointing directly to the
center of the Earth) and along the spacecraft orbital velocity, forming a right-handed
system.

2.2 Attitude Representations

The relative orientation between different reference frames can be represented with
different mathematical representations: common representations described in litera-
ture are rotation matrix/direction cosine matrix, euler angle, euler axis/angle, and
quaternion [52: 41–59, 88: 410–420]. Rotation matrix is the most general form of
attitude representation, because it is simply an orthogonal rotation matrix which
can be operated directly with matrix algebra. Euler angle is a representation of
attitude transformation using three sequences of rotation around a defined triad
axes. Euler axis/angle is a representation of attitude transformation with a single
rotation around one particular axis. Quaternion is a 4-elements-based representation
of attitude transformation which has its own algebra [43]. Other forms of attitude
representation also exist in literature, such as Gibbs vectors/Rodrigues parameters
[52: 48–52, 88: 416].

Each representation has its own advantages and shortcomings: Rotation matrix is
convenient because it works directly with matrix operation, but contains redundancy
and requires more computation since it contains nine elements (3× 3 matrix), and
computation inaccuracies may introduce singularity and loss of orthogonality. Both
euler angle and euler axis/angle have clear and direct physical representations, making
them useful in representing the input-output of the attitude system in an intuitive
form for the users to read. However, they need to be converted into other form for
computation and prone to singularity problems and non-unique solutions. Quaternion
has its own class of mathematical operations which share some properties with matrix
algebra while reducing redundancy (only 4 elements compared to rotation matrix
9 elements), making it more favorable for mathematical computations. However,
interpreting a quaternion form into a physically meaningful information is not
intuitive—it has to be converted into other representation form first. [52: 41–59,
88: 410–420]

For this thesis, relative attitude between the reference frame of the ADCS in-
struments and the spacecraft body is represented with rotation matrix. This is
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because the direct compatibility with matrix algebra simplifies the implementation
of calibration algorithm.

2.3 ADCS Mechanism

The task of a spacecraft ADCS is to estimate the current attitude of the spacecraft by
combining the information gathered from its sensors, and control the attitude of the
spacecraft by giving commands its actuators. This mechanism forms a closed-loop
control system summarized in fig. 1.

Spacecraft ElectronicsEnvironment

Attitude Sensors

Attitude Actuators

ADCS 
Computer

Spacecraft 
Dynamics & 
Kinematics

Spacecraft 
Attitude

Disturbance torques

Control torques

Figure 1: Summary of ADCS Mechanism.

2.3.1 Spacecraft Dynamics & Kinematics

For a rigid-body spacecraft, its dynamics can be expressed with Euler’s equation
[88: 521–523]:

Iω̇ = S3(ω)Iω + τctrl + τdist, (1a)

where I is the spacecraft moment of inertia matrix, S3(ω) is the 3× 3 skew matrix
of the spacecraft angular rate ω

S3(ω) =

 0 −ωw ωv
ωw 0 −ωu
−ωv ωu 0

 with ω =

ωuωv
ωw

 , (1b)

τctrl is the control torque generated by the actuators, and τdist is the disturbance
torque from various sources. Then, the spacecraft angular velocity ω is propagated
into the spacecraft kinematics with (written in simplified, small-angle approximated
quaternion form) [88: 511–512]

q(t+∆t) ≈
[
14 + 1

2S4(ω)∆t
]
q(t), (2a)
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where q is the quaternion form of the attitude information, 14 is a 4 × 4 identity
matrix, and S4(ω) is the 4× 4 skew matrix of ω

S4(ω) =


0 ωw −ωv ωu
−ωw 0 ωu ωv
ωv −ωu 0 ωw
−ωu −ωv −ωw 0

 . (2b)

Note that the angular rate vector ω is defined in the inertial reference frame, denoted
with the triad [u, v, w]>.

Disturbance torques. As shown in fig. 1, disturbance torques will affect the
spacecraft dynamics as τdist in eq. (1a). The dominant sources of disturbance torques
in a space environment vary depending on the orbit of the spacecraft. However,
for Earth orbit in general, the dominant disturbance sources are gravity gradient,
geomagnetic field, solar radiation pressure, and aerodynamic drag [88: 566–576].

2.3.2 Attitude Instruments

In fig. 1, the spacecraft electronics responsible for ADCS operation consists of different
instruments, i. e. attitude sensors, attitude actuators, and the ADCS computer, each
with its specific function. The sensors retrieve attitude information from various
reference targets in the environment, which in turn will be processed by the ADCS
computer, producing an estimate of the spacecraft attitude. Then, the ADCS
computer will compute the attitude error of the spacecraft relative to the target
attitude and send commands to the actuators, controlling it based on a control law
in order to correct the attitude error.

Attitude sensors. Attitude sensors are instruments that are capable of retrieving
the attitude information of the spacecraft, with two main categories: reference sensors
and inertial sensors. Reference sensors detect the direction of a certain reference
target (e. g., Sun, stars, or ambient magnetic field) in the sensor frame. Inertial
sensors detect the angular velocity/linear acceleration experienced by the sensor:
gyroscopes detect angular velocity, and accelerometers detect linear acceleration. In
spacecraft ADCS application, gyroscopes are more commonly used since the gravity
acceleration is negligible in orbit. [28: 310–321]

In spacecraft ADCS, reference and inertial sensors are usually used together to
obtain a complete attitude information because some reference sensors cannot give
full attitude information on its own [28: 310]. For example, a Sun sensor cannot give
information on the rotation around the Sun direction vector (this is true for any
line-of-sight reference sensor that detects a single point target, e. g. Sun sensors and
magnetometers), while a gyroscope requires information on initial attitude and is
prone to drift error.

Attitude actuators. Attitude actuators are instruments that can exert torque
on the spacecraft, either as active actuators or passive actuators. Active actuators
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require power from the spacecraft in order to continuously make decisions and operate
the actuators, e. g. thrusters, magnetorquers, control moment gyroscopes (CMGs)
and momentum/reaction wheels. Passive actuators, in the other hand, do not require
power from the spacecraft since they utilize environmental torques, whose effect
are usually permanent, e. g. permanent magnets, solar sails, aerodynamic flaps and
gravity-gradient. These torques affect the spacecraft attitude as governed by the
dynamics and kinematics given in eqs. (1) and (2). [88: 502–509]

Besides from its active/passive criteria, attitude actuators can be differentiated
by the source of the generated torques, either as external torque actuators or internal
torque actuators. External torques are generated by the means of interaction with
external entities, resulting in a change of net momentum of the spacecraft. Examples
of external torque actuators are thrusters (ejecting propellant mass in one direc-
tion, resulting in a change of the spacecraft momentum in the opposite direction),
magnetorquers (torques generated by the interaction of a magnetic dipole fixed to
the spacecraft body with the local magnetic field), and solar sails (torques exerted
directly from solar wind pressure). Internal torques are generated by the means
of momentum exchange between components of the spacecraft, resulting in no net
change in spacecraft momentum. This also means that the spacecraft is not a single
rigid body anymore when the dynamics is broken down to each component, although
the total dynamics of the spacecraft can be simplified into a rigid body depending
on the actuator mechanism. Additionally, since the actuators generate torque by
storing and releasing angular momentum of the spacecraft through a spinning mass
in the spacecraft frame, the actuators may saturate (when the mass spinning speed
is limited physically) as disturbance torques and energy loss from frictions in the
spinning mass mechanism build up over time. Releasing this built up momentum
requires momentum dumping using external torques. Examples of internal torque
actuators are reaction wheel and CMGs. [52: 99–111]

ADCS computer. ADCS computer handles the attitude information from the
attitude sensors and uses it for estimating the full attitude of the spacecraft and
controlling the actuator in order to correct the spacecraft attitude to a given direction.
Its functions can be handled by a dedicated processor (with redundancy if needed) or
directly by the on-board computer (OBC) in order to reduce system complexity, mass,
volume, power consumption, and costs. However, less redundancy and centralized
tasking will also reduce the system reliability in the event of failure.

Calibrating ADCS instruments. The closed-loop control system in fig. 1 im-
plies that the accuracy of the ADCS in estimating and controlling the spacecraft
attitude relies on the attitude sensors and actuators in perceiving the actual state of
spacecraft dynamics from the environment to the ADCS computer. In reality, sensors
and actuators contain errors: sensors might provide inaccurate information on the
spacecraft attitude, while actuators might not behave exactly as it is commanded
by the ADCS computer. All of these errors propagate in the control loop, resulting
in errors of the spacecraft desired attitude. Correcting these error sources requires
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calibration of the ADCS sensors and actuators, which is explained in the next sections
of this thesis.
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3 Attitude System Instruments Model and Calibra-
tion Methods

3.1 Definitions and Nomenclature of Calibration Methods

Calibration, in the context of this thesis, is a process to produce the best accuracy
possible from an instrument by comparing the measurements of the instrument against
a reference value and formulating a model which will fit those measurements into the
reference value. Different methods and algorithms are required for different type of
instruments because of the different technology implemented in the instruments. As
the technology advances, development of novel methods and improvement in existing
methods to perform calibration is needed. A global workflow of calibration process
in general is described in fig. 2.

Modeled Measurement

Target properties
(reference)

True Measurement

Instrument
(Mathematical Model)

Target properties
(reference)

Disturbances

Estimated 
Measurement

Calibration 
parameters

Compare

Residuals
Calibration 
Algorithm

Figure 2: Diagram of general calibration process. The task of calibration algorithm is
updating the model of the instrument and the disturbances involved in order
to minimize the residuals/errors between the estimated and the ‘true’ reference
measurements.

This calibration concept also applies in spacecraft ADCS technology. However,
space application sector has a characteristic which sets it apart: that the system
will be operating in space environment. In most cases, this means that a system
which is already on orbit has to be physically self-sustainable until the end of its
lifetime—in the context of calibration process, this condition prevents one from
performing calibration in a lab-controlled environment once the system is on orbit,
while in contrast, calibration performed in a ground-based setup with lab-controlled
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environment cannot fully simulate the actual condition on orbit. Because of this
condition, this thesis uses three different terms to categorize different calibration
approaches: preflight calibration, on-orbit calibration, and real-time calibration.
These terms are widely used in literature [20, 29, 34, 76, 77, 79, 81]; however, they
are not formally defined and some authors might use these terms in a slightly different
context from the other. Thus, for this thesis, the definitions of those terms shall be
clarified here.

Preflight calibration: Calibration which is performed on ground, thus providing
some options on the calibration approach: i) before and/or after integration;
ii) by determining calibration parameters and/or by physically modifying the
instrument; and iii) if necessary, in a controlled lab environment. These options
can be useful for distinguishing different calibration parameters: the ones
inherent to the instrument and the ones affected by the environment. The
downside of a preflight calibration is that it cannot fully emulate the behavior of
the system in space environment, where some characteristics of the instrument
may change.

On-orbit calibration: Calibration which is performed when the spacecraft is on
orbit. Assuming that physical access to the spacecraft is no longer possible, this
limits the calibration to be performed only after integration outside of a fully
controlled environment by making adjustment to the calibration parameters.
The advantage of on-orbit calibration is that by using on-orbit measurement
data, it will take into account the changes in the instrument characteristics
once it is on orbit.

Real-time calibration: A term used to differentiate a class of calibration process
that is performed simultaneously as measurements are taken in real time.
Therefore, it can be performed both during preflight test and on orbit—obviously,
the goal is on-orbit implementation, although ground-based implementation is
useful to verify the results. In practice, it is performed with estimation filters
to directly estimate the state of the system, particularly filters with recursive
algorithms (as opposed to batch algorithms) and low computation cost, thus
the ADCS computer can compute it in real time. Note that eliminating time-
varying errors which are modeled as random noise process is only possible by
using estimation filters, and it normally requires a priori knowledge on the
random noise process characteristics, i. e. the mean and covariance, which can
be obtained from preliminary calibration steps.

The calibration algorithms developed in this thesis are focused on preflight
calibration procedures, while real-time calibration algorithms are only discussed
in basic theory since the estimation filter for Aalto-2 ADCS is under development
outside of this thesis work. However, some of the calibration algorithms developed
in this thesis are also designed to qualify for on-orbit application. Nonetheless, it
is useful to predefine these terms for the purpose of systematic analysis of different
methods discussed in this thesis. Table 1 summarizes the relationship between these
terms.
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Table 1: Relationship between the terms widely used to categorize different calibration
methods. Note that the categories can overlap each other.

preflight on-orbit real-time
Performed before the space-
craft is launched

Performed after the space-
craft is launched

Performed simultaneously
as measurement data are
taken

Can be performed before
or after integration; on
ground.

Can only be performed af-
ter integration; in space.

Works in both; main pur-
pose for on-orbit applica-
tion.

More options and physical
access to isolate errors of
different sources.

No physical access to mod-
ify the hardware.

Can be either.

Analysis of ground-based
data; errors in space envi-
ronment only simulated.

Analysis of flight data; er-
rors from space environ-
ment is observed.

Can analyze both; re-
quires some knowledge on
error characteristics.

Besides the different terms for different calibration approaches, this thesis uses
some commonly used terms for classifying different types of estimation algorithms,
namely batch and recursive estimation algorithm. [7, 88: 447–470]

Recursive estimation algorithm: A class of algorithm which process information
recursively every time a new information is taken. In the context of calibration
algorithm, this class of algorithm will estimate the unknown calibration param-
eters every time a new measurement is taken by combining it with the previous
knowledge in the last recursion. Because of its capability of estimating param-
eters simultaneously as the measurement is taken since the first measurement
(and the accuracy increases as the estimated value converges to the right value),
this algorithm class is more compatible for real-time calibration approach.

Batch estimation algorithm: A class of algorithm which process information in
batch. In the context of calibration algorithm, this class of algorithm estimates
the unknown calibration parameters using a set of measurements from the
measurement history at once, in contrast to the recursive estimation algorithm
which only requires the last a priori estimate and current measurement. Its
accuracy increases as the number of measurements included in that batch is
increased, and only requires to be executed once to obtain the final estimate.

Note that technically, batch estimator may contain iteration in its algorithm, while
the recursion process in recursive estimator can also be implemented iteratively.
Thus, the differentiating feature between the two algorithms is the way the algorithm
handles the information into and out of the estimator. Naturally, executing batch
estimation algorithm is slower than the recursive one since it process more information
(the whole measurement history) every time the algorithm is executed, thus making
it less suitable for real-time calibration approach.
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3.2 Sun Sensor

Sun sensors are attitude sensors which detect the relative position of the Sun in the
sensor reference frame by detecting the light radiated from the Sun. There are several
basic classes of Sun sensor (i. e., analog sensors, Sun presence detectors, and digital
sensors [88: 156]) with different architecture and technology, and the way they are
used depends on the nature of the mission (e. g., presence of albedo, distance from the
Sun, eclipse period). The Sun position information can be used for many purposes
(e. g., positioning the solar cell arrays, protecting sunlight-sensitive equipments such
as Star tracker, information for thermal control), thus for Earth orbiting missions
where the angular radius of the Sun is relatively constant along the orbit, Sun sensors
are the most widely used attitude sensor [88: 155–156].

Since the position of the Sun is retrieved by detecting sunlight, individual Sun
sensor can only detect the Sun position in a limited field of view (FOV). Analog and
digital Sun sensors provide the Sun angle in analog or digital signal, respectively,
while Sun presence detectors provide a constant output signal when the Sun is in their
FOV. Sun sensors also come in different resolutions from several degrees to the order
of less than arc-second [44: 373, 88: 156]. Very coarse Sun sensor can be implemented
by processing the current measurements from the solar panels on the spacecraft
and is capable of achieving an accuracy of 7° as a standalone sensor, although it
requires extensive filtering process [61]. Similar study on solar cell-based coarse Sun
sensor combined with magnetometer reading can achieve much better accuracy [4].
A more accurate miniaturized fine Sun sensor with an improved mathematical model
proposed by Chang et al. can achieve an accuracy of 0.054° [16]. In the other hand,
a state-of-the-art micro-digital Sun sensor with CMOS-based integrated system can
achieve an accuracy of 0.01° with a very low power consumption [10, 93].

3.2.1 Sun Sensor Model

The mathematical model of Sun sensor depends on the type of technology and
architecture implemented in the Sun sensor. The Sun sensor used in Aalto-2 ADCS
is E910.86 two-axis digital Sun sensor (DSS) from ELMOS [25], integrated with
ATMega328 microcontroller for managing the data communication. It provides the
sunlight elevation angle on xz- and yz-plane (α and β, respectively) in the sensor
coordinate frame (sensor surface normal is in +z direction) as well as the light
intensity and the sensor temperature as digital signal [1, 39]. The convention for Sun
sensor reference frame is depicted in fig. 3.

The transformation of the Sun angle measurement α and β into Sun vector
vss in the sensor coordinate, which can be translated later into spacecraft attitude
information, is governed by [88: 227]

vss =

Xss

Yss
Zss

 = 1
(tan2 α + tan2 β + 1)1/2

tan β
tanα

1

 , (3)

where Xss, Yss, and Zss are the x-, y-, and z-axis components of the Sun vector.
The sensor raw data represents the angle α and β given in fig. 3 in bit counts as
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Figure 3: Definition of Sun sensor reference frame. The Sun vector points to the direction of
the Sun, and the sunlight will enter through the entrance slits which will project
the light to fall on different axes of the sensor detector.

Nα and Nβ, respectively, and the relationship is given as[
α
β

]
= FoV

2m

[
Nα

Nβ

]
+ FoV0, (4)

where m is the bit size of the measurement, while FoV and FoV0 are the total
FOV and smallest angle in the FOV for each axis in degrees, respectively. Therefore,
eq. (4) shows that the the size of measurement data defines the sensor resolution in
degree per least significant bit (LSB). Equation (4) can be expanded by including
error in the form of scale factor, bias, and nonorthogonality constant, resulting in[

α
β

]
= FoV

2m Sss

[
Nα

Nβ

]
+ FoV0 + offss, (5)

where offss is the offset vector for each axis and Sss is the scale factor and nonorthog-
onality error matrix. Note that the E910.86 DSS Sun angle reading is represented
with 6-bit data (m = 6) for each axis including data header, resulting in a total of
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2m− header = 56 data points per axis in the FOV range of −75° to 75° [1, 39]. More
comprehensive descriptions of different Sun sensor models with different architectures
are available in literature [88: 218–230].

3.2.2 Sun Sensor State-of-the-art Calibration Methods

Fitting the measurement data into the mathematical model from eq. (5) in order to
obtain the appropriate calibration parameters can be achieved with different methods.
Many studies have been conducted and each method depends on the architecture of
the Sun sensor. To name a few, Sedlak et al. devised a procedure to estimate each
calibration parameters for FSS [67]; Appel combined coarse Sun angle from solar
cell-based coarse Sun sensor with magnetometer data using extended Kalman filter
(EKF) in order to calibrate the Sun angle [4]; Maqsood et al. used a simple calibration
table to assign true sensor heading for a low-cost quadphotodiode-based Sun sensor
[51]; and Strietzel used multi-line and spline interpolation method encased in a Fuzzy
logic for searching the actual sensor heading of a more accurate quadphotodiode
architecture [84].

3.3 Gyroscope

Gyroscope is an inertial sensor that measures the angular velocity experienced by
the instrument, which can be classified into different types based on its physical
mechanism [28: 319–321, 52: 140–143]: i) mechanical gyros, which use the tendency
of a spinning mass angular momentum to remain fixed in inertial space; ii) optical
gyros, which operate by calculating the phase difference of two reference laser light
traveling in opposite direction in a rotating closed path; and iii) Coriolis vibratory
gyros (CVGs), which detect movement of standing waves on a rotated vibrating
surface due to the Coriolis force.

Mechanical gyros are the first type of gyro developed and the only type existed
before 1980s, although many moving parts involved in them are subject to failure
[52: 140–143]. This is a problem especially for spacecraft application because of the
difficulty of maintenance. In the other hand, optical gyros, which are developed later,
generally have the best performance and reliability but relatively cost higher. Nu-
merous research have been conducted to miniaturize different gyroscope technologies
using microelectromechanical systems (MEMS) manufacturing technology, started
in 1980s with the development of micromachined vibrating gyroscopes [45]. So far,
MEMS devices are popular for smaller spacecraft because of their small package, low
cost, and low power consumption level.

3.3.1 Gyroscope Model

The gyroscope used in Aalto-2 ADCS is MPU-3300, a MEMS CVG from InvenSense
[35], and its mathematical model is described as [5, 83, 87]

ω̌ = Sgω + offg + ηARW, (6a)
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where ω̌ is the gyroscope measured angular rate; Sg is the gyroscope total scale error
(3× 3 matrix containing scale factor and misalignment errors); ω is the true angular
rate; offg is the angular rate bias with drifting rate ηRRW

ȯffg = ηRRW, (6b)

which is also known as the rate random walk (RRW); and the measurement noise
ηARW, also known as the angular random walk (ARW). Scale error and rate bias of
the gyroscope are usually considered to be constant. ηRRW and ηARW are commonly
assumed to be a band-limited white noise, usually zero-mean Gaussian [5, 83, 87].

3.3.2 Gyroscope State-of-the-art Calibration Methods

Ground-based calibration of MEMS gyroscope consists of estimating the calibration
parameters and their time-varying counterparts statistical characteristics from eq. (6).
Different approaches can be used for estimating these different parameters. Time-
invariant part such as initial bias offg and scale factor Sg can be solved by rotating a
spin table with certain angular rate as the true angular rate reference ω and fitting
them into eq. (6) with least squares method as in [83]. However, characterizing the
time-varying components (ARW and RRW) separately is not straightforward.

In order to characterize the random-drift error part separately, a method called
Allan variance, where the root means square of these errors is represented as a
function of averaging time, is commonly used because of its simplicity and its ability
to relate the noise characteristic in power spectral density (PSD) form—which is a
Fourier transform pair of the noise covariance. Allan variance plot is usually provided
in the instrument datasheet. El-Sheimy et al. explained its mathematical derivation
and showed some of its application to characterize different error parameters in
typical inertial sensors (i. e., gyroscopes and accelerometers) by fitting the Allan
variance log-log plot [69]. Vaccaro proposed an improved method to estimate the
noise PSD from the Allan variance plot with best linear unbiased estimator algorithm
[87].

Another approach to improve accuracy of gyroscopes is by using data fusion from
gyroscopes array to form a virtual gyroscope as proposed by Bayard et al. [8]. Chang
et al. and Xue et al. used noise correlation of identical gyroscopes to estimate the
virtual gyroscope noise characteristics [15, 94]. In [53], Martin et al. proposed several
options of configurations to improve gyroscopes array accuracy: i) by using data
from identical gyroscopes with opposing orientation to minimize the various errors of
gyroscopes; ii) by mounting identical gyroscopes perpendicular to each other, thus
exploiting the performance differences between in-plane sensor and the out-of-plane
sensors; and iii) combining output from gyroscopes with different operating range
and accuracy, thus expanding the operating range of gyroscopes array.

3.4 Magnetometer

Magnetometer is a sensor which retrieves the direction and strength of local magnetic
field and represents it as a vector. For attitude estimation, this local magnetic field
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vector information is then compared with the local magnetic field model, which, for
Earth orbit, can be calculated from the International Geomagnetic Reference Field
(IGRF) model—IGRF model is the de facto standard where the model is updated
every 5 years [26]. This process is performed with the ADCS computer so that the
attitude information of the spacecraft can be calculated in real-time.

Magnetometers have been used in a broad range of applications by utilizing
different technologies e. g. Hall Effect sensors, search coils, flux-gate sensors, and
magnetoresistive/magnetoimpedance technologies with wide range of sensitivity
[88: 180–184]. Those in the higher sensitivity region are usually utilized in space
navigation system by using known magnetic field as reference (e. g., magnetic field of
Earth), although recent studies have enabled more relaxed sensor requirements in
order to lower the costs while maintaining acceptable performance [29, 47, 49, 56, 80,
90, 95]. Another common application of magnetometers in space missions is as the
scientific payload for mapping magnetosphere or plasma characteristics in plasma
physics. More recent, state-of-the-art hyper-sensitive magnetometer technology such
as atomic magnetometer is capable of measuring magnetic field in the order of
subfemtotesla (< fT), although it is still limited in laboratory [70]. However, for
space application, the accuracy of attitude estimation using magnetometer alone is
limited by the accuracy of the local magnetic field model itself, which is about 5°
[28: 318].

3.4.1 Magnetometer Model

The magnetometer used in Aalto-2 ADCS is HMC5983 from Honeywell [33], based
on anisotropic magnetoresistive (AMR) technology which is popular for nanosatellite
navigation system because of its relatively small size, low cost, and low power
consumption. Formulating the mathematical model of a magnetometer requires
understanding on the various disturbance sources which affect the magnetometer
reading.

Common disturbances in AMR magnetometer reading originate from two kinds of
sources: instrument and environment disturbance sources [29, 47, 56, 64, 79]. These
disturbances affect the true magnetic field vector b as such that the final magnetic
field vector measured by the sensor, b̌, is distorted. A general mathematical model
for magnetometer measurement that incorporates these disturbances—broken down
to more specific components—is shown in the following equation [64]:

b̌ = SmN
−1 (1 +Csi) (b+ bhi) + offm + ηm, (7)

where the parameters can be differentiated based on their sources, whether the errors
originate from the magnetometer itself or from the environment, as follows:

Instrument error parameters: Parameters which originate from inside the in-
strument itself. Consist of: i) scale factor, Sm, describes the proportionality of
the input to the output for each axis; ii) nonorthogonality, N , a transformation
matrix which describes the true x-, y-, and z-axis direction of the sensor in
the defined sensor frame; and iii) sensor bias, offm, caused by the Wheatstone
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bridge offset used in AMR magnetometer architecture. Other errors inherent to
the instrument are also present, namely temperature fluctuation and cross-field
effect, but these parameters are omitted from eq. (7) for simplicity since they
can be mathematically represented by the present parameters [56, 47, 64].

Environment error parameters: Parameters which originate from magnetic sources
outside the intended magnetic field that is supposed to be measured and can
be divided into two categories based on their magnetic behavior: i) hard
iron parameter, bhi, a vector modeled from permanent magnet dipoles in the
environment and will appear as a linear shift of the magnetic field lines; and
ii) soft iron parameter, Csi, a matrix modeled from ferromagnetic materials that
get induced by external magnetic field (i. e., the ambient magnetic field and
hard iron disturbances) and, in effect, will distort the shape of the magnetic
field lines.

In a spacecraft system, environment disturbances is dominated by the magnetic field
generated by the spacecraft itself: its structure might contain magnetic materials and
electrical currents on the electronics also produce magnetic fields—these disturbances
are commonly referred as remanent magnetic field or residual magnetic moment
(RMM). In this thesis, it will be addressed as RMM from here onwards. Finally,
an additive measurement random noise ηm is also included in the final reading.
Mathematical models other than eq. (7) are possible by assuming different behaviors
in the disturbance sources (e. g., hysteresis model), since magnetic interaction are
highly nonlinear.

Time properties of errors. Errors inherent in the magnetometer are generally
time-invariant. Environment disturbances, however, are sensitive to changes in
the condition of the system (e. g., electrical current in the electronics generating
magnetic dipole or thermal expansion of the spacecraft structure changing the
magnetic response of the structure). These effects in environment disturbances are
more pronounced in smaller spacecraft, because the relatively small distance between
components promotes stronger magnetic interference (magnetic field strength is
inversely proportional to distance in the third power). This is especially true for
magnetometers that are installed inside the spacecraft—many spacecrafts have their
magnetometers installed on an external boom in order to mitigate this problem.
However, this method adds complexity with the boom deployment system and
consequently requires more costs, mass, and volume. Literature have provided basic
guidelines in evaluating the magnetic properties of a spacecraft (usually referred as
magnetic cleanliness program (MCP)) in spacecraft system design process [59].

3.4.2 Magnetometer State-of-the-art Calibration Methods

Significant number of studies have been conducted to minimize the effects of various
disturbance sources on the magnetometer reading. The differences between these
studies are in their mathematical model of the magnetometer, the geometric approach
used, and the algorithm used in estimating the calibration parameters. Appropriate
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mathematical model is determined by the basic assumptions on the magnetometer
and the environment magnetic behavior, while the geometric approach in calibrating
magnetometer can be divided into two domain: heading domain and magnetic
domain.

Working in heading domain is an attitude-dependent approach, where a true head-
ing information is required as a reference in order to calibrate the magnetometer—this
is the same concept with the case of Sun sensor calibration discussed in section 3.2.2.
For magnetometers, knowledge of true information vector of ambient magnetic field
is required, and in order to calibrate the magnetometer in its full operational range, a
Helmholtz cage setup can be used to perform the calibration in a magnetically clean
environment. One way to do this is using a method called “compass swinging” where
the magnetometer is leveled and rotated in one axis while maintaining the information
on the heading offset from a reference direction [30]. However, the condition of
leveling and rotating the sensor requires an accurate test setup in order to minimize
errors from misalignments. Springmann et al. has provided a good documentation
on the calibration procedure of magnetometer using Helmholtz coil, although this
method relies on the reliability of the test facility, because the non-homogeneity of
the magnetic field produced by the Helmholtz coil can introduce some error [82].

In contrast, working in magnetic domain is attitude-independent: no heading
reference is needed. This method is also called “scalar checking” because only the
known ambient magnetic field magnitude information is required as reference [88: 328,
52: 269]. This approach is possible because: i) local magnetic field magnitude in the
testing facility can be measured directly from a much more accurate magnetometer
in a lab-controlled environment—for on-orbit calibration, the local magnetic field
magnitude, particularly on lower Earth orbit which is the region of interest in this
study, can be calculated from IGRF model; and ii) an error-free magnetometer rotated
in all direction arbitrarily inside a static magnetic field will produce measurement
locus on the surface a perfect sphere, with its center coincides with the origin of
sensor reference frame. In a real condition, various disturbance sources will shift
and distort the sphere-shaped measurement locus into an ellipsoid [29, 30, 56, 64].
An example of how this measurement locus forms an ellipsoid and its calibrated
sphere-shaped locus is depicted in fig. 4.

By exploiting these magnetic domain properties, calibrating magnetometer reading
is made possible by fitting sets of measured magnetic field magnitude into the
magnetometer model so that the scalar residual is minimized. Foster et al. adopted
this approach and used two-step algorithm with least squares method to estimate
intermediate parameters which is then derived further to obtain the real calibration
parameters [29]; Springmann et al. used similar approach and introduced a new
time-varying component as a function of the electronics current measurement [79];
Wu et al. in [91] proposed using particle swarm optimization (PSO) algorithm
for solving the parameters estimation problem because of the better theoretical
capability of the algorithm in finding global solution without a good initial estimate,
and later optimized it with stretching PSO algorithm [90]; while Ali et al. optimized
the standard PSO by combining it with a preliminary Range of Interest Selection
Technique (RIST) in order to reduce the number of iterations [3].
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Figure 4: 3-D plot of magnetic field vectors from an example of erroneous magnetometer mea-
surement locus (denoted with ×'s, forming an ellipsoid) and its calibrated/ideal
measurement locus (denoted with ◦'s, forming a sphere). The axes represent
the magnetic field strength in nT from the magnetometer frame. Note that
measurement random noise is not included for viewing clarity.

Another approach in calibrating systematic disturbances inherent to the mag-
netometer (specifically its bias offset, temperature error, and cross-field effect) is
by using the “flipping routine” with a set/reset mechanism commonly used in AMR
magnetometers [47, 56, 64]. However, this flipping routine requires external circuitry
(fortunately, many modern AMR magnetometer includes a set/reset circuit in their
chip) and will increase the power consumption of the magnetometer, which is not
favorable for small spacecraft application. Mohamadabadi proposed a workaround on
this problem for solving the cross-field error by substituting the flipping routine with
a numerical method, although it is based on the assumption of a perfectly orthogonal
sensor triad with known anisotropy magnetic field inherent to each sensor axis [56].

3.4.3 Modeling The Spacecraft as Multiple Magnetic Dipoles

Another systematic approach in mitigating the RMM of the spacecraft is by directly
modeling these external magnetic sources from MCP analysis, and then either
compensating for them numerically from the measurements or placing permanent
magnets on the spacecraft structure as such that the RMM is canceled at the
measurement point. The latter technique can also be used for modifying the magnetic
properties of the spacecraft, in order to manipulate the disturbance torque caused by
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RMM of the spacecraft. Note that magnetic disturbance torque is a typical source of
dominant disturbance torque for smaller spacecraft in Low Earth Orbit (LEO) [82].
In order to model the magnetic properties of the spacecraft, the spacecraft has to be
decomposed into a finite numbers of magnetic dipoles, which are positioned at certain
coordinates in the spacecraft frame with certain value of magnetic moment; this
model is known as multiple magnetic dipole model (MDM) while the decomposing
process is the inverse MDM problem.

The concept of MDM has been long introduced, although the proposed method
at the time was geometrically limited and contained error if the limitation was not
fulfilled [24]. The concept is based on the assumption that a spacecraft magnetic
field can be represented by a finite numbers of magnetic moment dipoles, where their
relationship is governed by [38, 82]

bs(rds,md) = µ0

4π

nd∑
d=1

(
3rds (md · rds)
|rds|5

− md

|rds|3

)
, (8a)

or in an expanded form (with the frame definition depicted in fig. 5)

bs(ps,pd,md) =
µ0

4π

nd∑
d=1

(
3 (ps − pd) (ps − pd)>

|(ps − pd)|5
− 13

|(ps − pd)|3

)
md,

(8b)

where s = [1, ns] ∈ Z and d = [1, nd] ∈ Z are the indexes of measurement points and
magnetic dipoles, respectively; bs is the theoretical magnetic field at measurement
point s; µ0 is the magnetic permeability of the medium (assumed in space); rds is the
position vector of the s-th measurement points from the d-th dipole; ps and pd are
the coordinates of s-th measurement points and d-th magnetic dipole, respectively;
md is the magnetic moment of the d-th dipole; and 13 is a 3× 3 identity matrix. For
the algorithms studied in this report, the general task is finding the optimal pairs of
dipole position pd and its corresponding magnetic dipole moment md by minimizing
the (least squares) error between the estimated magnetic field b̂s(ps, p̂d, m̂d) and its
actual measurement b̌s(ps, p̌d, m̌d).

Various studies have attempted to optimize this modeling process. Mehlem in
[55] improved the concept by using Gauss-Newton algorithm for solving the least
squares problem. Until recently, the same author improved the method to address
different issues bound to the modeling process [54]. Another method was proposed
by Kapsalis et al. to use stochastic algorithm such as PSO to solve the inverse MDM
because of its better performance in nonlinear estimation [38]. Carrubba et al. then
optimized the PSO implementation by refining the fitness functions that need to be
minimized, varying the weighting coefficient, and introducing a recursive refinement
step to help the algorithm escapes from local minima [14].

3.5 Magnetorquer

Magnetorquer is a magnetic dipole moment generator controlled by running electric
current on a winded coil. A ferromagnetic rod is used as the center of the coil,
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Figure 5: Definition of the magnetic dipole modeling reference frame. The measurement
points are denoted with M's, while the magnetic dipoles positions are denoted with
�'s, with their respective magnetic moments denoted with the arrows originating
from the magnetic dipoles.

while for an air-core magnetorquer the center of coil is hollow. It is a convenient
attitude actuator for spacecrafts because it does not contain any moving parts,
therefore not only improving its lifetime and reliability, but also lowering the cost
and simplifying the procedure associated with its production. Magnetorquers also
generally have lower power consumption compared to other active attitude actuator
[44: 369]. However, magnetorquers have some limitations in its application, which are
explained in the next section. Magnetorquers generate torque from the interaction
between the generated magnetic moment of the magnetorquer and the ambient
magnetic field. The generated torque is governed by [88]

τmtq = mmtq × b, (9)

where τmtq is the torque exerted from the magnetorquer; b is the ambient magnetic
field; andmmtq is the magnetic moment generated by the magnetorquer. In turn, the
torque produced by the magnetorquer will affect the spacecraft dynamics as defined
in eq. (1) with τctrl = τmtq.

3.5.1 Magnetorquer Model

The magnetorquers for Aalto-2 are produced by Hyperion Technologies, fully assem-
bled on the ADCS module with the driver circuitry which will communicate with
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the OBC through I2C bus [2]. The magnetic moment generated by magnetorquers
can be calculated from [88: 204]

mmtq,i = µcore,inmtq,iimtq,iAmtq,i, (10a)

where the subscript i ∈ {x, y, z} is the magnetorquer axis index, µcore is the core
permeability of the magnetorquer, nmtq is the number of turns in magnetorquer
coil, imtq is the electric current on the coil, and Amtq is the cross-section area of
the coil windings. The formula itself is simplified for magnetorquers in general—
exact relationship depends on the coil geometry, while core material can introduce
hysteresis. The model in eq. (10a) assumes hysteresis is negligible since manufactured
magnetorquers with ferromagnetic core usually offer a residual dipole moment of
less than 1% of the saturation moment [52: 168]. Generally, magnetic moments
produced by COTS magnetorquers are already specified by the manufacturer (Aalto-
2 magnetorquers are specified to produce maximum dipole moment of 0.2 A m2 in
each axis [2]), hence it is more practical if the constants in eq. (10a) are simplified
for calibration purpose into a matrix form of

mmtq ≡

mmtq,x

mmtq,y

mmtq,z

 = Cmtqimtq. (10b)

For Aalto-2 ADCS, which only has magnetorquer for active attitude control, the
nature of the torque produced by magnetorquers defined in eq. (9) imposes several
limitations in the magnetorquer operation:

• The magnetorquer can only produce torque perpendicular to the ambient
magnetic field direction. This means that at any time instant, the magnetorquer
can only produce torque in two axes, limiting the three-axis control of the
ADCS in an underactuated condition.

• The magnitude of the torque produced is limited not only by the size and
driving power of the magnetorquer, but also the ambient magnetic field strength.
Therefore, its applications are mostly limited to LEO, where the ambient
magnetic field strength is still sufficient for attitude control purposes (or around
other space objects with strong magnetic field).

• The order of torque magnitude which can be produced by a magnetorquer is
very small compared to the inertia of the spacecraft. This is a design lock
in magnetorquer design, because it can be deducted from eq. (10a) that an
attempt to increase its torque requires either an increase in power consumption,
number of turns in the coil, or cross-section area of the coil, where the latter
two options will increase the inertia of the system again. As a result, the ADCS
reaction speed will be very slow compared to ADCSs that use actuators with
higher torque capability.

• Additionally, controlling magnetorquer torque requires knowledge of the am-
bient magnetic field strength. The information of the ambient magnetic field
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strength itself is obtained from magnetometers. For spacecrafts with their
magnetometers installed near the magnetorquer, the magnetic field generated
by the magnetorquer will disturb (and most likely saturate) the magnetometer
reading. Thus, in such condition, the magnetorquer cannot be operated during
the magnetometer measurements.

Because of its underactuated nature, magnetorquers in spacecraft ADCS are generally
operated in cooperation with other actuators such as reaction wheels or CMGs,
where the magnetorquer main role is as the momentum dumping device [52: 307].
Nonetheless, different studies have been conducted in order to find a workaround
for these limitations—studies have shown, using periodic system analysis, that
sufficient controllability in all three axes can be achieved for solely magnetic actuated
spacecrafts, given that there is enough variations in the ambient magnetic field
direction along the orbit of the spacecraft [48, 72, 89]. This means that in order to
generate torque in arbitrary direction in three axes (at least on average in longer
timescale), orbit with high inclination is more favored because of the larger variations
in Earth magnetic field direction between the equator and polar region [72].

3.5.2 Magnetorquer State-of-the-art Calibration Methods

Based on the different types of relationships defined in eqs. (1) and (9), magnetorquer
calibration can be performed either through magnetic properties analysis or dynamics
analysis.

Magnetic properties analysis: Analyzing the magnetic properties of magnetor-
quers is performed by measuring the magnetic fields generated by the mag-
netorquer at some arbitrary measurement points and comparing it with the
expected theoretical magnetic fields generated by the magnetorquer at those
points, which can be computed by combining eqs. (8) and (10b). It is important,
for this method to work, that the calibration took place in a magnetically clean
space, or at least the ambient magnetic field is known and homogeneous so it
can be compensated from the measurements.

Dynamics analysis: Analyzing the dynamics of magnetorquers requires more dedi-
cated testing facility that is capable of, to some degree, simulating the attitude
dynamics of spacecraft. The best ground-based setup for this is an air-bearing
three-axis gimbal platform, although even a very simple setup using suspending
wire is also useful for magnetorquer testing [6]. A Helmholtz coil is also useful
in magnetorquer testing for amplifying the ambient magnetic field, so that the
magnetorquer torque is amplified for easier observation in lab setup.
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4 Estimation and Optimization Algorithms
Various optimization algorithms are available in literature for solving general param-
eter estimation problem [7, 12]. In this thesis, two main concepts which are applied
for the ADCS instruments are the least squares method and PSO. This section
explains the basic forms of these algorithms, while the specific implementations are
explained in section 6. For the estimation filters which can be implemented as real-
time calibration, the theoretical basics are explained for the sake of understanding
the complete mechanism of the ADCS, although the implementation is not in the
scope of this thesis.

4.1 Least Squares Method

Least squares method is formally defined as a solution to [7: 98]

ĉLS(ns) = arg min
c

{
ns∑
s=1

[zs − hs(x, c)]2
}
, (11a)

where zs is a series of ns number of measurements, which can be modeled by the
measurement model hs(x, c) disturbed by noise ηs, as defined by

zs = hs(x, c) + ηs for s = 1 . . . ns, (11b)

where the measurement model hs(x, c) itself is a function of the reference input x
and parameters c.

This means that least squares method estimates the value of model parameters
c (where c contains an nc number of unknown parameters) that will minimize the
summed square of residuals, which is the difference between the observed/measured
quantities, zs, and the expected/modeled quantities, hs(x, c). It is also possible
to reverse the condition, where zs is the reference and hs(x, c) is calculated from
measurement data—the manner it is implemented depends on how the data are
collected and the mathematical model. Note that hs(x, c) can be either linear or
nonlinear, and the solution for both varies depending on the mathematical construct
of the problem.

In a linear system with overdetermined problem (ns > nc), the most straightfor-
ward method in solving the linear least squares problem is using analytical approach
by direct matrix manipulation called batch least squares estimator [7: 129–131]. In
order to do this, eq. (11) (in vector form) need to be linearized and rearranged into
a matrix equation in the form of

zns = Hnsc, (12a)
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where the vector zns is the stacked vector of ns measurements with the dimension
of nsnz (where each measurement is an nz-vector), c is the vector containing the
unknown model parameters with dimension of nc, and the matrix Hns contains
the rearranged components from the vector form of eq. (11) with the dimension of
nsnz × nc. The unknown model parameters vector c can then be estimated with the
pseudoinverse method

c =
[
Hns

>
Hns

]−1
Hns

>
zns . (12b)

Solving a nonlinear least squares problem requires different approach. Different
methods have been studied in literature for ADCS instruments calibration, such as
adaptive least squares, two-step nonlinear estimator, PSO, or Gauss-Newton method
[30, 64, 79, 90].

4.2 Particle Swarm Optimization

Eberhart et al. and Kennedy et al. introduced PSO algorithm as nonlinear function
optimization algorithm in [23] and [40]. The algorithm was initially derived from
a social model of animals, e. g. flight behavior of a flock of birds, implemented
in an abstract level. Since its inception, PSO has been used in very wide range
of field. Studies such as ones by Eberhart et al. and Poli documented various
fields of study where PSO has been implemented: automatic control tuning, neural
network training, optimization problem applications in telecommunication networks,
biomedical applications, robotics, automation technology, antenna design, mechanical
analysis, and many other fields [22, 60]. The total number of papers published from
1997 up to 2006 is more than a thousand with incredible growth rate [22, 60]—a
popularity gained because of its simplicity and high level of abstraction, which means
it is easy to implement and combine with different methods in different kinds of
applications.

However, through this very rapid developments over the years, PSO algorithm
has been implemented with large amounts of variations: its simplicity also means
that modifications, whether limited to minor modifications or major reworks on
the algorithm mechanics, can be easily designed and implemented, resulting in un-
standardized performance benchmarks across wide variations of papers that address
different specific class of problems using PSO. To give a clear base in PSO develop-
ment and implementation, Bratton et al. redefined the standard form of PSO and
categorizes the different modification techniques that can be implemented on the
algorithm in [13]. This section describes the basic version of PSO that is used as
a ground for development in this thesis, along with some insights on the different
modification concepts and parameter tuning techniques.

The standard PSO mechanics. PSO emulates swarm intelligence from animal
social behavior in solving problems, e. g. flock of birds flying in search of an ideal
food source. The location of the food source is initially unknown to all the birds, and
the swarm will explore the area by following the bird that is most likely to be nearest
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to the food source. In abstract level, each bird (called particle) is a single solution to
the parameter optimization problem, which is the location of the food. The closer
a particle is to the best solution (which provide the best fitness), the more likely
the swarm will go into the direction of the said solution. However, as the swarm
explore the solution space, each particle will maintain its own ‘craziness’ to emulate
the randomness of animal search pattern, thus dividing its search effort between the
swarm-wide best solution (the particle with best fitness among all particles) and the
particle own best solution which it has found so far. If a more likely solution is found,
the swarm will switch to the new, better solution until the swarm reach a certain
threshold. Interpreting this abstraction into an algorithm can be implemented in
several steps: initializing the swarm, updating the swarm positions, and polling the
best solution. These steps (except the initialization) will be iterated until a certain
threshold is reached:

1. Initialization of the swarm: the algorithm employs np numbers of particles (the
swarm size), each placed in a random initial ‘position’ ppso,i(k = 0) with a
random initial ‘velocity’ vpso,i(k = 0) in an abstract nc-dimensional space (the
swarm dimension), or, written in mathematical notation (the pso subscript is
omitted for brevity)

pi(k) = [pi1(k), pi2(k), . . . , pinc(k)] ≡ [pij|j=1...nc(k)] , and
vi(k) = [vi1(k), vi2(k), . . . , vinc(k)] ≡ [vij|j=1...nc(k)] ,

where the subscript i is the particle index (i = [1, np] ∈ Z), subscript j is the
particle component index (j = [1, nc] ∈ Z), and k is the iteration index. In an
optimization problem of a function where an nc number of unknown parameters
need to be estimated, the number of parameters corresponds to the swarm
dimension nc, i. e. solving nc unknown parameters requires particles to explore
nc-dimensional space, or nc = nc. For simplicity, nc will refer to both the
swarm dimension and number of parameters from here onwards. Besides the
position and velocity vector, each particle also has a third vector: its local best
position pbestpso,i, defined as the position that will produce the best fitness in
the search history of each particle i. In the initialization phase, the initial local
best position pbestpso,i(k = 0) of each particle is the particle initial position
ppso,i(k = 0) itself. In swarm-wide scope, a global best position gbestpso is
defined as the best position in the whole swarm, i. e. the local best position of
the particle with the best fitness.

2. Swarm positions update: the velocity and position of each particle are updated
with the basic formula (the pso subscript is omitted for brevity) [13, 14]

vij(k + 1) = wvij(k)+ rand(0, 1)c1(pbestij(k)− pij(k))+
rand(0, 1)c2(gbestj(k)− pij(k)), and

(13a)

pij(k + 1) = pij(k) + vij(k + 1), (13b)

where rand(0, 1) is a random number in the range of [0 . . . 1] ∈ R, w is the
inertia weight parameter, c1 is the cognitive rate parameter, and c2 is the social
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rate parameter. The inertia weight parameter defines the particle tendency to
stay on its original course, resisting influence from the global and local best
position. The cognitive rate parameter defines the influence of the particle
memory of its best location, pulling the particle towards it. On the other hand,
the social rate parameter defines the influence of the swarm global best position,
pulling each particle search space towards it.

3. Best solution evaluation: pbesti for each particle i is replaced by the new
particle position if the fitness value is better than the last one. In this thesis,
the PSO is used for optimizing minimization problems, thus the objective of
the swarm is to minimize the fitness value, or mathematically written as

pbesti(k) = arg min
pi

f(pi(1 . . . k)), (14a)

while, as previously explained, the global best position is obtained from the
local best position with the best fitness among all particles, or, in mathematical
notation

gbest(k) = arg min
pbesti

f(pbesti(k)), (14b)

where f() is the fitness function which returns the fitness value

Fi = f(pi), for i = 1 . . . np, (14c)

with the notation for the fitness value of the local and global best positions are
written as

Fpi ≡ f(pbesti) and Fg ≡ f(gbest). (14d)

After the local best position for each particle is evaluated with eq. (14a), the
global best position is then reevaluated with eq. (14b): if a new local best
position with a fitness value lower than the current global best position exists,
then the global best position will be updated with the new, better position—else,
the global best position stays the same.

4. Iteration evaluation: the algorithm will determine whether the swarm has
reached its goal by checking several predefined conditions, e. g. the current
global best fitness is lower than a certain threshold, the number of iterations
has reached a certain number, or the swarm has converged into a certain value
and the search space is not explored to a certain range. If all of the predefined
conditions are not met, then the iteration will continue. On the other hand, if
any of the condition (or a combination of them) is met, then the algorithm will
stop and return the solution contained in its gbest. A pseudocode summarizes
the basic PSO process in algorithm 1.
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Algorithm 1: Basic PSO algorithm.
1: define PSO parameters and termination conditions
2: for i = 1 . . . np do
3: initialize pi(k = 0) and vi(k = 0) . initial swarm properties
4: pbesti = pi . initial local best positions
5: end for
6: evaluate gbest with eq. (14b) . initial global best position
7: while iterate = 1 do . iterate set to zero if termination conditions are fulfilled
8: k = k + 1 . update time step k
9: for i = 1 . . . np do . each particle in the swarm
10: update vi using eq. (13a) . swarm velocities
11: update pi using eq. (13b) . swarm positions
12: calculate Fi using eq. (14c) . particle fitness
13: reevaluate pbesti using eqs. (14a) and (14d) . particle local best position
14: end for
15: reevaluate gbest using eqs. (14b) and (14d) . swarm global best position

. Now, the termination conditions are checked: if k reach maximum, Fg is
better than threshold, or the swarm already converge and stabilize, which
can be evaluated with different approaches, then terminate is set to 1.

16: if terminate = 1 then
17: iterate = 0
18: else
19: iterate = 1
20: end if
21: end while

From this basic version of PSO, numerous methods of improvement and pa-
rameters selection guidelines have been described in literature [13, 19, 22, 63, 65].
Sections 4.2.1–4.2.6 discuss some of these methods, such as swarm communication
topology, constriction factor, dynamic parameters, initialization and boundary con-
ditions, number of particles, and multi-objective problem optimization. The list is
by no means exhaustive, since each method itself may have many variations in its
implementation and these methods can be implemented in combination with each
other. Nevertheless, basic comprehension of these methods will help in understanding
the behavior of PSO. The application-specific version of PSO implemented in this
thesis, particularly for magnetometer calibration and the spacecraft MCP analysis,
is explained in section 6.

4.2.1 Swarm Communication Topology

The standard PSO employs a global topology : every particle in the swarm can
communicate with each other directly, enabling an instant propagation of the gbest
information across the swarm. However, this communication topology can be modified
into a local topology, which is a very significant modification to the PSO mechanics
that has already been proposed in one of the first published PSO study [23]. In a
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local topology swarm, a particle can only communicate with its neighbors, forming a
local neighborhood of swarm clusters. Defining the requirements and limitations in
neighbor identification can be implemented with numerous methods, thus there are
many versions of local topology, e. g. ring, star network, and tree network topology
[65]. The simplest version of a local topology is the ring topology, where each particle
forms a neighborhood with its two nearest neighbors: fig. 6 illustrates the difference
between a ring topology and a global topology.

(a) Global topology. (b) Local best (ring) topology.

Figure 6: Depiction of global and local ring topology. Each circle is the individual par-
ticle, and each line connecting them with each other represents the available
communication between particle.

The advantage of implementing a local topology PSO varies depending on the
problem characteristics and the topology design itself [41]. The main consideration is
to find the optimal balance between the convergence speed and the solution quality:
for a function with single minimum point, fast convergence using global topology
can result in a comparable quality solution with the local topology version, although
for a multimodal function where multiple local minima exist as solutions, global
topology PSO tends to converge into those suboptimal local minima, delivering poor
quality solution compared to local topology PSO [13, 41].

4.2.2 Constriction Factor

Constriction factor, represented with χ, is a special case of inertia weight application,
where the parameter values are determined analytically using the formula [13, 17,
21, 22]

χ = 2∣∣∣2− ϕ−√ϕ2 − 4ϕ
∣∣∣ , where ϕ = c1 + c2, ϕ > 4. (15)
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This constriction factor is then implemented in the swarm velocities update equation,
modified from eq. (13a) into

vij(k + 1) = χ
(
vij(k) + rand(0, 1)c1(pbestij(k)− pij(k))+

rand(0, 1)c2(gbestj(k)− pij(k))
)
.

(16)

Convergence characteristic of the swarm can be manipulated analytically by changing
the value of ϕ, where a condition of ϕ > 4 guarantees swarm convergence, ϕ ≈ 4
shows some delays in convergence, while ϕ < 4 shows oscillation of particles around
the convergence point. The main purpose of the constriction factor is to guarantee
convergence of the swarm, and it is recommended to implement this technique with
the implementation of velocity boundary conditions to ensure stability of the swarm.
[17, 21]

4.2.3 Dynamic Parameters

For simpler test functions, PSO main parameters (i. e., w, c1, and c2) can be approx-
imated with some rule of thumb combined with velocity restrictions described in
[71]. However, for many problems that involve more complex nonlinear functions
to be optimized, performance of PSO can be significantly improved with simple
implementation of dynamic parameters: the most widely used technique is by starting
the iteration with a large inertia weight value (ws > 1), promoting exploration of the
search space early in the iteration, and then decreasing the value to an end value we,
promoting a finer search after the swarm has found the general region of the best
solution [13, 14, 22].

Besides varying the inertia weight value, Carrubba et al. also implemented similar
behavior with the cognitive and social rate values for the same purpose, which is
promoting exploration in the earlier iteration and later focusing the swarm on the
region of the best solution. This is implemented by first setting w and c1 with a
high value (ws, c1s > 1) and c2 with zero (c2s = 0), so that in the beginning of the
iteration, each particle will explore its own search space without influence from the
global network by nullifying the gbest influence in eq. (13a), allowing only the pbesti
value to influence each particle exploration behavior. Then, w value is decreased
gradually until it reach certain value wf in a predetermined number of iterations
wv, while c1 and c2 are constant. After that, w stays in its final value wf while
c1 is gradually decreased and c2 is gradually increased for another predetermined
number of iterations cv until they reach a certain value of c1f and c2f , respectively,
thus gradually introducing the gbest into the swarm, pulling the swarm to the best
solution at the time. The values for wf , c1f , and c2f are analytically determined with
the constriction factor rules from eq. (15) for ϕ ≈ 4 to promote more exploration.
After this period of varying parameters, the values for w, c1, and c2 are set to their
end values we, c1e, and c2e where their values follows the constriction factor rules for
ϕ > 4 to promote swarm convergence in the end of the iterations. This control of
PSO main parameters is illustrated in fig. 7. [14]
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Figure 7: Plot of PSO parameters values (w denoted by straight line, c1 denoted by dashed
line, and c2 denoted by dash-dotted line) against the number of iterations, de-
picting the dynamic parameters variation over the iterations. This technique is
used for promoting exploration of the search space earlier in the iterations, as
proposed in [14] with an addition of we definition.

4.2.4 Initialization and Boundary Conditions

Monson et al. in [57] has shown that for certain problem, PSO solution can be biased
to the center of the region where the swarm is initialized. This creates problem for
algorithm-benchmarking study to analyze the algorithm performance in an unbiased
evaluation. However, for practical implementation of the algorithm, constricting
the area where the swarm is initialized could help the algorithm to find the optimal
solution, given there is a reasonable assumption on the position of the solution.
Besides the initialization region, PSO performance can be improved by implementing
boundary condition on the swarm [13].

There are several approaches to impose boundary conditions on the swarm, either
implemented by limiting the swarm positions pi below a value pmax or limiting the
swarm velocities vi below a value vmax. These conditions prevent swarm explosion,
where the particles fly into infinite by limiting the search space. Limiting vi will
indirectly limit the search space to the area around the initialized search space while
allowing overshoot to some extent [13, 17]. Generally, imposing direct limitations
on vi using vmax is more acceptable, while imposing direct limitations on pi using
pmax is generally avoided because it is considered too ‘artificial’—a more natural
way to impose boundary condition on swarm positions is by ignoring the fitness of
the particles located outside pmax, thus avoiding any pull factor from a location
outside the boundary [13, 22].

4.2.5 Number of Particles

The effect of the number of particles np on the algorithm performance varies depending
on the problem—many literature starts within the guideline of 20–100 particles to
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produce optimal performance, although determining the optimal number of particles
for a specific application remains a trial-and-error problem [13].

4.2.6 Multi-Objective Optimization

PSO can be modified to optimize multi-objective problem by defining multiple fitness
functions, each representing different objective in the problem. This introduces Pareto-
optimization problem, where the swarm is required to find the optimal solution so that
it produces the best fitness for all objectives without compromising the fitness of any
objective (Pareto optimal), in contrast to a condition where one or several objectives
dominate the solution, while other objectives ended in a suboptimal solution (Pareto
dominated). Coello et al. published a paper proposing the solution for this multi-
objective problem in [18], and later made some improvement on the method in
[19]. Since then, various papers addressing different methods for multi-objective
optimization using PSO have been published, and a survey study by Reyes-Sierra
et al. provides a good starting point to understand the different methods of this
multi-objective PSO algorithms, e. g. aggregating approaches, lexicographic ordering,
sub-population approaches, Pareto-based approaches, and combined approaches [65].

Aggregating approaches: In this approach, the multi-objective problem is han-
dled by aggregating all the objectives into one, which can be implemented
by simply combining the fitness values from different objectives (effectively
converting the multi-objective problem into a single objective), although one
could assign different weighting scheme to balance the dominance between
these objectives, e. g.fixed weight for each objective, dynamic weight (gradually
changing weight such as alternating sinusoidal/saw pattern for each objective),
or bang bang weight (where the weight alternate abruptly between the different
objectives) [65].

Lexicographic ordering: In this approach, the objectives are ranked based on their
priority, and then the algorithm will evaluate each objective fitness separately,
starting from the one with highest priority and continued with the next highest
prioritized one [65].

Sub-population approaches: In this approach, the swarm is separated into sev-
eral subpopulations, where each subpopulation evaluates a single objective and
communicates with the other subpopulations to exchange their results. Com-
bining the results from every subpopulation can be performed using different
swarm communication architectures and methods [65].

Pareto-based approaches: In this approach, the swarm will select certain particles
as the swarm leaders, which have the best non-dominated solution compared
to the swarm in various neighborhood topologies. However, identifying the
leaders requires the processing of additional information, which can be obtained
through various schemes, as compiled in [65].
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Combined approaches: As the name describes, this approach combines many tech-
niques for handling multiple objectives in PSO, e. g. Mahfouf et al. combined
adaptive weight objectives aggregation with non-dominated sorting algorithm
in [50], and Xiao-hua et al. implemented an intelligent PSO, where the particles
are assigned with additional properties and goals in a lattice-like neighborhood
topology in order to push the swarm into the Pareto optimal region by intro-
ducing particle selection pressure [92]. Numerous studies have proposed other
multi-objective PSO approaches, as reviewed in [65].

4.3 Estimation Filter for Real-Time Calibration

Calibration methods which can be executed in real time while simultaneously taking
measurements on orbit discussed in this thesis are performed with estimation filters.
The estimation filter task is to directly estimate the states of the system (in some
cases including the calibration parameters) from combined measurement data of
different sensors while taking into account different errors—deterministic and/or
stochastic—contained in those measurements [7]. The advantage of estimation filters
is that any unknown behavior of the system which cannot be modeled properly can
be taken as stochastic process and, to some degree, compensated by the filter. Huge
numbers of studies are dedicated to optimize these filters for space applications. [20,
34, 66, 77, 80, 95]

The widely used real-time calibration algorithms for space applications are Kalman
filter (KF)-based algorithms. Since the state dynamics of spacecraft is highly nonlin-
ear, nonlinear KFs such as EKF or unscented Kalman filter (UKF) are typically used.
EKF has been around for a long time, originally developed for implementing standard
KF in nonlinear system, and has been documented as the standard nonlinear state
estimator in textbooks for estimation theory such as [7], while UKF was initially
proposed by Julier et al. in [37].

UKF was developed to increase the filter reliability in highly nonlinear system by
including the fourth and higher order in the Taylor series expansion of the errors (EKF
only approximate to the first order) into the estimator without the need of calculating
the Jacobians—this is possible because UKF approach begin by approximating the
probability distribution itself rather than approximating the nonlinear function of
the system by calculating its Jacobians [37]. However, some papers also suggest the
usefulness of modified EKF for some situations: Zeng et al. proposed a robust EKF
scheme to compensate for orbit error that propagates into attitude estimation from
magnetometer reading [95]; and Searcy et al. proposed a method for full attitude
estimation only from magnetometer reading by using the attitude information and its
derivative—this requires long orbital arc to converge, but ultimately gives real-time
data [66].

Other papers have supported the theoretical advantage of UKF over EKF: Cras-
sidis et al. compared the performance of three estimation algorithms—including EKF
and UKF—in calibrating magnetometer reading using results from both simulated
(in Monte-Carlo simulation) and real satellite flight data, and concluded that UKF
has the most stable result [20]; Inamori used UKF to estimate the RMM of spacecraft
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and used the RMM estimate in feed-forward control to compensate the disturbance
torque caused by it, whereas EKF is too sensitive to small inaccuracies in the space-
craft dynamic model [34]; and Springmann et al. also implemented the UKF in real
satellite flight data and pointed that UKF would perform better than EKF for wider
initial estimate range, although it was also noted that for a close initial estimate, the
difference in accuracy between the two algorithms is negligible and EKF has lower
computational load in such application [80]. Adaptive UKF has also been proposed
to improve the UKF performance when dealing with uncertain error covariance and
changing parameters [74, 75, 77]. An overview of the difference between standard
KF, EKF, and UKF is listed in table 2. Aalto-2 ADCS will implement a UKF as its
attitude estimation filter. However, the technical details is not in the scope of this
thesis work.

Table 2: Comparison of Kalman Filter algorithms.

standard kf ekf ukf

Only for linear system. For nonlinear system. For nonlinear system.

The state function is lin-
ear from the beginning.

Operate by linearizing the
state function with Tay-
lor expansion approxima-
tion through calculating
the Jacobians.

Operate with fully intact
state function by selecting
sample points according
to the error distribution.

Initial estimate affects
converging time; accuracy
is optimal in linear func-
tions.

Initial estimate affects fi-
nal accuracy; sensitive to
parameter errors

Better tolerance to larger
range of initial estimate
and parameter errors.
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5 First Generation Aalto Nanosatellite Missions
This thesis focuses on the calibration of ADCS instruments in Aalto-2 nanosatellite
mission. However, the hardware used for experimental tests comes from Aalto-1
EM, which is currently in a parallel development with Aalto-2 as the first generation
nanosatellite missions in Aalto University. This is done for practical reason, since
Aalto-1 EM is ready for testing during the time of this thesis work and both satellites
share similar ADCS instruments, although the missions and payloads they carry
are quite different [2, 42, 58, 62]. The spacecraft body reference frame defined for
Aalto-1 is as follows: positive x-axis points to the direction of the camera payload,
positive y-axis points to the direction opposite of the star tracker, and z-axis points
to the side where the antenna is attached, completing a right-handed reference frame.
This frame definition is illustrated in fig. 8. For analytical purposes and model
considerations, Aalto-2 mission requirements are used as the reference.

z

y

x

Figure 8: Aalto-1 engineering model with the spacecraft body reference frame definition.

This section gives a short overview on the Aalto-2 mission requirements and a
more detailed analysis on the orbital geomagnetic characteristics. The latter is useful
for design considerations in setting up the test environment for magnetic properties
analysis of the spacecraft, including the magnetometer calibration.
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5.1 Aalto-2 Mission Requirements

Aalto-2 satellite mission is to conduct in-situ atmospheric measurements in the lower
thermosphere between 200–380 km (lower end of LEO) using a multi-Needle Langmuir
Probe (mNLP) as its scientific payload [2]. The mission requires the payload to
be positioned in the ram direction of the satellite—detailed mission requirements
refer to the critical design review of Aalto-2 and QB50 mission descriptions in [2]
and are subject to changes until the final flight model is built. In order to achieve
this requirement, both passive and active attitude control will be implemented in
different phases of the mission: active attitude control using three-axis magnetorquer
in the earlier mission phase, where the orbit altitude is around 400 km, and passive
attitude stabilization using atmospheric drag in the latter phase of the mission as
the altitude decreases to 300 km and below, where atmospheric drag is predicted to
become more dominant in the spacecraft dynamics [36].

In order to perform the three-axis active attitude control efficiently, the ADCS
is programmed to behave in three different operation modes, each with its own
prerequisites and performance requirements [2]:

a) Recovery mode: activated when the angular velocity of the satellite exceeds the
threshold of 5 °/s, where the ADCS detumbles the satellite until the angular
velocity goes down to 0.8 °/s—the minimum performance requirement is to
recover from a tumbling rate of up to 10 °/s in two days. This mode is also
the initial mode activated during Launch and Early Orbit Phase (LEOP) after
subsystems self-check routine.

b) Nominal attitude control mode: activated after recovery mode is completed,
where the ADCS performs three-axis pointing control with minimum pointing
accuracy of ±10°.

c) Safe mode: activated when a malfunction occurs or when the battery charge
drops below 60 %, where the ADCS limits its functionality: active attitude
control is deactivated, and sensor telemetry will be collected only from the gyro
and magnetometer.

Another ADCS performance requirement is a minimum pointing knowledge of ±2°
from its initial launch altitude [2].

5.2 Orbital Geomagnetic Analysis

Achieving best results in spacecraft magnetic properties analysis, including calibration
of magnetic-sensitive instruments, requires a magnetically ‘clean’ test environment:
this means a uniform, accurately known ambient magnetic field strength in the test
environment which can be manipulated and nullified, usually using a Helmholtz cage
setup [14, 82]. For the purpose of this thesis work, the Helmholtz cage setup are
used for two purposes:

a) Nullifying the ambient magnetic field in the test environment for spacecraft
MDM analysis as described in section 3.4.3, so that the measured magnetic field
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b̌s at each measurement point s (as depicted in fig. 5) only contains magnetic
field originating from the spacecraft RMM.

b) Simulating a range of magnetic field strength which will be experienced by
the spacecraft in its defined orbit in order to detect any anomaly associated
with ferromagnetic materials in the spacecraft that might behave differently
in different magnetic field magnitude. This anomaly should show up in the
magnetometer calibration parameter, since the magnetometer model in eq. (7)
only include a constant soft iron coefficient, which should not change with
varying ambient magnetic field—any detected anomaly is very likely to be
associated with hysteresis effect, which might require anticipation strategies
depending on the severity of the model error.

Appropriately manipulating the ambient magnetic field for the latter purpose requires
a knowledge of the geomagnetic field model on the orbit altitude during a certain
time period, which can be calculated from the IGRF model as defined in [26].

From implementing the 12th IGRF model—dubbed IGRF12—in Matlab, it can
be shown that the Earth magnetic field at 350 km altitude (average of the expected
orbit altitude), in a time period between the year 2016 and 2019, will vary from 19 502
to 56 203 nT. It is assumed that the satellite will experience the full range of this
geomagnetic field magnitude, because the polar orbit of the spacecraft will eventually
cover all of the Earth surface. An example of the geomagnetic field magnitude
distribution over the Earth surface, calculated for 1st of June 2016, is mapped in
fig. 9.
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Figure 9: Contour map of geomagnetic field magnitude distribution at 350 km altitude on
1st of June 2016, based on IGRF12 model. The plot x-axis denotes the longitude
in ° and the y-axis denotes the latitude in °. The geomagnetic field magnitude is
denoted with the contour lines in nT.
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6 Development of PSO for Magnetic Tests
An improved PSO algorithm is developed in this thesis in order to solve the specific
problem of magnetometer calibration parameters estimation and spacecraft MCP
analysis. This section explains the concepts and techniques involved in the design of
the improved PSO algorithm in contrast to the standard version of PSO discussed
in section 4.2, i. e. objectives and fitness functions definition, dynamic parameters
tuning, initialization and boundary condition tuning, and refinement procedure.
Additionally, the development process of these concepts and their effects on algorithm
performance improvement are demonstrated using simulated data.

6.1 Objectives and Fitness Functions Definition

Mathematical definition of the swarm fitness function is an important starting point
of modeling a problem for PSO, since the chosen fitness function can significantly
affect the performance of the algorithm [14]. Since the fitness function is derived
from the objective of the optimization problem, the function definition differs for
the magnetometer calibration parameters estimation and for the MCP analysis with
inverse MDM problem.

6.1.1 Fitness Functions for Magnetometer Calibration

As discussed previously, the magnetometer calibration is performed in magnetic
domain. Thus, as explained in section 3.4.2, the objective of the calibration algorithm
is to optimize the calibration parameters from eq. (7) so that the magnitude of all
the magnetic field vector measured by the magnetometer b̌ is equal to a known
reference magnetic field magnitude b, independent of the magnetometer orientation
itself. However, many of the calibration parameters defined in eq. (7) is not separable
mathematically, hence eq. (7) can be simplified into

b̌ = Smcb+ offmc , (17a)

where 3 × 3 matrix Smc and 3 × 1 vector offmc are the compounded calibration
parameters from the combination of Sm, N , Csi, bhi, and offm in eq. (7). Note
that in magnetometer calibration parameters estimation problem, the calibration
parameters serve to transform measured magnetic field b̌ into the estimated magnetic
field b̂, thus the true magnetic field b in eq. (17a) is replaced by b̂ and the whole
equation can be rearranged into

b̂ = Kmb̌− km, (17b)

where Km = S−1
mc

and km = S−1
mc
offmc . The estimated calibration parameters

themselves are contained in the PSO solution with the mathematical structure

ppso,i = [Km11,i, Km12,i, Km13,i, Km21,i, Km22,i, Km23,i,

Km31,i, Km32,i, Km33,i, km1,i, km2,i, km3,i]>,
(18)
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where

Km,i ≡

Km11,i Km12,i Km13,i
Km21,i Km22,i Km23,i
Km31,i Km32,i Km33,i

 and km,i ≡

km1,i
km2,i
km3,i

 .
From here, the fitness function for magnetometer calibration can be defined as the
difference between the reference magnetic field magnitude |b| and the calibrated
magnetic field magnitude

∣∣∣b̂∣∣∣, or written mathematically as

F1,i =
ns∑
s=1

[
|bs| − |b̂is|

]2
, (19a)

or, by substituting eq. (17b) into eq. (19a),

F1,i =
ns∑
s=1

[
|bs| − |Km,ib̌is − km,i|

]2
, (19b)

where i = [1, np] ∈ Z and s = [1, ns] ∈ Z are the index for the particle in the swarm
and the index for measurement data, respectively.

Comparing the form of eq. (19) and eq. (11), one can conclude that in this
case, the PSO objective is to optimize a nonlinear least squares problem. However,
the solution of the PSO up to this point still contains a rotational ambiguity: any
arbitrary rotation matrix can be multiplied with the total scale matrix Km, and
the measurement locus will stay on the surface of a sphere. Since no actual heading
reference is used at any point of measurement, the algorithm cannot differentiate
whether the sphere is ‘looking’ into a certain direction, resulting in infinite numbers
of non-trivial solutions. To compensate for this problem, many studies which utilize
attitude-independent magnetometer calibration technique impose some assumptions
on the calibration parameters: Ali et al. simplified the scale matrix into a diagonal
vector [3], Foster et al. and Springmann et al. assumed that one of the sensor axis
is perfectly aligned with the reference axis, resulting in triangular scale matrix [29,
79], while Gebre-Egziabher et al. assumed that the misalignment coefficients are
small, a condition used for initial estimate in two-step calibration method [30]. All
of them also neglected soft iron coefficients in non-aligned axes, thus simplified the
estimation problem and effectively eliminating the rotational ambiguity. Renaudin
et al. proposed a complete magnetometer calibration algorithm which minimizes all
those assumptions using adaptive least squares method, although the results show
that the algorithm is still sensitive to non-diagonal components of the total scale
matrix associated with large errors from soft iron and misalignment factors [64].

Resolving the rotational ambiguity when no simplification is made on the calibra-
tion parameters requires an additional information in the algorithm. An example of
this is by incorporating the fact that the angle between the geomagnetic field vector
and the gravity vector is always fixed on a fixed location on Earth, thus resolving
the rotational ambiguity by estimating a new correction rotation matrix as proposed
in [46]. However, this method is only suitable for land-based magnetometers setup
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where the location of the instruments on Earth is relatively constant (at least during
the data collection for calibration) and the gravity vector is large enough to be
detected by accelerometers—this is especially important in the scope of this thesis
work for the fact that Aalto-2 is not equipped with accelerometers.

New objective for magnetometer calibration. In this thesis, a novel approach
is used by incorporating the spacecraft rotation axis information into the PSO
algorithm. A basic version of this approach is as follows: consider a set of magnetic
field measurements from the magnetometer as the spacecraft tumbles as such that the
measurement locus can be separated into several loci l, where each locus forms a circle
on a plane with different normal directions—at least two circles (not necessarily a
complete circle) are required for a reason which will be explained later. If the vectors
representing the rotation axes of the spacecraft which forms the circle loci are known
(e. g., from gyroscope data), then the second objective of the PSO is to select the
proper calibration parameters which will rotate those circles as such that the plane
normal n̊il (the plane containing a circle of measurement locus l after calibrated by
particle i) is aligned with its respective known rotation axis ω̊l. Note that the plane
normal direction and the rotation axis are both represented by unit vectors å ≡ a

|a| ,
since only the direction information is of interest for this purpose. This is also the
reason for incomplete circle loci to be sufficient: since only the plane normal direction
information is required for fulfilling this objective, then an incomplete circle, as long
as it fits into a plane, could provide enough information on the plane direction. In
the other hand, the reason for the requirement of at least two circle loci is because
one circle locus only provides a single constraint for the data plane in two axes,
leaving scale and offset ambiguity in one axis that is aligned with the plane normal
as well as a rotational ambiguity along that axis. An example of this loss of scale
and offset information is depicted in fig. 10, where the data is erroneously scaled and
offset as such that the calibrated data still fulfill its ill-constrained objectives. The
PSO solution can be drawn to a unique, correct solution that resolve the rotational
ambiguity in three axes only if the requirements are met.

A more universal version of this approach is to fit any shape of measurement
locus into the objective, especially when the loci curve cannot be continuously fitted
into a single plane. This can be achieved by different methods, e. g. by using similar
principle as the basic version where several segments of the curve is fitted into
different planes (although this is limited to loci that can be averaged each to fit a
plane) or by fitting the loci directly into the curve functions. This universal approach
is more favorable for on-orbit batch calibration, where the tumbling motion of the
satellite is not necessarily dividable into segments as such that each segment fits a
single plane. However, for the ground-based calibration test in this thesis, the state
of rotation can be easily determined, since the rotation was performed manually as
described in section 7.3.1—the advanced, universal version of this approach is not in
the scope of this thesis and will be left for future studies.
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Figure 10: 3-D plot of magnetic field vectors (the axes represent the magnetometer frame in
nT), depicting a case with scale and offset ambiguity. The calibration parameters
forced the measured data (denoted with ×'s) into the calibrated data (denoted
with M's) that fits into a plane with correct normal direction and uniform distance
from the center (fulfilling the requirement of a sphere surface) , although in
a wrong offset and scale compared to the reference (denoted with ◦'s), which
is the simulated error-free data. The data shown contains 20% random noise
relative to the reference.

Thus, a second fitness function can be defined from the new objective:

F2,i =
nl∑
l=1

[
1−

(
n̊il · (−ω̊l)

)]2
, (20)

where the subscripts i and l are the index for the particle in the swarm and the
index for individual measurement locus that lies on a single plane, respectively, the
unit vector n̊il is the normal direction of the plane which contains the calibrated
measurement locus l as estimated by particle i, where its positive direction follows
the right-hand rule of the data sequence in the calibrated measurement locus, and
the unit vector ω̊l is the rotation axis that corresponds to the measurement locus l,
which can be obtained from gyroscope data or direct observation (e. g., in preflight
test). Note that the direction of ω̊l is inverted with a minus sign because the direction
of magnetometer rotation is the opposite of the measurement locus sequence. In
summary, the second fitness function Fm2 represents the sum of angular difference
between n̊il and ω̊l for i = 1 . . . np and l = 1 . . . nl, which will be minimized by the
PSO.
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Mathematically extracting ω̊l and n̊il information. As previously discussed,
this thesis work only implements the basic version of the rotation vector fitting,
where the rotation axis associated with each measurement locus is fixed. Thus, each
measurement locus lies on a single plane—or at least the measurement data can be
averaged to a single plane since noise presence will disturb the locus out of its plane.
For the magnetometer calibration test performed in this thesis work, the value of ω̊l
can be determined directly from direct observation during the calibration test, where
the spacecraft is rotated manually along its spacecraft body axes , while the value of
n̊il is calculated using orthogonal distance regression plane fitting, where the sum of
squared orthogonal distances from the points on the calibrated measurement locus to
the plane is minimized. Mathematical tools to solve this least squares problem are
well documented, and this thesis work implements a singular value decomposition
(SVD) method [73, 78]. This method is summarized in algorithm 2.

Algorithm 2: Algorithm for orthogonal regression plane fitting using SVD [73].

1: calculate ¯̂
bi,l = 1

nsl

∑nsl
sl=1 b̂isl,l . data centroid in each locus l

2: construct A = [b̂i1,l − ¯̂
bi,l, . . . , b̂insl,l −

¯̂
bi,l]

3: decompose A = USV > . singular value decomposition
4: find colmin = arg minx {diagx (S)} . column with minimum singular value
5: n̊il = U{:, colmin} . plane normal vector corresponds to the column of minimum

singular value
6: n̊il = sign

(
n̊il ·

(
b̂i1,l × b̂i(2...nsl),l

))
n̊il . correction of the plane normal positive

direction by comparing it with the mea-
surement sequence

Note that line 6 in algorithm 2 is an additional step for rectifying the plane normal
positive direction so it follows the right-hand rule with respect to the measurement
sequence. This is implemented by first extracting the general estimate of the rotation
axis from the calibrated measurement data using the cross product between the
first measurement in the locus

(
b̂i1,l

)
and the next measurement

(
b̂i(2...nsl),l

)
after

the magnetometer frame is rotated with arbitrary angular difference as long as the
angular displacement is between 0–180°, because the cross product of two vectors with
angular difference outside of that range will point to the opposite direction. An ideal
point would be at 90° angular displacement, since the general direction of the rotation
axis will be less affected by noise in the data. For the calibration test performed
in this thesis, the spacecraft was rotated with relatively constant angular velocity
for one full rotation, thus the second point of measurement used for evaluating the
general rotation axis can be approximated at the quarter point of measurement in
the particular locus

(
b̂i(2...nsl),l = b̂i(nsl/4),l

)
. For different case, the second point need

to be evaluated manually as the total measurement locus is segmented into several
loci. After the general estimate of the rotation axis is extracted, the sign of the
dot product between the vector of rotation axis general estimate and the vector of
previously estimated plane normal will indicate whether the estimated n̊il is pointing
to the right-hand positive direction as indicated by

(
n̊il ·

(
b̂i1,l × b̂i(2...nsl),l

))
> 0, or
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vice versa for
(
n̊il ·

(
b̂i1,l × b̂i(2...nsl),l

))
< 0. If

(
n̊il ·

(
b̂i1,l × b̂i(2...nsl),l

))
≈ 0, then

the first and/or second point of measurement used for evaluating the general rotation
axis has to be changed with another point since it indicates either that those two
points have angular displacement of ≈ 0° or ≈ 180° relative to each other or that
the data at those points are affected by very large noise that it alters the estimated
rotation axis vector.

Combining fitness functions for magnetometer calibration. Finally, the
fitness values from the two objectives have to be combined: as discussed previously
in section 4.2.6, there are numerous methods to combine multiple objectives in PSO
to achieve a non-dominated solution. This thesis applies the fixed weight aggregation
technique to combine the fitness values for magnetometer calibration parameters
estimation problem because of its simplicity. Thus, the total fitness function combines
F1,i from eq. (19) and F2,i from eq. (20) into

Fi = cf1

√
F1,i

ns
+ cf2

√
F2,i

nl
, (21)

where cf1 and cf2 are the fixed weight for each objective. Note that both fitness values
are normalized with respect to their own squared sum index elements. After some
trial and error with simulated data, a balanced solution can be achieved with cf1 = 1
and cf2 = 4× 103. Obviously, the important part for achieving a non-dominated
solution is the ratio between the two weights, although the absolute values themselves
are important in the context of fitness value scaling.

Twin global minima: reflection transformation. It is important to note that,
with the defined objectives, the PSO solution space still contain two ‘global’ minima.
One minimum point is the reflection of the other minimum, where the scalar checking
objective from eq. (19) is fulfilled, while the measurement locus plane fitting objective
from eq. (20) is fulfilled under a reflected frame definition with a left-handed triad.
Correcting the estimated calibration parameter Km, which is a 3-D transformation
matrix, can be performed by reflecting it back if it contains a reflection transformation
using

Km = sign (|Km|)Km, (22)

since a transformation matrix which contains a reflection transformation will have a
negative determinant.

6.1.2 Fitness Functions for Inverse MDM Problem

Fitness function for solving the inverse MDM problem in magnetic cleanliness analysis
can be derived directly from the concepts explained in section 3.4.3, where the PSO
objective is minimizing the summed squares of difference between the measured
magnetic field b̌s and the estimated magnetic field b̂is on all measurement points
s = 1 . . . ns. b̂is itself is computed from substituting the PSO solution estimated by
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particle i into eq. (8) at measurement points s, where the PSO solution estimated by
each particle i = 1 . . . np is structured as

ppso,i = [p̂x,i1, p̂y,i1, p̂z,i1, m̂x,i1, m̂y,i1, m̂z,i1, . . . ,

p̂x,ind
, p̂y,ind

, p̂z,ind
, m̂x,ind

, m̂y,ind
, m̂z,ind

]>,
(23)

where

p̂id ≡

p̂x,idp̂y,id
p̂z,id

 and m̂id ≡

m̂x,id

m̂y,id

m̂z,id


are the estimated magnetic dipoles position and moment, respectively, with d =
[1, nd] ∈ Z as the dipole index for nd number of dipoles. This means that the number
of magnetic dipoles has to be estimated manually outside the PSO algorithm, which
dictates the swarm dimension as nc = 6nd since each magnetic dipole is defined with
6 components.

However, the PSO objective of minimizing the summed squares of difference be-
tween b̌s and b̂is can be implemented in different mathematical structures. Carrubba
et al. proposed two fitness functions representing this objective in PSO algorithm,
which are adapted in this thesis. These two fitness functions are [14]

F1,i =

√∑ns
s=1

[(
b̌x,s − b̂x,is

)2
+
(
b̌y,s − b̂y,is

)2
+
(
b̌z,s − b̂z,is

)2
]

√∑ns
s=1

[
b̌2
x,s + b̌2

y,s + b̌2
z,s

] , (24)

and

F2,i =

∑ns
s=1

[(
b̌x,s − b̂x,is

)2
]

∑ns
s=1 b̌

2
x,s

+

∑ns
s=1

[(
b̌y,s − b̂y,is

)2
]

∑ns
s=1 b̌

2
y,s

+

∑ns
s=1

[(
b̌z,s − b̂z,is

)2
]

∑ns
s=1 b̌

2
z,s

,

(25)

where

b̌s ≡


b̌x,s
b̌y,s
b̌z,s

 and b̂is ≡


b̂x,is
b̂y,is
b̂z,is


by definition. These fitness functions are formulated so that eq. (24) promotes a
balanced influence between the magnetic field difference in all axes by normalizing
the magnitude of magnetic field error with respect to the measured magnetic field
magnitude, while in the other hand, eq. (25) provides more axis-specific influence by
normalizing the summed squares of magnetic field error with respect to the summed
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squares of measured magnetic field, each in its own respective axis, thus pulling the
PSO to the global solution when the measured magnetic field have very different
magnitude in each axis. To provide a balanced influence between the two fitness
function, Carrubba et al. also proposed a dynamic weight aggregation method in
the form of [14]

Fi(k) =
(
F1,i(k − 1)
F2,i(k − 1)

)
F1,i(k) +

(
F2,i(k − 1)
F1,i(k − 1)

)
F2,i(k), (26)

where the combined fitness value at k-th iteration is dynamically weighted using the
fitness value ratio from the two fitness functions at the previous iteration.

6.2 Tuning The Dynamic Parameters

As discussed in section 4.2.3, the PSO parameters w, c1, and c2 need to be tuned
properly for the swarm to converge into the global optimal solution. This is especially
true for the optimization problems applied in this thesis, where the problems are
highly nonlinear and driven by multiple objectives, resulting in multiple local minima
in the solution space. Moreover, the swarm topology implemented for the PSO
algorithm in this thesis is a standard global topology which is chosen because of its
simplicity, although a simplistic global topology tends to converge too early into a
suboptimal local minimum for highly nonlinear problem [13]. Thus, an extended
dynamic parameters is implemented in this thesis for tuning the PSO parameters
dynamically as the swarm explores the solution space.

First, a combination of gradually decreasing w early in the iteration followed
by gradually converging c1 and c2 as demonstrated in [14] is adapted in this thesis.
Then, this pattern of w, c1, and c2 dynamics is repeated over the iterations to extend
the exploration of search space. This extended pattern of PSO parameters dynamics
is described in fig. 11. The purpose behind this extended parameters dynamics is for
promoting exploration of the search space earlier in the iteration, and later helping
the swarm in escaping local minima as the swarm starts to stabilize, which can be
evaluated from preliminary simulation of the algorithm, as depicted in fig. 12.

The changes in swarm behavior for different dynamic parameters shown in fig. 12
suggest that the extended parameters dynamics might contribute to wider exploration
in the search space in the later part of iterations, improving the chance of finding
the region of optimal solution. This can be seen in the difference between fig. 12a
and fig. 12b, where in both cases the swarm have pretty much converges early in the
iteration as the varying period for the parameters dynamics ends (k ≈ wv + cv =
150 for both dynamics), although for the extended parameters dynamics case in
fig. 12b, the swarm best position was switched to another region in the solution space
at about 200 iterations, in the middle of the second cycle of varying parameters
(k = 150 . . . 300). However, this behavior is not consistent throughout the whole
swarm and for different algorithm runs. This is an expected behavior because PSO
itself is a stochastic algorithm which might give varying results for different runs,
although there is a guarantee for stability and convergence of the swarm, given some
requirements in the PSO parameters [17]. Using different problem model for the
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Figure 11: Plot of PSO parameters values (w denoted by straight line, c1 denoted by dashed
line, and c2 denoted by dash-dotted line) against the number of iterations,
depicting the extended dynamic parameters variations implemented in this
thesis. This technique is used for promoting exploration of the search space and
assisting the swarm in escaping local minima.

simulations also shows varying results about the benefit of applying the extended
dynamic parameters compared to the standard one. Thus, more evaluations on the
parameters dynamics are conducted using the real experimental data.

6.3 Setting The Initialization and Boundary Conditions

As discussed in section 4.2.4, the initialization and boundary conditions for PSO play
some roles in preventing swarm explosion and affecting possible bias in the solution.
General rules for defining the values of these conditions depend on the optimization
problem and the objectives driving the PSO algorithm.

The initialization conditions for the problems discussed in this thesis is quite
straightforward: for magnetometer calibration parameters estimation problem, the
swarm is initialized in a certain range for the Km matrix components and the km
vector components, while for the spacecraft MCP evaluation using inverse MDM
problem, the swarm is initialized in a certain range for the dipole(s) position p̂d
and moment m̂d components, where the initialization region for each problem is
represented by their respective pmax. As a rule of thumb of setting the values of
this initialization conditions, the initialization range for each component pmaxj
is estimated around the realistic expected value of the solution, e. g. a range of
[−1, 1] for the Km matrix components or [−0.2, 0.2] A m2 for the m̂d components.
Note that the initialization ranges written so far are symmetrical and centered on
zero for simplicity, although this may change in implementation. In the other hand,
initialization of the swarm velocities is performed in a similar manner as the swarm
positions, although the initialization range is defined by vmax, which will also
be used for the boundary conditions. This initialization process can be written
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(a) Plot of the values of one component in the swarm against the number of iterations
under standard parameters dynamics. Each component value is denoted with dashed
line, and their global best value is denoted with solid line.

0 100 200 300 400 500

−0.2

−0.1

0

0.1

Values of component j in the swarm

Iterations

C
o
m
p
o
n
en
t
v
a
lu
e

global best
local best

(b) Plot of the values of one component in the swarm against the number of iterations
under extended parameters dynamics. Each component value is denoted with dashed
line, and their global best value is denoted with solid line.
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(c) Plot of swarm global best fitness Fg against the number of iterations under the standard
(denoted with dashed line) and extended (denoted with solid line) parameters dynamics.

Figure 12: A simulation of swarm position evolution in the search space and its correspond-
ing global best fitness, showing the difference in PSO algorithm performance
under the standard parameters dynamics (from fig. 7) and the extended pa-
rameters dynamics (from fig. 11). Only the evolution of one component j from
the swarm, which showed the most significant changes in behavior for different
parameters dynamics, is shown for brevity.
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mathematically as

pij(k = 0) =pmaxs,j + rand(0, 1) (pmaxe,j − pmaxs,j) , and (27a)
vij(k = 0) =− vmaxj + rand(0, 2)vmaxj, (27b)

where pmaxj and vmaxj are the individual components of pmax and vmax for
each swarm component j, respectively, with the structure pmaxj = [pmaxs,j, pmaxe,j ]
defining the start and end of swarm position initialization range and vmaxj defining
the maximum allowed velocity of the swarm. Note that pmax can define the swarm
positions within any range in the search space, while vmax can only define the
swarm velocities symmetrically, centered at zero.

The boundary conditions can be implemented in several ways, either imposed
on the swarm positions, velocities, or both. The basic boundary condition which is
implemented in this thesis is the swarm velocity limit represented by vmax, whose
implementation is described in algorithm 3, without imposing direct restrictions on

Algorithm 3: Procedure for limiting swarm velocities.
1: procedure LimVel(vpso, vmax)
2: for i = 1 . . . np do . each particle in the swarm
3: for j = 1 . . . nc do . each component of the swarm
4: if |vpso,ij| > vmaxj then . over speed limit
5: vpso,ij = sign(vpso,ij)vmaxj . force to maximum speed
6: else . inside speed limit
7: vpso,ij = vpso,ij . no change
8: end if
9: end for
10: end for
11: return vpso

12: end procedure

the swarm position using pmax which is only used for defining the initialization
conditions discussed previously. A good starting point to define the velocity limit
is by setting each component of vmax, vmaxj, to a value equal with the range of
its respective pmaxj (i. e., vmaxj = pmaxe,j−pmaxs,j

2 ), thus enabling the swarm to
explore the region outside its initialization range to a certain extent. This is useful
if the actual optimal solution happens to lie outside the initialization range, while
limiting the possibilities of swarm explosion [13, 71]. However, some preliminary
evaluation of the algorithm shows some advantage in setting the vmax much lower
than its respective pmax, where the solution reached by the end of the iterations is
more likely to converge to the global optimal solution known in the simulated data,
especially when the optimal solution still falls near the initialization region, although
this characteristic still varies between runs and for different simulated model of the
problems. As a rule of thumb, the algorithm is evaluated further and checked for
consistency using both rules of vmax, which are

vmaxj = pmaxe,j − pmaxs,j
vlim

with vlim = 2 and vlim � 2, (28)
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on real experimental data. Note that vlim is inversely proportional with the velocity
limit imposed on the swarm.

6.4 Refinement Procedure

Refinement procedure was first proposed in [14] for assisting the swarm in escaping
suboptimal solutions in inverse MDM problem, which is basically re-running the
algorithm with the initialization region pmaxj imposed on each swarm component
j set to an a priori knowledge taken from its respective solution of the previous
PSO run gbestj(k), where each refinement run optimizes the parameters for only one
dipole while the rest of the dipoles parameters are fixed to the initial values. In this
thesis, a more general variation of this refinement procedure is adapted, where each
refinement run can optimize all components in the swarm without the association
with dipole parameters structure in inverse MDM problem, making the procedure
applicable to the magnetometer calibration parameters estimation problem. An
overview of this refinement procedure process is described in algorithm 4. Note that a
new constant p0,j , which value is determined manually, is defined as the approximated
search space around the a priori solution gbestj for each component j.

Algorithm 4: General version of refinement procedure adapted from [14].

. The refinement procedure requires knowledge of the previous PSO run solution
for an a priori values of its initialization conditions.

1: procedure Refine(gbest)
2: for j = 1 . . . nc do . for every swarm component j
3: pmaxj = [gbestj − p0,j , gbestj + p0,j] . define the initial position range
4: vmaxj = pmaxe,j−pmaxs,j

vlim
. define the velocity limit

5: for i = 1 . . . np do . for every swarm particle i
6: initialize pij and vij using eq. (27)
7: pi|i=randi(1,np) = gbest . Set one random particle in the swarm equal

to previous global best.
8: evaluate initial pbesti and gbest . see lines 4–6 in algorithm 1
9: end for
10: end for
11: . . .

. Continue with PSO iterations as in algorithm 5 starting from line 8.
12: end procedure

In principle, the refinement procedure serves to ‘shake’ the swarm from the
previously reached solution by limiting the initialization region of the swarm, which
in turn will assist the swarm in escaping possible local minima. Technically, this is
done by introducing a solution bias into the new swarm by setting a small value for
p0, generating a swarm around the a priori solution from previous PSO run with even
smaller vmax from the previous run, since vmax is defined by the total range of
pmax itself, as defined in eq. (28). Additional step might be implemented to ensure
that the fitness value of the refinement procedure solution will at least have the same
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value as the previous solution, by setting the values of an arbitrary particle from the
swarm with the global best value of the previous solution described in algorithm 4
line 7.

6.5 Algorithm Validation with Simulated Data

Testing the calibration algorithm using simulated data is important for verifying its
validity. In simulated data, the result of the calibration procedure can be compared
directly to the model, because all disturbances and error models are defined in the
simulation model. This is not possible with real, experimental data because the exact
model parameters are originally unknown, except for some a priori assumptions. This
is also important in interpreting the fitness value produced by the PSO solution, since
the scale of the fitness value depends on the problem and its parameters definition.
Thus, the purpose of the following sections is twofold: demonstrating the performance
of the specific algorithm developed in this thesis as well as evaluating the proper
threshold for the fitness value in a realistically defined problem.

For reference, a complete description of the developed PSO algorithm (improved
from the basic version in algorithm 1) implemented in this thesis is given in algo-
rithm 5. The parameters setting for both problems share some common values, which
are listed in table 3. More problem-specific parameters are discussed in the next
sections.
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Algorithm 5: Developed PSO algorithm.
1: define PSO parameters and termination conditions
2: w = ws, c1 = c1s, c2 = c2s . initial PSO parameters
3: for i = 1 . . . np do
4: initialize pi and vi using eq. (27) . initial swarm properties
5: pbesti = pi . initial local best positions
6: end for
7: evaluate gbest with eq. (14b) . initial global best position
8: while iterate = 1 do . iterate set to zero if termination conditions are fulfilled
9: k = k + 1 . update time step k
10: update w, c1, and c2 . according to parameters dynamics in fig. 7 or fig. 11
11: for i = 1 . . . np do . each particle in the swarm
12: update vi using eq. (13a) . swarm velocities
13: vi = LimVel(vi, vmax) . limit swarm velocities; see algorithm 3
14: update pi using eq. (13b) . swarm positions
15: calculate Fi with the defined fitness functions . particle fitness

. For magnetometer calibration parameters estimation problem, use the
fitness functions eqs. (19)–(21). For inverse MDM problem, use the
fitness functions eqs. (24)–(26).

16: reevaluate pbesti using eqs. (14a) and (14d) . particle local best position
17: end for
18: reevaluate gbest using eqs. (14b) and (14d) . swarm global best position

. Now, the termination conditions are checked: if k reaches allowed maximum
Kmax, or Fg is better than threshold FTH.

19: if Fg < FTH then
20: iterate = 0, success = 1
21: else if k ≥ kmax then
22: iterate = 0, success = 0
23: else
24: iterate = 1, success = 0
25: end if
26: end while
27: if success = 0 then . if previous run did not reach fitness threshold
28: while refine = 1 do . repeat refinements until certain conditions reached
29: Refine(gbest) . run a refinement loop

. Check the solution of refinement procedure as in lines 19–25.
30: if Fg < FTH then . if fitness is below threshold or cannot be improved
31: refine = 0
32: else
33: refine = 1
34: end if
35: end while
36: end if
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Table 3: Common values for PSO parameters and constants used in this thesis. Some values
are not fixed and may be evaluated separately in order to check the algorithm for
consistency and to identify key values associated with global optimal solution.

parameter value description

kmax 500 . . . 4000 The typical maximum allowed number of itera-
tions.

np 30 . . . 60 Typical number of particles in the swarm.

ws 3 . . . 5 Typical starting value for inertia weight w.

wf 0.5 Final value for w in the end of the varying phase.

we 0.382 End value for w after the varying phase.

c1s 4 Starting value for cognitive rate c1.

c2s 0 Starting value for social rate c2.

c1f , c2f 2 Final value for c1 and c2 in the end of the varying
phase.

c1e, c2e 2.5 End value for c1 and c2 after the varying phase.

wv (0.05 . . . 0.4)kmax Typical iteration length for one cycle of varying
w.

cv (0.05 . . . 0.4)kmax Typical iteration length for one cycle of varying
c1 and c2.

vlim 2 . . . 30 Typical speed limit modifier from eq. (28).

6.5.1 PSO Evaluation for Magnetometer Calibration

The PSO algorithm for magnetometer calibration parameters estimation is evalu-
ated using the magnetometer model discussed in section 3.4.1 combined with the
environmental model discussed in section 5.2. The algorithm is tested on several
type of simulated data, differentiated by their number of circular measurement loci
nl and whether the magnitude of simulated ambient magnetic field is constant for
all measurements or not. The latter variation is tested in order to demonstrate
the capability of the algorithm in estimating the calibration parameters using a
set of measurement data taken during long orbital period, where the magnitude of
geomagnetic field |b| might vary as modeled in section 5.2 (on the designated orbit,
|b| varies from 19 502 to 56 203 nT). For the case of constant geomagnetic field, |b| is
set to 35 000 nT (approximately in the middle of the expected range of geomagnetic
field magnitude), and a measurement random noise with maximum magnitude 20%
of the simulated measurement data is added to the data. Other values of noise levels
are also tested for evaluating the effect of noise to the algorithm accuracy. The
combinations of tested model variations are (simulated noise level is 20% for all
unless stated otherwise):
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1. two simulated, full circle measurement loci with constant |b|;

2. three simulated, full circle measurement loci with constant |b|;

3. same simulation model as item 2, but with maximum noise level 0% and 50%
of the measurement data; and

4. two simulated, full circle measurement loci with varying |b| in the range of
19 502 to 56 203 nT gradually increasing from the first measurement until the
last one.

The estimated calibration parameters from each variation and its comparison
with the true values from the simulated model is given in table 5. A graphical
representation of the measured, calibrated, and true magnetic field vector locus is
given in figs. 13a and 13b, which, for brevity, is taken from only two of the model
variants, specifically the variant in item 2 and item 4, respectively. The earlier is
selected since the three circle loci with constant ambient magnetic field is the closest
model with the type of data taken from the experimental test of magnetometer
calibration discussed in section 7.3, while the latter is selected to demonstrate the
capability of the algorithm in solving problem with non-circular locus of varying
magnetic field. The results presented are estimated with the problem-specific PSO
parameters set to values given in table 4 with the number of measurement data ns
is modeled as 100, representing realistic number of measurement data taken in the
experimental test, while pmaxj=1...9 and pmaxj=10...12 are the position boundary for
the calibration matrix Km and calibration vector km components, respectively. The
values for pmaxj=1...9 and pmaxj=10...12 are assigned with different values, where the
initialization region for Km is set to 1, so that the swarm begins the search in the
solution space from random values in the range of [−1, 1], while for km, the search
begins from random values in the range of [−5 000, 5 000] nT, since the calibration
parameter values are expected around those figures. The results are obtained with
varying numbers of refinement procedure loops, typically one to three loops.

The simulation results in table 5 show that the algorithm successfully estimated
the calibration parameters for all simulation model with minimum error. As expected,
the model with 50% noise level, the highest in this comparison, yields the worst
result as indicated by its high fitness value Fg. However, the Fg value itself is not
comparable between different models, in this case for models with different noise
level: in this comparison, Fg = 481.8 for a model with 50% noise level still estimate
acceptable value of calibration parameters (the heading error improved from 9.15–
72.97° before calibration to 0.21–38.18° after calibration), but for a model with 20%
noise level , such a high Fg indicates very erroneous calibration parameters estimate.
For example, a PSO run, with the initialization region deliberately set to some wrong
values on a simulation model with nl = 3, constant |b|, and 20% noise, yields the

results Smc =

10.1 −10.7 12.1
−7.1 14 −17
23.6 −30.6 45.6

 and offmc =

-6.157.64
-19.8

× 105 [nT] which are very

different from the model parameters, although the fitness value is Fg = 490.4. It can
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Table 4: Specific PSO parameters for magnetometer calibration parameters estimation
problem. Unspecified parameters follow the common parameter values in table 3.

parameter value

kmax 4000
ns 100
ws 55
wv 0.075kmax

cv 0.1kmax

vlim 10
pmaxj=1...9 1
pmaxj=10...12 5× 103

be seen that using Fg to estimate the absolute accuracy of the PSO is not reliable,
especially in real experiment data where the error model of the magnetometer and
its environment is not completely known. However, it is useful to determine the
relative accuracy between different PSO runs where the data still contain identical
error model. Moreover, detecting large error in the calibration parameters estimate is
possible, even for experimental data where the true model is not known, by inspecting
the graphical representation of the calibrated measurement locus. A good calibration
result of the magnetic field vector data should have a locus on the surface of a sphere,
while the erroneous data will have an ellipsoid locus, as demonstrated in fig. 13a.

Varying ambient magnetic field magnitude. The simulation results also show
that the PSO algorithm is capable of estimating the calibration parameters from set
of measurement data with varying ambient magnetic field as depicted in fig. 13b,
where the measurement loci are shaped like spirals instead of circles due to the
gradually increasing ambient magnetic field—different locus shape is possible as
the magnetic field magnitude varies up and down. Such data might be collected
on orbit, especially when the data is collected from a long flight period, where the
geomagnetic field magnitude changes according to the position of the spacecraft in
Earth reference frame. However, during such long flight period, different parameters
that contribute to the measurement errors might change (e. g., varying magnetic field
bias from spacecraft electronics). Since the current magnetometer model does not
include those time-varying components, whether the PSO algorithm can compensate
for those unknown errors to estimate the calibration parameters of the magnetometer
using data from a long flight period should be investigated in future works.
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Table 5: Comparison of estimated model parameters from different simulation models in
relation to the true reference value.

model variant model parameters

Smc offmc [nT] Fg

Model reference

 0.749 0.354 0.677
−0.242 1.122 −0.209
−0.395 −1.043 2.433


13 578.7-3 825.7
13 252


nl = 3, |b| = 35 000 [nT],
0% noise

 0.716 0.392 0.692
−0.302 1.108 −0.206
−0.376 −1.081 2.42


13 578.7-3 825.7
13 252

 2.3319

nl = 3, |b| = 35 000 [nT],
20% noise

 0.736 0.348 0.671
−0.244 1.137 −0.21
−0.4 −1.022 2.409


 12 656
-3 427.1
12 566.6

 281.1149

nl = 3, |b| = 35 000 [nT],
50% noise

 0.81 0.295 0.71
−0.277 1.139 −0.206
−0.383 −1.031 2.657


 14 771
-3 220.9
10 935

 481.8039

nl = 2, |b| = 35 000 [nT],
20% noise

 0.731 0.367 0.647
−0.24 1.107 −0.237
−0.408 −1.054 2.494


13 839.8-3 514.9
14 167.8

 211.9915

nl = 2,
|b| =19 502–56 203 [nT],
20% noise

 0.735 0.364 0.644
−0.283 1.128 −0.157
−0.455 −1.008 2.336


13 651.2-2 699.3
9 637.9

 275.6383

6.5.2 PSO Evaluation for Inverse MDM

Inverse MDM problem is a highly nonlinear problem with numerous factors that
increase its complexity, e. g.number of dipoles, noise in the measurements, and number
of measurement points. The number of dipoles assigned to PSO for estimation (n̂d)
seriously affects the nonlinearity of the problem, since each dipole has to be modeled
with six independent components. The actual number of dipoles in the simulation
model (nd) itself can be different from the estimated dipoles (n̂d), although it is
expected that the best result will be obtained when nd and n̂d are equal [14]. The
noise presence in the measurement data will certainly affect the accuracy of the
dipoles estimation, just as demonstrated previously for the magnetometer calibration
parameters estimation problem in section 6.5.1. The number of measurements ns of
the spacecraft remanent magnetic field vector data b̌s as well as the corresponding
position of the measurement points ps used as the set of data in the PSO algorithm
will also affect the accuracy of the estimation results. In this algorithm validation
for inverse MDM problem, the number of measurements and their corresponding
measurement point positions can be modeled from the actual test described later in
section 7.3.2, where the number of measurements can be approximated as ns = 100,
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Figure 13: 3-D plot of magnetic field vectors comparing the measured (denoted with ×'s),
calibrated (denoted with M's), and true (denoted with ◦'s) magnetic field vector
data points from simulated data with constant and varying magnetic field. The
axes represent the magnetic field strength in nT from the magnetometer frame.

while the positions of those measurement points are evenly distributed around the
spacecraft body frame, making a cylinder shape with a radius of 50 cm centered at
the spacecraft body frame origin. Simulation results with varying noise levels and
numbers of dipoles in the simulation model are presented in this section for analyzing
the effects of noise level and the modeled number of dipoles to the performance of
the algorithm.

Estimating a known number of dipoles. The increase in problem nonlinearity
caused by the number of estimated dipoles can be seen from the results presented in
fig. 14, where the estimation results are relatively accurate—in fact, for one dipole
estimation, the estimation results are practically identical with the model (maximum
error of 2 mm for dipole positions and 5 mA m2 for dipole moments estimations). This
result came from a single PSO run with 0% noise in the simulated data. However,
estimating a three dipoles simulation model (with the PSO set to estimate the
matching number of dipoles, or n̂d = nd) and producing accurate result (although
still comparably lower than the one dipole case) such as in fig. 14b requires much more
extensive PSO runs compared to achieving similar results on one dipole simulation
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(a) One simulated dipole estimated by PSO with Fg =
0.0253.
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(b) Three simulated dipoles estimated by PSO with Fg =
0.0425.

Figure 14: 3-D plots of the estimated (denoted with M's) and reference (denoted with O's)
dipoles positions from one dipole and three dipoles simulation models with the
matching number of dipoles estimate assigned to the PSO (n̂d = nd). The
magnetic moments of the dipoles are denoted with arrows originating from the
respective dipole positions, and the measurement points for collecting the data
are denoted with ◦'s. The axes represent positions from the spacecraft frame in
m. Both models simulate data with 0% noise.

In the three dipoles simulation model, the first PSO runs were very likely led
into suboptimal solutions, which can be corrected by extensive refinement procedure.
Refining the result after the first PSO run was performed with the general version of
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refinement procedure explained in section 6.4, where all the estimated dipoles went
through a finer PSO search by manipulating the initialization region using the a
priori knowledge from the previous PSO run. If the result still converge in suboptimal
solution, dipole-specific refinement procedure, which refines only one dipole in each
run as originally proposed in [14], is executed alternatingly for different dipoles using
different parameters (e. g. different parameters dynamics, kmax, a priori initialization
range p0 for the refinement loops, and velocity boundary modifier vlim) with typical
values fall in the range described in table 3. The refinement procedure, both the
general and the dipole-specific version, is repeated as necessary and every PSO run
with better fitness value is used as the initialization a priori for the next run until
the result is accurate enough.

Effect of noise level in algorithm performance. Increasing the noise level
also reduces the best achievable accuracy of the algorithm. Simulations using data
containing different noise levels to estimate three simulated dipoles, with the results
shown in table 6, show that with increasing noise level (measured as maximum noise
magnitude relative to the simulated data), the best achievable Fg and the accuracy
of the estimation become worse.

Table 6: Simulated PSO performance for inverse MDM problem with different noise levels
in the data. All simulations estimate three magnetic dipoles (nd = 3) with the
matching number of dipoles assigned to the PSO (n̂d = 3).

model variant error range & average

p̃d [cm] ¯̃pd [cm] m̃d [mA m2] ¯̃md [mA m2] Fg

0% noise 0.03–2.94 0.87 24.5–57.4 30.5 0.0425
20% noise 1.4–6.73 2.52 16.1–105.1 50.8 0.1339
50% noise 1.29–5.08 2.43 4.1–138.5 73.6 0.4414

Estimating unknown number of dipoles. Determining the accuracy of the
results directly to the reference dipoles is only possible in simulated data where
the dipoles model is known, while in real experimental data, the actual dipoles
model—both the parameters (pd and md) and the number of dipoles (nd)—is not
known and relying on the fitness values to determine the actual accuracy of the
estimation results is not practical because the fitness values may have different scales
for different data conditions and PSO parameters, although some assumptions on the
actual dipoles model in experimental setting is possible: if the spacecraft subsystems
or modules which are known to generate magnetic interference are tested individually,
then the MCP analysis for the complete spacecraft using inverse MDM problem
can be performed with the assumption that each subsystem/module represents one
dipole, whose dipole model can be initially assumed equal with the results of the
respective individual tests. However, such scrutiny in MCP tests for this thesis work
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is not feasible because the spacecraft MCP analysis is performed directly with the
whole assembled spacecraft. Thus, another approach in assessing the quality of the
spacecraft residual magnetic dipoles estimation is used.

First of all, assessing the quality of spacecraft magnetic properties estimate is
related to the purpose of the MCP analysis itself. It has been argued previously in
section 3.4.3 that the purpose of modeling the spacecraft as multiple magnetic dipoles
in the scope of this thesis is for mitigating the effects of the spacecraft RMM, which
could negatively affect the mission. The specific part of the system that is negatively
affected is the ADCS performance, where the disturbance magnetic torque will disturb
the spacecraft attitude and its generated magnetic field will disturb the reading on
the magnetometer. The magnetic field bias in magnetometer reading caused by
the spacecraft RMM itself is already included in the magnetometer calibration
parameters as demonstrated in section 6.5.1, while the disturbance magnetic torque
information can only be obtained from this approach. The disturbance magnetic
torque itself is an important information in the spacecraft design process because
it has to be guaranteed that the disturbance torque experienced by the spacecraft
can be compensated by the attitude actuators to ensure full controllability of the
spacecraft attitude. Since the disturbance magnetic torque can be calculated with

τdist,m =
∑
d

md × b,

similar with the torque produced by magnetorquer in eq. (9) where b is the ambient
magnetic field experienced by the spacecraft and

∑
dmd is the total RMM of the

spacecraft, then the maximum magnetic dipole that can be produced by the attitude
actuator (in this case, the magnetorquer) has to be larger than the spacecraft RMM.
Thus, the minimum information which is of interest from the MCP analysis result
is the total magnetic dipoles moment magnitude of the spacecraft RMM, while the
position and moment vector of each modeled dipole is of secondary interest.

To guarantee the accuracy of the estimated total RMM magnitude from the PSO
algorithm, results from simulations with mismatched estimated number of dipoles
and its real simulated number of dipoles (n̂d 6= nd) are investigated. All the models
simulate four or eight magnetic dipoles, whose data contain maximum 50% noise
with different combinations of simulated and estimated dipoles number set in the
PSO algorithm. The resulting estimated total RMM compared to the simulated total
RMM is presented in table 7.

It can be seen from table 7 that the resulting total RMM is not as sensitive as
the individual dipole properties to suboptimal solutions reached by the algorithm,
even when there are mismatches between the estimated and the simulated number
of dipoles. Generally, a better fitness value is observed as the number of estimated
dipoles increase and reach the best value when n̂d = nd, although its correlation
with the accuracy of the total RMM estimate itself is not straightforward—in the
case of the nd = 8 simulation model, 4 dipoles estimate produce better result than 1
dipole estimate, which also shows in its fitness value, although for 8 and 10 dipoles
estimate, the total RMM accuracy could be relatively lower than 4 dipoles estimate
although the fitness value is better. This is expected, as more dipoles are modeled in
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Table 7: Simulated PSO performance (with 50% noise in the data) in estimating the total
RMM using inverse MDM approach for mismatched number of dipoles between
the simulated (nd) and estimated (n̂d) model.

model total rmm [mA m2]
nd n̂d

∑
dmd |∑dmd| Fg

4 reference
[
57 −49 −159

]>
175.9 —

4 1
[
54 −49 −146.1

]>
163.2 0.664

4 4
[
56 −46.5 −156

]>
172.1 0.346

4 10
[
49.5 −49.4 −150.6

]>
166 0.3836

8 reference
[
72 −183 −171

]>
260.6 —

8 1
[
70.3 −175.1 −173

]>
256.1 0.6736

8 4
[
67.4 −184.2 −172.5

]>
261.2 0.4031

8 8
[
87.5 −173.1 −163

]>
255.1 0.3791

8 10
[
74 −169.7 −168.8

]>
250.5 0.4008

the estimate, reproducing the pattern of magnetic field vector on every measurement
point by the estimated dipoles will become easier, although this also means that
more possible solutions could exist where many of which are suboptimal from the
perspective of individual dipole properties, affecting the accuracy of the total RMM
estimate. Of course, theoretically, the 8 dipoles estimate will give the best result in
total RMM accuracy, given that the swarm converge in the optimal region. However,
the data shown in table 7 have only went through several refinement loops, in order
to show the impact of suboptimal local minima in the solution space to the accuracy
of the estimated total RMM. Thus, in analyzing the real experimental data, similar
conduct of estimating the total RMM with different number of estimated dipoles has
to be performed, and the results are checked for consistency.
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7 Tests Setups, Procedures, and Results

7.1 Sun Sensor Calibration

In this thesis, only one DSS unit (depicted in fig. 15 with its frame definition) is
tested to investigate any manufacturing defect, which covers two main problems:

a) direct estimation of calibration parameters defined in eq. (5) using least squares
method by comparing the known Sun reference angle obtained in Sun simulator
test with the measured elevation angle from the DSS; and

b) investigation on the characteristic of the light intensity reading from the DSS,
which is expected to be dependent on the Sun angle. This is required because
from all six sensors, angle measurement data from the sensor with highest light
intensity value will be used in order to differentiate the light source coming
from the Earth albedo, which can be modeled with known coordinate and orbit
altitude as given by [9], with actual light from the Sun.

x
α

y

z

β

Figure 15: The digital Sun sensor module from Aalto-1 qualification model with its defined
reference frame.

Test procedure. The test is performed with a Sun simulator setup that includes a
single-axis rotation platform and a ‘Sun lamp’ fixed on a calibration table as depicted
in fig. 16. The single-axis rotation platform is a CR1-Z7 motorized rotation stage
from Thorlabs, whose angular displacement and velocity can be controlled digitally
through TDC001 DC servo motor driver from the same company [85, 86]. The Sun
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lamp is actually a xenon lamp that acts as a wide spectrum light source emulating
the Sun, although the light intensity and the spectrum range is not identical with
the Sun. The test procedure is as follows:

1. Position the DSS as such so that the beam from the Sun lamp is focused on
the DSS surface. The goal is to simulate actual sunlight which comes from
practically infinite distance: if the beam from the Sun lamp is too wide, the
light beam might not be focused enough on a single sensor detector.

2. Adjust the orientation of the DSS as such that its z-axis points directly to the
Sun lamp and that the rotation axis is aligned with the sensor x- or y-axis
(both axes will be used).

3. Change the orientation of the DSS using the rotation stage by 2° steps in both
direction while taking measurements of the Sun angle and intensity in every
step.

4. Repeat step 3 until the Sun angle measurements does not increase/decrease as
it should be, which means the Sun is out of the sensor effective FOV.

5. Repeat the step 2–4 with the rotation axis changed, either aligned with x-
or y-axis depending on the previous alignment, by rotating the sensor on its
mounting.

Test results and analysis. The plot of Sun angle α and β measured by the DSS
against the reference angle, separately for variation in x- and y-axis, is shown in
fig. 17. The reference line represents the ideal plot of the measured Sun angle and
the reference angle. The nominal data is the non-calibrated Sun angle reading of the
DSS that was converted from raw data into Sun angle using the conversion formula
in eq. (4) with FoV0 = −75°, FoV = 150°, and 2m = 56 derived from the DSS
specifications [1]. The calibrated data is produced from calibrating the nominal data
using eq. (5), with the calibration parameters obtained (shown in table 8) with linear
batch least squares method described in section 4.1. Note that the measurement
data used in the calibration algorithm is limited to the linear region of the data,
which is in the range of [−60, 60]°, where the Sun angle reading starts to flat out as
the light source is going outside the effective FOV of the DSS (theoretical FOV in
DSS specification is [−75, 75]° [1]), as evaluated from the nominal reading in fig. 17.

Table 8: Model parameters for DSS calculated with linear batch least squares algorithm.

scale offset
Sss offss [°][

0.989 0.0343
−0.0187 1.0131

] [
−1.2814
−0.6497

]
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Rotation Axis

Sun sensor
module

Rotation
platform
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Figure 16: The Sun simulator setup in Aalto University. The single-axis rotation platform
angular displacement is controlled digitally. All light sources except for the Sun
lamp are turned off during the test, minimizing error in the Sun sensor reading.
The distance from the Sun lamp to the sensor is 110 cm.

The results in table 8 and fig. 17 show that the calibration parameters have small
impact to the Sun angle reading, since the nominal reading itself is already accurate
with minimal scale factor (diagonal elements of Sss), misalignment (non-diagonal
elements of Sss), and offset (offss) errors. Numerically, the worst accuracy of the DSS
in x-axis improved from 11.71° before calibration to 9.93° after calibration, while in
y-axis it only improved from 7.89° before calibration to 7.18° after calibration. The
average accuracy only improved from 2.81° before calibration to 2.57° after calibration
for x-axis reading and from 2.03° before calibration to 1.98° after calibration for
y-axis reading. The inaccuracies come from non-uniform distributed noise that is
visible in fig. 17, which reduces the effective accuracy of the DSS into two or three
times the native resolution (2.68°/LSB) of the sensor.

Besides the Sun angle calibration, the brightness reading of the DSS need to
be evaluated in order to distinguish the light coming from the Sun and the one
from Earth albedo. The plot of the brightness reading against the reference angle is
presented in fig. 18, where the brightness reading obviously decreases as the light
source deviates from the sensor normal direction. Note that the brightness reading
is in raw value (LSB), which can be converted into light intensity with specified
gain settings [25, 39]. However, this information is not crucial, since the Sun lamp
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brightness in the test was not calibrated to exactly emulate the Sun in orbit, and the
drop ratio of the brightness in relation with the Sun angle is sufficient. It can also
be seen that the brightness sensor have small difference in sensitivity when the Sun
angle is varied in the x- and y-axis, although this is not a major problem. At 60°
deviation, the highest Sun angle in the linear region, the lowest brightness reading
falls down to 35.84% of the highest brightness reading. This may pose a problem
if other DSS facing the Earth directly measured a brightness value from the Earth
albedo larger than the brightness reading from the Sun itself. The solution for this
problem, whether by calibrating the brightness readings from the DSS before the
values are compared or by reducing the effective Sun angle until the brightness level
drop is on a safe level, will be implemented in the attitude estimation method outside
of this thesis work.
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(b) Varying reference angle in y-axis with x-axis reference angle stays
at 0°.

Figure 17: Plot of Sun angle (in °) against the reference angle (in °). The nominal Sun
angle values in xz- and yz-plane are denoted with ×'s and +'s, respectively,
while the calibrated values are denoted with O's and M's, respectively. denoted
Note that the linear region of the DSS FOV falls in the range of [−60, 60]°.
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(a) Varying reference angle in x-axis, with y-axis reference angle stays
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(b) Varying reference angle in y-axis, with x-axis reference angle stays
at 0°.

Figure 18: Plot of DSS brightness reading (in raw value (LSB)) against the reference angle
(in °). The original data is denoted with •'s, while the data mean in each reference
angle step is denoted with M's.
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7.2 Gyroscope Calibration

In this thesis, the gyroscope calibration procedure solves only the time-invariant part
of the calibration parameters (i. e., scale factor Sg and initial offset offg(0)) because
compensation for the time-varying part (i. e., ηARW and ηRRW) will be performed by
the UKF in attitude estimation process. Aalto-2 ADCS has two gyros for redundancy,
thus it is also possible to implement gyros array technique. However, this approach
is not implemented in this thesis because the improvement in data quality from
the implementation of gyros array depends on the number of gyros and their data
correlation [8].

Test procedure. The gyroscope calibration test setup, pictured in fig. 19, consists
of two gyroscopes mounted inside the Aalto-1 EM and a single-axis rotation platform
identical to the one used in the DSS calibration setup from section 7.1.

Aalto-1 EM

Rotation
platform

Mounting
options

Mounting
options

Figure 19: Gyroscope calibration test setup. The gyroscopes are installed inside the Aalto-
1 engineering model and the single-axis rotation platform angular velocity is
controlled digitally.

The calibration model is described in eq. (6), where the initial offset offg and the
total scale error Sg are estimated with linear batch least squares method explained
in section 4.1 by taking series of measurements ω̌ while the gyroscope is rotated on
a rotation platform with digitally controlled angular velocity. This angular velocity
data commanded to the rotation platform is used as the reference angular velocity
ω. The detailed test procedure is:

1. Position the spacecraft EM on the suitable mounting as such that the rotation
axis of the rotation platform is aligned with the spacecraft body x-axis.
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2. Collect gyroscopes readings ω̌1 and ω̌2 (there are two gyroscopes on the Aalto-2
EM) in stationary condition.

3. Set the rotation platform angular velocity to different values in the range of
ω = [−6, 6] [°/s], which is the maximum angular speed of the platform [86],
while collecting measurements ω̌ from the gyroscopes with the rotation platform
angular velocity as the reference ω.

4. Repeat from step 1 with the rotation axis aligned to the other axes once at a
time. Make sure sufficient number of angular velocity variation taken in step 3
is collected so that the estimation problem is overdetermined, i. e. the total
number of angular velocity variation in all axes are larger than the number of
unknown parameters, which is 12 in this case (3× 3 matrix and 3× 1 vector).

Test results and analysis. The gyroscope model parameters defined in eq. (6a)
obtained with least squares method from the measurement data for each gyroscope
are given in table 9. The plots of gyroscopes reading before calibration (ω̌) and after
calibration (ω̂) against the reference angular velocity ω are shown in figs. 20 and 21
for gyroscope 1 and 2, respectively.

Table 9: Model parameters for calibrating each gyroscope as calculated with linear batch
least squares algorithm.

gyroscope scale offset
Sg offg [° s−1]

1

1.085 −0.023 0.014
0.016 1.063 −0.014
0.011 0 1.061


 0.88

0.03
−0.26



2

1.076 0.003 −0.026
−0.01 1.065 −0.009
0.002 −0.003 1.018


0.57
−0.4
0.14



The estimated model parameters in table 9 show that only minor correction is
needed for the gyroscopes readings, as the total scale error matrix Sg values are close
to identity matrix and the offset values in offg are small. However, examining the plot
of gyroscopes readings in figs. 20 and 21, the calibration process visibly improved the
gyroscopes readings, moving the mean of the data closer to the ideal reference line.
Analyzing the mean uncalibrated and calibrated data, it can be calculated that the
rotation axis direction error improved from 5.12–63.81° before calibration to 0.92–26.9°
after calibration for gyroscope 1 and from 4.78–69.79° before calibration to 0.25–
27.83° after calibration for gyroscope 2, while the angular speed error improved from
0.018–1.11 ° s−1 before calibration to 0.006–0.528 ° s−1 after calibration for gyroscope
1 and from 0.017–0.778 ° s−1 before calibration to 0.003–0.354 ° s−1 after calibration
for gyroscope 2. The presence of the large range of error in rotation axis accuracy
even with the data mean comes from the RRW error, which defines a drift in the
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offset error itself. This time-varying error requires proper filtering in order to remove
it from the data.
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(a) Angular velocity plot for varying reference
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(b) Angular velocity plot for varying reference
in y-axis.
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(c) Angular velocity plot for varying reference
in z-axis.

Figure 20: Plot of gyroscope 1 readings in ° s−1 (raw data denoted with •'s; mean of
uncalibrated data denoted with ×'s, +'s, and ∗'s for its x-, y-, and z-axis
components, respectively; and mean of calibrated data denoted with M's, �'s,
and ♦'s for its x-, y-, and z-axis components, respectively) against the reference
angular velocity in ° s−1. The angular velocity is varied for one axis at a time,
while the other axes are set to zero.
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(b) Angular velocity plot for varying reference
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(c) Angular velocity plot for varying reference
in z-axis.

Figure 21: Plot of gyroscope 2 readings in ° s−1 raw data denoted with •'s; mean of uncali-
brated data denoted with ×'s, +'s, and ∗'s for its x-, y-, and z-axis components,
respectively; and mean of calibrated data denoted with M's, �'s, and ♦'s for
its x-, y-, and z-axis components, respectively) against the reference angular
velocity in ° s−1. The angular velocity is varied for one axis at a time, while the
other axes are set to zero.



71

7.3 Magnetometer Calibration

Advanced calibration procedure based on PSO algorithm for the magnetometer has
been developed in this thesis. The calibration process includes direct calibration
parameters estimation (defined in eq. (7)) in magnetic domain and multiple MDM
analysis for further RMM manipulation. Both tests were performed with a Helmholtz
cage setup at the magnetic test facility operated by Finnish Meteorological Institute
located in Nurmijärvi, Finland [27], as depicted in fig. 22. The test setup includes:

a) Aalto-1 EM, as illustrated in fig. 8 with the defined reference frame;

b) a three-axis Helmholtz cage setup;

c) a one-axis manual rotation platform; and

d) a custom LEMI-CLE fluxgate magnetometer (part number N9512)—referred to
as independent magnetometer from this point. This independent magnetometer
is used for calibrating the Helmholtz coil output and taking measurements for
MCP analysis.

The test procedure is separated for the magnetometer calibration parameters
estimation and for the MCP evaluation, which are given in sections 7.3.1 and 7.3.2,
respectively.

7.3.1 Calibration Parameters Estimation

The data obtained from the magnetometer calibration test procedure is a series of
magnetic field measurements taken by the satellite magnetometer while rotating the
spacecraft. The magnetometer calibration is performed in the magnetic domain, thus
the process is attitude independent, where no information of the actual spacecraft
heading and its relationship to the magnetic field vector is required to perform the
calibration, as discussed in section 3.4.2. However, this preflight calibration procedure
also served as verification phase of the calibration algorithm developed in this thesis,
thus several measurements with known reference heading are also obtained.

Another aspect to analyze in this preflight test is whether any inconsistency in
the calibration parameters appears when the magnetometer is calibrated in different
ambient magnetic field magnitude. This is due to the fact that as given in eq. (7), the
proposed magnetometer model parameters is not dependent on the ambient magnetic
field magnitude itself, thus any inconsistency in the calibration parameters when
the spacecraft is subjected to different magnitude of ambient magnetic field might
indicate some problems: the presence of noise in the data affecting the accuracy of the
calibration algorithm solution and the presence of hysteresis effect from ferromagnetic
materials, which is not included in the magnetometer model as defined in eq. (7).

Test procedure. Taking those requirements into considerations, the test procedure
is performed as follows:

1. Calibrate Helmholtz cage output, setting the ambient magnetic field inside
the cage to: i) 20 000 nT or ii) 50 000 nT, representing the lowest and highest
expected magnetic field magnitude in the mission orbit as modeled in section 5.2.
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Figure 22: The magnetic test facilities with Helmholtz cage setup in Nurmijärvi Geophysical
Observatory, operated by Finnish Meteorological Institute. The specifications
of the test setup are available in [27].

2. Position the spacecraft EM in the center of the Helmholtz cage setup and
orient it to a certain direction while taking note of the spacecraft orientation.
This initial orientation provides the data with known reference heading for
calibration verification.

3. Set the satellite operation mode to: i) nominal mode or ii) full-power mode for
the purpose of detecting changes in calibration parameters caused by varying
spacecraft electronics current in different operation modes.

4. Start recording the magnetic field vector using the spacecraft magnetometer
and start rotating the spacecraft around the rotation axis for one full rotation.

5. Repeat step 3 and 4 with different satellite operation mode than the previous
one.
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6. Repeat step 2–4 with different rotation axis in spacecraft reference frame by
changing the orientation of the spacecraft on the rotation platform.

7. Repeat from step 1 using different magnetic field magnitude.

Test results and analysis. The measurements taken from the magnetometer
calibration test consist of four sets of data from the combination of two ambient
magnetic field magnitude |b| (20 000 nT and 50 000 nT) and two operation mode of
the spacecraft (nominal operating mode and full-power operating mode). The results
of the estimated magnetometer model parameters Smc and offmc from eq. (17a) are
given in table 10. Graphical representations of the measured and calibrated magnetic
field vector loci are provided in fig. 23. Using the known angular reference from the
initial orientation data (note that this is unfiltered data), it can be calculated that
the heading error of the magnetometer improved from 5.24–13.24° before calibration
to 1.9–7.3° after calibration.

Table 10: Estimated magnetometer model parameters under different combinations of am-
bient magnetic field |b| and spacecraft operation mode in the test setups.

test setup model parameters

Smc offmc [nT] Fg

Nominal mode,
|b| = 20 000 [nT],
nl = 3, ns = 130.

0.8742 −0.0643 −0.0323
0.0024 −0.8932 −0.0328
0.0223 0.0849 −1.1746


−4 496.3
−3 155.5
−1 717.3

 347.77

Nominal mode,
|b| = 50 000 [nT],
nl = 3, ns = 102.

 0.8635 −0.0387 0.025
−0.0295 −0.915 −0.0013
−0.0293 −0.0465 −0.9335


 −4 647
−2 848.1
−2 346.7

 368.78

Full-power mode,
|b| = 20 000 [nT],
nl = 2, ns = 100.

 0.77 −0.0694 −0.0026
−0.0391 −0.9294 −0.0935
0.1408 0.1837 −1.0349


−2 515.1
−1 482.7
−3 013.2

 369.87

Full-power mode,
|b| = 50 000 [nT],
nl = 3, ns = 118.

 0.8402 −0.0102 −0.0285
−0.0374 −0.924 0.0425
−0.0702 −0.0006 −0.992


−3 513.4
−1 656
−959.1

 322.31
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(a) Nominal mode, |b| = 20 000 [nT], nl = 3,
ns = 130.
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(b) Nominal mode, |b| = 50 000 [nT], nl = 3,
ns = 102.
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(c) Full-power mode, |b| = 20 000 [nT], nl = 2,
ns = 100.
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(d) Full-power mode, |b| = 50 000 [nT], nl = 3,
ns = 118.

Figure 23: 3-D plot of magnetic field vectors showing calibrated (denoted with M's) and
measured (denoted with ×'s) magnetic field vector loci under different com-
binations of ambient magnetic field |b| and spacecraft operation mode in the
test setups. The axes represent the magnetic field strength in nT from the
magnetometer frame.

The estimated model parameters in table 10 show that there is no serious misalign-
ment, nonorthogonality, or cross-axis sensitivity problem, as indicated by the very
small non-diagonal components values of the combined scale matrix Smc . Note that
the diagonal components for y- and z-axis scale factor are negative because the frame
definition of the ADCS module is inverted from the spacecraft body frame definition
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in the y- and z-axis. It also seems that the different test setups do not significantly
affect the parameters. This is expected for test setups with the same operating mode
under different ambient magnetic field magnitude, since the model parameters are
independent from the ambient magnetic field as modeled in eq. (7). The estimated
combined offset parameter offmc , however, is quite inconsistent across the different
test setups, especially for tests under different operating mode. This is also expected
since the spacecraft modules that are switched on in full-power mode will generate
magnetic field disturbance. However, the result shows that the estimated offmc for
full-power operating mode is not consistent under different ambient magnetic field
magnitude, which is most likely caused by the poor data quality for the lower ambient
magnetic field magnitude.

PSO solution with the current set of objectives is very likely to converge in the
global optimum, since the current results for each test setup are consistent across
numerous runs with different parameters. Inconsistencies in results under different
ambient magnetic field magnitudes at this point are contributed by the noise level
and unmodeled time-varying errors. The signal-to-noise ratio is especially higher
for tests under |b| = 20 000 [nT] which is practically less than half the tests under
|b| = 50 000 [nT]. A closer look to the result for test setup with full-power operating
mode and |b| = 20 000 [nT] in fig. 23c also suggest an especially noisy data, where
the sphere/ellipsoid shape of the measurement locus is badly scattered.

7.3.2 Magnetic Cleanliness Evaluation using Multiple Magnetic Dipole
Modeling

The data obtained from the spacecraft MCP evaluation procedure is a series of
measurements taken by the independent magnetometer outside the satellite structure
on different measurement points, as depicted in fig. 5. However, the measurement
points forming a sphere surface such as in fig. 5 is not practical for the current
test setup, where the independent magnetometer position and the rotation platform
angular displacement have to be adjusted manually by hand. Therefore, the mea-
surement points will form a cylinder instead, which can be obtained by rotating the
spacecraft for a full rotation while taking measurements every several degrees of
rotation, continued by repositioning the independent magnetometer vertically for
some interval, repeating the rotation and measurement taking sequence.

Test procedure. The test procedure is as follows:

1. Calibrate Helmholtz cage output, setting the ambient magnetic field inside
the cage to zero. This is because only the magnetic field generated by the
spacecraft is of interest for MCP analysis.

2. Set the spacecraft to a certain operating mode. The test was conducted only
in nominal operation mode, although different operation mode will be tested
for future studies.

3. Position the spacecraft in the center of the Helmholtz cage setup and orient it to
a certain direction—this initial orientation is important because it defines the
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relationship between the spacecraft and the independent magnetometer frame,
where the data from the independent magnetometer need to be transformed
into the spacecraft reference frame.

4. Position the independent magnetometer in a suitable location near the space-
craft. In the test, the independent magnetometer was initially positioned at
[x, y, z] = [50, 0,−23.5] [cm] in the spacecraft reference frame.

5. Rotate the rotation platform in 10° intervals for one full rotation while taking
measurements from the independent magnetometer in every interval.

6. Repeat step 4 and 5 with repositioned independent magnetometer by moving
it vertically in a certain interval until the measurement points adequately cover
the spacecraft. The vertical interval used in the test was 8 cm.

With this test procedure, the total number of measurement points ns = 254 was
obtained.

Test results and analysis. As discussed in section 6.5.2, the focus of MCP
analysis in this thesis is to determine the estimate total RMM (which is sum of all
the dipoles moment) of the spacecraft. Since the number of dipoles are unknown,
the PSO algorithm is run several times while increasing the number estimated of
dipoles n̂d until the lowest fitness value can be reached with minimum number of
dipoles. With this process, it is found that the optimal number is 10 dipoles. It is
important to note that inverse MDM estimation results from simulated data with
10 dipoles as in section 6.5.2 as well as from the real experimental data show that
the problem becomes highly nonlinear at 10 dipoles (which means the PSO need to
estimate 60 independent variables) and numerous local minima exist in the solution
space. These local minima in the results appear as different combination of estimated
dipoles properties from different PSO runs with similar best fitness value, which, in
PSO runs using the experimental data, most of these minima have a fitness value
Fg ≈ 0.5. The result with lowest fitness achieved is Fg = 0.4826 with more details of
the dipoles properties given in table 11 and its 3-D plot depicted in fig. 24.

Since the minimum information required from this analysis is to obtain a consistent
result for the total RMM, inidividual dipole properties (positions and moments) is
not crucial. However, the results show that many estimated dipoles positions are
located outside the spacecraft body, which occupies a cuboid with the dimension
[x, y, z] ≈ [10, 10, 30] [cm] centered in the frame origin. These pattern is consistent
with the best solution achieved with different nd, which signifies the possibility of
disturbance outside the spacecraft body, possibly coming from measurement noise
and bias in the magnetometer reading. The effect from noise presence could be
reduced by moving the sensor position closer to the spacecraft body (reducing the
radius of the measurement cylinder), thus increasing the signal-to-noise ratio.

The magnitude of the total RMM itself is estimated around
∑
d |md| ≈ 58.5 [mA m2],

which is lower than the maximum magnetic moment that can be produced by the
magnetorquer (|mmtq,max| = 200 [mA m2]). Thus, further strategies for magnetic
disturbance torque mitigation is not required at this point.
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Table 11: Estimated total remanent magnetic moment of Aalto-1 engineering model with
the lowest fitness value. The PSO is set to estimate 10 dipoles.

dipole position rmm [mA m2]
pd [cm] md |md| Fg

1
[
−7.1 −10.7 10.8

]> [
−133.2 −58.9 −58.7

]>
157

2
[
−10.2 1.9 12.2

]> [
47.9 −52.5 −19.2

]>
73.6

3
[
1.4 −6.1 14.3

]> [
155.2 −90.6 −69.2

]>
192.5

4
[
−11.1 12.5 5.6

]> [
−84.2 −59.2 74.4

]>
127

5
[
−12.9 8.2 17.1

]> [
−17.6 209.4 −66.4

]>
220.4

6
[
−9.7 −3.5 −7

]> [
19.5 103.8 38.4

]>
112.4

7
[
−10 14.6 19.9

]> [
−160.6 −147.2 −71.6

]>
229.3

8
[
−2.4 8.2 15.9

]> [
−61.5 175.2 8.5

]>
185.9

9
[
−14.6 14 17.2

]> [
221.9 −62.2 35.6

]>
233.2

10
[
−4.2 −5.6 32.7

]> [
27 4 180.5

]>
182.6

Total
[
14.5 21.9 52.3

]>
58.5 0.4826

7.4 Magnetorquer Calibration

For this thesis, magnetorquer calibration is performed using magnetic property analy-
sis approach. Note that the magnetorquers are COTS integrated and that they receive
command directly in magnetic moment mmtq for each axis where the required driving
current imtq is automatically calculated with eq. (10b) with the constants already
predefined. Instead of estimating those constants, the test procedure goal is to obtain
set of magnetic field measurement vectors b̌mtq produced by the magnetorquer as the
magnetorquer output is set to different magnetic moment mmtq. The relationship
between the magnetorquer moment and its magnetic field measured at a certain
point of measurement ps in space is defined in eq. (8), where the magnetic field
strength at a constant point in space should be directly proportional to the magnetic
moment—the data obtained from the test (measured magnetic field magnitude and
the corresponding magnetic moment commanded to the magnetorquers) is for veri-
fying this relationship. Another aspect to consider is that since the magnetorquers
under test are integrated with the ADCS module inside the spacecraft EM as COTS
package, misalignment errors are assumed to be negligible.

The test setup includes the three-axis magnetorquers integrated inside the Aalto-1
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Figure 24: 3-D plots of the estimated dipoles positions (denoted with M's) and moments
(denoted with arrows originating from the dipoles positions) for magnetic cleanli-
ness evaluation with 10 dipoles estimate. The measurement points for collecting
the data are denoted with ◦'s. The axes represent positions from the spacecraft
frame in m.

EM and an independent magnetometer (HMC5883 three-axis digital magnetometer)
to measure the magnetic field strength produced by the magnetorquer, as depicted
in fig. 25.

Test procedure. The test procedure for gathering sufficient data in verifying the
relationship between the magnetic moment commanded to the magnetorquer and its
generated magnetic field is as follows:

1. Calibrate the independent magnetometer using the same principle as explained
in section 6.5.1 by rotating the magnetometer in several axes by hand near the
Aalto-1 EM to compensate the error factors.

2. Position the independent magnetometer near the magnetorquers as such that
it is not too far from the magnetorquers that it cannot detect the magnetic
field generated by the magnetorquer or too close that the generated magnetic
field saturates the magnetometer reading.

3. Set the magnetorquer moment output to zero for all axis and activate the self
test function of the magnetorquer to remove magnetization in the core material.

4. Collect and calibrate reading from the independent magnetometer. This reading
is the total ambient magnetic field.

5. Set the magnetorquer moment output for x-axis to values between −0.2 to
0.2 A m2 with 10 mA m2 steps, while the y- and z-axis magnetorquer set to
zero. Collect and calibrate reading from the independent magnetometer after
running the magnetorquer self test function for each magnetorquer moment
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Figure 25: Test setup for magnetorquer calibration by directly measuring the magnetic field
generated from the magnetorquers.

step and substract it with the ambient magnetic field obtained from step 4 to
isolate the magnetic field generated by the magnetorquer from the ambient
magnetic field.

6. Repeat step 5 with the magnetorquer moment output controlled for y- and
z-axis once at a time while setting the magnetorquer moment output on other
axis to zero.

Test results and analysis. First, the independent magnetometer need to be
calibrated using measurement data obtained near the actual measurement point.
The estimated magnetometer calibration parameters as defined in eq. (17b) are

Km =

 0.97 0 −0.02
−0.01 1.13 0
−0.19 −0.01 1.05

 and km =

 2862
−12501
−12391

 [nT], with the measurement

locus plot for the uncalibrated and calibrated data shown in fig. 26. With these
calibration parameters, the magnetic field reading is calibrated and the magnetic
field generated by the magnetorquer is calculated as explained in the procedure.
The plot of the measured magnetic field magnitude

∣∣∣b̌mtq

∣∣∣ against the commanded
magnetorquer moment mmtq in each axis is shown in fig. 27. For comparison, the
theoretical relationship between the magnetic moment mmtq and the generated
magnetic field strength bmtq at a point ps in space is plotted in fig. 28, where the
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theoretical magnetic field magnitude |bmtq| generated by a simulated dipole moment
with varying magnitude mmtq =

[
(−0.2 . . . 0.2) 0 0

]>
[A m2] at the center of the

frame is measured at a measurement point located at ps =
[
0.1 0.1 0

]>
[m] in the

frame.
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Figure 26: 3-D plot of magnetic field vectors for the measured (denoted with ×'s) and cali-
brated (denoted with M's) data taken by HMC5883 independent magnetometer
used for measuring the magnetic field strength generated by magnetorquer. The
plot axes represent the magnetic field strength in nT from the magnetometer
frame. The data was taken by rotating the magnetometer by hand around its
three axes (nl = 3), and the estimated calibration parameters have a best fitness
value of Fg = 14.937.

Figure 27 shows that the relationship between the commanded magnetorquer
moment and its generated magnetic field is in fact nonlinear, unlike the theoreti-
cal relationship depicted in fig. 28 where the relationship is linear. However, the
relationship is approximately linear for |mmtq| ≥ 50 [mA m2]. The nonlinear region
for smaller commanded magnetorquer moment (|mmtq| < 50 [mA m2]) is likely due
to the nonlinearity of the magnetorquer core where eq. (10) is not valid. Thus, for
linear region of the magnetorquer moment, the actual magnetorquer moment m̌mtq,i

produced by the i-axis magnetorquer as measured by the generated magnetic field
can be approximated with |m̌mtq,i| ≈ |mmtq,i|−50 for |mmtq| ≥ 50 [mA m2], assuming
there is no scaling error between the commanded and the actual magnetorquer
moment. Acquiring more detailed error parameters such as scaling and misalignment
factors requires exact knowledge of the independent magnetometer relative position
and orientation with respect to each magnetorquer frame, which was not taken during
the test.
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(a) Varying magnetorquer moment in x-axis.
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(b) Varying magnetorquer moment in y-axis.
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(c) Varying magnetorquer moment in z-axis.

Figure 27: Plot of measured magnetic field magnitude
∣∣∣b̌mtq

∣∣∣ generated by the magne-
torquer against the commanded magnetorquer moment mmtq,i in i axis. The
magnetorquer moment in other axes are set to zero.

Another abnormality is observed for varying magnetorquer moment in x-axis
shown in fig. 27a, where the gradient of the plot is not symmetrical between positive
and negative magnetorquer moment value, in contrast to the symmetrical theoretical
plot lines given in fig. 28. There are several possible causes for this abnormality:
hysteresis of the magnetorquer core and the surrounding materials, or scaling error
in the magnetorquer control originating from software or hardware bugs. Since this
behavior does not appear in the other magnetorquer axes, it is unlikely that hysteresis
of the magnetorquer core or other surrounding materials can cause this. Unless
more meticulous testing is performed, the results seem to be inconclusive. Thus,
further testing is recommended for verifying any error in the current driving the
magnetorquer.
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Figure 28: Plot of theoretical magnetic field magnitude |bmtq|, measured at a measurement
point as calculated from a simulated magnetorquer dipole moment at frame
origin using eq. (8), against the magnetorquer moment magnitude in the x-axis.
The magnetic moment in other axes are kept at zero.
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8 Summary

8.1 Conclusions

Calibration and testing of ADCS instruments on Aalto-1 EM (i. e., two-axis DSS,
three-axis gyroscopes, three-axis magnetometer including MCP analysis, and three-
axis magnetorquer) was performed and the results were analyzed. Several findings
were discovered during the whole calibration and testing process, from the design
and testing phase of calibration algorithms up to the analysis of experimental data:

• A stochastic estimation method based on biological swarm behavior called
PSO was specifically developed for estimating the magnetometer calibration
parameters and solving the inverse MDM problem in spacecraft MCP analysis.

• A novel approach was developed to improve the standard PSO implementation
for magnetometer calibration parameters estimation problem in magnetic
domain without the need of compromising the number of estimated parameters:
the novel PSO is designed to estimate a full 3× 3 calibration matrix Km and
3×1 calibration vector km (a total of 12 parameters) by adding a new objective
definition. The current implementation of the new feature, however, still has
some limitations:

– individual measurement error factors (i. e., scale factor, nonorthogonality,
misalignment, soft iron error, hard iron error, and magnetometer offset
error) are still mathematically indistinguishable inside Km and km unless
more rigorous testing is performed,

– the measurement data has to be dividable into at least two segments
(nl ≥ 2) where the measurement locus of each segment l can be averaged
into a single plane with unique normal direction n̊l (implemented in this
thesis with orthogonal distance regression plane fitting) and the average
angular velocity axis of the magnetometer ω̊l when the measurement was
taken for that segment is known (in this thesis work it was known from
the test procedure), and

– the calibration parameters do not include time-varying errors.

• The improved PSO for magnetometer calibration parameters estimation is ca-
pable of estimating the calibration parameters under varying ambient magnetic
field magnitude as shown using simulated data.

• Magnetometer calibration results using experimental data showed a consis-
tent estimated calibration parameters under different ambient magnetic field.
However, estimation results under larger ambient magnetic field magnitude
(|b| = 50 µT) is more accurate since the signal-to-noise ratio of the data is larger.
In the other hand, minor differences was detected in the offset calibration vector
under different spacecraft operating mode, which came from changing hard
iron bias of the spacecraft electronics under different load. The calibration
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process improved the magnetometer reading accuracy from 5.24–13.24° before
calibration to 1.9–7.3° after calibration according to the evaluation of the raw,
unfiltered experimental data.

• The PSO developed for MCP analysis using inverse MDM approach is based
on the PSO developed in [14] with some small differences:

– the parameters dynamics is extended by repeating the parameters variation
pattern in one PSO loop to promote re-exploration of the solution space
after the swarm starts converging to a minimum point and

– the refinement procedure is generalized so that it can be implemented for
all components of the swarm instead of the components associated only
with a particular dipole—this also means that the refinement procedure
can be implemented for magnetometer calibration parameters estimation.

• The focus of the MCP analysis was to determine the total RMM of the
spacecraft, while the individual dipole properties were not crucial. Extensive
PSO runs were executed on the experimental data to determine the optimal
number of estimated dipoles n̂d, until a global minimum solution is obtained
(it is found that the optimal n̂d = 10). The results from experimental data
show that the total RMM magnitude of the spacecraft is |m̂d| = 58.5 [mA m2],
which is lower than the maximum magnetic moment that can be generated by
each magnetorquer in i-axis (|mmtq,i| ≤ 0.2 [A m2]).

• Calibration results of the single DSS module showed no serious problem in the
Sun angle readings. Calibration parameters estimation using linear batch least
squares method did not significantly improve the Sun angle accuracy, mostly
because the low native resolution of the DSS itself and the presence of noise.

• The brightness readings of the Sun sensor was observed to drop as the Sun
angle deviates from the sensor normal direction (z-axis). This information
is necessary to calibrate the brightness readings used for distinguishing the
readings from the Sun and the readings from the Earth albedo.

• The estimated gyroscope model parameters showed that only minor correction
was needed for the gyroscopes reading, as the total scale error matrix Sg values
are close to identity matrix and the offset values in offg are small.

• The magnetorquer calibration was performed with magnetic property analysis
by evaluating the relationship between the magnetic field magnitude

∣∣∣b̌mtq

∣∣∣
measured at a single measurement point and the magnetic moment commanded
to the i-axis magnetorquer mmtq,i. Theoretically, the relationship should be
linear as described by eq. (8), although experimental data showed that the
relationship is approximately linear only for mmtq ≥ 50 [mAm2], which is most
likely caused by the nonlinearity of the magnetorquer core permeability. Further
evaluation of the control loop is required to determine whether more detailed
calibration is necessary for improving the control accuracy.
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• Anomaly in the magnetorquer moment behavior was observed in the test
results of x-axis magnetorquer (fig. 27a), where the gradient of the plot is
not symmetrical between the positive and negative commanded magnetorquer
moment. Further testing is required to determine the actual cause of this
anomaly.

8.2 Future Work

Some suggestions for future work are derived from the findings discovered during the
calibration and testing process:

• The novel PSO developed for magnetometer calibration parameters estimation
can be improved further using a more general curve fitting algorithm to fit the
measurement locus into the angular velocity information so that the require-
ments on the measurement locus can be relaxed. This is also beneficial for
implementation of the algorithm using real flight data for on-orbit calibration
of the magnetometer reading, because the state of rotation during flight is not
as controllable as preflight calibration process.

• Time-varying errors in magnetometer, which are related to the magnetic fields
generated by spacecraft electronics, can be added into the measurement model
to improve accuracy. However, real-time information of the spacecraft load
current for individual on-board electronic module is required.

• The accuracy of magnetometer calibration parameters estimations results can
be improved by adding more measurement data and filtering the data from
outliers before the calibration process.

• Implementing PSO for MCP analysis with inverse MDM approach using Aalto-1
EM proves to be limited only to total RMM estimation because of the highly
nonlinear problem in estimating 10 dipoles. To accurately estimate individual
dipole properties, initial assumption on the dipole properties is needed to
distinguish local minima in the solutions. This initial assumptions can be
obtained by MCP testing of individual building blocks of the spacecraft prior
to the MCP analysis for the whole spacecraft.

• More detailed calibration parameters for DSS brightness reading can be defined
by implementing curve fitting algorithm to the brightness vs Sun reference
angle plot.

• The test procedure for magnetorquer is only useful for verifying the validity of
magnetic moment generated by the magnetorquer. Properly calibrating any
scaling and misalignment errors requires further testing with precise knowledge
of the independent magnetometer position and orientation relative to the
individual magnetorquer frame.
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