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Predicting range profiles of low-energy~0.1–10 keV/amu! ions implanted in materials is a long-standing
problem of considerable theoretical and practical interest. We combine here the best available method for
treating the nuclear slowing down, namely a molecular-dynamics range calculation method, with a method
based on density-functional theory to calculate electronic slowing down for each ion-target atom pair sepa-
rately. Calculation of range profiles of technologically important dopants in Si shows that the method is of
comparable accuracy to previous methods for B, P, and As implantation of Si, and clearly more accurate for Al
implantation of Si.
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Calculating the force which slows down energetic ions
traversing in materials~the stopping power! is a long-
standing problem of considerable theoretical and practical
interest.1–3 While the stopping power caused by collisions
between an ion and atoms can now be predicted very
accurately,4–6 there is still uncertainty in how the stopping
caused by collisions between an ion and electrons~electronic
stopping! should be calculated for ion velocities below the
Bohr velocity ~namely at energies of the order of 0.1–10
keV/amu!. This is an especially pressing problem for obtain-
ing range profiles for dopants implanted in crystal channel
directions in semiconductors, since on one hand the uncer-
tainties are particularly large in this case and on the other
hand this case is important for the microelectronics industry.

The most common approach for obtaining stopping pow-
ers is to first derive a stopping power for a proton in a ma-
terial, and then use a scaling law to obtain the stopping
power of heavier ions. To obtain the stopping power of the
proton, the most popular approach is to use models7,8 based
on the scattering phase shifts for Fermi-surface electrons.
The phase shifts are determined within the density-functional
theory ~DFT! ~Ref. 9! for a proton embedded in a homoge-
neous electron gas.10,11 This approach has proven successful
for some technologically important ion-target combinations,
such as B-Si, P-Si, and As-Si,12,5,13 but leads into severe
difficulties ~a physically unjustified parameter value! for the
case of Al-Si.5

However, the original model with self-consistently deter-
mined phaseshifts offers another, frequently overlooked, ap-
proach to obtain stopping powers for heavy ions. Instead of
using scaling laws, it is possible to explicitly calculate phase
shift factors for any given ion-target atom combinations. The
phase shift factors can be calculated directly from DFT, so
this approach does not use any empirical or fitted input fac-
tors.

Another noteworthy approach to predicting the electronic
stopping is the local plasma approximation. However, this
model does not presently treat channeling anisotropies in the
electron distribution,14 and hence is not applicable here.

In this paper, we combine the best available simulations
methods for calculating ion range profiles with electronic
stopping powers derived from realistic three-dimensional
charge distributions of the Si lattice and explicit calculation
of phase shift factors. We compare the calculation results
with a wide range of experimental range profiles for implan-
tation in silicon channels.

The electronic stopping model used in this work is based
on the density-functional formalism. Unlike models based on
the Brandt-Kitagawa~BK! theory,15,16 it takes the structure
of the electron cloud of the ion into account and does not
employ any scaling laws. The electronic stopping power for
a slow (v,vF , wherevF is the Fermi velocity of the elec-
trons of the material! ion in a homogeneous electron gas can
be expressed as7,8
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wherekF is the Fermi momentum of electrons of the target,
r s the one-electron radius„r s5@3/(4pr)#1/3, wherer is the
electron density… andd l(EF) the phase shift for the scattering
of an electron at the Fermi energy.

For a given ion~nuclear chargeZ), we determine the
phase shifts in Eq.~1! by solving for the self-consistent elec-
tronic structure of the atom~ion! embedded in a homoge-
neous electron gas.11 The nonlinear screening is obtained by
the DFT within the local-density approximation for the elec-
tron exchange and correlation effects. The screening cloud
consists of bound electron states localized near the nucleus
and of delocalized scattering states. All the states are solved
self-consistently by numerical integration. More specifically,
the single-particle Kohn-Sham wave functions corresponding
to the delocalized scattering states are solved near the
nucleus and matched at a given~large! radius to the
asymptotic form of the scattering wave,

cos@d l~k!# j l~kr !2sin@d l~k!#nl~kr !, ~2!
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where j l andnl are the spherical Bessel and Neuman func-
tions, respectively, andk is the electron wave vector. For the
self-consistent potential the phase shifts at the Fermi energy
obey the Friedel sum rule

2
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l

~2l 11!d l~EF!5Z. ~3!

It should be noted that the validity of the phase shift ap-
proach@Eq. ~1!# is limited to ion velocities clearly lower than
the Fermi velocity. Then the potential of a static calculation
can be used to determine the Fermi level phase shifts and one
does not need worry about different ionization states. How-
ever, applying Eq.~1! is a subtle question because the phase
shifts are determined from the Kohn-Sham electron wave
functions which are only auxiliary functions in the
formalism.9 On the other hand, the low-velocity stopping
power is defined via the phase shifts corresponding to the
ground state of an atom in a homogeneous electron gas and it
is a ground-state property. According to the DFT all the
ground-state properties can be calculated exactly as function-
als of the ground-state electron density. In practice, when
comparing with experiment or better many-body calculations
many properties calculated using Kohn-Sham wave func-
tions have turned out to be rather good estimates.

The Fermi level phase shifts are calculated for a regular
grid of one-electron radiusr s values. The tabulated values
are then used in interpolating the phase shifts for a desired
electron density.

In order to describe, e.g., channeling accurately, one has
to take the anisotropy of the electron distribution of the ma-
terial into account. We calculate the three-dimensional
charge distribution of silicon using the Dawson-Stewart-
Coppens formalism17–20 and the Hartree-Fock wave func-
tions calculated by Clementi and Roetti.21 This is an efficient
scheme to produce the values of electron density in a huge
(1283) number of grid points. We have compared the values
at representative points with those obtained by first-
principles DFT methods. We found only relatively small dif-
ferences and expect therefore that the approximations in the
electron density have only minor effects in comparison with
other approximations made in our scheme. Using the calcu-
lated three-dimensional charge distribution the electronic
stopping power is then obtained by employing the idea of
local response: the stopping power at a given point depends
only on the electron density at that point.

To calculate the range profiles, we used a molecular-
dynamics range calculation method,22 which has been de-
scribed in detail for this stopping model in Ref. 13. We did
not include the charge state of the incoming ion in the model,
since the original charge state of the ion affects the stopping
only in the first few monolayers of the target. After that, the
charge state depends only on its velocity.23

We simulated range profiles in channeling directions for
all the cases where we have found experimental data in the
literature which lie in the energy regime where the assump-
tion of a velocity-proportional stopping is valid.13 We
present here representative results~both in terms of good and
bad agreement with experiment! for all the cases except H.

Results for H implantation in Si have been presented in our
earlier paper.13 Since they are not affected by scaling laws
we do not present them again here.

We compare the results of the model with our earlier
model, which is otherwise similar to the present one, except
that it used a scaling law based on the Brandt-Kitagawa
theory rather than phase shift factors to obtain the stopping
of heavy ions, and includes the Firsov model.13 We have
previously shown that even the use of the scaling law gives
much better agreement than the common TRIM/ZBL
model,24,2 and comparable agreement with the results of
other authors,5 so we do not repeat these comparisons here.
The presented results are grouped by ion-target combination
and channeling directions.

For B implantation of Si our pair-specific model gives
quite good agreement with experiments in random crystal
directions~not shown! and in thê 100& direction~Fig. 1!, as
does the previous scaling law model. In the^110& direction
~Fig. 2! both models clearly overestimate the ranges. But the
shape of the curve for the pair-specific model is closer to the
experimental curve. The likely reason to the remaining dis-
crepancy is thatr s is obtained for a pointlike atom, and a
charge-averaging scheme should be used to account for the
size of the ion.13

Obtaining accurate range profiles for Al implanted into
channeling directions in Si has proven to be very difficult.5

FIG. 1. Simulated and measured ranges of 15-keV and 80-keV
B ions in the^100& channel of silicon. The experimental data was
measured with SIMS~Ref. 12!.

FIG. 2. Simulated and measured ranges of 15-keV B ions in the
^110& channel of silicon~Ref. 28!. The experimental data was mea-
sured with SIMS~Ref. 12!.
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We have simulated 150-keV Al range distributions in all
major channeling directions and our model was in all the
cases in excellent agreement with the secondary-ion-mass
spectroscopy~SIMS! data~see Figs. 3–5!. For other energies
in the relevant energy range we did not find any experimen-
tal SIMS data for channeling directions, but only
capacitance-voltage (C-V) measurements.25 In this method,
the concentration of electrically active dopants in a semicon-
ductor is obtained from aC-V measurement.26 Although a
C-V measurement only measures electrically active dopants,
the fairly good agreement between theC-V and SIMS data at
150-keV indicates that theC-V data do give a reasonable
estimate of the actual range profile. We obtained good agree-
ment between our model and theC-V data at all the energies
examined; results for 40 keV are shown in Figs. 3–5.

The figures also show that the pair-specific model is much
better than the scaling-law model and gives excellent results
for 40-keV and 150-keV cases in the^100& and^111& direc-
tions as well as a random direction~Fig. 6!.

For P and As the simulations gave very good agreement
with experiments in random directions for both models. In

the ^100& and ^111& directions the scaling-law model was
found to somewhat underestimate the channeling, while the
pair-specific one overestimates it by roughly the same
amount. Sample data are shown in Figs. 7 and 8. It is not
possible to state that one of these models would be better
than the other. In thê110& channel agreement with experi-
ments was not good for both P and As. Both models were
found to overestimate ranges, although the pair-specific one
was closer to the experimental values. Qualitatively the be-
havior was similar as that for B in thê110& channel~see
Fig. 2!.

The results presented here show that calculating ion
ranges by the use of electronic stopping powers derived from
pair-specific phase shift calculations gives good agreement
with experimental range profiles in nonchanneling and most
channeling directions in silicon, without the need for intro-
ducing any adjustable parameters. For protons the model has
previously been demonstrated to work well.13 For the ion-
target combinations B-Si, P-Si, and As-Si the agreement ob-
tained with the current model is at least as good as that
obtained with previous parameter-free models, while for
Al-Si it is clearly better.

In all cases tested the present model works as well or
better than any previous model with no free parameters. It is
also noteworthy that except for the^110& channel, the model
is of comparable quality with the best model which does
employ one adjustable parameter.5

FIG. 4. As Fig. 3, but for thê110& channel~Ref. 28!. The y
scale for the 150-keV graphs is multiplied by 10 to make the picture
clearer.

FIG. 5. As Fig. 3, but for thê111& channel. They scale for the
150-keV graphs is multiplied by 50 to make the picture clearer.

FIG. 6. Simulated and measured ranges of 80-keV Al ions in
silicon (Q57°, f selected randomly!. The experimental data were
measured with SIMS~Ref. 29!.

FIG. 3. Simulated and measured ranges of 40-keV and 150-keV
Al ions in the^100& channel of silicon. The experimental data was
measured withC-V in the 40-keV case and also with SIMS in the
150-keV case~Ref. 25!. The ordinate in the figures is labeled
‘‘atom density’’ but for theC-V data this should actually be ‘‘ac-
tive doping density.’’ The dimension for the two quantities is the
same. They scale for the 150-keV graphs is multiplied by 20 to
make the picture clearer.
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There is still some disagreement between the pair-specific
model and experiments, however. The most serious problem
appears to be that the tails of range profiles for P, As, and B
implanted in thê 110& channel are overestimated. However,
the range profile is not seriously underestimated in any of the
cases. This suggests that the remaining discrepancy could be
explained by the lack of a charge averaging scheme in the
model, as discussed in Ref. 13.

Although we have in this paper presented results only for
the implantation into Si, mainly because of the scarcity of
experimental data in other materials, the present approach
can be used in any other material. It could be expected to
work well at least in other tetrahedrally bonded semiconduc-
tor materials, like Ge and GaAs, while in other kinds of
materials a somewhat different approach for obtaining the
electronic stopping can be expected to be more accurate.27

In conclusion, we have combined a molecular-dynamics
range calculation method accounting accurately for nuclear

stopping with electronic stopping powers calculated using a
three-dimensional electron charge distribution and phase
shift factors derived from density-functional theory. Com-
parison of simulated and experimental range profiles for im-
portant dopants in channeling directions in Si showed that
the model gives a reasonable description of at least B, P, Al,
and As stopping in Si. Compared to other models with no
adjustable parameters, the agreement with experiments is
comparable to that of the best previous models for B, P, and
As, and clearly better than previous models for Al ranges
in Si.
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