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Energy autonomy is one of the main challenges in robot exploration. The Marsu
fleet, a marsupial robot society, is composed of two kinds of robots, the Marsu-bots
(explorers) and the Mother-bot (a mobile charging station). The Marsu-bots are
able to connect to each other and recharge batteries if necessary. A protocol will be
implemented on the Marsu fleet so when a Marsu-bot runs out of battery another
Marsu-bot in the fleet will move to its location and recharge its battery. Such a
protocol has two main tasks: first, determine how good a robot may be at solving
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autonomously select the best one. In this paper it will be shown that leader election
algorithms can be used to implement the negotiation. It will also be shown that,
while it is impossible to accurately predict the performance of a rescue operation
based on distance and battery alone, it is possible to find a cost function that
allows the selection of a robot able to perform the rescue operation without further
assistance. Rules for defining the specific function to be used according to the
scenario in which the robots are present will also be given.
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Preface
To send humans back to the moon would not be advancing. [..] But we should return
to the moon without astronauts and build, with robots, an international lunar base,
so that we know how to build a base on Mars robotically.

Buzz Aldrin

Otaniemi, 16.1.2015
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CHAPTER 1

Introduction

Using robots to explore remote or dangerous environments its not a novel idea.
Robots, opposed to humans, are expendable and highly resilient, which makes them
a natural choice for such endeavours. Unfortunately, robotic exploration presents
a myriad challenges, from physical design and reliability to autonomous decision-
making.

One of the major challenges on robotic exploration of remote or dangerous envi-
ronments is the energy constraint, that is, the limitation of its ability to perform
the required tasks due to the limited amount of energy available to it. If a robot is
exploring a low-resource, scarcely-populated (or even non-populated) area, such as
another planet or a disaster area, it may become difficult to recharge its batteries,
leading to the unfortunate event of a robot running out of power and preventing the
completion of the assigned task.

Using a swarm of robots able to recharge each other’s batteries in case of need
is a very promising solution (such as the MARSU fleet presented in section 1.1.1).
Using such a swarm if a robot runs out of power another robot in the swarm may
recharge it, preventing the loss of the robot. The use of a robotic swarm adds several
additional benefits: more robots means higher area coverage, which leads to less
time required to explore an area; it also means that the loss of a single robot does
not prevent the completion of the task; and much more.

Even then, a situation may arise in which, unexpectedly, one of the robots finds
itself in need of a battery recharge and unable to do so by himself (from now on called
victim). In that case, the swarm should become aware of this situation and select
one of its members to save the victim (from now on called rescuer).

This thesis aims to design a protocol to autonomously select the best robot to
become the rescuer and perform the rescue operation.

1
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1.1 State of the Art
Several techniques to provide energy autonomy to single robots, that is, the capability
of a robot to collect and manage energy without the intervention of a human opera-
tor, have been studied. Systems such as solar panels [1] or Radioisotope Thermal
Generators (RTGs) [2] provide solutions to extend the lifespan of a robot by including
on-board energy generators. Other interesting approaches include solutions like the
one presented by the EcoBot-III robot [3] a robot with an artificial digestion system
that allows it to recharge its batteries by consuming flies.

Those approaches have, however, a common drawback. The addition of on-board
generators to a robot create additional challenges, such as the mechanical integration
of the generator. In addition an on-board generator adds weight to the robot, which
in turn leads to increased power requirements for movement, which lead to higher
energy consumption. A simple option to avoid this issue is to separate the generator
from the robot, and have the robot move to it when energy acquisition is required.

When using the charging station approach it is fairly simple to add additional
robots to the system, all of them sharing the same generator system. This approach
adds flexibility and reliability to the system, by adding replication (multiple robots).

Robotic swarms and societies are a novel and promising field in robotics. Though
many different studies have been done in robotic swarm performance for a wide
range of different tasks, energy autonomy is one of the least studied fields inside
robotic swarms.

In general, most current robot swarms have no energy autonomy, and they require
to be charged manually by a human operator. Some studies do have a certain degree
of energy autonomy, by implementing a protocol in which when a robot has low
battery it will move towards a charging station and recharge its batteries there.
However, if a robot is, for any reason, unable to reach the charging station before
running out of battery there is no protocol in place to autonomously rescue it, that
task must be done by a human operator.

Swarms like the Kilobot [4], an experiment on self-organizing big swarms which
uses 1024 simple robots that move on a surface to attain a predefined formation,
the ChIRP [5], a design for low-cost robotic swarms, or the Roombots [6], a self-
aggregating robotic swarm designed to create “intelligent furniture” (cube-like robots
that attach to each other to create chairs and tables), assume full battery at the
beginning of their experiments. If a robot loses power during the experiment, the
event is ignored and the experiment is restarted after manually charging it.

The CISSBot [7] robotic swarm, in contrast, achieves energy autonomy by ex-
changing batteries. This battery exchange is based on a random epidemic model, in
which there is a certain possibility that batteries are exchanged when two CISSBots
are close.

Grady et al. present a behaviour for the swarm-bot robotic swarm in which a
robot is able to rescue another broken robot that belongs to the swarm [8]. A single
robot is made to roam around the area trying to find broken robots and, when one is
found, it is dragged to a predefined location for recovery. The main difference with
the work proposed in this paper is the fact that a robot is preselected to perform this
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task, instead of selecting a specific robot on demand.
In both studies, the swarm is dense enough to ensure that any member of the

swarm will come in close proximity to another one quite frequently, which removes
the need to select a specific robot to carry out the rescuer task, as the first robot to
come close to the victim will become the rescuer. Due to the high density of robots in
the area this close proximity event is bound to happen eventually.

The MARSU fleet, in contrast, forms a sparse swarm, as the robots try to maxi-
mize area coverage to reduce the exploration time of an area. Due to this sparseness
the same methods are not applicable, as two Marsu robots will rarely come into close
proximity during their normal operation, and it is in fact quite likely that a robot
that has lost most of its battery is far away from any other robot.

Traub et al. presented an algorithm for selecting the best suited robot to move
to a goal location and carry a task in that location [9]. The study, however, focuses
on the “inherent uncertainty in path traversal times”, and assumes a centralized
model (an external monitor has full awareness of the scenario and robots costs, and
is responsible for performing the selection algorithm).

1.1.1 The MARSU fleet
The MARSU fleet [10] is a marsupial robot society [11], composed of a number
of small robots, called Marsu-bots, and a single tank-like robot able to carry and
recharge the Marsus’ batteries called the Mother-bot.

The Marsu-bots

Figure 1.1: A Marsu-bot.

Forming the bulk of the swarm, the
Marsu-bots are the main exploratory
robots. Small and agile, the Marsu-bots
are designed to move in the environment
exploring it and recording its features to
build a map afterwards. The swarm uses
several Marsu-bots.

The Marsu-bots are small, differen-
tial drive robots equipped with wheel en-
coders, a small laser range-finder, a set
of sonar range-finders (three of them)
and a small camera. Powered with a
LIFEPO4 battery, the Marsu-bots have a
connection port that allows two of them
to connect and transfer power.

The Marsu-bots have a Beaglebone black as their processor, running ROS on an
ARM Ubuntu. The Marsu-bots have also a USB WiFi dongle connected to provide
communication in the swarm.
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The Mother-bot

Figure 1.2: The Mother-bot.

The Mother-bot is a tank-like robot that
can carry up to three Marsu-bots inside
it and charge its batteries. It serves as
a mobile charging station for the Marsu-
bots and a transport to overcome obsta-
cles that are too big for the Marsu-bots.
In addition the Mother-bot serves as a co-
ordinator for the Marsu-bots, maintain-
ing a global map, merging the partial
maps discovered by the Marsu-bots and
distributing them to maximize area cov-
erage.

The Mother-bot has much more pow-
erful sensors than its smaller counter-
parts. It also carries a WiFi antenna.

The charging capabilities of the Mother-bot are completely decoupled from its
processor, as is the WiFi antenna. This way, if any issues appear on the processor of
the Mother-bot, even if it can’t be moved, it can still be used as a recharge station by
the Marsu-bots.

MarSim

Figure 1.3: A MarSim simulation in an
office environment, with 6 Marsu-bots.

MarSim is a NetLogo-based simulation,
built by David Leal Martínez [12]. It is
designed to simulate the behaviour of
the MARSU fleet in different environ-
ments and present a graphical simula-
tion. The MarSim simulation allows the
modification of several parameters, such
as number of robots in the swarm or the
battery threshold for recharge and res-
cue operations.

NetLogo is a “multi-agent pro-
grammable modelling environment” [13].
Designed to provide a simple framework
to build multi-agent simulations and pro-
vide a graphical representation of its ex-
ecution. NetLogo was built by Uri Wilen-
sky and is available free of charge.

1.1.2 MARSU fleet operation
Figure 1.4 shows the flowchart for the Marsu-bot operation. Two main behaviours
exist: exploration and recharge. Most of the time the Marsu-bots will follow the
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exploration behaviour, but, when a Marsu-bot finds itself in a low battery state it
will engage the recharge behaviour.

Figure 1.4: Flowchart of the standard Marsu-bot operation.

Exploration

The main task of the Marsu-bots is to explore their current environment. To do
so each Marsu-bot keeps a representation of its environment as an occupancy grid.
Each one of the cells in the grid contain information about their exploration status
(explored or not) and occupancy status (obstacle or no obstacle).

When a Marsu-bot is ready to explore it will select a “frontier cell” (that is, a
non-occupied, explored, cell that is next to, at least, one non-explored cell) and move
to that position, updating its map while driving. Once the target cell is reached,
the Marsu-bot will share its map with the other Marsu-bots. Then the Marsu-bot is
ready to explore again and start anew.

If, at any point during this operation, the battery of the Marsu-bot falls below a
specific threshold it will stop its exploration and start a recharge operation.

Recharge

When the battery of a Marsu-bot is below a certain percentage the Marsu-bot stops
its exploration and starts a recharge operation.

To do so the Marsu-bot first moves towars the Mother-bot. When the Mother-bot
is reached, if there is enough space inside the Mother-bot, the Marsu-bot will enter
it and recharge. If there isn’t, it will queue outside the Mother-bot and wait.

Every time a Marsu-bot exits the Mother-bot, the first Marsu-bot waiting in the
queue enters the Mother-bot and recharges, and the rest advance in the queue.

Once the Marsu-bot has been charged to full capacity, it starts the exploration
behaviour by selecting a new frontier cell.
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1.2 Rescue protocol
Figure 1.5 shows the complete protocol for a rescue operation.

Figure 1.5: Flowchart of the rescue protocol. Dotted arrows represent messages.

When the battery of one of the Marsu-bots falls below the critical threshold that
Marsu-bot becomes a victim. At this point, it will turn down most of its sensors and
actuators, and send a HELP message through the network containing its current
coordinates (position and orientation) and Marsu-bot id (“Send HELP msg” on figure
1.5). Then, the negotiation algorithm will be engaged by the swarm to select a
rescuer (“Negotiate” on figure 1.5).

1.2.1 Rescuer behaviour
Once the rescuer has been selected, it will inform of its new state to the rest of the
robots in the swarm (“Send RESCUER msg” on figure 1.5).

Then, it will move towards the position of the victim, connect to it and transfer
energy to it. Once this is done, it will resume its normal operations.

If, while moving towards the victim or while trying to connect to it, the operation
is determined to not be feasible, the protocol will be aborted. The rescuer will then
resume normal operation as well.
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1.2.2 Victim behaviour
When the victim receives the message informing of who the rescuer is, it will enter a
sleep state (“Sleep” on figure 1.5). During the duration of this state the sensors and
actuators of the victim will be powered down to save battery.

After some time has passed, the victim will wake up and send a message to the
rescuer (“Contact rescuer” on figure 1.5). If the rescuer is still performing the rescue
operation, it will reply and the victim will go back to the sleep state.

If the rescuer has aborted the behaviour but it’s still functional, it will reply to
the message with an aborted message. If the victim receives no reply to this message,
which means that the rescuer Marsu-bot is no longer functional, or if it receives an
aborted message, the victim will restart the protocol by sending the HELP messages
again (“If aborted” on figure 1.5).

If the rescue operation succeeds, the victim will then move to the Mother-bot and
fully charge its batteries in the usual way. Once this is done, it will send a message
to inform the swarm that it is no longer in the victim state.

1.2.3 Swarm behaviour
Once the rescuer is selected, the rest of the Marsu-bots resume its normal operations.
In addition, the negotiation algorithm is finished and all its variables are reset to its
default values.

1.2.4 Cascade prevention
There are two mechanisms implemented in order to prevent a cascade event.

On one hand, a Marsu-bot is only allowed to start a rescue event a certain number
of times before reaching the mother-bot. To control that the robot keeps track of
how many HELP messages it has sent, if this number reaches a certain threshold it
will completely power down. The counter is reset when the Marsu-bot reaches full
battery again.

On the other hand a “dangerous area” mechanism has been implemented. When
a Marsu-bot initiates a rescue event a dangerous area is defined around it. When
the victim robot moves away from that area (after the energy transfer) it sends a
message to all other robots to communicate that the area is safe. Any rescue event
that happens inside a dangerous area will then be delayed until that area is marked
safe again.

1.3 Scope of the Thesis
Most of the components required for the rescue protocol have been extensively
researched. Algorithms such as path-planning (to devise an action plan to reach the
victim or the Mother-bot), collision-avoidance or energy transfer mechanisms have
been extensively researched.
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There are two key components, however, that have never been studied. This
study will focus on those two components.

One is the required negotiation algorithm that needs to be used to allow the
autonomous selection of a rescuer. The other is the cost function required to predict
the performance of a specific robot (which is required for the negotiation algorithm).

1.4 Next Chapters
Chapter 2 presents the study to select a negotiation algorithm, using leader election
algorithms. This chapter presents the current state of the art in leader election
algorithms, the selected algorithms for this study, the experiments performed and
finally, the conclusions of this study and the specific selected algorithm.

Chapter 3 presents the study to define a cost function for the Marsu-bots and
its parameters. In order to find the optimal parameters for such a function an
evolutionary programming technique called Cultural Algorithm was used. The
chapter presents the state of the art in evolutionary programming, the design of the
performed experiments and its analysis and conclusions.

Chapter 4 presents a summary of the conclusions reached in previous chapters.
In addition further work to extend the studies performed are presented.



CHAPTER 2

Negotiation Algorithm

As explained in the previous chapter a negotiation algorithm is required so the
Marsu-bots can autonomously select a specific Marsu-bot to engage in the rescue
behaviour. This negotiation algorithm needs to ensure that one, and only one, Marsu-
bot will be selected, and the select Marsu-bot has to be the best one to carry out that
task.

In this chapter the election algorithms will be presented, showing how this kind
of algorithms may be used for this negotiation phase. Finally, an algorithm will be
selected to be used in this protocol.

2.1 Introduction
On distributed environments, a common problem is the election of a leader (or coordi-
nator) for the network. Several algorithms like mutual exclusion or synchronization
algorithms depend on the existence of a unique coordinator node. As shown in [14],
the Initial Distinct Values restriction is necessary for the election problem to be solv-
able, that is, each node in the system must have a globally unique value (sometimes
called identifier) in order to break the system symmetry.

An algorithm needs to fulfil certain requirements to be considered an election
algorithm. Those requirements are:

• Uniqueness: After the execution of the algorithm, one and only one node can
be the leader.

• Finiteness: After a certain amount of time, the algorithm must finish.

• Awareness: After the execution of the algorithm, all nodes must know which
node has been elected leader.

When applied to the problem at hand, those characteristics ensure that the
algorithm will, after a certain amount of time, decide on a single Marsu robot from

9
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the pool of available robots to become a rescuer. Note, however, that there is no
requirement for an election algorithm to select the best robot. Fortunately, most
election algorithms can easily be modified to ensure that the best node (following
a specific criteria) will be elected. In addition, there is a subset of leader election
algorithms, the so-called extrema-finding algorithms, which ensure that the node
either maximizing or minimizing a certain value will be selected.

By using the cost to rescue the victim as the optimization value, an election
algorithm can be adapted to solve the problem at hand. To ensure the uniqueness of
the solution the node id (a unique value for each node, such as its IP address) will
also be taken into account, to break symmetry situations (two Marsu-bots having
the same cost). For the sake of clarity, and without loss of generality, the cost will
be considered a directly dependent to the distance and inversely dependent to the
remaining battery (so, smaller cost means closer and more remaining battery).

It is important to notice that usually the unique id used to break the symmetry
is a static, preassigned value, which implies that only the time to send and process
a message will have an effect on the total time taken by the algorithm to finish its
task. In the studied case, however, the cost needs to be calculated when required,
and this is not a trivial task. This may significantly impact the performance of the
algorithm.

2.1.1 State of the Art
Much research has been done on leader election algorithms, as those form the basis of
distributed algorithms. The specific case of complete networks has seen an increase
in interest since the apparition of wireless networks, which allow complete topologies
to be built inexpensively (at least compared to the costs of building such a network
with wires).

For this study, the algorithms presented in [15], [16] and [17] have been imple-
mented and in some cases slightly modified. More information on these algorithms
and the modifications implemented can be found in section 2.3.

Other well known algorithms, such as the bully algorithm[18] have not been
implemented as it requires all nodes to have a priori knowledge of the id of the other
nodes, which is unfeasible in the current scenario.

There hasn’t been, however, too much research on the applicability of leader
election algorithms for distributed robotics. Baca et al. used a leader election algo-
rithm to improve the locomotion algorithm of the ModRED system [19](a Modular
Self-reconfigurable robot) but simply used a modification of the bully algorithm,
without further study of other possible algorithms.

2.2 Problem definition
When one of the Marsu-bots enters a victim state, the rest should initiate the election
algorithm to determine which one of them is going to become the rescuer.
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The Marsu-bots form a complete topography from an algorithmic point of view,
as all are connected to the same WiFi network and aware of the address of every
other robot in the fleet, allowing them to communicate between any two arbitrary
robots. The completeness of this network allows the use of any network algorithm by
building a virtual network on top of it (for example, building a virtual ring as done
in section 2.3.3).

It is considered that the Marsu-bots know their own position in the map as well
as the position of the victim, which will then be used to calculate the cost for the
rescue operation on demand.

2.2.1 Requirements
For an algorithm to be considered suitable for electing the rescuer it needs to fulfil
the following requirements:

Election requirements

It needs to fulfil the uniqueness and finiteness requirements as any election algo-
rithm. The awareness requirement, however, may be reformulated. In the current
scenario, there is no need for all the robots to know who the rescuer is, it is enough
that all nodes know if they are the rescuer or not.

Completeness

All non-victim Marsu-bots must have the chance to participate in the algorithm to
ensure that the best cost found is the absolute best cost of the whole swarm.

Optimization

For the algorithm to be suitable, it needs to guarantee that the elected rescuer
will have the smallest possible rescue cost. If the function was defined as a fitness
function (higher values for better conditions) the elected rescuer should have the
highest possible value. In general, most leader election algorithms may be trivially
modified to search the higher value instead of the lower one.

Encapsulation

The algorithm has to be as non-invasive as possible. An algorithm that requires
extensive modifications on the existing software of the MARSU fleet, or that requires
continuous calculations that interfere with the normal operation of the robot will
not be considered. To comply with this requirement the cost of rescuing the victim
needs to be calculated when the robot becomes aware of the issue, and cannot be
precalculated.
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Minimal interaction

As sending messages consumes power, algorithms that minimize the amount of
messages required will be favoured. Additionally, due to the limited bandwidth
available, and to avoid corruption from message collision, algorithms that minimize
the amount of simultaneous messages required will also be favoured.

2.3 Algorithms
A total of 4 different algorithms, plus a centralized model, were tested in this study.
Some of the studied algorithms required small modifications in order to comply with
the specified requirements.

Throughout this explanations, a node (or value) will be considered better if it
minimizes the cost function (meaning lower values are better). The id of the node (a
unique integer assigned at start) will be used when two costs are equal, in this case
the higher id is the “better” value.

2.3.1 Centralized optimization
To prove that a decentralized algorithm is preferable in the current study, a central-
ized algorithm was also tested under the same scenarios.

The algorithm

The algorithm is started by a broadcasted help message sent by the victim. Then all
nodes compute its rescue cost and send it to a central robot (the Mother robot), who
then selects the node with better cost and informs it that it has become the rescuer.

Requirement compliance

This algorithm complies with all requirements except the minimal interaction one,
as several messages (one for each non-victim bot) will be sent simultaneously.

In addition, the main issue associated with such a centralized approach is that if,
for any reason, the Mother became unavailable at some point during the execution,
the algorithm would be unfinished and the Marsu-bots would assume that another
robot has been selected as the rescuer when in reality there is none.

2.3.2 Brute force algorithm
The Brute force algorithm has been designed for this experiment to provide a baseline
for comparison between the algorithms. This algorithm is a modified version of the
bully algorithm[18], based on the broadcasting capabilities at the disposal of the
MARSU fleet and adapted to the requirements presented in section 2.2.1.
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The algorithm

The algorithm is started by a broadcasted help signal sent by the victim. When a
node receives this help message it will compute its cost to rescue the victim and
broadcast a message with this cost and its id, henceforth called cost message.

When a node receives a cost message, if it hasn’t computed its own cost yet it will
do so. After calculating its own cost, it will compare it to the values in the message,
and, if better, it will broadcast a new cost message with its own information. If its
own cost is worse it will store this value in its memory and broadcast the received
cost message again (with the cost and id of the other node).

If the node receives a cost message and already knows of a node with better cost
than itself, or it has already calculated its own cost, it will compare the known values
to those of the message (best known and own respectively), and if they are better it
will update its memory and broadcast the received message again.

If a node spends a certain amount of time without sending or receiving any
messages and does not know of any node with a better cost than its own it will elect
itself as a rescuer and engage the rescue behaviour.

The id of the nodes is used in the unlikely event that two or more nodes share
the same cost, in which case the node with a higher id is considered better.

Requirement compliance

This algorithm complies with the finiteness requirement. The best node will keep
discarding messages and never store anything in memory so, after a certain amount
of time, there will be a node that will elect itself leader. Due to the fact that all
messages are broadcasted, as long as the network forms a complete topology the
algorithm will also comply with the completeness requirement. Lastly, the algorithm
meets the encapsulation requirement, as no a priori knowledge of the system is
required.

Unfortunately the uniqueness requirement may not be satisfied. If the time
taken for a node to elect itself after sending the last message is too short, or the
network forms a non-complete topology it is possible that a node elects itself as a
rescuer prematurely, and a second node becomes a rescuer as well. This fact implies
that the optimization requirement may not be met as well.

Lastly the minimal interaction requirement is most definitely not satisfied with
this algorithm. High amount of simultaneous messages will be sent, most of them
completely unnecessary, as each node will broadcast the value of the best node it has
heard of so far if its better than the received message.

2.3.3 Algorithm for complete networks without sense of di-
rection

Villadangos et al. presented a “ leader election algorithm for complete networks
without sense of direction”[15]. The proposed algorithm, however, does not fulfil the
optimization requirement, so certain modifications need to be made.
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The algorithm

The algorithm assumes a virtual ring connecting all the nodes exist. This ring is
ordered, that is, messages can only be sent through the ring to the next node in the
ring (though the network its still complete, so messages can be sent between any two
arbitrary nodes, regardless of their position in the ring). When a robot becomes a
victim, it will send a message to the previous node on the ring informing of its state
and the next member of the ring, so the ring can be patched leaving the victim out of
it.

Initially all nodes are in a passive state. When a node receives the message from
the victim it upgrades its neighbour in the ring, updates its state to candidate and
calculates its cost. Once done it sends an ALG message containing its cost and id to
the next node in the ring.

When an ALG message reaches a node, if this node is in a passive state, it
calculates its own cost. If its cost is worse than the received value it updates its
status to become dummy and forwards the message to its successor in the virtual
ring. Otherwise, it becomes a candidate and sends an ALG message containing its
cost and id to the next node in the ring. It also sends an AVS message to the node
contained in the received message and waits for that node to reply informing of the
best node he knows of.

When an AVS message is received by a node, it will store the information con-
tained in this message. If the receiving node knows of any better node it will answer
with an AVSRSP message containing the cost and id of the better node and become
dummy. Otherwise, it will store the information contained in the AVS message.

Finally, when a node receives an AVSRSP message, if the contained value corre-
sponds to itself, it becomes the rescuer. Otherwise, if it knows of a better node, it will
become dummy and forward the AVSRSP message to the better node. If it doesn’t
know of a better node, the information contained in the AVSRSP message it’s not its
own and its own cost is better, it will reply with an AVS message containing its own
information.

It is important to note that, on the original algorithm, only a subset of nodes are
considered and they become candidates by themselves. If a passive node receives
an ALG message, it just becomes dummy and forwards the message. This implied
that the selected node would have the best cost of all the considered nodes, but
there could have been other nodes with better cost. To comply with the optimization
requirement, though, it is necessary that all nodes have the opportunity to become
candidates. In order to ensure that the algorithm has been modified so when a node
receives the ALG message it first calculates its own cost to decide if it should become
a dummy or a candidate.

Requirement compliance

The algorithm complies with the finiteness and uniqueness requirements, as proven
in [15]. Thanks to the modifications done, the algorithm also complies with the
completeness and optimization requirements, as the virtual ring covers all the nodes
and all of them have an opportunity to become candidates.
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The algorithm requires a certain architecture built, the virtual ring, which breaks
the encapsulation requirement, though this is not too critical as the ring architecture
is not expensive to build and maintain.

Finally, from an interaction point of view the algorithm is quite minimal. Few
simultaneous messages will appear and not many messages are sent overall.

2.3.4 Decentralized extrema-finding
Belonging to the extrema-finding subset of leader election algorithms, the algorithm
presented by Hirschberg and Sinclar in [16] requires very few modifications to
comply with the desired requirements. This algorithm is designed for undirected
ring structures, which can be simply simulated by building a virtual ring as done in
section 2.3.3.

The algorithm

The algorithm assumes all nodes begin in a passive state, and a bidirectional ring
connecting all nodes exists. This is accomplished by building a virtual ring, in which
each node is connected to the nodes with immediate smaller and bigger id. When a
robot becomes a victim it will send a help message to both neighbours, informing of
the id of the other neighbour, so the ring can be rebuilt leaving the victim out.

When a node receives a help message, it will calculate its rescuing cost, update
its status to candidate and send a FROM message with its cost and id in the opposite
direction to the dead node.

When a node receives a FROM message, if it is in a passive state, it will calculate
its own rescuing cost. If the cost is worse, it will update its state to lost and forward
the message in the same direction of the ring without modifying it. If the cost is
better, it will update its state to candidate, send a NO message to the originating
node and begin a new election process by sending a new FROM message with its
own information in both directions of the ring. If the node is already in a lost state,
it will simply forward the received message along the ring, keeping the direction of
the message. Finally, if the node is still a candidate and receives a message with its
own information, it will elect itself as the rescuer.

When a node receives a NO message it will update its status to lost.
Though the idea of upgrading a node to a candidate status if its cost is better

is presented in the original paper, some additional modifications were needed. The
original algorithm uses an incremental search pattern, scanning paths of a certain
length and, if no better node has been found in the path, restarting the algorithm
with a longer path. That idea was determined unnecessary and counterproductive
for the current scenario, as it increases the number of necessary messages and the
time required to end with no associated benefit. In addition, when the algorithm
starts the two neighbours of the victim send only a single message, instead of one
in each direction. This is due to the fact that, after modifying the ring to leave
the victim out of it, the two starting nodes are neighbours. Then, by sending one
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message in the opposite direction the whole ring is covered, as there are no other
nodes between the two initiators.

Requirement compliance

The algorithm complies with the finiteness, uniqueness and optimization require-
ments by design, as it is an extrema-finding algorithm. With the upgrade to candi-
date status modification, it complies with the completeness requirement as well.

As with the algorithm presented in section 2.3.3 the encapsulation requirement
is broken by the necessity of a virtual ring for the algorithm to operate, but once
again the ring architecture is simple to build and maintain, even if it is more complex
due to the fact that it is a bidirectional ring.

Lastly, from an interaction point of view, the algorithm does not generate a high
number of total messages, though it may have more simultaneous messages than
other algorithms in a worse case scenario.

2.3.5 Algorithm for complete networks with sense of direc-
tion

Louie et al. presented an algorithm that “uses O(n) messages to solve the Election
Problem in a complete network with a sense of direction”[17]. This algorithm is an
extrema-finding algorithm, and makes use of the fact that the network is completely
connected, thus requiring no modifications.

The algorithm

This algorithm assumes a directed virtual ring structure, in which each node has
the next node in the ring (in an arbitrary direction, though all nodes use the same)
identified as its prey. When a node enters the victim state, it will broadcast a help
message containing the id of its prey.

When a node receives a help message, it will first become alive, calculate its own
rescue cost and then send a hunt message to its prey containing its own cost and id.
Due to the construction of the ring, there will be exactly one node whose prey is the
victim. This node will update its prey information to point towards the prey of the
victim (sent in the help message) and send the hunt message to its new prey.

When an alive node receives a hunt message, it will compare the received cost
and id to its own. If they are better, it will become dead and send a hunt_successful
message to its hunter, informing it of who its prey is. If the id of the hunter matches
the id of the receiving node, that means that all other nodes are dead and it has won
the election. If its rescuing cost is better than the received one, it will do nothing
and wait for new messages. If a dead node receives a hunt message, it will forward
it to its prey.

When a node receives a hunt_successful message, it will update its prey id to that
of the defeated prey and, if it is still alive, it will send a new hunt message (with its
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cost and id) to its new prey. If the new prey received in the hunt_successful message
is itself, then all other nodes are dead, which means it has won the election.

Requirement compliance

The algorithm complies with the finiteness, uniqueness, completeness and optimiza-
tion requirements by design.

As with the algorithm presented in section 2.3.3 the encapsulation requirement
is broken by the necessity of a virtual ring for the algorithm to operate, but once
again the ring architecture is simple to build and maintain.

Lastly, from an interaction point of view, the algorithm generates a high number
of simultaneous messages (as many messages as nodes in the network minus one in
the first step). On the other hand it requires few total messages and time.

2.4 Experiment
In order to identify the best algorithm for the scenario a series of simulations were
carried out. As the algorithm will be implemented on the MARSU fleet some key
parameters of the scenarios were derived from that. In all scenarios a complete
topology (as discussed in section 2.2) was used.

2.4.1 Simulations
To ensure the usability of the algorithm two different scenarios were used on the
experiments.

Scalability

In order to test that the algorithm is scalable, each algorithm was tested in a
network with 4, 6, 10, 20, 50 and 100 nodes. For each of these networks, the costs
were distributed in such a way that no two costs are equal (permutations of number
of nodes elements). As the permutations increase in a factorial way, which would
lead to an unpractical number of simulations to be performed, no more than 10000
simulations were performed in any combination of network and algorithm. If the
number of permutations were bigger than this threshold, a representative subset
was used, that is, a subset of permutations such as all possible values appear in all
possible positions at least once.

In addition, for every node number and algorithm combination, a case in which
all costs are equal except for a single node with better cost was also tested.

Timings

The scalability test uses always the same computing time (time required to calculate
the rescuing cost) for all nodes. The second scenario is designed to investigate the
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effect in the performance of the algorithms that different computing times for each
node may have.

To that end a similar experiment was conducted in networks with 6, 7, 8, 9,
10, 12 and 15 nodes. Then, the computing time taken by each node was set to be
proportional to the cost of each node. This proportionality came from the fact that
the most expensive task (computationally speaking) in the calculation of the rescue
cost is the calculation of the distance, so, the farther away a node is the bigger the
cost and the longer the computation takes.

Once again, the same cost distribution used in the Scalability scenario was used.
This implies that, in the case in which no two costs are equal, no two computation
times are equal either, while in the case of a single best cost all computation times
but the best one are equal.

2.4.2 NetSim
NetSim is a Java program created to carry out these experiments. The program
allows the user to generate a custom defined network (with any arbitrary number of
nodes and topology), specify the times taken for message sending, message processing
and internal calculations, and simulates an execution of a specific Algorithm on that
network.

Each algorithm is implemented as a class extending an abstract Communication
class, which makes the program easily customizable for many algorithms.

Each scenario is defined with an ae file (stands for algorithm experiment), which
encodes all the required information for either a single experiment or a set of experi-
ments with common values, such as number of nodes, total simulated time, algorithm
used, timings, network topology (as a connection matrix describing a directed graph)
and more. Once the execution is finished, the results are both shown on screen and
stored in a Matlab file for posterior analysis (both outputs may be suppressed if
desired).

A series of plots for different parameters (total time, total number of messages and
bandwidth occupancy) are generated. First linear plots are generated for minimum,
maximum and mean time and number of messages, and also for maximum and
mean bandwidth occupancy. These plots show number of nodes versus parameter
value. In each of those plots the different algorithms are shown as different series.
Second, for each algorithm and parameter a linear plot showing maximum, minimum
and mean as different series is created. These plots depict number of nodes versus
parameter value as well. Finally, a column plot for each algorithm shows the
percentage of correct, unfinished, non-optimal and non-unique executions for each
set of experiments with a specific number of nodes.

2.5 Results
As explained in previous sections NetSim generates several plots to study the pa-
rameters of interest. In the following sections the results of both scenarios will be
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studied independently.

2.5.1 Scalability
The mean and maximum values for the parameters of interest (total time, total
number of messages and simultaneous number of messages) are shown in figure 2.1.

(a) Mean number of simultaneous messages. (b) Max. number of simultaneous messages.

(c) Mean number of total messages. (d) Maximum number of total messages.

(e) Mean time taken to select a rescuer. (f) Maximum time taken to select a rescuer.

Figure 2.1: Mean and maximum value analysis.

The first conclusion is a trivial one: the number of simultaneous messages and
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total time taken are inversely proportional. That was to be expected as, the higher
the parallelization, the shorter it takes for the algorithm to finish, but more nodes
finish simultaneously which leads to a higher number of simultaneous messages.

Figure 2.1b shows that the algorithms “Complete without direction” and “De-
centralized extrema-finding” provide the smaller bandwidth occupancy, even in a
worse-case scenario. On the other hand figure 2.1e shows that both algorithms have
the biggest total time in general. From the point of view of total number of messages
both algorithms are quite low.

The “Complete without direction” algorithm is a very promising algorithm in
terms of bandwidth and messages, but in its current implementation takes too long to
complete. One solution for that is to have the victim node send the starting message
to two different nodes on the ring instead of one. This will, of course, slightly increase
the mean bandwidth and maximum bandwidth used but, as the current values are
quite small (only two simultaneous messages at worst) this won’t have a huge impact
on the performance of the system.

Figure 2.2 shows the results of the same tests adding the “Complete without
direction” algorithm with a set of two starter nodes instead of one. To increase the
performance of this approach the second starter node is selected to be the node that
is further away in the ring in both directions.

As can be seen in figure 2.2f, initializing the algorithm on two nodes (shown as
“Villadangos (2)” in the figure) reduces the total time taken by half, with close to no
impact on the total number of messages and bandwidth parameters.

Figure 2.3 shows the specific plots for the selected algorithm. As can be seen the
algorithm is quite stable as the variance between mean, maximum and minimum
values is small, even in the 100 node case. Another interesting feature is that the
value of the mean is biased towards the minimum, which means that most executions
have values closer to the minimum value, which is a desirable trait.

2.5.2 Timings
Figure 2.4 shows the results for the timings experiments.

It is interesting to note that, in this experiment, when the number of nodes
increase the number of simultaneous messages initially increases, and, when a
certain number of nodes are present on the network, it decreases steadily when more
nodes are added. That is a direct consequence of the fact that in most experiments the
computation times of the different nodes are different. As a consequence, messages
that have to be sent after the end of the computation are evenly distributed in time,
instead of sent out simultaneously.

As in the previous scenario the “Complete without direction” algorithm initializ-
ing two nodes simultaneously has the best overall results, as the bandwidth used is
quite low and stable, and the time required for the algorithm to finished is one of the
best (only “Complete with direction” and “Centralized” have better times, but the
bandwidth used is worse).

Finally, figure 2.5 shows the specific plots for the “Complete without direction”
algorithm with 2 initialized nodes. As in the previous scenario the results are quite
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(a) Mean number of simultaneous messages. (b) Max. number of simultaneous messages.

(c) Mean number of total messages. (d) Maximum number of total messages.

(e) Mean time taken to select a rescuer. (f) Maximum time taken to select a rescuer.

Figure 2.2: Mean and maximum value analysis.

stable and, in general, the mean values are biased towards the minimum, which
implies that most executions are closer to the optimal case.
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(a) Mean & max. simultaneous messages. (b) Min., mean & max. total messages.

(c) Min., mean & max. total time taken.

Figure 2.3: Complete without direction analysis.

2.6 Conclusion
The tests show that using the algorithm presented in section 2.3.3, written by
Villadangos et al., and sending the start message to two different nodes provides the
best results overall in both scenarios.

Initializing two nodes simultaneously has also a secondary advantage, as then
the algorithm becomes more resilient to unexpected errors and “disappearances”
from nodes.

For those reasons this algorithm will be used for the negotiation phase of the
rescue protocol.
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(a) Mean number of simultaneous messages. (b) Max. number of simultaneous messages.

(c) Mean number of total messages. (d) Maximum number of total messages.

(e) Mean time taken to select a rescuer. (f) Maximum time taken to select a rescuer.

Figure 2.4: Mean and maximum value analysis.
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(a) Mean & max. simultaneous messages. (b) Min., mean & max. total messages.

(c) Min., mean & max. total time taken.

Figure 2.5: Complete without direction analysis.



CHAPTER 3

Cost Function

As explained in the previous chapters, for the negotiation algorithm to autonomously
select the most suitable robot for the rescue operation, a cost function needs to be
designed. This cost function should have an absolute minimum, which correspond to
the most suitable robot.

3.1 Introduction
It is clear that the cost function should measure the distance of each Marsu-bot to
the victim, as well as the battery available to be transferred.

It is hard to hypothesize which is the relation between distance and battery in
the cost formula. In addition certain design parameters, such as the specific distance
formula used, or the amount of battery transferred will affect this relation.

In order to find that formula, evolutionary computation will be used. The quan-
tity of tests to be performed in order to obtain relevant data, and the complexity of
those tests require heavy computing resources. The Triton supercomputer, a super-
computer provided by the Aalto University School of Science “Science-IT” project
was used in order to be able to process the required amounts of data.

3.1.1 State of the Art
“Evolutionary computation has as its objective to mimic processes from natural
evolution, where the main concept is survival of the fittest: the weak must die” [20].
Evolutionary computation has been used to solve optimization problems, providing a
great performance improvement on complex problems over analytical optimization
algorithms.

There are several different classes of evolutionary algorithms: Genetic Algorithms
(GA), Evolutionary Programming (EP) or Genetic programming to name but a few
(see [20]).

25
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GAs model genetic evolution of a population focusing on “reproduction”, that is,
merging two solutions to generate a new, different third solution. GAs are heavily
influenced by the type of reproduction used, more specifically, by the selection
algorithms to determine the parents of a new solution. In the presented algorithm
“tournament selection” is used, a selection algorithm that consists in selecting n
individuals at random and then comparing their fitnesses to choose the best one [21].

EPs, on the other hand, focus on the use of “mutation”, that is, modifications to
the current value of a solution. This difference leads to different applicable domains.
GAs have a better performance in domains with discrete and bounded values, while
EPs exhibit better performance in domains with continuous values.

Cultural Algorithms (CA) are an evolution to Genetic Algorithms (GA) presented
by Reynolds in 1994 [22]. CAs use both a solution set (called population) and a
knowledge set (called belief space). The population is then evolved used standard
evolutionary computation techniques and at each generation the knowledge obtained
is extracted and used to modify the following population.

The belief space consists in five different knowledge sources: situational, norma-
tive, topographical, domain and historic knowledge [23]. A CA then defines a set of
communication strategies between the population and the belief space to extract the
knowledge gained by each generation. Afterwards the gained knowledge is used to
influence the new population.

One of the main drawbacks of evolutionary computing is the tendency of those
algorithms to get “stuck” in local minima, terminating prematurely and returning a
non-optimal solution. One technique to prevent such a situation is the use of “niche
clearing” [24], in which each niche contains part of the population and only a few
individuals (the fittest) of each niche are allowed to survive.

Ali et al. presented a “Hybrid Niched Cultural Algorithm” (HNCA) framework
[25], which uses the niching technique in a CA to reduce the population size and
improve performance while avoiding local minima. In addition a “tabu list”, a list
of rules that all individuals in a population have to comply with, is used to avoid
individuals that are not beneficial. In the study this is done by using both a set of
specific rules and also adding each individual that will be tested to the list, to avoid
unnecessary repetition.

Another technique used in evolutionary computation to avoid local minima is the
use of “extinction events” [26], which consist in applying a certain stress value to
each species (subset of the population) which determines the likelihood of survival,
species with lower fitness become extinct.

3.1.2 Definitions
Evolutionary computation draws its ideas from real-world natural evolution, and
as such several names from the field of genetics and evolution have been adapted.
This section presents a lists of such names and their meanings when referring to
evolutionary computation.

Individual A possible solution to the problem studied by the algorithm.
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Chromosome A specific variable part of an Individual.

Population A set of individuals.

Generation A time step in the algorithm. Usually refers to the population at that
time step.

Reproduction The process of creating a new individual by merging two (or more)
individuals together (all individuals may be the same individual).

Parent One of the individuals involved in a reproduction operation.

Mutation The process of modifying a chromosome without regard to the chromo-
somes of the parents.

3.2 Pre-analysis
As this specific field has never been studied before, it is not know if any such formula
exists, or if the selected factors (battery and distance) are enough to approach it. In
order to find out if such a formula exists, and which shape it may have, an initial
study has to be performed.

Using the MarSim simulation built by David Leal Martínez [12] a series of tests
were conducted on the swarm using different strategies and scenarios.

3.2.1 Strategies
For this study three different sets of strategies were considered: the distance function
used, the specific rescue protocol and the amount of battery to transfer.

Distance function

Three different distance functions were used:

• Optimist distance: The euclidean distance between the two robots, without
any regard to obstacles that may exist between the two.

• Pessimist distance: The euclidean distance between the two robots, squared,
once again without any regard to obstacles that may exist between the two.

• Realist distance: The distance of a planned path between the two robots,
avoiding any obstacles and constrained to the known map. As all robots begin
in the same position and explore the world from there, a path exists that is
constrained to the known map.
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Protocol

Three different protocols were used:

• Always save: A robot of the swarm is always selected and sent to rescue the
victim. In this case a robot may be selected that has not enough battery to
reach the victim. Distance from victim to robot and percentage of depleted
battery of the robot are used to compute the cost.

• Always mother: When a robot of the swarm is selected as the rescuer it always
begins by moving to the Mother-bot and fully recharging its batteries prior to
reaching the victim. Distance between the robot and the Mother-bot and the
amount of depleted battery when reaching the victim are used to compute the
rescue cost.

• Hybrid: When computing the cost, first the distance between victim and robot
and the amount of energy required to reach it is computed. If the robot has
enough battery to reach the victim the “Always save” protocol is used, otherwise,
the “Always mother” protocol is used.

Transfer type

Two different transfer types are used:

• Half: Transfer half the available battery.

• Enough: Transfer enough energy to allow the victim robot to reach the Mother-
bot, plus a certain margin for safety.

3.2.2 Scenarios
There are four different scenarios used: an office like scenario (see picture 3.1a), an
environment with randomly positioned obstacles, sparsely distributed (see picture
3.1b), a randomized labyrinth (see picture 3.1c) and a scenario with no obstacles (see
picture 3.1d).

(a) Office. (b) Randomized. (c) Labyrinth. (d) Empty.

Figure 3.1: Testing scenarios.
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The distribution of free and occupied spaces in a scenario will have a huge impact
in the distance calculation. Scenarios with less obstacles will have straighter paths,
and using an optimist distance will be more similar to using a realist one.

In order to classify the different scenarios a sinuosity test has been conducted. For
each scenario, a mesh of points has been defined. Then, the shortest path distance,
accounting for obstacles, has been compared to the shortest path distance ignoring
the obstacles, between any two of the selected points. Finally the average sinuosity
of all this points has been computed. Equation 3.1 shows the formula used.

Sscenario =

∑
p1,p2∈M

Dpath(p1,p2)
Dstraight(p1,p2)

|M| (3.1)

, where Sscenario is the sinuosity of the scenario, p1, p2 are different points in
the selected mesh (M), Dpath(p1, p2) is the shortest path distance accounting for
obstacles between p1 and p2, Dstraight(p1, p2) is the shortest path distance ignoring
obstacles between p1 and p2 and |M| is the number of selected points.

Table 3.1 shows the results of this calculation.

Table 3.1: Scenario sinuosity.

Scenario Sinuosity
Office 1.4731
Randomized 1.0116
Labyrinth 1.3944
Empty 1

Besides the average sinuosity, it is also important to see the probability distri-
bution of the sinuosity. Figure 3.2 shows the discrete, non-cumulative, probability
distribution for the Office, Labyrinth and Randomized scenarios (the Empty scenario
always has a sinuosity of 1).

3.2.3 Test
In each test, one robot was artificially selected as the victim, and each other robot
was used to perform a rescue operation. These rescue operations were ranked by its
performance, according to time taken and amount of battery left after the rescue
operation on the rescuer (from now on, performance rank).

In addition, robots were grouped according to their ability to perform the rescue
mission without generating additional rescue events (from now on, class).

Several tests were conducted for each combination of strategies and for each
different scenario.

3.2.4 Results
In order to see if there is a clear relationship between the amount of spent battery at
the beginning of the rescue mission, the distance to the victim and the performance
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Figure 3.2: Probability distribution of sinuosity.

of the robot, it is necessary to apply some transformations to the obtained data.
First, the battery and distance values need to be transformed to relative values

with regard to the values of the other robots in the same test. In order to do that, for
each value on each robot, a rank was assigned according to its relative position inside
the swarm, that is, the robot with the smallest distance was assigned a distance
rank of one, the robot with next smallest distance was assigned a distance rank of
two, and so on.

Then, in order to avoid all data points being on top of each other (as all robots
with distance rank 1 and battery rank 1 would be plotted in the same point) a certain
jitter is applied (a random value between 0.1 and 0.9) so that the plots can be easily
read.

Finally, the average blurriness of each plot with regard to performance rank
and class was computed. Blurriness measures the amount of error in each battery-
distance rank combination, the higher the value the bigger the amount of different
performance rank values present, which means that it becomes harder to separate
the different rank performances.

Due to space constraints, the strategy descriptions have been encoded in the
following way: First, the transfer type, with values of either H (for Half) or E (for
Enough). Then the distance function, with values of either O (for Optimist), P (for
Pessimist) or R (for Realist). And finally, the protocol used, with values of either AS
(for Always Save), AM (for Always Mother) or H (for Hybrid). Thus, the strategy
HPAM means transferring half the battery, using a pessimist distance function and
always going to the Mother-bot before rescuing.
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Figure 3.3 shows the blurriness values for each combination of strategies in each
scenario.

(a) Office. (b) Randomized.

(c) Labyrinth. (d) Empty.

Figure 3.3: Class and Rank Blurriness by scenario and strategy.

As can be seen, class blurriness values are, in most cases, below 20%, which
means that it is easy to find a relationship between the distance-battery rank pair
and the capacity of the Marsu-bot to complete the rescue operation successfully.

On the other hand, rank blurriness is quite significant. In all cases the average
percentage of non-modal ranks for a given battery-distance pair is higher than 30%.

This high rank blurriness implies that, by using only the current factors (distance
and battery) the performance of the rescue mission cannot be predicted. It is possible,
however, to classify the Marsu-bots in such a way that the selected rescuer robot is
able to complete the rescue mission without additional assistance.

Figure 3.4 shows the ranked data. As there are a total of 18 different strategies
and 4 different scenarios, leading to a total of 72 plots, only a small subset of them
will be shown in this section. All plots can be seen in Appendix C, section C.1.

As expected, a relatively high variance may be easily noticed in each “cell”. It
can be seen, however, than the mode of each cell (the most common colour) follows
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(a) Office HOAS. (b) Randomized HPH.

(c) Labyrinth EPAS. (d) Empty ERH.

Figure 3.4: Performance rank by Distance-Battery pair.

a quadric distribution. That leads to the hypothesis that the cost function can be
approximated by a function of the form:

ci = Kd2 D(rv, r i)2 +Kb2B(r i)2 +KdbD(rv, r i)B(r i)+KdD(rv, r i)+KbB(r i) (3.2)

, where ci is the cost of robot i, D(rv, r i) is the distance between the victim and
robot i, B(r i) is the percentage of depleted battery on robot i and Kd2 , Kb2 , Kdb, Kd
and Kb are the constant weights applied.

3.3 Cost Function Extraction
This section describes the specific implementation of the HNCA used to extract the
function present in the computed data and the results obtained with this method.
The aim of this algorithm is to obtain a function that maximizes the effectiveness of
the selection made, that is, that results in the selection of the best possible robot or,
at least, a robot able to perform the rescue without additional help.
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When the algorithm is started, a population of individuals is created with random
values assigned to their chromosomes. Then, each individual is tested and its fitness
computed. After that, niching is applied to the population, in order to maintain a
high genetic diversity. Once niching has been applied, a subset of the population is
selected to influence the cultural knowledge of the problem. Finally, a new population
is generated by using an Evolutionary Programming approach.

3.3.1 Individuals
Each individual is composed of five chromosomes:

χi = {Kd2 ,Kb2 ,Kdb,Kd,Kb | Kd2 ,Kb2 ,Kdb,Kd,Kb ∈R} (3.3)

where Kd2 , Kb2 , Kdb, Kd and Kb correspond to those parameters in equation 3.2.
Each chromosome is a continuous, unbounded, real number.

3.3.2 Fitness test
In order to find the fitness of a given solution, the cost function defined by its
chromosomes is tested. To do that, the dataset generated during the pre-analysis of
the problem is used.

For each set of Marsu-bots, the cost of each Marsu-bot (according to the cost
function defined by the solution being tested) is computed and the Marsu-bot with a
smaller cost is selected.

Finally, the four coefficients used in the fitness test are computed: robustness, cor-
rectness, complexity and size. Then, solutions are ranked by descending robustness,
with ties broken by descending correctness, with further ties broken by ascending
complexity and further ties broken by ascending size.

Robustness

Robustness is measured as the percentage of tests in which a robot able to success-
fully perform the rescue mission was selected by the cost function. This coefficient
must be maximized. As this value is continuous, it is discretized by rounding it to
closest multiple of 10. The reason behind this discretization is the fact that, when
solutions are ranked, if the continuous value is used, there will be few collisions, and
the other coefficients won’t be used. Thus, a small amount of robustness is sacrificed
by discretizing it, so correctness, complexity and size may have a bigger impact in
the rank of the solution.

Correctness

Correctness is measured as the percentage of of tests in which the selected robot
was the best available robot. This coefficient must be maximized. As this value is
continuous, it is discretized by rounding it to closest multiple of 10, due to the same
reasons explained above.
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Complexity

Complexity refers to the quantity of error that may be introduced by the formula.
Using squared values (such as squared distance) introduce greater error than using
their linear counterparts. In addition integer values are preferred for the different
constants as those are easier to represent. This coefficient must be minimized.

Size

Size is computed as the sum of the absolute values of all chromosomes. This coeffi-
cient must be minimized.

3.3.3 Niching
The niche clearing operation consists in clustering the individuals and then selecting
only the fittest ones of each cluster. To cluster the solutions, a similarity function is
applied to each chromosome, that is, for each chromosome, if the values of the two
different solutions are close a value of 1 is returned (see equation 3.4).

SKd2 (χi,χ j)=
1 if |K i

d2 −K j
d2 | É

s(NKd2 )

Dc

0 otherwise
(3.4)

, where SKd2 (χi,χ j) is the similarity value for chromosome Kd2 between solutions
χi and χ j, Kn

d2 is the value of chromosome Kd2 of solution χn, s(NKd2 ) is the size of
the interval defined by the normative knowledge for chromosome Kd2 (see section
3.3.4) and Dc is a constant used for all chromosome similarity functions.

If all five chromosomes result in a similarity of 1, then the solutions are clustered
together and only the fittest ones are allowed to survive. The amount of solutions
allowed to coexist in the same cluster is set dynamically.

In the beginning of the HCNA, the amount of solutions allowed to survive is set
to one. This ensures that the resulting population after niching is sparsely spread,
ensuring an exploratory behaviour. Every time the niching process results in more
than half the population being removed, an additional solution is allowed to survive
on each cluster. For example, after the first time more than half the population is
removed, two solutions will be allowed to survive in the same cluster. This ensures
that, as the algorithm progresses, more solutions are allow to coexist over a small
space in the solution domain, which ensures an exploitation behaviour.

If, at any point, the niching operation removes less than a 10% of the population
the amount of solutions allowed to survive is decreased by one.

3.3.4 Knowledge transfer
Knowledge transfer is applied in two steps: first, a subset of the individuals (that
survived the niching phase) is selected, and then, knowledge is extracted from them.
For this implementation of the algorithm, a simple average selection is used, that is,
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individuals with robustness and completeness better than average are selected to
shape the belief space. Those individuals form the teaching set.

From the five types of knowledge defined by Reynolds [23] only three are used in
this particular implementation: situational, normative and historical knowledge.

Situational Knowledge

Situational knowledge refers to the knowledge of the state of the algorithm, that is,
the best solution found so far, without memory (only the absolute best is stored). To
update this knowledge, the best solution from the teaching set is compared to the
current knowledge, if the new solution is better it is stored and the old one discarded.

Normative Knowledge

Normative knowledge refers to a “set of promising variable ranges that provide stan-
dards for individual behavior and guidelines within which individual adjustments
can be made” [27].

In this specific implementation normative knowledge is used to store the promis-
ing ranges of the different chromosomes. That is done by finding the boundary values
of each chromosome and defining the “promising range” as the interval enclosed by
this boundary values.

Normative knowledge is then used when computing the mutations for those
chromosomes.

Historical Knowledge

Finally, historical knowledge refers to the knowledge of past events in the evolu-
tionary process. In this particular implementation the fittest individual of each
generation is stored.

3.3.5 Reproduction
This implementation uses and EP approach to create new solutions. In EP there is
no usual reproduction, instead the parents are mutated and the new mutated values
are compared to those of the parents, the fittest values are added to the population.
Due to the complexity of computing the new fitness values, in this implementation
both the unmodified parent and its mutated child are added to the new population.

The parents are selected using tournament selection. For this implementation,
the number of solutions that participate in a tournament is dynamically selected,
having, at least, a 1% of the population participating in a tournament.

Tournament Selection

Tournament selection consists in selecting n random individuals of the population,
with all individuals having the same probability of being chosen and allowing for
repetition. Then, the best individual of this set is chosen as the parent.
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As shown in [21] the probability of an individual being selected is given by
equation 3.5.

pi = 1
µq ((µ− i+1)q − (µ− i)q) (3.5)

, where q is the size of the tournament, µ is the size of the population and pi is
the probability of selecting the individual i.

Tournament selection has the advantage of being simple to implement, on the
other hand is more biased towards fitter solutions than other options, which may
lead to premature selection of a local minima instead of the absolute minima. This
undesired result is, however, controlled due to niching technique applied earlier, as
the population is more sparsely spread over the solution domain.

Mutation

Normative knowledge is used to direct chromosome mutation. The mutated chromo-
some value is computed using equation 3.6.

ki+1 = ki +N (0,1)s(NK ) (3.6)

,where ki+1 is the mutated value, ki is the original value, N (0,1) its a value
taken from a normal distribution with mean 0 and variance 1 and s(NK ) is the size
of the interval defined by the normative knowledge associated to that chromosome.

The use of normative knowledge provides an exploration-explotation switch. In
the firsts generations the interval defined by the normative knowledge is quite big,
which leads to bigger mutations, which separate the different individuals through the
solution domain (exploration). When the algorithm has ran for some time, however,
this interval has been shrinking down towards the best solutions found, which leads
to smaller mutations, concentrating the individuals around some specific values in
the solution domain (explotation).

3.3.6 Termination conditions
A certain termination condition needs to be created to detect when the algorithm
has converged on the absolute maximum. In this implementation of the algorithm,
the execution is terminated when the best solution found has a robustness higher
than 95% and a correctness higher than 90%.

In addition the total time taken for the algorithm is limited to 4 hours.

3.3.7 Tests
In order to ensure the correct performance of the algorithm two sets of data were
created: one based on a linear function (Kb,Kd = 1, all other chromosomes 0), and a
quadric one (all chromosomes 1).

Then the algorithm was used to extract the data. The correct function was found
in both cases.
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3.3.8 Results
Table 3.2 shows the Robustness and Correctness of the functions found.

Table 3.2: Function qualifiers by scenario and strategy.

Office Empty Labyrinth Randomized
Strategy R(%) C(%) R(%) C(%) R(%) C(%) R(%) C(%)
HOAS 95.3 56.1 89.7 65.0 95.0 50.6 87.6 62.8
HOAM 98.5 79.4 96.2 82.4 97.4 85.0 96.6 85.0
HOH 95.0 58.6 87.0 62.2 95.0 56.8 86.3 61.9
HPAS 91.8 59.8 86.7 63.4 88.7 63.0 86.2 63.3
HPAM 98.3 75.0 97.5 85.2 96.6 80.1 96.4 82.6
HPH 95.2 55.0 95.0 50.2 95.0 45.5 95.0 47.8
HRAS 95.3 67.0 87.7 61.2 95.0 59.4 87.2 60.6
HRAM 98.3 88.1 96.7 86.6 97.0 86.7 96.6 85.9
HRH 95.6 66.6 88.9 65.3 95.1 57.3 87.0 58.9
EOAS 95.4 62.0 90.7 66.8 95.3 65.5 90.3 65.8
EOAM 98.1 80.5 90.6 77.2 94.3 80.4 90.8 75.7
EOH 96.1 65.1 89.9 65.0 92.9 67.1 90.4 65.3
EPAS 95.9 63.8 90.5 65.6 93.0 65.8 89.3 65.8
EPAM 97.7 75.1 90.2 76.5 93.9 80.7 89.9 77.1
EPH 96.2 55.5 89.4 59.7 92.3 60.8 88.5 58.1
ERAS 97.6 75.3 90.1 65.7 93.4 67.4 91.1 65.2
ERAM 98.1 88.9 90.6 79.2 94.8 85.1 90.1 78.7
ERH 97.6 75.1 90.1 66.2 95.1 66.9 91.3 66.4

As can be seen for all combinations of scenario and strategy it was possible to find
a function which, at least 86% of the time, results in the selection of a rescuer able
to perform the rescue operation successfully (Robustness higher or equal to 86%).

On the other hand Correctness values are quite variable, ranging from 50% in
the worst case to 88% in the best case, which means that in the worst cases the best
possible robot will be selected only half the times the algorithm is ran.

From this results it can be seen that, though the system is quite robust, optimality
can not be assured.

Due to space constraints the specific functions found for each possible combination
are shown in Appendix C, section C.2.

3.4 Strategy selection
The results found so far give no information about which combinations of strategies
are better. In order to find the best combination of strategies a tournament system
was implemented.
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3.4.1 Tournament algorithm
Initially all strategies are considered. Using the MarSim simulation, a rescue event
is generated. Then, two different sets of strategies are tested, and its performance
compared according to time taken and amount of battery left in the rescuer robot.
This test is repeated ten times for each pair of strategies. If a strategy obtains better
results for seven or more tests, it is considered a winner in this round.

Once each pair of strategies have been tested, the results of the different matches
are compared. If a strategy has not won any match, it is removed from the participant
pool. If no such strategy is found, the different matches are separated into “team
matches”, for example, all matches in which an H strategy was used are compared
with those in which an E strategy was used. If one of these “teams” won more than
20% of those matches, all its strategies are considered winners and the rest are
removed.

Once the round results have been computed, if there is more than one strategy in
the participant pool and at least one strategy has been removed from the participant
pool in this round, a new round is started, testing all combinations of strategies still
present in the participant pool.

3.4.2 Results
Table 3.3 shows the results of the tournament experiment.

Table 3.3: Tournament results per scenario.

Scenario Winner Second
Empty EOAS, EOH, ERAS, ERH EPAS, EPH
Randomized EOH, ERAS, ERH EOAS
Office EOAS, EOH, ERAS, ERH EPAS, EPH
Labyrinth EOAS, EOH, ERAS, ERH EPAS, EPH

As can be seen, for all four scenarios all winners and all second places use the
E strategy, that is, transferring just enough energy for the Marsu-bot to reach
the Mother-bot (plus some margin). In addition it can be seen that none of these
strategies use the AM strategy, that is, always going to the Mother-bot and recharging
before attempting the rescue.

It can also be seen that the H and AS strategies are, in most scenarios, equivalent
when it comes to performance. The main reason behind that is the fact that the
Hybrid strategy behaves like the Always Save strategy if the Marsu-bot has enough
energy to reach the victim, which will usually be the case.

Finally, it can be seen that both Realist and Optimist distances have a good
performance in all scenarios.
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3.5 Analysis
Tests show that strategies using Optimist and Realist distance functions and trans-
ferring enough energy for the Marsu-bot to reach the Mother-bot have better per-
formances (see in table 3.3). It has also been seen that strategies in which the
Marsu-bot fully recharges its batteries before attempting the rescue mission have
lower performances.

Table 3.4 shows the Robustness and Correctness values for the winner strategies
shown in table 3.3.

Table 3.4: Function qualifiers by scenario and strategy for selected strategies.

Office Empty Labyrinth Randomized
Strategy R(%) C(%) R(%) C(%) R(%) C(%) R(%) C(%)
EOAS 95.4 62.0 90.7 66.8 95.3 65.5 90.3 65.8
EOH 96.1 65.1 89.9 65.0 92.9 67.1 90.4 65.3
ERAS 97.6 75.3 90.1 65.7 93.4 67.4 91.1 65.2
ERH 97.6 75.1 90.1 66.2 95.1 66.9 91.3 66.4

It can be seen that for the Empty, Labyrinth and Randomized scenarios there is
almost no difference on Robustness or Correctness (less than 1%) between different
distance functions. For the Office scenario, however, there is a more significant
difference between using an Optimist and a Realist distance.

This can be tied to the probability distribution of the sinuosity of each scenario.
In figure 3.2, it can be seen that the probability distribution of the sinuosity has
a longer tail for the Office scenario than for any other scenario, which means that
there is a higher likelihood of any two arbitrary points having a bigger sinuosity.

In order to find a suitable cut-point that allows the differentiation of these two
cases, the minimum value of sinuosity that has accumulated probability bigger
than 0.9 for both scenarios was selected, that is, a value of sinuosity S such as
P(s É S)Ê 0.9.

Table 3.5: S values such as P(s É S)Ê 0.9.

Scenario S
Office 2.2

Labyrinth 1.8

Table 3.6 shows the probability of the sinuosity being bigger than 1.8 for each
scenario, that is P(s Ê 1.8).

This leads to the conclusion that a cut-point can be established in order to group
the different scenarios. Two groups of scenarios are then defined using this cut
point. On one hand, “simple” scenarios, that is, scenarios in which the probability
of obtaining a sinuosity bigger or equal to 1.8 is smaller than 0.142, in this study,
the Empty, Randomized and Labyrinth scenarios. On the other hand, “complex”
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Table 3.6: P(s Ê 1.8) by scenario.

Scenario P(s Ê 1.8)
Office 0.1781

Labyrinth 0.1058
Randomized 0.0

Empty 0.0

scenarios, that is, scenarios in which the probability of obtaining a sinuosity bigger
or equal to 1.8 is bigger than 0.142, in this study, the Office scenario.

3.5.1 Simple scenarios
In simple scenarios, the difference between Optimist and Realist distance is, usually,
quite small. As the computation cost of a Realist distance is always bigger than the
computational cost of an Optimist distance, due to the fact that a Realist distance is
based on a path-planning algorithm, it is recommended to use Optimist distances,
specifically, the euclidean distance between the victim and the rescuer.

Tables 3.7, 3.8, 3.9 show the functions obtained for the EOAS and the EOH
strategies for the Randomized, Labyrinth and Empty scenarios respectively.

Table 3.7: Function parameters by strategy in an Randomized scenario.

Strategy Kd2 Kb2 Kdb Kd Kb

EOAS 0.0 0.0 0.0 10.0 0.0
EOH 0.0 0.0 0.0 10.0 10.0

Table 3.8: Function parameters by strategy in an Labyrinth scenario.

Strategy Kd2 Kb2 Kdb Kd Kb

EOAS 0.0 0.0 10.0 40.0 0.0
EOH 0.0 0.0 0.0 10.0 0.0

Table 3.9: Function parameters by strategy in an Empty scenario.

Strategy Kd2 Kb2 Kdb Kd Kb

EOAS 0.0 0.0 0.0 10.0 10.0
EOH 0.0 0.0 0.0 10.0 10.0

As can be seen, there are three different cost functions. As the results of the
cost function are compared between different Marsu-bots, it is possible to divide the
functions by the maximum common divider without modifying its results (selection-
wise). Those are equations 3.7, 3.8 and 3.9.

cF1
i = D(rv, r i) (3.7)
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cF2
i = D(rv, r i)+B(r i) (3.8)

cF3
i = D(rv, r i)B(r i)+4D(rv, r i) (3.9)

In order to try to find a single function that yields good results for each scenario,
the three functions were tested in the different combinations of scenario and strategy.
As the three functions have different complexities, it is possible that a function with
higher complexity may bring a small increase in performance (smaller than 10%).

Then, the decrease in Robustness and Correctness was computed, subtracting the
new values from the original ones. Table 3.10 shows the results of this calculation.

Table 3.10: Robustness and Correctness decrease for different formulas.

F1 F2 F3
Test Set ∆R(%) ∆C(%) ∆R(%) ∆C(%) ∆R(%) ∆C(%)
Empty EOH 0.9 1.8 0 0 −0.2 2.8
Empty EOAS 0.8 2.1 0 0 −0.2 3.3
Labyrinth EOH 0 0 −0.8 −0.1 −1.3 3
Labyrinth EOAS 1.3 −3.3 0.4 −2.2 0 0
Randomized EOH 0.9 2.9 0 0 −0.4 2.6
Randomized EOAS 0 0 −0.5 −0.2 −1.1 2.9
Average 0.65 0.583 −0.15 −0.416 −0.533 2.433

It can be seen that using function 3.8 brings an average improvement in both
Robustness and Correctness. Furthermore, it can be seen that only the Correctness
of using the EOAS strategy in the Labyrinth scenario is reduced, and only by a 0.4%.

Thus, for Simple scenarios, the cost function used should be:

csimple
i = D(rv, r i)+B(r i) (3.10)

3.5.2 Complex scenarios
In complex scenarios, the difference between using a Realist and an Optimist distance
function is highly relevant, thus, a Realist function should be used.

Table 3.11: Function parameters by strategy in an Office scenario.

Strategy Kd2 Kb2 Kdb Kd Kb

ERAS 0.0 0.0 0.0 10.0 10.0
ERH 0.0 0.0 0.0 10.0 10.0

As can be seen, both for the Hybrid and Always Save strategies, the function
has the same parameters. As the results of the cost function are compared between
different Marsu-bots, it is possible to divide the function by the maximum common
divider without modifying its results (selection-wise).



Chapter 3. Cost Function 42

Thus, for Complex scenarios the cost function used should be:

ccomplex
i = D(rv, r i)+B(r i) (3.11)

3.6 Conclusion
At the beginning of the chapter, the aim was to find a cost function which used the
distance from victim to robot and the amount of battery left in the robot to predict
the performance of a rescue mission performed by that robot. This function had to
have a minimum on the most suitable robot to perform the rescue, in terms of time
and battery left at the end of the rescue.

After generating several thousands of simulations using different scenarios and
conditions, it was seen that it was impossible to find a unique function that conformed
to those parameters, but it was possible to find a function to classify the Marsu-bots
in such a way that the selected rescuer was able to complete the rescue mission
without additional assistance. In addition, it was possible to build the function in
such a way that, more than 50% of the selections resulted in the selected rescuer
being also the best rescuer.

Once those functions were found, different possible strategies to complete the
rescue mission were considered. Transferring half the available battery or just
enough battery to reach the Mother-bot (plus some margin); using an Optimist
(euclidean), Pessimist (euclidean squared) or a Realist (path) distance; and always
recharging the rescuer battery before a rescue mission, always going directly to the
victim or going to the victim unless there wasn’t enough battery to reach it.

By comparing the performance of the different strategies, it was possible to see
that transferring just enough battery to reach the Mother-bot (plus some margin)
had better results independently of the scenario in which the rescue was performed.
It could also be seen that there wasn’t a big difference in performance between
always going directly to the victim (Always Save) or going to the victim unless there
wasn’t enough battery to reach it (Hybrid).

On the other hand, it was possible to see that there was a difference in the impact
on the performance of using an Optimist or a Realist distance that was dependant
on the scenario. By analysing the properties of the scenario, more specifically, the
probability distribution of the sinuosity between two arbitrary points, it was seen
that scenarios could be categorized in two groups, Simple and Complex.

Finally, the functions for the different scenarios (in each group) were considered,
and a function that performed correctly in both cases was found. This function is not
scenario-dependant.

That lead to the conclusion that a taxonomy can be built to help decide which
distance type and cost function to use according to the characteristics of the swarm
and the scenario in which this swarm is. This taxonomy is shown in figure 3.5.

The taxonomy shown in figure 3.5 is used in the following way: each circle
represents a question about the swarm or the scenario. Each square represents a
conclusion reached. For example, in the current case the swarm is homogeneous
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Figure 3.5: Rescue taxonomy.

and the ratio of recharge slots to robots is 0.5, so the cost function that should
be used is ci = D(rv, r i)+B(r i). If the swarm is in the Office scenario (Complex,
P(s Ê 1.8) > 0.142) then a Realist distance function should be used to compute
D(rv, r i).



CHAPTER 4

Conclusions

The goal of this thesis was to design a protocol to allow the Marsu-bots to exchange
battery in case of need. Figure 4.1 shows the complete protocol for a rescue operation.

Figure 4.1: Flowchart of the rescue protocol. Dotted arrows represent messages.

When the battery of one of the Marsu-bots falls below the critical threshold that
Marsu-bot becomes a victim. At this point, it will send a HELP message through
the network with its current coordinates (position and orientation) and Marsu-bot
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id. Then, the negotiation algorithm will be engaged by the swarm to autonomously
select a rescuer.

Once the rescuer Marsu-bot has been selected the rest of the swarm will resume
its normal operation. The rescuer, on the other hand, will move towards the position
of the victim, connect to it and transfer energy to it.Once this is done, it will resume
its normal operations.

Once the battery transfer has been completed the victim will move to the Mother-
bot and fully recharge its batteries.

This study focused on finding the answers to the following questions:

• Which negotiation algorithm should be used?

• How can the performance of each robot be predicted?

4.1 Negotiation algorithm
The first key component that needed to be researched was the negotiation algorithm
to use. That algorithm needs to be decentralized, finite and result in the selection of
a single Marsu-bot. It was hypothesized that a leader election algorithm could be
used for this purpose.

Different leader election algorithms where tested in a simulated network in
order to find an algorithm that was fast, used few messages and specifically few
simultaneous messages. The algorithms were tested for scalability and computation
flexibility, that is, the effect that longer computational times for the cost calculation
has on the algorithm performance.

It was found that the “leader election algorithm for complete networks without
sense of direction” [15], written by Villadangos et al., started at two different nodes
across the ring, provides the best results in terms of compromise between time and
amount of simultaneous messages on the network.

4.2 Cost function
The negotiation algorithm requires a cost function to minimize. This cost function
should predict the performance of a a certain robot executing the rescue mission
based on its distance to the victim and the amount of available battery. In addition,
different strategies were considered as those may have an effect on the cost function.

Three sets of different strategies were considered: transferring half the available
energy or just enough energy to reach the Mother-bot (transfer type); using an Opti-
mist (euclidean), Pessimist (euclidean squared) or Realist (path) distance function
to compute the distance between victim and robot and engaging the rescue mission
directly, recharging to full battery before attempting the rescue mission or a hybrid
method (engaging the rescue mission directly unless the robot doesn’t have enough
energy to reach the victim).
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As it was unknown which shape such a cost function may take, or even if it
existed, a series of simulations were performed to obtain a relevant set of data that
could point towards the right answers. For each possible combination of strategies
several tests were performed in four different scenarios.

It was seen that, though it is nearly impossible to fully predict the performance
of a rescue mission carried out by a specific robot using only its distance to the victim
and the amount of battery this robot has already spent, it was possible to find a cost
function which has its minimum at either the best robot, or a robot that is able to
perform the rescue operation without additional help.

By using the generated simulations as a training set for a Cultural algorithm,
the different functions were extracted from the data. This resulted in a total of 72
different functions, one for each combination of strategies and scenario.

Finally, the different strategies were compared to each other in order to select the
best strategy possible. It was seen that transferring just enough energy to reach the
Mother-bot (plus a small margin) provided the best general performance. It was also
seen that fully recharging the batteries of the rescuer prior to the rescue attempt
resulted in lower performances.

Furthermore, it was seen that the cost function used is not scenario-dependant,
but the function used to compute the distance is. A taxonomy was devised to help
select the distance function that suits the scenario better. This taxonomy is shown
in figure 4.2

Figure 4.2: Rescue taxonomy.

The cut-point between Simple and Complex scenarios is determined by the
probability distribution of the sinuosity in that scenario. Complex scenarios are
those in which this probability distribution has a long tail, that is, the probability
that the sinuosity between two arbitrary points is high is also high.
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4.3 Further work
A rescue protocol has been designed, yet much work remains to be done. On one
hand, practical tests need to be conducted with the physical robots. On the other
hand, further study about the cost function needs to be done.

4.3.1 Practical tests
The protocol needs to be implemented and tested on the actual Marsu-bots, to ensure
that the performance of the protocol is as desired. Special care needs to be given to
the cascade prevention systems.

A system could be designed to identify the the different parameters required
(for example, the type of distance function) autonomously based on the current
knowledge of the map.

4.3.2 Theoretical research
The taxonomy built in this study covers a very small subset of possibilities, and
further studies should be made:

The current taxonomy gives no information on the effects of different ratios
between number of recharge slots available and number of robots on the swarm.

Scalability of the current protocol should be tested, as the effects of increasing
the number of robots (though keeping the recharge slots to robots ratio) is unknown.

The effects of using a non-homogeneous swarm are unknown, that is, which
changes would appear on the cost function if the robots have different battery
capacities or different energy consumption rates.

More scenarios should be tested to optimize the cut-point between Simple and
Complex scenarios.
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APPENDIX A

NetSim Developer Manual

A.1 Introduction
NetSim is a multi-platform tool for distributed algorithm performance analysis built
in Java. NetSim was originally designed to simulate leader election algorithms, but
many different kinds of algorithms may be implemented as well.

At the core of the simulation, a directed graph is used to simulate a network
topology, in which each node is a single processor (multitasking is not supported) that
executes a certain algorithm. After the different experiments have been executed
NetSim generates plots for different parameters of interest, such as number of
messages sent, time taken to completion or number of simultaneous messages.

This manual describes the architecture of NetSim and how can it be extended to
suit the needs of each specific user.

A.2 Software Architecture
NetSim is divided in 4 building blocks. In the following sections the relationships
between classes will be explored. For more information on the attributes and methods
of each class please consult the JavaDoc files.

A.2.1 NetSim class
The NetSim class is the host to the main method of NetSim. It also contains the
methods for generating the experiments from .ae files and to run those experiments.

If NetSim has been added as a library in your project you will need to invoke the
static methods NetSim.runFile or NetSim.runFolder to run either an experiment
file or a folder containing experiments.
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A.2.2 The Core
The core classes of NetSim are the classes used to represent the network and its
interactions. Figure A.21 shows the UML diagram of those.

Figure A.21: UML Diagram of the core classes in NetSim

For any experiment a new Graph will be created. This graph contains a list of Node
instances. Each node contains two lists of nodes, one with the nodes it “thinks” it can
communicate to, and another one with the nodes it can actually communicate to (this
double list was built to handle nodes disappearing from the network unexpectedly,
but this feature has not been implemented yet). Each node contains also a list of
Task instances with the tasks this node will execute at some point in the future.
Each task has a TaskType and may contain one Message. This message contains a
string with the specific message and the node who sent the message. Finally the
graph object contains the Communication instance representing the algorithm to be
tested (actually it will always be a class that extends the Communication class). The
communication object contains a list of nodes containing the nodes that have been
selected by the algorithm.

A.2.3 Analysis Results
Once an experiment has been run its results are stored to generate the plots at the
end of the program execution. Figure A.22 shows the UML diagram corresponding
to the result containers.

There are two kinds of containers. On one hand the ResultSet container stores
the experiment results of non-timing experiments (those experiments in which the
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Figure A.22: UML Diagram of the result container classes in NetSim

send, receive and compute durations are constant through the experiment), while
TimingResultSet contains the results of the timings experiments.

A ResultSet instance will contain a list of ExperimentResultSet instances,
grouped by algorithm. Similarly, a TimingResultSet instance contains a list of
TimingExpResultSet instances, grouped by algorithm as well.

An ExperimentResultSet instance contains, in turn, a list of ExperimentResults
instances, in this case grouped by number of nodes in the experiment.

A TimingExpResultSet instance contains a list of ExperimentResults, in this
case grouped by send plus receive time, and then grouped by computing time. It also
contains a Variance object, which contains a list of ExperimentResults instances
grouped by send, receive and compute times.

The ExperimentResults object contains all the related information to the exper-
iment, such as time taken, selected nodes, number of messages, and so on.

A.2.4 Factories
There are two classes in NetSim used as factories. Both classes implement the
singleton pattern (static classes).

The PlotFactory class contains the methods to generate the expected plots. The
PermutationFactory contains the methods to generate permutations of numbers
(more information can be found in the User Manual and in the JavaDoc).

A.3 Program flow
This section details the intended flow for a NetSim execution.
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A.3.1 Main flow
Figure A.31 shows the sequence diagram for a NetSim execution.

Figure A.31: Sequence diagram for the main flow

On initialization the main method will collect a list of .ae files to execute. Then,
for each file, the file will be parsed generating a list of Experiment instances with
the corresponding parameters. During the parsing of the file, if permutations are
required, a call to the PermutationFactory will be issued.

Once the list of experiments has been created, for each experiment, the corre-
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sponding parameters will be set, and the Graph instance will be created (see section
A.3.2 for more details on graph initialization).

Then, for each time step up to the defined maximum time the algorithm will
be run (see section A.3.3 for more details on step execution). The graph algorithm
returns a true value if the algorithm has already selected a leader, but the algorithm
will still be run for the remaining time steps. Finally, once the algorithm has been run
a new ExperimentResults instance is created (and stored) and the corresponding
results are added to the matlab file.

Once all the files have been processed this way the plots will be generated (unless
the -noplots option has been selected), by issuing a call to the PlotFactory class,
which will access the results stored to generate the plots.
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A.3.2 Graph initialization
Figure A.32 shows the sequence diagram of a graph initialization.

Figure A.32: Sequence diagram for the graph initialization

For each experiment to be performed a new Graph object will be created. On
construction the graph object will create and initialize the values of the necessary
Node objects to represent the intended network. Once all the nodes have been created
a call to the init method in the corresponding algorithm will be issued (see the User
Manual for more information on the Communication.init method).

A.3.3 Experiment step
Figure A.33 shows the sequence diagram of a one step in the execution of the
experiment.

For each time step in the experiment the run method of the corresponding
Graph object is executed. In this method, for each Node instance in the graph,
the procesTasks method is called. This method will check if the node is not busy
at the time, if there are tasks to be executed at the time and, if there are, it will
pick one of them and execute it. Then, depending on the task, the corresponding
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Figure A.33: Sequence diagram for an experiment step

method will be executed (see the User Manual and the JavaDoc for more details on
the Communication class methods).

Once the task has been executed it will be removed from the task list of the node
and destroyed. New tasks are created during the execution of the algorithm methods
if necessary and added to the task list.

It is important to notice than the nodes represent single processor systems, and
as such can only perform one task at a time.

Finally, once all nodes have executed their tasks for the current time step the
isEnded method of the Communication class associated with the experiment will be
called to check if the algorithm has finished. Once again it is important to notice
that, even if the algorithm ends before the maximum time defined in the .ae file, it
will be ran for the remaining steps anyway.
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A.4 Further work
As NetSim was created as a tool for use during my Master thesis, and it only
addressed a small part of the work to be done, the tool is quite uncompleted, and
there are several parts of the code intended to provide support for other features
that could not be implemented due to time constraints and lack of personnel. Some
of those features, and the intended way of implementing them are described in this
section.

A.4.1 Multi-task nodes
Currently nodes can only handle one task at a time. It would be possible to implement
a multi-task ability by adding a second (or more) task buffer and adding the task to
the corresponding buffer, for example, separating send/receive tasks on one buffer
and compute tasks on another, or send and receive tasks in different buffers, then
executing one task for each buffer.

A.4.2 Dynamic networks (node death)
Another interesting feature would be to simulate errors in the network by switching
the node state (death or alive). For that a new parameter should be added to the .ae
file, as a time-node pair to indicate which node should switch its state at which time
(this way different algorithms would face identical scenarios providing meaningful
results).

In the current implementation if a node is dead it will execute no further tasks,
though it will remember which tasks it had pending. If a message is sent to a dead
node it will not be added to its pending tasks, and it will be counted as a failed
message (though the number of failed messages is not being used for anything at
the moment).

A.4.3 Ad-hoc networks (dynamic topologies)
Another interesting feature would be to add dynamism to the current topology. By
providing different network matrices at different times in the .ae files this could be
simulated. Then, at each time step the network topology should be checked and, if
required, changed, by updating the trueConections list of a node. This is intended
to simulate the fact that a node will not be aware of the topology change.

In the current implementation a message is only sent if the recipient of the mes-
sage exists in the trueConections list, otherwise the message is lost. Unfortunately,
as the trueConections list is initialized as a copy of the connections when the
Graph object is constructed and it is never modified it serves no purpose.
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B.1 Introduction
The CAFE library (Cultural Algorithm Framework Extension) is a Java built library
that provides the framework to implement a “Hybrid niched cultural algorithm”
(HNCA), as proposed by Ali et al. [25].

Cultural Algorithms (CA) are an evolution to Genetic Algorithms (GA) presented
by Reynolds in 1994 [22] that use both a solution set (called population) and a
knowledge set (called belief space). The population is then evolved used standard
evolutionary computation techniques and at each generation the knowledge obtained
is extracted and used to modify the following population.

The belief space consists in five different knowledge sources: situational, norma-
tive, topographical, domain and historic knowledge [23]. A CA then defines a set of
communication strategies between the population and the belief space to extract the
knowledge gained by each generation. Afterwards the gained knowledge is used to
influence the new population.

In addition the algorithm presented by Ali et al. uses the Niche Clearing tech-
nique [24], in which each niche contains part of the population and only a few
individuals (the fittest) of each niche are allowed to survive. In addition a “tabu list”
is used to avoid unusable solutions.

B.1.1 Jars and Requirements
There are four different versions of the CAFE library, designed to suit different needs.
All version requires Java 1.7.

CAFE bare

CAFE bare (CAFE_bare.jar) provides the core functionality of the CAFE library
without any additional support or required libraries present in the classpath.
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CAFE NetLogo

The CAFE NetLogo (CAFE_NL.jar) version of the library provides support for using
NetLogo simulations to test the fitness of the solutions. The Netlogo jar and library
folder need to be present in the classpath when using this version of CAFE.

CAFE openMPI

The CAFE openMPI (CAFE_oMPI.jar) library provides support for the parallelization
of the HNCA using openMPI. The openMPI Java library needs to be added to the
classpath when using this version.

CAFE full

The CAFE full library (CAFE.jar) provides support for both openMPI and NetLogo
usage. This, of course, means that both openMPI and NetLogo need to be present in
the classpath.

B.2 Class Architecture
Figure B.21 shows the UML class diagram of the CAFE library in all its possible
versions.

Class CulturalAlgorithmRunner is the entry point of the library. By creating
an instance of this class and calling the run method the algorithm is loaded and
started. To load the parameters of the algorithm a .ca file needs to be provided
to this method, as well as the maximum number of generations and the verbose
parameter (a boolean indicating if the execution of the algorithm should generate
full output).

When an algorithm is run an instance of a class extending either the CulturalAlgorithm
abstract class, the CulturalAlgorithmNetLogo abstract class, the CulturalAlgorithmMPI
abstract class or the CulturalAlgorithmMPINetLogo abstract class(depending on
the version and type used) is creaetd and evolved. This class uses a specific class
extending BeliefSpace to store the accumulated knowledge. More information on
this classes and their interactions can be found in the following sections.

B.3 Execution Flow
The execution flow of CAFE differs depending on the version of the library used.
When using an openMPI-enabled version there are some minor differences to how
the algorithm is executed, and especially to how the algorithm is terminated.

B.3.1 Standard Execution Flow
The CAFE library implements an HNCA. Figure B.31 shows the execution flow of
the algorithm.
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Figure B.21: UML Diagram of the CAFE library. The classes with yellow background
are present in all versions of the library. Those with orange backgrounds are present
in the NetLogo and full versions. Those with blue background are present in the
openMPI and full versions. Finally, the class with green background is only present
in the full version.

Figure B.31: Flow diagram for the CAFE algorithm in its standard configuration.

Initially both the population space and the belief space are initialized. Then,
each element of the population is tested to compute its fitness (this operation may
be parallelized). After that niche clearing is applied to ensure the sparseness of the
population. Once the niching has been applied a subset of the population is selected
and used to influence the belief space. The methods provided by default on the CAFE
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library allow the belief space to contain situational awareness (the best solution
found so far) and normative awareness (intervals of interest).

Once the belief space has been updated the population is tested for stagnation
(this operation may be defined by the user). If there is no stagnation the population
is evolved generating new individuals and repeating the process (the generation
of new individuals can also be paralellized). If a stagnation condition is detected
and the algorithm hasn’t yet meet the termination conditions an extinction event is
applied and a new generation is created, continuing the loop.

If the ending condition has been met the algorithm then finishes.

B.3.2 openMPI-enabled Execution Flow
The open-MPI enabled version of the CAFE library operates in the same way as the
standard version with a few minor modifications. The most important one is that
the termination condition in this version is purely a certain amount of generations,
which means the algorithm will run for that many generations and then stop.

Figure B.32: Flow diagram for the CAFE algorithm in its openMPI-enabled configu-
ration.

When the openMPI-enabled version of the algorithm is used several instances of
the program will be created and run. One of this instances is the Master instance,
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while the rest are Slave instances. The Master will then run the bulk of the algorithm
as described in the previous section. When the testing phase is reached, however,
the algorithm differs. In this case the Master will break down the population in as
many chunks as processes exist (including itself) and send each Slave process its
chunk of the population. Then all the processes will compute the fitnesses of their
assigned individuals. Once this is done each Slave process will send its chunk back
to the master. Finally the master process will collect all the chunks and continue the
algorithm.

B.4 Building a Cultural Algorithm
The CAFE library provides the framework for the HNCA. Most of the required
methods and parameters, however are problem-dependant, and as such need to be
defined for each specific experiment. In order to do so a series of class need to be
extended to provide the desired functionality.

B.4.1 The Solution class
A class extending the Solution class needs to be implemented. This class contains
all the information on a specific solution (individual). The following methods need to
be implemented:

distanceTo method

The distanceTo(Solution solution) method is designed for the Niching phase of
the algorithm. This method should return the distance between the current solution
and the passed solution. This will be used to group the solutions during the niching
phase.

toString method

The toString() method generates a String version of this object. It is used to create
the result files of the algorithm execution, and it should return a string sequence of
the values of the different parameters in the solution.

testString method

The testString() method is used in the NetLogo version of the library. It should
return the different attributes of the solution in a NetLogo-friendly way, so they can
be used as the parameters of the NetLogo reported called to evaluate the solution.

toStringGroup method

The toStringGroup() method is a method that should generate a string that identi-
fies the niche to which this solution belongs. This is used when printing the historical
solution for later analysis.
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toMPIString method

The toMPIString() method is used in the openMPI-enabled version of the library. It
should return a string with the parameters of this solution that can be then parsed
by this solution object, so the values can be sent through MPI.

parse method

The parse(String string) method is used in the openMPI-enabled version of the
library. It should load the parameter values from the string generated by the
toMPIString() method.

B.4.2 The BeliefSpace class
A class extending the BeliefSpace class needs to be implemented. The BeliefSpace
class contains the methods to use and manipulate the belief space. In the abstract
class support for situational and normative knowledge are implemented.

accept method

The accept(ArrayList<Solution> teachers) method is the method in charge of
modifying the belief space. The method receives a list of solutions that have been
selected for this task. It should then iterate over this solutions extracting the
required knowledge (store the best solution if its better than the current situational
knowledge, modify the intervals of the normative knowledge, and so on).

ended method

The ended() method should return a boolean value of “true” if the algorithm has
reached the termination condition. This method is used in the standard flow to
determine if the algorithm is finished.

stagnation method

The stagnation() method should return a boolean value of “true” if stagnation is
detected and an extinction event needs to be triggered (the most common way to
detect it is if more than n generations have passed without change in the situational
knowledge). This method is used to determine if an extinction event is needed.

B.4.3 The Rule class
If the “tabu list” is used then one or more classes extending the Rule class need to
be implemented. Those classes contain the rules against which each solution will be
tested to determine if it is tabu or not.
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isTabu method

The isTabu(Solution solution) method will return a “true” value if the solution
breaks the rule and should not be tested or used.

B.4.4 The CulturalAlgorithm class
A class extending the CulturalAlgorithm class must be implemented. This class is
the main class of the algorithm and contains all the methods for its execution.

init method

The init() method is the first method that will be called. This method creates the
initial population and the initial belief space as well as setting up any necessary
parameters for the algorithm.

loadParams method

The loadParams(String[] params) can be used to pass aditional parameters to the
algorithm. Those parameters are passed to the CulturalAlgorithmRunner.run as
a String array. This method is called after the init method but before the the
algorithm is started.

test method

The test() method is the method responsible for performing the tests on the popula-
tion to compute their fitnesses.

niching method

The niching() method is the method responsible of performing the niching on the
population. The specific implementation of the niching strategy is up to the program-
mer, but undesired solutions should be removed from the population before other
methods are called.

accept method

The accept() method selects the members of the population that are used to influ-
ence the belief space. It should then call the BeliefSpace.accept method for that
purpose.

reproduce method

The reproduce() method is responsible for creating a new population by reproduction
and or mutation. The specific strategies used are left to the programmers.
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extinction method

The extinction() method is called whenever stagnation is detected. The specific
strategy is left to the programmers.

close method

The close() method is called at the end of the algorithm.

B.4.5 Parallelization
Both reproduction and testing can be parallelized in every version of the library. This
parallelization, however, is done on a single computer, and bounded by the number
of cores this computer possesses.

To implement this parallelization one of the Tester or Breeder classes have to be
extended. Then it is enough to instantiate the class and use fjPool.invoke(Class)
to launch the parallelized version of the algorithm.

The Tester Class

The Tester class is designed to parallelize solution tests. Three methods have to
be implemented. The initTest() method will be called once before the testing is
started. The testSolution(Solution solution) method will be called once for each
solution in the population (this method is parallelized). The endTest() method will
be called once after all solutions have been tested.

The Breeder Class

The Breeder class is designed to parallelize solution generation (reproduction). The
breed() method must be implemented. This method is responsible to generate a new
solution (or multiple solutions) and deposit it in the newPopulation list.

B.5 Building a NetLogo Cultural Algorithm
To use a NetLogo simulation the CAFE_NL.jar or the CAFE.jar version of the
library have to be used. Instead of extending the CulturalAlgorithm class the
CulturalAlgorithmNetLogo class should be extended. This class have the same
methods than the CulturalAlgorithm, but the test() method is already imple-
mented to use a parellelized NetLogo tester, implemented in the NetLogoSimulator
class. The corresponding parameters have to be used in the .ca file.

B.6 Building an openMPI-enabled Algorithm
To use an openMPI-enabled simulation the CAFE_oMPI.jar or the CAFE.jar version
of the library have to be used. Instead of extending the CulturalAlgorithm class
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the CulturalAlgorithmMPI class should be extended. This class have the same
methods than the CulturalAlgorithm. The corresponding parameters have to be
used in the .ca file.

B.7 Building an openMPI and NetLogo supported
algorithm

To use a NetLogo simulation the CAFE.jar version of the library has to be used. In-
stead of extending the CulturalAlgorithmMPI class the CulturalAlgorithmMPINetLogo
class should be extended. This class have the same methods than the CulturalAlgorithmMPI,
but the test() method is already implemented to use a parellelized NetLogo tester,
implemented in the NetLogoSimulator class. The corresponding parameters have
to be used in the .ca file.

B.8 The .ca file
The parameters necessary for a CAFE execution are given in a .ca file. Tables B.81,
B.82 and B.83 show the specific parameters that may be used grouped by version of
the CAFE library.

B.9 Implemented classes and methods
The CAFE library provides a series of already implemented classes and methods that
simplify the design and implementation of a HNCA. Those methods, their utilities
and their intended uses are described in this section.

B.9.1 Solution class
The Solution class contains two attributes (and their respective getters and setters)
that are commonly used in any implementation of an HNCA. Those are the fitness
and niched attributes. The first is intended to hold the fitness of the specific solution
after testing. The niched attribute is used to reduce the time taken by the niching
operation. When an individual has been included in a niche this attribute should be
set to true, so it would not be checked again for niching.

B.9.2 BeliefSpace class
The BeliefSpace class contains a few useful methods. Three of them are designed
for printing information: toString(), historyToString() and getHeaders(String
solutionHeader). The first generates a string with the current state of the BeliefS-
pace (normative and situational knowledge), the second generates a string with the
contents of the history knowledge as a .csv table (each individual in a different line)
and the last generates the header for the belief space file.
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Table B.81: CAFE .ca general file parameters

Parameter Value Description
% Comment line Any line beginning with a % symbol will

be ignored
Class Class name Complete class path to the class extending

the CulturalAlgorithm class (or any of
its versions). This must be the first non-
commented line of the file.

-ofolder Path Folder were the results of the execution
will be stored.

-header String This string will be used as the header for
the solutions in the generated .csv files.

-slices Parallel threads Number of parallel NetLogo simulations
that will be run.

-breedDepth Number of splits Number of times the population will be
sliced when using a Breeder implementa-
tion.

-breedSliceSize Number of slices Number of blocks in which the popula-
tion will be spliced at each split when us-
ing a Breeder implementation. In total
breedSliceSizebreedDepth threads will be
generated.

-rules Class name list Comma-separated list of classes imple-
menting the Rule class that will be used
for the tabu list.

Table B.82: CAFE .ca file NetLogo parameters

Parameter Value Description
-simFile Path to the NetLogo file Path to the NetLogo file that will be

used to test the solutions.
-simMethod NetLogo method Name of the NetLogo reporter that

will be used to test the solutions.
-extractor Netlogo method Name of the NetLogo reporter that

will be called after the tests.
-extractions Number Number of times the extractor method

has to be called.

In addition the BeliefSpace class contains two methods that generate muta-
tion driven by the normative knowledge. Those are mutate(double value, String
chromosome) and getRandom(String chromosome). The first method uses equation
B.91 to generate a new value for a chromosome with a continuous value. The second
uses equation B.92 to generate a completely new value. Both receive the name of the
mutated chromosome as a parameter. In addition the mutate method requires the
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Table B.83: CAFE .ca file openMPI parameters

Parameter Value Description
-mpiGen Number of generations Number of generations that this al-

gorithm should be ran for.
-mpiPopSize Population size Number of solutions in the popula-

tion.
-mpiArgs Arguments Arguments passed to the

MPI.Init(String[] arguments)
method.

-solutionClass Class name Complete class path to the class ex-
tending Solution.

current value of the chromosome as a parameter.

ki+1 = ki +N (0,1)s(NK ) (B.91)

Where ki+1 is the mutated value of the chromosome, ki is the current value,
N (0,1) is a random value drawn from a normal distribution with mean 0 and
variance 1 and s(NK ) is the size of the interval for that chromosome stored in the
normative knowledge.

ki+1 = N l
K +N (0,1)s(NK ) (B.92)

Where ki+1 is the mutated value of the chromosome, N l
K is the lower bound of the

interval for that chromosome stored in the normative knowledge, N (0,1) is a random
value drawn from a normal distribution with mean 0 and variance 1 and s(NK ) is
the size of the interval for that chromosome stored in the normative knowledge.

B.9.3 Interval class
The Interval class is a class designed to contain the normative knowledge associated
to a specific chromosome. It is intended to be used in the different methods of the
BeliefSpace class. It should be stored in the BeliefSpace.normativeKnowledge
attribute, which is a HashMap that maps intervals to strings (chromosome names).

The Interval class contains the minimum and maximum bounds of the interval,
as well as the fitnesses associated with those values. It has getters and setters for
each attribute. It contains the methods upgradeMin(double value, double fitness)
and upgradeMax(double value, double fitness) and size(). The first two methods
upgrade the minimum and maximum values of the interval if the new values increase
its size, or if the fitness is better than the stored fitness. The size() computes the
size of the interval.

The Interval class contains two methods for printing. The toString() method
generates a semicolon-separated string with the values of all four attributes. The
getHeaders() method generates the headers used in the BeliefSpace class.
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B.9.4 TabuList class
The TabuList class contains the logic for a tabu list. It is designed to be used during
the breeding step to remove unwanted individuals from the population. It contains
two attributes, rules and solutions. The rules attribute is a list containing all the
Rule subclasses that will be used by the tabu list. The solutions attribute contains
a list of solutions.

The init(String rules) method takes a comma-separated list of class paths to
the rules that should be used as a parameter. This method loads the required tabu
rules, and it is called during initialization if the -rules parameter is used in the .ca
file.

The tabu list contains two methods for tabu control: isTabu(Solution solution)
and isTabuStore(Solution solution). The first method simply calls the isTabu(Solution
solution) of each Rule in the rules list, and returns true if any of them does. The
second method does the same computation, but afterwards checks the solutions
list. If the individual is already present in the solutions list then it returns true,
otherwise it adds this solution to the solutions list and returns false.

B.9.5 CulturalAlgorithm class
The CulturalAlgorithm class, as well as its subclasses CulturalAlgorithmNetLogo,
CulturalAlgorithmMPI and CulturalAlgorithmMPINetLogo, contain several meth-
ods that should not be overwritten or called. Those methods control the flow of the
algorithm, the initialization of the different parameters, the handling of messages
(if the openMPI-enabled version is used) or the parallel test implementation (if the
NetLogo version is used). More information can be found on this methods can be
found on the corresponding Javadocs.



APPENDIX C

Cost Function Test Results

This appendix presents the results obtained in the different tests performed to obtain
the cost function.

C.1 Pre-analysis Results
The following pages presents the plots showing the performance rank versus distance-
battery rank pair for each combination of strategy.
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C.1.1 Office scenario
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C.1.2 Labyrinth scenario
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C.1.3 Randomized scenario
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C.1.4 Empty scenario
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C.2 Cost Function Extraction Results
This section presents the cost functions found for each scenario and strategy pair.

Table C.21: Function parameters by strategy in an Empty scenario.

Strategy Kd2 Kb2 Kdb Kd Kb

HOAS 0.0 −46.0 145.0 3324.0 16.0
HOAM 0.0 0.0 0.0 10.0 10.0
HOH 0.0 0.0 0.0 10.0 0.0
HPAS 0.0 0.0 0.0 10.0 0.0
HPAM 0.0 1011.0 80.0 587.0 −411.0
HPH 0.0 5466.0 −96.0 2791.0 298.0
HRAS 0.0 0.0 0.0 10.0 0.0
HRAM 0.0 0.0 0.0 10.0 10.0
HRH 351.0 0.0 −122.0 −4734.0 1254.0
EOAS 0.0 0.0 0.0 10.0 10.0
EOAM 0.0 0.0 0.0 10.0 10.0
EOH 0.0 0.0 0.0 10.0 10.0
EPAS 0.0 0.0 0.0 10.0 0.0
EPAM 0.0 10.0 0.0 10.0 0.0
EPH 0.0 0.0 0.0 1.0 0.0
ERAS 0.0 0.0 0.0 10.0 10.0
ERAM 0.0 0.0 0.0 10.0 10.0
ERH 0.0 0.0 0.0 10.0 10.0
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Table C.22: Function parameters by strategy in an Office scenario.

Strategy Kd2 Kb2 Kdb Kd Kb

HOAS 0.0 0.0 0.0 30.0 40.0
HOAM 0.0 0.0 0.0 10.0 10.0
HOH 0.0 0.0 0.0 10.0 10.0
HPAS 0.0 0.0 0.0 30.0 0.0
HPAM 0.0 0.0 10.0 0.0 30.0
HPH −0.010 10.040 4.2012 59.557 −11.851
HRAS 0.0 0.0 0.0 10.0 10.0
HRAM 0.0 0.0 0.0 10.0 10.0
HRH 0.0 0.0 0.0 10.0 10.0
EOAS 0.0 0.0 0.0 10.0 10.0
EOAM 0.0 0.0 0.0 10.0 10.0
EOH 0.0 0.0 0.0 20.0 10.0
EPAS 0.0 0.0 10.0 30.0 0.0
EPAM 0.0 0.0 10.0 0.0 20.0
EPH 0.0 0.0 0.0 1.0 0.0
ERAS 0.0 0.0 0.0 10.0 10.0
ERAM 0.0 0.0 0.0 10.0 10.0
ERH 0.0 0.0 0.0 10.0 10.0

Table C.23: Function parameters by strategy in an Labyrinth scenario.

Strategy Kd2 Kb2 Kdb Kd Kb

HOAS 0.0 30.0 50.0 0.0 0.0
HOAM 0.0 0.0 0.0 10.0 10.0
HOH 0.0 0.0 10.0 0.0 0.0
HPAS 0.0 0.0 0.0 10.0 0.0
HPAM 0.0 0.0 0.0 1.0 15.0
HPH 0.0 1271.0 −34.0 837.0 222.0
HRAS 44.0 648.0 191.0 −386.0 −3784.0
HRAM 0.0 0.0 0.0 10.0 10.0
HRH 0.0 0.0 0.0 10.0 50.0
EOAS 0.0 0.0 10.0 40.0 0.0
EOAM 0.0 0.0 0.0 10.0 10.0
EOH 0.0 0.0 0.0 10.0 0.0
EPAS 0.0 0.0 0.0 10.0 0.0
EPAM 0.0 10.0 0.0 10.0 0.0
EPH 0.0 0.0 0.0 1.0 0.0
ERAS 0.0 0.0 0.0 10.0 10.0
ERAM 0.0 0.0 0.0 10.0 10.0
ERH 0.0 0.0 0.0 10.0 20.0
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Table C.24: Function parameters by strategy in an Randomized scenario.

Strategy Kd2 Kb2 Kdb Kd Kb

HOAS 0.0 0.0 0.0 10.0 0.0
HOAM 360.0 534.0 946.0 183.0 −33.0
HOH 0.0 0.0 0.0 10.0 0.0
HPAS 0.0 0.0 0.0 10.0 0.0
HPAM 0.0 10.0 0.0 10.0 0.0
HPH −1.0 306.0 97.0 2521.0 244.0
HRAS 0.0 0.0 0.0 10.0 0.0
HRAM 0.0 0.0 0.0 10.0 10.0
HRH 0.0 0.0 0.0 10.0 0.0
EOAS 0.0 0.0 0.0 10.0 0.0
EOAM 0.0 0.0 0.0 10.0 10.0
EOH 0.0 0.0 0.0 10.0 10.0
EPAS 0.0 0.0 0.0 10.0 10.0
EPAM 0.0 10.0 0.0 10.0 0.0
EPH 0.0 0.0 0.0 10.0 0.0
ERAS 0.0 0.0 0.0 10.0 10.0
ERAM 0.0 0.0 0.0 10.0 10.0
ERH 0.0 0.0 0.0 10.0 10.0
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