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Chapter 1

Introduction

Robots are increasingly utilized in industrial and domestic applications [IFR,

2014]. However, several challenges avert them from being extensively used in

daily life. For example, safety regulations well summarize current concerns re-

garding humans sharing a common workspace with robots. In human-robot

interaction, conveying the intention of a user to the robot constitutes another

open problem. Crucially, the high costs for robot programming are a further

issue to be addressed, as applying conventional programming to state of the

art applications is complex, time consuming and expensive. In fact, every as-

pect of a potentially complex task has to be explicitly considered, and such an

assessment is often not simple or even feasible.

Programming by Demonstration (PbD) has developed to constitute a wide field

within robotics [Billard et al., 2008]. PbD has introduced novel ways to ad-

dress aforementioned challenges thus facilitating the use of robots in daily life.

Once the general software infrastructure for PbD is available, robots can be

trained on new tasks and become operative within minutes. Accordingly, the

traditional role of the programmer as the person who implements code is over-

taken by an instructor, who directly provides demonstrations of the required

skill to the robot. The goal of PbD is to enable the robot to extract neces-

sary and important information about the task from the demonstration and

generalize over one or several demonstrations to novel situations. In contrast

to conventional programming, where trajectories are programmed by an expert

and then replayed, the robot can be directly instructed by a person without

any prior knowledge in robotics. Therefore, new possibilities for Human Robot
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Interaction (HRI) and the integration of robots in human workspaces to solve

collaborative tasks arise. Calinon et al. [2014] described the current situation

in robotics as “reminiscent of the pre personal-computer age when people needed

to be expert in computer programming to make the computer achieve a desired

task. As with personal computers, the development of robots and the reduction

of cost are now reaching a point where more natural and user-friendly interfaces

are required to re-program the robot”.

Tasks for industrial robots normally require a physical interaction between the

robot and an object, and are thus called in-contact tasks. Often, such inter-

actions require a precise control of the arising interaction forces, as too low or

too high forces might result in a failure of the task or even damage the robot

or its environment. The interaction forces that can cause undesired effects are

not only the forces exerted by the robot, but include friction or external forces.

Friction, for example, can cause the manipulator to jerk or bounce. These as-

pects increase the complexity of programming a robot in an industrial setting

even further, as all possible interactions of the robot with its environment have

to be considered and reasonable constraints have to be implemented to protect

the robot and its environment while ensuring the fulfillment of the task. This

complexity can be reduced by PbD, as the instructor can perceive the results

of the exerted forces and act accordingly during the demonstration.

In a near future, small and medium size companies will have an increasing inter-

est in industrial robots as Industry 4.0, the combination of factories with virtual

reality, plays a growing role in manufacturing [IFR, 2014]. Energy-efficiency,

growing consumer markets, decreasing products’ life cycles and an increase in

the variety of products are only a few reasons for increasing automation and

demand for industrial robots and their quick and flexible programming. In fact,

orders of goods produced in low quantity could be optimally processed by flex-

ibly training a robot by demonstration without necessarily hiring a software

engineer.

Current PbD approaches have proven successful in teaching robots relatively

complex tasks which would require extensive and expensive software develop-

ment by expert programmers. However, PbD also presents several open issues.

A basic issue, called correspondence problem, occurs due to different embodi-

ment between the instructor and robot [Calinon and Billard, 2007]. A further
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problem relates to the quality of the demonstration. Through the demonstra-

tion, the instructor has to effectively transfer to the robot the dynamics re-

quired by the task. Several teaching methods will be presented in Section 2.1.

All these methods force the instructor to face unfamiliar conditions during the

demonstration of the task. For example, they might require additional sensors

attached to his body or dragging a robotic manipulator attached to the familiar

tool. Such requirements can negatively affect the quality of the demonstration.

Poor demonstrations will result in poor skills acquired by the robot. Thus, it

is necessary to support the human instructor with natural and intuitive means

to effectively convey skills to the robot. In principle, a robotic system can im-

prove the quality of the demonstration and rise above the level of skill that had

initially been demonstrated. Such refinement techniques can contribute to such

a natural and intuitive training interface and are the focus of this thesis.

1.1 Problem

Little research is currently available in the technical literature for PbD robot

training for in-contact tasks, despite their significance for the industry. Also,

the use of state of the art industrial robots with in-built force and joint torque

sensors and variable compliance for in-contact tasks relies on relatively limited

research. Traditional industrial robots have to work in controlled production

lines, where the poses of tools and work pieces are strictly known and their

environment is completely predictable. The compliance offered by state of the

art robots ensures a good contact between tool and work piece, even if the

poses of both slightly differ from the nominal poses. Furthermore compliant

manipulators are safer, as uncontrolled high forces between tool and work piece

are prevented.

Therefore, this new class of robots, like the KUKA LWR [Bischoff et al., 2010],

are particularly well suited for in-contact tasks. The KUKA LWR has further-

more the advantage of torque sensors in every joint and a force torque sensor

in its wrist. Thus no additional hardware is required to measure forces ex-

erted by the robot or external forces that act upon the robot. Montebelli et al.

[2015] developed a system that encoded simultaneously the trajectory of the

tool and the force profile of a task. The system was tested by teaching a KUKA
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LWR4+ robotic arm to plane a wooden plank. The same control system was

further extended to handle disturbances in dynamic environments during the

reproduction of a sequence of hand written characters [Steinmetz et al., 2015].

The general problem of PbD is to transfer the professional skill of an instructor

to a robot, while preserving the quality of the skill. The work reported in this

thesis aims to the creation of a human-robot interface that feels natural, intu-

itive and user friendly to the human instructor in order to effectively transfer

skills for physical in-contact tasks to a robot. The experiments reported in the

thesis contribute to its goal by introducing and demonstrating the coordinated

use of two main elements of such an interface: Incremental Learning (IL) and

Proactive Assistance (PA). As training progresses through a sequence of multi-

ple demonstrations, the system can build up confidence about its knowledge of

the task (IL). As such a confidence is built, the robot will reduce its compliance

and actively make use of the accumulated information to assist the movements

of its instructor. Furthmore is the force of the human exerted on the robot mea-

sured and amplified (PA), thus the effective inertia of the robot attached to the

tool is reduced. This interface has the ambition to ensure minimal disturbance

to the instructor by minimizing the impact of unfamiliar modifications of the

tool and procedures for the execution of the task.

Therefore the approach presented by Montebelli et al. [2015] will be extended

firstly, by implementing the possibility to update the model of the system in-

crementally. Secondly, virtual tool dynamics will be implemented, which will

reduce the inertia of the robot by amplifying the force exerted by the instructor.

1.2 Structure

This thesis is structured in six chapters. Chapter 2 will offer an overview of

PbD and training methods in use. Chapter 3 will present current research of

machine learning techniques, used to refine the quality of reproduction after

initial demonstrations. Chapter 4 will present the hardware and software used

in this thesis to support the experimental work. Experiments and results are

presented in Chapter 5. Chapter 6 contains a critical discussion and associated

conclusions.



Chapter 2

Programming by Demonstration

This chapter offers an overview of how demonstration and reproduction works

in PbD. First, different teaching methods will be introduced. The two main

classes of methods used in the technical literature, symbolic and trajectory-

based learning, are presented in detail.

2.1 Training Methods

In PbD, transfering a physical skill from a human to a robot is done by demon-

strations. Several methods exist to demonstrate a skill to a robot, which can be

categorized into teleoperation, kinesthetic teaching and observational learning

[Kormushev et al., 2013].

Teleoperation is a technique, where the robot is remotely controlled by the

instructor with an input device, like a joystick or haptic gloves. Teleoperating

an overactuated robot, which has more than 6 DOF, is complicated, especially

if smooth and dexterous motions are desired. Teleoperation is used, among

others, for teaching grasping tasks, as done by Schmidts et al. [2011], who used

a haptic glove to record both force and position data. The combination of

both data led to higher success rates in teaching grasping movements and an

improved generalization capability.

In kinesthetic teaching, the robot is grabbed and moved manually by the in-

structor and the movements are recorded. However, the robot needs to be small
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and lightweight with a gravity-compensation controller to be effectively moved

manually by a human instructor. Furthermore it can be difficult with complex

robots to only move desired limbs, without moving other parts of the robot too.

The aim of this thesis is to implement a system that provides assistance during

kinesthetic demonstrations and reduces the complexity of kinesthetic teaching.

An advantage is that kinesthetic teaching can be used to directly teach rel-

atively complex in-contact tasks, for example wood planing as in [Montebelli

et al., 2015].

Observational learning methods make use of sensors, which can be external

or attached to the instructor, to perceive the actions of the instructor. These

sensors can be RGBD-cameras or motion sensors worn by the instructor. Ob-

servational learning offers a teaching process which is easy and natural for the

instructor and it is possible to generate very smooth and human-like motions

from such teaching trials. Calinon and Billard [2007] used a combination of

observational learning, with motion sensors, and kinesthetic teaching to teach

smooth trajectories and then improve them by manually moving the limbs of

the robot to reduce the impact of the correspondence problem.

One issue in PbD is to find a mapping between the body of the instructor and

the robot that suits the execution of the task. An advantage of teleoperation and

kinesthetic teaching over observational teaching is, that the robot can perceive

all actions with its own sensors, eluding mapping problems between instructor

and robot. Conversely, in observational learning, all actions are perceived by

external sensors and thus have to be mapped to the robot.

2.2 Representing Actions

Skills can be learned in two different ways: At a more abstract level, skills can

be interpreted as a concatenation of several primitive actions, each represented

by a symbol. Learning on this level is called symbolic learning. An alternative

is to represent skills at trajectory level, which is called trajectory learning.
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2.2.1 Symbolic Learning

The principle of symbolic learning is that basic actions, identified with symbols,

are defined beforehand and a demonstration is encoded as a sequence of these

symbols. Symbolic learning consists of several steps, that can be seen in Figure

2.1.

Figure 2.1: Principle of Symbolic Learning (Adapted from [Ekvall and Kragic,

2006])

Ekvall and Kragic [2006] described the principles of symbolic learning. First

one or multiple demonstrations are given and perceived by the system. In the

segmentation step, machine learning techniques, for example Hidden Markov

Models (HMM) are used to partition the demonstration into a set of primitives.

Typically, to allow the recognition of primitives, they have to be defined in ad-

vance. In the state generation block all given demonstrations are used to model

subtasks as states. These states are used for generalization in the task general-

ization block. From the demonstrations constraints are extracted, which need to

be fulfilled to execute the task properly. An example of such constraints could

be to first open a bottle before pouring its content in a glass. Figure 2.2 shows

how constraints are learned from demonstrations. In both demonstrations, state

B comes before the states F and G. Thus it is a constraint that B has to be

executed before F or G. With more demonstrations, more constraints can be

learned. With both, the states and constraints, possible execution sequences

are build up. If only one demonstration is provided, the system will execute the

states in the same order as demonstrated.
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Figure 2.2: Task generalization from two demonstrations

The execution sequence is calculated in the planning block, where the environ-

ment is taken into account. The execution is planed in a way that the goal

can be reached, for example by defining how to grab an object or by avoiding

collisions given the current context. Then the sequence is executed. If the goal

is not reached, the next sequence is planned until the goal is reached.

Symbolic learning enables a robot to learn whole tasks as a sequence of abstract

high-level states. Thus it is easier for human user to understand, what the robot

is doing and why. The disadvantage of this approach is the huge amount of prior

knowledge that has to be provided for example action primitives and properties

of the objects in the workspace.

2.2.2 Trajectory Learning

In trajectory learning trajectories are learned from provided demonstrations

with the goal to generalize over these demonstrations and generate trajectories

fulfilling the requirements of the demonstrated task. These trajectories can be

represented as probability distributions or dynamic models. It is necessary to

choose a space in which the robot will operate, depending on the task. Tra-

jectories can be recorded in joint space, task space or torque space [Billard

et al., 2008]. For executing a task, it might be also necessary to record ad-

ditional data. For example, in-contact tasks usually require the integration of

positional information with information about exerted forces [Kormushev et al.,

2011, Montebelli et al., 2015, Steinmetz et al., 2015].
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Trajectory encoding with Statistical Models

One possible approach to encode trajectories is to use statistical models. The

hypothesis behind this approach is that although several demonstrations might

differ between each other they should be very similar during crucial elements

of the task. Therefore, a mean trajectory and its variance can be calculated.

In this case, the variance can be interpreted as a measure for how close the

reproduced trajectory has to follow the mean trajectory during the execution

of the task. Portions of the trajectory characterized by high variance (i.e. less

homogeneous behavior), can be exploited for fulfilling additional requirements

or, in general, to react to changes in the environment, e.g. obstacle avoidance

[Mühlig et al., 2009]. Invariant portions of the trajectory are presumably im-

portant to successfully reach a goal. Accordingly, they should closely match the

mean trajectory. Alternative methods that have been suggested to model the

probability density functions of the demonstrated trajectories are presented in

the following sections.

Gaussian Mixture Models The use of a Gaussian Mixture Model (GMM)

consists of two steps: Observation and learning. During the observation phase

datapoints are acquired with sensors. The data is then usually preprocessed

by temporal normalization. In fact, demonstrations typically present temporal

distortions and inconsistencies, as a human will not be able to give multiple

identical demonstrations. Therefore, to retrieve useful information from mul-

tiple demonstrations, the data has to be temporally normalized. For this pur-

pose Dynamic Time Warping (DTW) is often used, where the trajectories of

all demonstrations are aligned to minimize the distance between each of them

[Mühlig et al., 2009]. Figure 2.3 shows the effect of using DTW on acquired

demonstrations. Only after the application of DTW it is possible to find a

reasonable mean and covariance. The learning phase follows the observational

phase, where GMM are built with several Gaussians. Each Gaussian consists

of a mean vector, a covariance matrix and an initial likelihood, the prior. The

model is then created with a mixture of several Gaussians with the dimension-

ality of the datapoints plus time [Calinon et al., 2007, Mühlig et al., 2009]. To

retrieve the parameters (mean, covariance and prior) from the mixture of all

Gaussians, different algorithms can be used to train the GMM, such as the

expectation-maximization (EM) algorithm. The EM algorithm maximizes the
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Figure 2.3: GMM without DTW (left) and with DTW (right). The green

ellipses show the learned mean and covariances (Source: [Mühlig et al., 2009])

likelihood that the GMM represents the probability density function of the ac-

quired data during the observation phase [Mühlig et al., 2009]. The Bayesian

Information Criterion (BIC) is often used to determine the number of Gaussians

that produces the best model and to quantify the quality of a model [Mühlig

et al., 2009]. To find the best amount of Gaussians components, the number of

components is increased, the GMM trained and the quality of the model then

evaluated by the BIC. The smallest BIC value refers to the estimated opti-

mal amount [Mühlig et al., 2009]. Retraining the GMM after each step is time

consuming, therefore Mühlig et al. [Mühlig et al., 2009] proposed to merely

approximate the ideal model, resulting in sufficient accuracy and a speedup of

two orders of magnitude compared to using EM for each step.

GMM have the advantage that there is no distinction between inputs and out-

puts, any subset of the dimensions can be defined as the input, while the remain-

ing subset is defined as the output. This mean in practice that, for example,

conditioning on the outputs of a model of the forward dynamics of an robotic

arm gives automatically a model of the inverse dynamics of that robotic arm

[Cohn et al., 1996].

Locally Weighted Learning Locally Weighted Learning (LWL) is a class

of techniques for the approximation of functions around the current point of

interest [Atkeson et al., 1997]. These methods assign a weight to every new

data set, specifying the influence of this data on the learning process. This

weight is depending on the position of the input points in dataspace relative to
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the point which has to be predicted. Data points close to the prediction point

have higher weights [Friedman, 1995]. In contrast to model-based methods, such

as GMM, where training data are generally discarded after every learning trial,

LWL methods, which are memory-based, relearn from all data when a prediction

is needed. This is a useful feature for IL. One method, called Locally Weighted

Regression (LWR), implies a regression that is performed locally around the

point of interest, as it can be seen in Figure 2.4 [Cohn et al., 1996]. The problem

with most LWL methods is, that with an increase of dimensions the number

of local models needed for accurate estimations increases exponentially. This is

also true for LWR and thus it is not memory efficient and not suited for high-

dimensional applications [Vijayakumar et al., 2005]. Vijayakumar et al. [2005]

developed another LWL method called Locally Weighted Projection Regression

(LWPR), which combines LWR and projection regression, which reduces the

dimensionality locally. LWPR is specially developed for IL. It provides fast

learning and is computationally efficient, as not all training data have to be

kept in memory.

Figure 2.4: Data points are weighted depending on their distance to the point

of interest x and a regression is calculated. (Source:[Cohn et al., 1996])

Hidden Markov Models Hidden Markov Models (HMM) are Bayesian net-

works, which represent probabilities over a sequence of observations. A HMM

consists of states (denoted as 1 and 2), transition probabilities t and the proba-

bility pj(x) for an emitted observation symbol x in state j. The states are proba-
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bility distributions, defined by mean and covariance matrix. The last parameter

of a HMM is the initial probability πj of being in state j. These parameters can

be learned by the EM or Baum-Welch Algorithm or by optimization techniques

like the Gradient Descent algorithm [Calinon et al., 2010a][Khreich et al., 2012].

HMMs are defined by two properties: Hidden states and the Markov property.

Hidden means, that the emitted symbol sequence is observable, but the actual

state within the sequence of states is not. The Markov property described the

fact, that the current state is only dependent on the previous state [Ghahra-

mani, 2002]. HMMs are widely used for many different purposes, like speech

recognition [Rabiner, 1989], handwritten word recognition [El-Yacoubi et al.,

1999] or cybersecurity [Warrender et al., 1999]. Their capability to model real-

world phenomena, like human motion, in terms of simple and compact models,

makes them interesting for PbD applications [Khreich et al., 2012]. Inamura et

al. [Inamura et al., 2004] described in this context the Mimesis Model, which

uses HMMs to recognize and generate human motions. Similar to GMM, where

the number of Gaussians has to be defined, in HMM the number of states has

to be defined. Also for HMM the BIC-criterion can be used to find the needed

number of states. A drawback of HMMs is, that a high number of states is

needed to correctly reproduce complex motions or a smoothing procedure is

used, which reduces important peaks in the motion [Calinon et al., 2010a].

Trajectory encoding with Dynamical Systems

Dynamical systems are another possibility for learning skills at the trajectory

level. They are designed to be stable and robust against perturbations. In

PbD, a widely used model is Dynamic Movement Primitives (DMP)[Schaal

et al., 2007].

Dynamic Movement Primitives DMPs have received a lot of attention

in the robotics community in recent years. This method was introduced 2002

[Ijspeert et al., 2002a,b] and further developed by Schaal et al. [2007]. A de-

tailed overview was presented by Ijspeert et al. [2013]. The principle of DMPs

is that a simple and well understood simple attractor system (namely a spring

damper system relaxing from an initial to its steady state position) is extended

with forcing function terms to remap onto a desired attractor (in the case of
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Figure 2.5: Structure of DMPs (Source:[Ijspeert et al., 2013])

PbD, the demonstrated trajectory). A DMP consists of a canonical and, inde-

pendently for each demonstration, a transformation system, as it can be seen

in Figure 2.5. DMPs were developed to encode both discrete and oscillating

trajectories. The canonical system models the behavior of the model equations,

e.g. whether it acts as a point attractor or a limit cycle. Furthermore it serves as

a replacement of time to make the transformation system formally independent

of time [Ijspeert et al., 2013]. The canonical system can be described as

τ ẋ = −αxx, (2.1)

with a time constant τ and a positive constant αx. x is a phase variable which

converges from an initial state x0 to zero, where x = x0 indicates the start

and x close to zero denotes that the goal g has been reached. The transforma-

tion system consists of a simple dynamic system, like a spring-damper system,

which is then transformed into a desired attractor system with forcing terms f .

Formally:

τ ż = αz(βz(g − y)− z) + f, (2.2)

τ ẏ = z, (2.3)
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with positive constants αz and βz, desired position, velocity and acceleration

y, ẏ, ÿ and forcing term f . To let y monotonically converge towards g, thus

critically damping the system, βz should be defined as βz = αz/4. The forcing

term f could be chosen, for example, as

f(x) =

N∑
i=1

Ψi(t)wi

N∑
i=1

Ψi(t)

x(g − y0), (2.4)

with adjustable weigths wi, the initial state y0 and fixed basis functions Ψi,

Ψi(x) = exp

(
− 1

2σ2
i

(x− ci)2
)
, (2.5)

where σi and ci are the width and centers of the basis functions [Ijspeert et al.,

2013].

To learn the parameters of the system different regression methods can be used,

like LWR or LWPR [Ijspeert et al., 2013]. The advantages of DMPs are man-

ifold. It can be used to both classify and replicate movements. Classification

can be done with the parameters (weights) of the function approximator. Fur-

thermore it is possible to decompose complex movements into a concatenation

of movement primitives [Ijspeert et al., 2013]. DMPs scale well for high dimen-

sionality. Ijspeert et al. [2013] described different methods to cope with multiple

DOF. A simple method is to use one canonical system for all DOF and a trans-

formation system for each DOF. One of the main advantages is the possibility

of online modification of the primitive. As shown in Figure 2.5, coupling terms

are introduced to both the canonical and transformation system. These cou-

pling terms can be used to modify the trajectory online, for example to apply

a different scaling [Ijspeert et al., 2013]. Dynamical systems are stable in the

presence of small random noise, but for large perturbations, the coupling terms

can be used as feedback terms to modify the trajectory accordingly [Billard

et al., 2008].

Comparison

Despite the differences between described learning methods and the different use

cases, almost no comparisons exist in literature. Calinon et al. [Calinon et al.,

2010a] compared HMM, LWR, LWPR, DMP and Time-Dependent Gaussian
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Mixture Regression (TDGMR), which uses GMM to encode the distribution of

spatial and temporal variables, with each other. Five metrics are used in the

comparison: Root-Mean-Square (RMS) Error, RMS Error after DTW, Norm

of Jerk, learning time and retrieval duration. The RMS error evaluates how

accurate in spatial and temporal terms the reproduced trajectory matches the

demonstrations. RMS error after DTW emphasizes on the spatial information,

as the RMS error is calculated after aligning the trajectories with DTW. The

norm of jerk measures the smoothness of a trajectory, based on the derivative of

acceleration. As the name implies, the learning time is the time the algorithm

needs to learn the trajectory, while the retrieval duration is the computation

time of the retrieval process for one iteration. The results for different number

of states and seven dimensions can be seen in Figure 2.6. The RMS error before

Figure 2.6: Influence of the number of states for seven dimensions on the dif-

ferent metrics. The dashed line in the norm of jerk represents the mean RMS

jerk of the demonstrations. (Source: [Calinon et al., 2010a])

and after DTW shows only a little deviation from the learned trajectory for all

examined learning methods. The jerk is smallest with DMP, which generates

the smoothest trajectories. The learning time is smallest for DMP and LWR,

while HMM and TDGMR, which are both trained with the EM algorithm, show

the worst performance. As the EM algorithm used in this test starts its search
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procedure randomly, the results are very variable. The online learning capability

of LWPR needs special consideration, as ten learning trials with random data

has been performed. For a single trial the learning time can be reduced by an

order of magnitude. The retrieval time is low for all methods, but for LWR

comparatively high with 7 × 10−2s, so that it does not appear in the graph

anymore. The retrieval time is almost constant for DMP, while it is linearly

increasing with the number of states for the other methods. All methods except

LWR show a low retrieval time of less than 1 ms and are thus usable for online

use.

2.3 Discussion

PbD is an useful approach to teach robots new skills without experts in robotics.

Different teaching approaches exist, but kinesthetic teaching proves to be in-

tuitively usable while avoiding the correspondence problem, thus it will be the

teaching approach in the process of this thesis. For learning skills two main

fields, symbolic and trajectory learning, exist. Symbolic learning requires a

great amount of prior knowledge and is thus not as versatile and easy to use

as here intended. Trajectory learning offers a great capability of generalization

and fast learning. In comparison to other considered methods, DMPs showed

little deviation from the demonstrations while producing smooth trajectories

with short learning and retrieval time. LWR proved to be the fastest learning

method. Thus DMPs will be used to in this thesis, in combination with LWR

to learn primitives from demonstrations.



Chapter 3

Post-Training Optimization

The outcome of PbD is a robot with an acquired capability to perform a task.

Normally, the quality of its performance is directly related to the quality of the

demonstration received by the robot during its training. This chapter will give

an overview of methods that address the problem of improving the acquired per-

formance. Two major techniques exist for this improvement. Firstly, following

demonstrations, the overall quality can be further enhanced by giving the robot

feedback when its execution of the task cannot be considered satisfactory. This

feedback can take the form of a new demonstration for the whole task again

or can be limited to the unsatisfactory parts of it. Such additional demonstra-

tions are functional to an incremental update of the underlying model. For this

reason, this supervised technique is called IL [Cho and Jo, 2013]. Secondly,

reward functions can be used to allow the system to automatically explore new

behaviors and determine what can be interpreted as beneficial or detrimental

behavior. The former will be rewarded whereas the latter will be punished by

the reward function. Thanks to the reward function, the robot will explore the

states of its environment and the actions to reach them with an unsupervised

trial and error method. With the reward function ranking the actions of the

robot, the system can balance the exploitation of the already learned actions

and the exploration of new solutions to incrementally increase its performance in

the given task. This framework is called Reinforcement Learning (RL) [Sutton

and Barto, 1998].
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3.1 Incremental Learning

Teaching a practical skill in daily life is often done in several steps. First an

instructor provides a presentation, then the learner attempts to reproduce, while

supervised by the instructor. In case the learner produces a poor reenactment

of the task, he or she receives feedback from the instructor about what needs

to be improved. Additionally the instructor can show the demonstration again,

enabling the learner to generalize over different demonstrations, as it can be

seen in Figure 3.1. Such a procedure is designated in robotics as IL [Nicolescu

and Mataric, 2003].

Figure 3.1: Principle of Incremental Learning

3.1.1 Feedback

The feedback loop shown in Figure 3.1 summarizes the main difference between

IL and ordinary PbD approaches. When the replication of the task is unsatisfac-

tory, multiple demonstrations of the whole task (or parts of it) can be performed

to incremental update the model. Social cues can be used to highlight situations,

for example by pointing or gazing, where the system has to achieve accurate

reproduction of crucial details or better performance is required [Calinon and

Billard, 2008]. A direct way to offer feedback is by kinesthetic teaching, as

described in Section 2.1, where parts of the robot are physically moved. The

method of kinesthetic teaching was used with a HOAP-3 robot by Calinon and

Billard [2007]. After the initial demonstration, the robot performed the learned

skill. The reproduced gestures are then fine-tuned by manually moving the

limbs of the robot. The same method was used by Cho and Jo [2013] with a
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NAO humanoid robot, with the difference that the robot could withdraw flawed

demonstrations (see section 3.1.2).

An interesting research direction addresses the use of pointing and gazing, which

attracts the attention of the robot to a certain area or situation to simplify the

full potential complexity of conveying the skill. The direction of a human su-

pervisor’s pointing or gazing can be determined with external sensors like stereo

cameras. The human instructor will naturally turn his head to the situation

which is important for the task. Thus head tracking offers an intuitive way to

focus the attention of the robot and to provide useful information. Calinon and

Billard [2008] used pointing and gazing information as a prior for the statistical

framework, which extracts the task constraints. According to their approach,

demonstrated actions received a weighting depending on whether they occurred

within the gazing area. The benefit of social cues depends on how accurately the

robot can detect what is highlighted. A reliable method to estimate the infor-

mation in pointing gestures was developed by Park and Lee [2011] to recognize

pointing gestures, allowing an exact target selection in 99% of all cases.

A different approach to the problem of creating feedback consists in segmenting

the demonstration into primitives (e.g. “take object”, “move object” and “place

object”) and in focusing retraining on the unsatisfactory ones only. This method

has a broad prevalence in recent research, for example see Wu et al. [2014] and

Jain and Inamura [2014]. Jain and Inamura used IL in a sophisticated setting.

The robot received demonstrations for different tasks, like nailing or cutting.

The robot has to discriminate the demonstrated tasks (e.g. “Beat the nail into

the wood”) and determine which tool is useful for the task (“Use a tool with

a large mass”), how to orient the tool (e.g. “Use the head of the hammer, not

the grip”) and how to use the tool (“Hit the hammer towards the nail”). Vision

is used to extract the properties of a tool: form, size and area of the effective

part of the tool. After learning how to use the tools, the robot has to perform

a similar task with a different tool. This is done to test whether the robot has

correctly learned the important functional features of a tool (e.g. the blade of

a knife or the head of a hammer) and is able to choose a good strategy for the

available tool, the task and spatial constraints. If the reproduction fails or is

not good enough, the robot makes a query to the demonstrator to solve the

current task with the given tool. This approach was tested successfully with

pulling an object towards the robot by first using a stick, then a T-shaped tool
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and finally rakes, where the robot had to decide which rake to use, depending

on the distance to the object [Jain and Inamura, 2014].

3.1.2 Models

The use of IL requires special consideration about the learning method. A great

number of studies, for example the work done by Calinon and Billard [2007] or

Cho and Jo [2013], use Gaussian Mixture Model (GMM) as the underlying

model to encode demonstrated tasks.

However, GMM has two drawbacks when used for incremental learning: Firstly,

the model cannot be updated, but needs to be relearned and secondly, the num-

ber of Gaussian components, as described in Section 2.2.2 needs to be defined

beforehand ([Cederborg et al., 2010, Cho and Jo, 2013, Wu et al., 2014]). The

first drawback is computational expensive, while the second one reduces the

flexibility of the model. Over recent years much research has been published

about improving GMM for incremental learning.

Kristan et al. [2008] proposed an approach to incrementally add new samples

to a GMM and remove old samples if necessary. With this approach it is pos-

sible to not only add new information to the model, but also remove erroneous

information, which could have been introduced by a poor demonstration. The

advantage of the approach is that it is not necessary to tune parameters for

specific applications, the form of the probability function can be arbitrary and

no time constraints are assumed. The disadvantage is that it was only tested

for one dimensional problems and needs to be extended for multi-dimensional

learning tasks. Cho and Jo [2013] proposed a method where the trial data is

abolished once used and the number of Gaussians is refined after each trial. The

temporal normalization with DTW makes it possible to compare the trajectories

of different demonstrations of the same task. Evaluating the pattern similarity

enables the robot to autonomously assess the quality of a teaching trial and

to reject demonstrations that differ too much from the other demonstrations.

This method ensures that no false information by erroneous demonstrations are

introduced to the model. Cederborg et al. [2010] described an “Incremental,

Local and Online formulation of Gaussian Mixture Regression (ILO-GMR)”.

This approach allows to not only learn incrementally new tasks, but also sev-
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eral tasks at once. Every task is assigned to a certain environment. If the

environment changes during the demonstration, the system recognizes, that a

new task is shown. Correspondingly different tasks are reproduced according

to the environment. The advantage of this approach is its flexibility. A whole

workflow can be taught to the robot with the possibility to refine single steps

with additional demonstrations.

HMMs in their original form have the same two drawbacks as GMM, as the

model can not be updated and the number of states needs to be defined before-

hand. HMMs can handle spatial and temporal variabilities of human demon-

strations well and are thus, with some modifications, an interesting solution for

IL [Calinon et al., 2010a]. Khreich et al. [2012] surveyed how on-line learning

techniques are used for HMMs to incrementally learn the parameters. Different

approaches, like incremental versions of the EM algorithm, exist. Kulic et al.

[2008] used HMM to segment motions and incrementally cluster them, based

on distances measured with log likelihood. Every motion primitive is added

to a hierarchical tree and represents a group of similar motions. All observed

motions are encoded into a HMM, compared with existing motion primitives

and grouped with the closest primitive. Local clustering is then performed on

the modified group. If a subset of motions similar enough is found, this subset

forms a new group, therefore a new primitive. Utilizing this method, the system

learns incrementally based on the observations.

Dawood and Loo [2014] proposed the Topological Gaussian Adaptive Resonance

Hidden Markov Model, where the data from the demonstration is processed into

a topological map, which is used to update the state structure of the HMM.

The remaining parameters of the HMM are learned with an incremental EM

algorithm. This approach solves both drawbacks. The topological map defines

the number of states, thus the number of Gaussians does not need to be pre-

defined and the modified EM algorithm provides on-line learning for all other

parameters.

3.1.3 Teaching various stiffnesses

Recent development in industrial robotics yields robots with controlled stiffness

like the KUKA LWR4+, as described by Bischoff et al. [2010]. IL is used in

combination with controlled stiffness in two ways. First, it enables the instructor



3.1 Incremental Learning 22

to move the robot during the reproduction to refine the task, as it will be shown

in the course of this thesis. Second, the system can be trained on multiple

trajectories in which different portions of the different demonstrations can be

very similar or highly variable. This information can be used to tune the robot’s

stiffness during replication of the task.

Calinon et al. [2010b] proposed a compliance controller that is compliant in

intervals of the trajectory where the variance among demonstrations is limited

(this is meant to model portions of the task that pose crucial constraints on

the execution) and relatively soft where the variance is small. The general goal

of this approach is to enable robots to work in unstructured environments (e.g.

human workplaces) in contrast to controlled production lines. In unstructured

workspaces the relationship between robot, tool and environment tends to be

unpredictable and variable for each trial. Nevertheless, a compliant manipula-

tor can assure sufficient contact force, as shown by Calinon et al. [2010b] based

on an ironing task. The manipulator could effectively press the iron on a plate,

independent of the reciprocal position of iron and plate, without exerting harm-

ful forces. A further result of the approach is to ensure safety for the human

worker by controlling the stiffness of the robot. The robot is operated within

a sequence of possible different danger levels. To assess the current danger the

distance between the robot and a human is measured and the viewing angle

of the human is determined by head tracking. The highest danger level occurs

when the user is close to the robot and facing away. The level is lower when the

user can see the robot or the robot is further away. The robot replicates the

task slowly and tries to find trajectories to avoid the user if the level is high,

while reproduction at a low danger level is fast and with the nominal trajectory.

Using the variance as a parameter for the stiffness makes it also possible to

teach compliant behavior to the robot. Kronander and Billard [2012] described

a method to incrementally teach certain stiffnesses to certain sections of a tra-

jectory. The use of compliant behavior is described with a pouring task and

with lightening a match. Transporting a bottle of soda to a empty glass should

be compliant, to avoid aggressive response to perturbations, while during the

pouring the manipulator should be stiff to avoid missing the glass. A good

example for the benefit of compliance for in-contact tasks is lightening a match.

On one hand a stiff robot might use too much force and break the match or

use too less force to generate the needed friction. On the other hand is exact
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position tracking difficult for a compliant manipulator. Thus the robot is taught

the motion of moving toward the matchbox and of striking the match. In re-

production the robot is incrementally taught to remove the compliance during

the matching by wiggling the elbow of the robot, increasing the variance. The

result was a 85% success rate instead of only 15% with both only high or only

low stiffness.

Lee and Ott [2011] used variable stiffness to create a motion refinement tube.

The motion refinement tube is the implementation of an impedance controller

that prevents the instructor from giving demonstrations too divergent from

the other demonstrations by setting the stiffness according the variance of the

model. A high variance at a certain point along the trajectory will result in

a low stiffness at that point during the demonstration. Respectively a small

variance will result in a high stiffness. Furthermore it is ensured that only parts

of the robot are moved, which are necessary for the refinement, for example ac-

cidentally moving the torso when motions of the arm are refined. This property

is implemented by setting a higher stiffness to joints closer to the base [Lee and

Ott, 2011].

Another interesting approach that combines incremental learning and high com-

pliance of the robot was described by Saveriano et al. [2015]. The goal was to

exploit redundant DOF of a redundant robot to execute end-effector tasks, e.g.

following a trajectory, and null-space tasks, which use the redundant DOF, at

the same time. Instead of an impedance controller, as in [Lee and Ott, 2011],

a task transition controller was implemented. First, the end-effector task is

trained with kinesthetic teaching. Second, the task transition controller starts

the execution of the trained motion primitive and detects interactions of the

user by measuring external forces. These interaction forces are used to generate

a new task. Such a task could be a certain elbow motion of a robotic arm to

avoid an obstacle during execution of the end-effector task. Thus, a certain

robot motion can not only be trained and refined, but also adapted to new

constraints, like obstacles. The adaption uses the redundant DOF of the robot

and hence it does not disturb the previously learned motion.
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3.2 Reinforcement Learning

Reinforcement Learning (RL) is an unsupervised trial-and-error approach. In-

stead of supervising the robot and refining its actions, the robot is enabled to

explore its own environment and find better ways to solve a task. The integra-

tion of RL with PbD is useful in cases, where the demonstration is not sufficient

enough to fulfill a task, for example due to big changes in the environment or

suboptimal demonstrations. The combination of both is also useful to limit the

search space for possible solutions, as further described in Section 3.2.3. With

RL the robot can learn a way to reach its goal autonomously by trial-and-error

exploration of its environment and exploiting explored actions to accumulate

reward, specified by a reward function.

3.2.1 General idea of RL

The core of each RL approach is the reward function, which maps for every state-

action pair a reward. A state is a vector with all current information about the

system, for example position and velocity, which can be used to predict future

states. The set of all existing states of the system is called state-space. The goal

is to accumulate as much reward as possible. One of the main challenges in RL,

after defining a reward function, is to define how to accumulate this reward.

Depending on the assigned value for each state, certain actions are chosen to

reach the next state. An action is a transition between states, in robotics this

can be a control signal. The mapping between states and actions, e.g. which

action is chosen for a certain state is called the policy. A greedy algorithm is

trivial and will always choose the next state with the highest reward. More

sophisticated approaches will also take the rewards of upcoming states into

account. This happens with a value function, which maps for every state an

additional value. While the reward expresses what is immediately beneficial,

the value specifies what is beneficial in a long term. The value is an estimation

of how much reward can be accumulated starting from that state [Sutton and

Barto, 1998]. In contrast to plain PbD, the policy is not obtained from the

demonstration, but through exploration of possible alternatives [Argall et al.,

2009]. The values of the states are added, the path through the different states

yielding the highest reward will lead to the execution of the desired task. The
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goal is to obtain a policy which results in such an execution [Argall et al., 2009]

[Sutton and Barto, 1998].

Additionally to finding a policy, another challenge of RL is the trade-off between

exploration and exploitation. On one hand the robot needs to try different

actions to know which actions lead to success. On the other hand the robot

needs to exploit those actions to accumulate the reward. Without exploration,

no exploitation is possible. Without exploitation, no reward will be accumulated

[Sutton and Barto, 1998]. Exploration is time consuming and it is necessary to

limit it to an extent that the system is able to find effective actions which can

be exploited. Complex systems like humanoid robots have huge state-spaces.

One role of PbD within RL is to limit the state-space to states important for

the task.

3.2.2 Early Work

Research for RL in robotic applications started in the 1980s with the goal of a

general refinement of robot motor skills [Franklin, 1988]. Extensive research was

done by Sutton and Barto [1998] who gave an overall description of RL, different

methods how to obtain the policy and approaches to combine these methods.

The main solution methods are Dynamic Programming, Monte Carlo Methods

and Temporal-Difference Learning. Sutton and Barto distinguish between plan-

ning methods, that need a model of the environment, and learning methods,

that can be used without such a model. A drawback is the inefficiency for high

dimensional cases. With the increase of dimensions, the state space grows ex-

ponentially, which was called the “Curse of Dimensionality” by Bellman in 1957

[Sutton and Barto, 1998]. Exploring the whole state space is computational too

expensive, but this problem is reduced with initial demonstrations. RL can be

combined with PbD by demonstrating the task and thus providing prior infor-

mation. These information consists of which states are important for the task

and which actions are useful for these states. This limits the state-space and

only states close to the demonstrated states must be explored.
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3.2.3 Reinforcement Learning as Post-Training Optimiza-

tion

The principle of RL aided by demonstrations is that trajectories from a demon-

stration are learned and generalized and the parameters of the built probabilistic

model are forwarded to the RL module. The calculated trajectories are then

executed and if the goal is not reached, the RL module tries to find better

parameters for the model. The demonstration highlights important states and

actions to limit the state-space and reduce the amount of necessary exploration.

Over the past years different approaches attempted to lower the impact of the

“Curse of Dimensionality” with initial demonstrations and better learning algo-

rithms. Peters et al. proposed the Natural Actor-Critc (NAC) algorithm for

applications utilizing humanoid robots with many Degree of Freedom (DOF)

[Peters et al., 2003] [Schaal et al., 2004]. The demonstration is first encoded

with DMPs (see section 3.2.3) and the weights of the learned function approx-

imator are then improved by a reward function. The policy is obtained by a

natural policy gradient, which is estimated by the NAC. This method was used

with a 30-DOF humanoid robot to match template trajectories.

Based on the NAC algorithm, Guenter et al. [2007] developed an approach where

RL is used to cope with unforeseen obstacles. In cases where the information

provided by demonstrations is not sufficient to reach the goal (final position),

the robot uses RL to learn how to avoid the hurdle and reach its goal. As it can

be seen in Figure 3.2, the demonstration is encoded and generalized with GMM

to obtain a single model trajectory. The parameters of the GMM are the input

for the RL module. The RL generates a modulation variable, which feeds the

Dynamical System, where the control commands are generated. Simulations

assess whether the goal is reached and finally a trajectory is executed. If the

task fails, another modulation variable is calculated by the RL module. The

advantage of this approach is the usage of a simulation, as hundreds of trials

with the real robot are not practical and time consuming. With this method a

way around the obstacle can be learned within seconds. However, this approach

requires a precise model to use simulation for learning behavior. Kober et al.

[2013] pointed out that only for stable tasks the learned behavior can be applied

to the real world. Perturbations like contacts or friction are hard to model, thus

learning in the real world gives better results than simulations. As a consequence
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Figure 3.2: The principle of RL as post-training optimization method (Source:

[Guenter et al., 2007])

simulations are not suitable for in-contact tasks, despite their advantage of fast

learning. Thus RL for in-contact tasks has to be used with real world trials,

which requires considerably more time.

In the work of Guenter et al. [2007] the demonstration was only a tool to limit the

state space initially. In more recent research, Gräve et al. [2010] used demon-

strations to highlight important states and respective actions. The proposed

algorithm compares provided demonstrations with the current situation. If a

demonstration was similar to the current situation, the best action for the cur-

rent state from that demonstration is compared with the action the system

would execute in the current state. If the two actions are too different, the

algorithm asks for another demonstration. However, if the actions are similar

enough, it is safe to let the robot perform RL and explore its environment.

The advantage of this approach is the limitation of human demonstrations to

cases where they are necessary. RL is used if new obstacles are presented and

the deviation between demonstrated information and planned action is within a

defined limit. With increasing number of demonstrations, the RL module could

handle more situations by exploring. The goal was to pick up a cup, which

was placed randomly in a 600 cm2 workspace. Only 15 demonstrations were

used to exemplify the task. A similar approach was chosen by Sakato et al.

[2014]. This approach distinguishes between two cases. If there is an instruc-

tor giving a demonstration, the robot will follow the presentation and learn.

If no demonstration is given, the robot will decide whether it will perform a

reinforced action or a learned action, depending on the similarity of the current

state with the demonstrated state.
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Two main topics in recent research are the creation of robots, suited for more

complex tasks than pick-and-placing tasks, for example surgical robots, and the

use of DMP. Calinon et al. [2014] worked on a surgical robot that can perform

endoscopic surgery. First, a surgeon teaches a robot different via-points, which

the robot has to reach without damaging close organs. The problem of teaching

the robot is the different embodiment of the surgeon and the flexible octopus-

inspired 9-DOF STIFF-FLOP robot. Thus an intermediate step is necessary.

The intermediate step is to demonstrate the task on a stiff robot. Therefore

kinesthetic teaching of the task is performed on a stiff 7-DOF Barrett WAM

robot in gravity compensation mode. The demonstration of the surgeon is used

to extract a reward function. Second, the STIFF-FLOP robot uses this reward

function and performs the task, exploiting its variable body characteristics and

exploring new solutions to find a good policy. The initial demonstration of the

surgeon is deficient due to the different embodiment between the WAM and the

STIFF-FLOP robot [Malekzadeh et al., 2013]. These flaws are compensated

with the refinement by RL, as the STIFF-FLOP learns how to execute the task

with its flexible body and reaches a skill level beyond the demonstration of

the surgeon. This approach was tested in two experiments, one simulated in

software, one performed in a chamber filled with balloons, representing organs.

The robot was able to follow the via-points much closer after the refinement

than by just imitation learning [Calinon et al., 2014].

3.2.4 Reinforcement Learning with Dynamic Movement

Primitives

RL can be used to refine the initial demonstration by updating the weights,

which are initially set with the demonstration [Nemec et al., 2012, Pastor et al.,

2012]. Current development in learning algorithms with DMP are reward-

weighted averaging algorithms like Policy Improvement with Path Integrals

(PI2) or Policy Learning by Weighting Exploration with the Returns (PoWER).

These methods appear to be extremely effective and outperform gradient based

algorithms like NAC. Gradient based algorithms have many parameters that

have to be tuned to result in fast convergence. With reward-weighted averaging

algorithms only the noise variance has to be selected [André et al., 2015, Nemec

et al., 2012, Pastor et al., 2012]. PI2 and PoWER, both a direct development
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of the NAC, introduce noise into the policy parameters to create new possible

solutions. These algorithms can be used to learn the weigths and the goal state

for the DMP. The biggest advantage of the combination of DMP and PI2 is that

it does not need any model or cost function for learning [Pastor et al., 2012].

An improvement to PI2 is PI2-CMA which also estimates a covariance matrix,

which enables to learn inter-parameter relations to increase convergence speed

[André et al., 2015]. Nemec et al. used the PoWER algorithm to teach a robot

with two KUKA LWR arms to pour a certain amount of liquid in a glass, with-

out detecting the current amount of liquid poured (only the motion of pouring

was considered). Two demonstrations were used to generalize the task and re-

duce the dimension of the state-space and PoWER was used to optimize the

volume of poured liquid, while minimizing the amout of spilled liquid for dif-

ferent goal volumes. The experiments demonstrated fast learning rates of the

algorithm [Nemec et al., 2012]. Andrè et al. compared PoWER and PI2-CMA

in simulation. The algorithms were used to optimize the walking velocity of

a bipedal robot for different inclinations of the floor. In all test the PI2-CMA

resulted in higher velocities [André et al., 2015].

3.3 Discussion

IL can be utilized not only to adapt the skills of a robot to new constraints,

but also to improve the skills. Frequently used statistical learning methods

like GMM and HMM have to be modified to allow incremental on-line learning.

Several approaches to overcome the need of predefining the number of Gaussian-

s/states and incrementally learning the parameters of the model can be found in

the literature. With the occurrence of robots providing controllable stiffness and

force sensing, new possibilities to utilize IL arose. These possibilities consist of

helping the instructor to give better additional demonstrations to refine the skill

of the robot and also to teach the robot various levels of stiffness for different

parts of the task. RL is one of the fundamental machine learning areas, which

has been used for decades now. Despite its usefulness, its full potential has not

been discovered yet. The STIFF-FLOP project leads the way in exploiting RL

for optimizing the skill of a robot after the demonstration phase. Currently is

RL in combination with Programming by Demonstration mostly used to cope
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with unforeseen events during the replication of a task, instead of refining the

skill to solve the task.

The use of IL or RL for in-contact tasks is barely researched. IL seems to be best

suited to refine the skills of a robot for in-contact tasks because of its supervised

manner. Using RL for in-contact tasks is challenging, due to the exploration

that is necessary part of RL. The problem is that the robot has to test different

forces between tool and workpiece, thus endangering itself and its environment.

Therefore it is mandatory to find limits for the exerted force and possibilities to

distinguish between wanted and unwanted contacts. Future research is needed

to solve the question how to exploit controllable stiffness of robots for in-contact

tasks and how to assist the instructor during the demonstrations.



Chapter 4

System

This chapter gives an overview of the soft-, middle- and hardware used to imple-

ment an intuitively usable assistance system for PbD tasks. First the hardware

will be presented. This is followed up by a description of the different software

and middleware components and how they interact with each other.

4.1 Hardware

The hardware setup consists of five components: The KUKA LWR4+ robot,

an ATI Mini45 F/T sensor, the KUKA Robot Controller (KRC) with attached

KUKA Control Panel (KCP) and an external computer. Figure 4.1 shows how

these hardware components are integrated.

Foundation of the conducted experiments is the industrial robot KUKA LWR4+,

which is shown in Figure 4.1. The LWR4+ is a kinematically redundant robot

with 7 DOF and is thus able to perform dexterous movements, while avoiding

singularities. Two properties make this robot well suited for implementing the

proactive assistance: Its lightweight design and its torque sensors in every joint

with an additional force sensor in the wrist. The robot weighs only 15 kg (LWR

stands for lightweight robot), while still able to handle payloads of 7 kg. This

property is important to make it manually movable for a human instructor and

thus suitable for kinesthetic teaching as described in Section 2.1. Another fea-

ture of the design is the round appearance of the robot, reducing the risk of
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Figure 4.1: Overview of the hardware setup. The KUKA LWR4+ (1), with

attached F/T sensor and tool (2), is connected to the KRC(3). Connected to

the KRC is the the KCP (4) and the external computer (5).

injury for nearby persons. The second property is the robot’s ability to mea-

sure torques and forces, which has several advantages. On one hand, it allows

active vibration damping to ensure high precision. On the other hand, it facili-

tates the lightweight design with a sagging compensation of the slim and elastic

joints. The robot acts as a spring-damper system, where the desired position,

stiffness and damping can be defined both for joint- and Cartesian space. To

control this system, the LWR4+ is equipped with three control modes: Position

control, Cartesian impedance control and joint impedance control. The control

cycle rate is 3 kHz in every joint and 1 kHz overall, enabling to switch the con-

trol mode within 1 ms [Bischoff et al., 2010]. These frequencies make it possible

to detect and react to contacts and collisions fast, which proves not only useful

in the course of this thesis, but for general aspects of physical human-robot

interaction, e.g. the safety of human and robot.

An ATI Mini45 F/T sensor is attached between the wrist of the robot and the

tool and allows precise measurements of exerted forces and torques within a

force range of 290 N in x- and y-directions, 580 N in z-direction and for torque

a range of 10 Nm in all directions. The resolution is for the force 1/8 N in all

directions and for torque 1/376 Nm in x- and y-direction, and 1/752 Nm in



4.2 Middleware 33

z-direction [ATI, 2015]. The z-axis of the sensor aligns with the z-axis of the

tool frame.

The next component in Figure 4.1 is the KRC, more precisely the KR C2 lr,

with the KCP, an input device for the KRC, attached. The KRC consists of

a control PC, a power unit, safety logic and a connection panel. The control

PC offers a Windows XP user interface and a preinstalled editor for creating,

archiving and running programs written in the KUKA Robot Language (KRL).

The purpose of the KRC is to control the robot and ensure safe operation.

The external computer is an octo core computer using the linux operating sys-

tem Ubuntu 12.04 LTE with a Xenomai real-time kernel. The computer is used

to control the robot through KUKA’s Fast Research Interface (FRI)[Schreiber

et al., 2010].

4.2 Middleware

The creation of robotic applications can be simplified by utilizing middleware

frameworks. In the course of this thesis two frameworks where utilitzed, namely

the Robot Operating System (ROS) and the Open Robot Control Software

(Orocos). The most commonly used framework is ROS, which provides several

useful libraries and tools for controlling robots. It is modularly structured and

thus easy adaptable to many different tasks. But ROS does not support hard

real-time which is required for components of this thesis, e.g. for virtual tool

dynamics. Thus Orocos is used for software components which require real-time

handling. These frameworks are next briefly described.

ROS was created to help programming robotic applications without “reinvent-

ing the wheel” and to reuse software components which have been shared by

universities, companies and individuals [Goebel, 2013]. Software components

in ROS are called nodes and use a publisher-subscriber system to communicate

with each other. Nodes can publish topics with certain message types and other

nodes can subscribe to these topics to get published data.
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Orocos is a toolchain which can be utilized to create real-time software for

robotic applications. Software created with Orocos is structured in components

and deployers.

Figure 4.2: The structure of an Orocos component. (Source: Soetens [2012])

A component, abstractly described in Figure 4.2, executes one or several pro-

grams written in C/C++ or the Orocos Program Script (OPS) in a single thread.

Orocos ensures lock free and thread safe communication within a single or dis-

tributed processes and deterministic execution time during this communication

[Soetens, 2012]. The functionality of components is implemented in operations,

which are plain C/C++ functions. These operations can be used by other

components via operation callers. Communication between components is es-

tablished with ports, which are defined for a certain message type.

A deployer is a file written in OPS and specifies the Orocos environment by

including components, setting their activities and connections and starts the

included components. Components can be defined as peers to each other, which

is a prerequisite to use operation callers. Activities can be defined as periodic,

non-periodic or slave activities which are triggered when other activities execute.

The communication between components is set up as connections between ports.

The deployer also offers a way to communicate with ROS by specifying a stream
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from a port to a ROS topic, so that a ROS node can subscribe to the data of

an Orocos port or publish data to the port.

4.3 Software

The implementation of the incremental assistance system requires a sophisti-

cated software infrastructure that establishes a connection between the external

computer and the robot, commands the robot and guides the user through the

teaching process. The main components are presented in the following sections

and as an overview in Figure 4.3.

Figure 4.3: Overview of the software infrastructure

4.3.1 Fast Research Interface

The Fast Research Interface (FRI) was developed by KUKA Roboter GmbH

[Schreiber et al., 2010] to provide direct low-level real-time access to the KRC

and thus control the robot from an external computer. For the communication

between KRC and external computer the User Datagram Protocol (UDP) is

used with frequencies up to 1 kHz. The FRI is realized as a state machine

providing two different modes: Monitor mode and command mode. The monitor

mode allows to receive sensor and status readings from the robot, but not to

command the robot. FRI is always in monitor mode when started. To be able to

switch to command mode, a sufficient communication quality is required. FRI
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sends a sequence of messages to the external computer and waits for an answer

to evaluate the quality of the connection. In case the timing meets the desired

timing specifications, the user may switch from monitor to command mode.

Within the command mode the external computer can not only receive sensor

readings and status information, but also set the control mode of the robot,

change parameters, for example stiffness or damping values and command the

robot to certain positions and forces.

4.3.2 Learning Framework

Learning primitives from demonstrations requires a learning framework, as de-

scribed in Chapter 2. For the assisted incremental learning approach proposed

in this thesis, an implementation of the DMP framework was utilized. This

implementation was initially implemented by Steinmetz [2013] in the course of

his master’s thesis and is described there in detail. The imitation part of this

existing framework, where learning and execution are implemented, has been

largely utilized and extended where necessary. The learning framework consists

of three phases: Imitation, learning and execution. In the imitation phase an

Imitator object is created, which takes parameters, for example the prefix of

the recorded files and parameters for the DMP, and creates a Demonstration

object for every recorded trajectory. These demonstrations are then passed

on to the learning class, which uses LWR to learn the parameters during the

learning phase. These parameters are then the input for the DMP to calculate

the next desired state. In the execution phase these states are interpreted, de-

pending on whether they are represented in joint or Cartesian space, and then

commanded to the robot.

4.3.3 ProactiveAssistance

The usability of kinesthetic teaching is strongly dependent on the weight and

thus the inertia, of the robot. The user has to overcome this inertia to move

the robot, which can result in jerky or inaccurate movements in case of high

inertia. To address this problem, virtual tool dynamics were implemented which

reduce the effective inertia of the robot and thus the robot feels lighter and
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more movable to the user. This sort of assistance was implemented within the

Orocos component ProactiveAssistance. An implementation in Orocos was

necessary to maintain real-time assistance and to avoid delays which would

disturb the user during the demonstration. First, the component sets the robot

in Cartesian impedance control, to be able to change the stiffess and damping

and allow kinesthetic teaching. The internal control law of the controller is

[Schreiber et al., 2010]

τcmd = JT (kc(xFRI − xmsr) + FFRI +D(dc)) + fdynamics(q, q̇, q̈),

where τcmd is the commanded torque, JT the transposed Jacobian , xFRI the

Cartesian setpoint position, kc(xFRI − xmsr) the Cartesian stiffness, FFRI the

Cartesian force/torque, D(dc) the damping term and fdynamics(q, q̇, q̈) the dy-

namic model of the robot [Schreiber et al., 2010].

The exact dynamic model of the robot is not available, however it can be said

that, if frictions are ignored, the general dynamic model of the robot is of the

form

JT (M(x)ẍ+ C(x, ẋ)ẋ+ g(x)) = τcmd

where M(x) is the symmetric, positive definite inertia matrix, C(x, ẋ) is a com-

bined matrix for the Coriolis and centrifugal terms, g(x) is the gravity vector

and τcmd the commanded torque [De Luca et al., 2006]. C(x, ẋ)ẋ and g(x) are

part of fdynamics(q, q̇, q̈), which, according to Schreiber et al. [2010], represents

the dynamics of the robot. Placing the dynamic model in the control law gives

M(x)ẍ+C(x, ẋ)ẋ+ g(x) = kc(xFRI − xmsr) + FFRI +D(dc) + fdynamics(x, ẋ, ẍ)

It is assumed that C(x, ẋ)ẋ and g(x) are equal to fdynamics(x, ẋ, ẍ). Then it

follows that

M(x)ẍ− kc(xFRI − xmsr)−D(dc) = FFRI

Second, the component reads the measurements of the external forces and

torques FFRI from the F/T sensor inside the wrist of the robot. A factor α is

defined by which the measured force and torque is multiplied (FFRI := α ·FFRI)

resulting in

1

α
M(x)ẍ = FFRI +

1

α
kc(xFRI − xmsr)−

1

α
D(dc)

The division of M(x)ẍ by α reduces the effective inertia perceived by the user

and renders the robot easier to move.
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This approach eases kinesthetic teaching noticeably. However, it presents a

serious drawback for in-contact tasks. In fact, the friction between the tool and

environment causes the tool to bounce, as the vibration caused by overcoming

the friction is amplified by the system. To tackle this problem the ATI F/T

sensor is utilized to detect contacts of the tool with the environment. If such a

contact is detected, the Cartesian stiffness is increased in z-direction. The result

is a “magnetic” effect, which keeps the tool in contact, until the user exerts force

in negative z-direction, thus lifting the tool. This prevents bouncing motions

effectively, while maintaining the possibility for the user to exert the desired

force.

4.3.4 AssistanceController

The AssistanceController is the centerpiece of the software developed and

tested for this thesis. It is implemented as a ROS node and offers three modes

to the user:

• Training a new skill

• Add new demonstrations to an previous training

• Replaying the learned skill

Teaching the robot new skills incrementally is done with several demonstrations.

First an initial demonstration is provided to the robot using ProactiveAssis-

tance, as described in the previous section. This demonstration is recorded and

an Imitator object is passed to the learning framework to calculate an initial

model. The robot then sets itself back to the starting position and the first

iteration of incremental learning begins. At the beginning of every iteration

the stiffness of the robot is increased and the robot moves along the trajectory

learned so far. This behavior constitutes help for the demonstrator in two dif-

ferent ways. With low stiffness settings the demonstrator perceives the robot

moving slightly forward, which reduces the effort for the demonstrator to over-

come the inertia and renders the robot less unsteady. With higher stiffness

values the robot performs the task increasingly autonomously. The mental ef-

fort of the demonstrator is reduced from giving the whole demonstration and
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ensuring that the positions and forces are demonstrated as desired to observing

the robot and correcting the behavior of the robot where necessary. Due to the

fact that every demonstration differs at least slightly from other demonstrations

in speed and position, the learned trajectories require an alignment. After ev-

ery demonstration the recorded trajectory is aligned in time with the previously

recorded trajectory by warping the timelines of both trajectories.The result are

two trajectories whose corresponding positions lay at the same points in time.

The procedure of the alignment is described in detail in Section 4.3.4. If the

user wishes to give more demonstrations, the next iteration starts. The Assis-

tanceController leads the instructor through this process while commanding

the robot, recording and aligning the trajectories and communicating with the

learning framework. Therefore, the controller can be divided into three parts:

The finite state machine, imitation and Dynamic Time Warping (DTW).

State Machine

The state machine shown in Figure 4.4 consists of four states: Start, Record,

Add/Execute and End. After AssistanceController is started the state ma-

chine is in the Start state. In this state the user is presented with three choices:

1. training a new skill; 2. adding new demonstrations to the current primitive

or 3. executing the learned primitive.

In case the user chooses the first option, the state machine moves to the state

Record. In this state the system is in gravity compensation mode and the user

is prompted to move the robotic arm to a starting position. The recording of

the initial demonstration, aided with the ProactiveAssistance, starts imme-

diately after the user confirms the starting position. Once the demonstration

is done, the state machine switches into the Add/Execute state to start the

imitation and check whether the imitation was successful and whether the user

wants to record an additional demonstration or replay the skill. In cases where

the imitation could not be completed or where the user quits the program, the

state machine transits into the End state, where the state machine and hence

ProactiveAssistance is commanded to stop. If the user chooses the second

option thus resuming teaching of a skill from a point he stopped earlier, the

state machine transits directly from Start to Add/Execute, while defining all

necessary parameters, e.g. stiffness, to proceed from the desired point. If the
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Figure 4.4: Abstract description of the state machine of AssistanceCon-

troller.

user wants to replay a learned skill without adding new demonstrations, they

choose the third option in the Start state. Then the state machine transits

from the Start state to the Execute state while setting a high stiffness.

Imitation

The imitation module is the implementation of the incremental learning ap-

proach and has two purposes: First, replaying the current model of the motion

primitive while recording the demonstration of the user and second, setting the

stiffness for the current iteration. The first aspect allows to physically guide

the robot during the imitation of the motion primitive. The benefit of this ap-

proach is that the robot helps the user to overcome the inertia of the robotic

manipulator, which results in more natural movements. Furthermore the user

can concentrate on correcting the trajectory where it was not sufficient in pre-

vious executions. This reduces the complexity of teaching the skill. The latter

purpose of the imitation module is to increase the stiffness of the robot incre-

mentally. During the second demonstration, the robot moves autonomously

according to the first demonstration. Therefore, the user can move the robot
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more freely, assisted by the proactive behavior of the robot. The robot’s as-

sistance grows incrementally after each demonstration, as the robot makes use

of the previously received information, takes into account the user’s corrections

and becomes more stiff. This process helps the user to incrementally focus on

the necessary corrections rather than on the execution whole task, thus increas-

ing accuracy. The stiffness value S for the iterations is calculated as

S = 2i−1 · 100N
m

where i is the current number of demonstration. A problem in incremental

learning is that as the number of demonstrations increases, the relative weight

of each demonstration becomes smaller. Therefore, the imitation module for-

gets old demonstrations and the learning framework utilizes only the last three

demonstrations, which are weighed equally, to learn the parameters with LWR.

After each imitation, the user has to temporarily pause the recording of new

demonstrations and the imitation module will trigger the DTW module.

Dynamic Time Warping

A problem that appears with the approach described above is the variability of

human demonstrations. Each demonstration will differ from the other ones for

speed, trajectories and forces, which renders problems for the learning frame-

work. To reduce the impact of this problem, DTW has been implemented, to

align the recorded trajectories with respect to time. The orientation of the tool

is set when moving the robot to the start position. The force between tool and

surface is coupled with the position, as at a certain point of the trajectory a

certain force has to be applied. Therefore force values are stored together with

the respective positions so that force-position pairs remain the same after the

time warping. Thus only the trajectories are considered for the alignment. To

align two trajectories s and t, the algorithm first measures the distance between

them by calculating the distances of every point of s with length N to every

point of t with length M . As the original DTW algorithm was developed for the

one dimensional problems of speech recognition, the distance calculation had to

be extended for three dimensional trajectories. The cost function was changed

to |(sx − tx)| + |(sy − ty)| + |(sz − tz)|, which takes all three dimensions into

account (line 8 in Algorithm 1 in AppendixA). These distances are saved in a

N ×M -matrix. Second, a backtracking algorithm is used to find a path, called
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warppath, through the matrix that yields the shortest distances [Müller, 2007].

Every item of the warppath can be referenced by its index inside the matrix.

These indices are stored and used to warp the trajectories and align them. For

better illustration, DTW algorithms are sketched in Appendix A. Calculating

the distance matrix is shown in Algorithm 1, calculating the path in Algorithm

2 and the warping process in Algorithm 3. With this warping process the length

of the warped trajectories equals the length of the warppath and is longer than

s or t. The more warping is required, the longer the warppath and the resulting

trajectories are. This stretching of the trajectories results in parts where the

position remains constant. To avoid that the robot stagnates at positions where

it should keep moving these expendable parts are removed from the warped tra-

jectory. An issue that might result from this approach, although it has not been

observed so far, is that the execution speed might clearly differ for parts of the

trajectory than the speed during the demonstration.



Chapter 5

Experiments and Results

Evaluating physical human-robot interaction is a challenge as quantitative mea-

surements reveal the performance of the robot, but also the human side has to

be considered. Therefore, the evaluation of the assistance system is done in two

parts. The first part will show the benefit of the assistance on learning different

geometrical shapes. The second part will utilize a user study to evaluate how

intuitive and easy the system is to use and how novice users interact with the

system.

5.1 Quantitative Evaluation

A quantitative evaluation of the implemented system is difficult, as the capa-

bility of the user to kinesthetically teach a task has a severe influence on the

resulting learned primitive. First, the influence of DTW on the learned skill will

be investigated on an example of a single teaching trial of teaching the robot to

draw a square. Then drawing a square and a circle were chosen as tasks to show

the performance of the system. Drawing a square, which requires straight lines

and sharp angles, can show the behavior of the system in cases where the de-

sired primitive has sudden changes of direction. Drawing a circle is a relatively

difficult primitive, as a constant radius has to be maintained, and thus suitable

to reveal the impact of the assistance compared to unassisted training. To cope

with the difference in position over several demonstrations, every teaching trial



5.1 Quantitative Evaluation 44

was performed ten times to reduce the impact of the human influence and to

give meaningful results.

5.1.1 Dynamic Time Warping

The implementation of DTW was necessary as the difference in speed during

demonstrations results in a poor replication of the primitive. This is due the

fact that the learning system outputs the mean of the learned trajectories. The

Figure 5.1: The learned motion primitive of the same demonstrations with

DTW and without DTW.

assisted incremental system was used to program a square with kinesthetic

teaching. Five iterations were performed, the first one fully compliant with

virtual tool dynamics and then with increasing stiffness (200 N
m

, 400 N
m

, 800 N
m

,

1600 N
m

). The recorded trajectories were saved in their original form and, from

the second iteration on, time-aligned with the previous demonstration. The

resulting primitive, learned from the last three demonstrations, was replicated

twice with a stiffness of 4000 N
m

, once using the original trajectories and once

using the DTW-aligned trajectories. The difference can be seen in Figure 5.1. It

is apparent that the square primitive extracted using DTW (blue square) shows

distinct corners. On the opposite, the primitive learned from non DTW-aligned

trajectories, although extracted from the same set of demonstrations, does not
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capture the quality of sharp corners. The corners are rounded and changes

in direction occur too early. This emphasizes the importance of trajectory-

alignment for incremental learning approaches.

5.1.2 Training the robot to draw a Square

The goal of this experiment was to measure the influence of the assistance on the

end result compared to teaching trials performed without assistance in gravity

compensation mode. To express the result in numbers the mean square error

was chosen, which is the distance of the result compared to a perfect square.

Experiment

In order to get comparable results, a template square was programmed in KRL,

representing a hardcoded trajectory. The four corner points of the template

were marked on sheets of paper with 10 cm distance between them, as dis-

played in Figures 5.2 and 5.3. Then the robot was trained by the author of this

thesis to draw a square on the prepared paper sheets with a standard marker,

whose tip had a diameter of 4 mm. The experiment consisted of ten teaching

trials in gravity compensation and ten teaching trials with the assistance sys-

tem. The assistance system used virtual tool dynamics and set the robot fully

compliant for the initial demonstration. Four iterations were performed with

stiffness values of 200 N
m

, 400 N
m

, 800 N
m

and 1600 N
m

. The teaching trials in

gravity compensation were performed by grabbing the robot by its wrist. The

initial demonstrations for the assisted trials were also performed by grabbing

the robot by its wrist. This was necessary to not disturb the force readings of

the ATI F/T sensor in z-direction so that the detection of contacts work (see

Section 4.3.3). However, as the increased stiffness during the iterations prevent

the tool from bouncing over the surface due to friction, the ATI F/T sensor

was used to measure the interaction between the human and the robot more

precisely. Therefore all iterations after the initial demonstration are performed

by grabbing the tool directly.
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Results

The result for the teaching trials in gravity compensation mode can be seen

in Figure 5.2, which shows the result of the ten teaching trials in gravity com-

pensation mode (orange) to the template (blue). It is apparent that it is hard

Figure 5.2: The replications of ten teaching trials in gravity compensation mode

compared to the template

to move the robot only in the desired direction to connect the marked points

with straight lines. The teaching trials were performed clock-wise, starting at

the upper right corner and ending in the same point. Directly after the start

large jerky deviations from the template are visible, as the inertia of the robot

had to be overcome. To draw a straight line a robot needs to perform a syn-

chronized movement of several joints. Kinesthetic teaching without assistance

results in the passive movement of several joints that prevents the achievement

of a smooth movement for the user steering the robot. The mean distance of all

trajectories trained in gravity compensation from the hardcoded perfect square

was 2.16 ± 1.10 mm. Figure 5.3 reports the results achieved with the incre-

mental assistance system. The mean distance to the template was 1.96 ± 0.84

mm. The first teaching trial had a mean distance of 3.4 mm. If this result is

omitted as an outlier, the mean distance of all results from the template would

be 1.80± 0.53 mm. Taking the size of the tip of the pen into account and that

only the corner points were marked, that is a very close result to what was pro-
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Figure 5.3: The replications of ten teaching trials with the assistance system

compared to the template

grammed in KRC. The assistance system shows its strength in comparing the

straightness of lines. It is apparent that the squares were much straighter than

the results trained in gravity compensation mode. Training with the assistance

system results in squares much more similar to the template, while showing

straighter lines and more distinct corners.

The impact of the assistance can be seen clearly in Figure 5.4. The initial

demonstration is very jerky, barely displaying any straight parts. However,

after assisted training, the overall performance has clearly improved. The whole

progress of an assisted trial, from the initial demonstration to the result, can

be seen in Figure 5.5. Figure 5.5 also visualizes the interaction between human

and robot. A general problem with using the force data is that the F/T sensor

does not only measure the forces exerted by the user. As the pen is attached to

the ATI F/T sensor, forces that occur at the tip of the tool due to friction are

measured too. Using the F/T sensor in the wrist is no solution as the readings

from that sensor contain also the forces exerted by the robot itself. To give

a clearer figure of the interaction between the robot and the human, the force

component that is not parallel to the movement of the robot was calculated.

This force component better constitutes the correctional forces exerted by the
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Figure 5.4: Comparison of initial demonstration and result

user. Nevertheless, this solution is not perfect, as it can be seen in the plot of

the result. This last plot depicts the replication of the skill without involvement

of the user and therefore shows the forces perpendicular to the movement solely

exerted by the robot. Despite the mixture of origin for the measured force,

the user part can be recognized in higher force readings, represented by longer

arrows. It can be seen that the overall amount of exerted forces decreased

with progress of the teaching trial and forces were exerted more punctually

for correction purposes. This confirmed that the behavior of the user changed

from giving the whole demonstration on its own to just guiding the robot and

correcting where necessary.

5.1.3 Training the robot to draw a Circle

A further experiment was conducted, comparable in terms of modality and

complexity, to study the impact of the assistance system on a relatively difficult

task.
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Figure 5.5: Progress of an assisted teaching trial of a square. It can be seen

how the trajectory becomes a better square and the correctional forces that has

been applied. Correctional forces applied towards the left side of the movement

direction of the robot are marked green, forces applied to the right side are

marked red.
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Experiment

Similar to the previous experiment, a circle was programmed in KRL to have

a reference. This reference was used to mark four points on paper, which lay

on two perpendicular lines, to denote the dimensions of the circle, which had a

radius of 4.9 cm. For better clarity the markers are displayed in Figure 5.6 and

5.7. Then ten circles were trained in gravity compensation mode and afterwards

ten teaching trials with the assistance system were performed. The distance

measurement was also chosen as a metric for this experiment. Combined with

visualizations of the results it gives a good impression of the improvements.

Results

The results of the teaching trials in gravity compensation mode can be seen

in Figure 5.6. The task is harder than the previous one, as apparent from

the comparison of Figures 5.2 and 5.6. In fact, the shaky curves that barely

make their way through the given marks could hardly be called circles. At the

uppermost part of the circle the results exhibit a smaller deviation from each

other. However, around the remaining marks the drawn curves lay within a

range of 1 cm apart. This result can also be expressed in the mean distance

from the template, which is 5.68 ± 4.78 mm. The high standard deviation is

a particularly eloquent indicator of the inaccuracy of teaching trials in gravity

compensation.

Better results were achieved with the aid of the assistance system, as can be

seen in Figure 5.7. Although still far from perfect circles, the drawn curves were

much closer to the suggested template. The top, bottom and left marks were

met fairly close (considering the tip size of the pen). This was also reflected in

the mean distance from the template of 3.18± 1.91 mm. This shows that with

the aid of the assistance the user was able to draw significantly more accurate

circles.

An example of the gap between initial demonstration and result, and thus the

impact of the assistance system, can be seen in Figure 5.9. The general impres-

sion that the use of the assistance system results in rounder circles is affirmed.

A whole teaching trial during assisted training, with visualized perpendicular
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Figure 5.6: The results of the teaching trials in gravity compensation mode

compared to the template

Figure 5.7: The results of the assisted teaching trials compared to the template
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forces (similar to the previous case), can be seen in Figure 5.8. After the initial

demonstration comparatively strong and consistent correctional forces are ap-

plied during the first iteration. During the second iteration correctional forces

are mostly applied immediately after the start of the demonstration. In the

following demonstrations most of the force was exerted at the end point. The

force reading of the result shows the forces measured during reenactment of the

learned task by the robot alone, i.e. without any direct interaction with the

user.

5.2 Qualitative Evaluation

To evaluate how easy and intuitive the system is to use and to understand how

novice users perform with the system, a user study was conducted, inspired

by the study performed by Wrede et al. [2013]. Ten participants performed

the test in two cases and were asked to take part in a survey afterwards. One

participant was excluded from the analysis as a failure occurred during the

teaching trial. The remaining participants were aged between 23 to 28, of

whom six were males and three females. The origin of the participants is highly

diverse with participants from Germany, Netherlands, India, Bangladesh, Spain

and China. The exact composition of origin and educational level is reported in

Figure 5.10. Seven participants stated they have prior experience with robots,

of whom five have experience with robotic arms, one with robotic hands and

one with simulated robots. Six participants rated their manual skills as good,

while three stated they have bad manual skills.

Five hypotheses were tested:

• The assistance system is easy to use

• The assistance system is not perceived as threatening

• User have a better overall experience with the assistance system

• The robot is easier to handle with the assistance system

• The results are more accurate with the assistance system
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Figure 5.8: Progress of an assited teaching trial of a circle with correctional

forces visualized.Correctional forces applied towards the left side of the move-

ment direction of the robot are marked green, forces applied to the right side

are marked red.
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Figure 5.9: Example of the difference between initial demonstration and result

of an assisted teaching trial

For comparability two tasks were studied: Case A consisted of training the

robot to draw a square in gravity compensation mode and case B in training

the same skill with the assistance system.

5.2.1 Setup

The study was divided into four parts. First, both cases were demonstrated to

show the participants how to use the robot. In the second part, the participants

had the possibility to try both cases on their own. For case A the robot was in

gravity compensation mode and participants could move the robot freely. To

get acquainted with the gravity compensation the users were asked to draw two

squares. For case B the users were asked to draw a square using virtual tool

dynamics fully compliant (i.e. the robot actively follows the force applied by the

user) and then with a stiffness of 400 N
m

, so the user acquired a feeling for the

system. After this warm-up phase both cases were tested in teaching trials. As

all participants were new to the system, learning effects have to be taken into

consideration. Therefore half the participants started the teaching trials with

case A, the other half with case B. This procedure was necessary to avoid biasing
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the results towards the case tested last. For comparability the users were asked

to train the robot to draw a square and the corner points of the square were

marked on the paper where the participants drew on. For case A the users were

asked to train four squares in total in gravity compensation. The user had a free

choice where to grab the robot, but all participants grabbed the robot at its wrist

(as it was demonstrated in the first part). Then the recorded trajectories were

batch learned with the DMP framework and the result shown to the participant.

For case B the participant was asked to give an initial demonstration by grabbing

the robot at its wrist and then three additional demonstrations with stiffness

values of 200 N
m

, 400 N
m

and finally 800 N
m

. The last three demonstrations were

performed by grabbing the tool directly. Then the result from this teaching

trial was presented to the user. The last part of the study consisted of a survey,

that consisted of questions about the participants, both cases and a general

comparison. The questions and the results are described in Section 5.2.2.

5.2.2 Results

The analysis of the results is divided into two parts. In the first part the result

of the survey will be analyzed while the second part considers the result of the

teaching trials. For most questions, participants were asked to give a rating

of 1-5 with 1 as very bad or strong disagreement to 5 as very good or strong

agreement. To better compare the results between case A and B a statistical

hypothesis test, namely the Wilcoxon Signed-Rank Test [Wilcoxon, 1945], was

performed.

Survey

The rating of the simplicity of the system was 4.00±0.87 in case A and 4.33±0.71

in case B with a p-value of 0.5625 as displayed in Table 5.1. The intuitivity was

rated with 3.78± 0.83 and 3.89± 0.93 and has a p-value of 1.0000. This reflects

that teaching the robot a new skill is perceived within the participants as a bit

simpler with the assistance than without, while there is almost no difference in

terms of intuivity. For both ratings no statistical significance can be identified.

A greater difference was perceived in the quality of the result. The result with

gravity compensation was rated 3.67± 1.22, while the result achieved with the
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Figure 5.10: Distribution of origin and educational level of participants

Figure 5.11: Answers for the question whether the intensity of assistance should

change

Case A Case B

Question Mean SD Mean SD P-value

Simplicity of handling 4.00 0.87 4.33 0.71 0.5625

Did the handling feel intuitive 3.78 0.83 3.89 0.93 1.0000

How would you rate the result? 3.67 1.22 4.22 0.67 0.3125

Was the handling physical demanding? 1.89 1.05 2.11 1.27 0.5000

Was the handling mentally demanding? 1.78 1.30 2.00 1.32 0.7500

Table 5.1: Mean results for the experience in both cases A and B
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Question Mean SD

How would you rate your manual skills? 3.33 1.00

Was the assistance helpful? 4.56 0.53

Did the interaction with the robot feel awkward/threatening? 1.56 0.53

Table 5.2: Additional statements of the participants

assistance was rated 4.22± 0.67. The variance shows that the participants were

less certain how to rate the result in case A and also gave it a worse rating. In

case B the result got a distinctively better rating with a higher certainty. The

difference between the ratings of the result is indicative of an improvement but

with a p-value of 0.3125 not statistically significant. Both physical and mental

demand were rated a bit higher for the assistance system with 2.11± 1.27 and

2.00 ± 1.32 over 1.89 ± 1.05 and 1.78 ± 1.30. Also in these both cases are the

difference not statistically significant. In general, the assistance was perceived

as very helpful with a rating of 4.56± 0.53. 33% of all participants wished the

robot would help more, 56% stated that the assistance is good as it is, while 11%

would have preferred less help. For better clarity these results are summarized

in Table 5.1 and 5.2 and Figure 5.11.

Teaching Trials

The teaching trials of the participants were recorded to be able to evaluate the

performance of the system when utilized by novice user. The four demonstra-

tions given without assistance were batch learned and the learned trajectory

executed and recorded. These results can be seen in Figure 5.12. Figure 5.13

shows the results which were achieved with the aid of the assistance system. De-

spite the fact that the trajectories trained in gravity compensation mode were

batch learned and thus every plotted result is the mean of four demonstrations,

the lines are unsteady and curved. On average the assistance helps the user

to give better demonstrations. The results lie closer together and the lines are

mostly more straight. This is also reflected in the mean distance of the trained

trajectory from the template. Unassisted teaching trials result in a trajectory

which has an average distance of 5.09 ± 3.68 mm while the usage of the assis-

tance results in a distance of 2.96± 2.50 mm. Altogether the results of case B
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Figure 5.12: Learned trajectories based on the teaching trials of novice users in

gravity compensation mode

Figure 5.13: Learned trajectories based on the teaching trials of novice users

aided with the assistance system
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are closer to a square than the results of case A. However, a distinct difference

to Figure 5.3 is visible. The teaching trials of Section 5.1 were performed by

an experienced user, thus the difference is attributable to a different level of

experience with the system. Nevertheless it can be stated that a distinct im-

provement of demonstrating skills to the robot can be achieved by novice user

who use the system for the first time. The results described in Section 5.1.2

suggest that an even greater improvement is possible if the user has more time

to get acquainted with the system.

5.3 Discussion

The conducted experiments presented in this chapter show clearly an improve-

ment of programming a skill by demonstration with the assistance system over

unassisted teaching trials. The quantitative evaluation shows that an experi-

enced user can achieve results for a drawing task that can be close to the hard-

coded template. To explore the interaction between robot and novice users, a

user study was performed that showed a distinct improvement in the quality

of the learned skill, which can be achieved without prior experience with the

system or the particular robot.

Part of the quantitative evaluation was the demonstration of the necessity of an

alignment of demonstrated trajectories. However, the utilized DTW algorithm

is only designed to work with two trajectories. This yields a problem that

emerges when the results of novice user are analyzed. Despite the use of DTW,

most results exhibit rounded corners. This is due the fact that trajectory t1

gets aligned with trajectory t2 and, after the second iteration, the resulting

alignment t12 with trajectory t3. The alignment of t12 and t3 is denoted as t23.

Naturally there is a discrepancy between the alignments t12 and t23, which is

smaller than the discrepancy between t1 and t3, but can be big enough to result

in a smoothening of sharp changes of direction. The conclusion is that DTW

can improve the quality of a trained skill greatly, as shown in Section 5.1.1, but

has its limits if demonstrations differ highly in timing.

To illustrate the impact of the assistance system two different primitives were

trained by an experienced user with and without the assistance system. It
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is apparent that it is hard to train new skills in gravity compensation without

further assistance, as the resulting trajectories tend to be unsteady and far away

from desired positions. However with the aid of the assistance system results

were achieved that are at least better than the results achieved with gravity

compensation, for example at teaching the robot to draw circles, or even close

to perfect representations of the primitive, in the case of drawing a square.

During the user study five hypotheses were tested. The first three were that

the assistance system will be perceived as easy and intuitive to use and that

the interaction with the robot will not be perceived as awkward or threatening.

The expectations were fulfilled within the participants. The assisted system got

a better rating then the unassisted method in terms of simplicity. There was

almost no difference between the intuitivity of case A and B, however, both

were rated good. Another result is that no participant perceived the system as

awkward or threatening. The other two hypotheses were that the users prefer

the assisted system and achieve desired trajectories with it. This was confirmed

by the better rating for the results of the assistance system and that the as-

sistance system was rated very helpful, as the quality of the results improved

noticeably. The perception of the improvement of programming a skill from

the quantitative evaluation was reinforced by analyzing the teaching trials of

the participants. On average the trajectories trained with the assistance system

were more steady and closer to the hardcoded template than the trajectories

trained without assistance.

However, the results of the user study have to be seen as indicative, as no

comparison between case A and B exhibits statistical significance. Therefore a

larger user study needs to be performed to confirm the aforementioned observa-

tions. Further improvements have to be done regarding the mental and physical

demand. Despite rated as not very mentally or physically demanding, case B

got a slightly worse rating than case A.

The last question of the user study was how the user would describe his or

her experience with the robot and what should be improved. In general the

users reported a positive experience while suggesting the implementation of ad-

ditional cues during the iterations to indicate the pace of demonstration the

robot assumes based on the previous demonstrations. One issue that appeared

during the user study is that some users gave an initial demonstration slowly,
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but increased the speed of demonstration as moving the robot is easier the more

assistance is offered. The stiffness of the robot is defined as N
m

, meaning it be-

comes harder to move the robot further away from its desired position. The

desired position is calculated from previous demonstrations. The consequence is

that users who gave distinctly faster demonstrations than previous demonstra-

tions ended up pressing against a resisting robot. Users more experienced with

the system tended to have a better feeling for guiding and giving corrections to

the robot. Two participants stated that the robot was at some point hard to

move and one of them suggested smaller stiffness values for the assistance. As

the tested values were relatively low it might be a good approach to increase

the stiffness of the robot in the direction of movement, to make the guidance

more obvious, while having less stiffness in transversal direction.

The system is currently limited to use the same orientation that has been set

after moving the robot to the start position. For the aforementioned tasks this

behavior reduces the mental demand as the user does not have to concentrate

on keeping a desired orientation of the tool. Naturally, this is only feasible for

tasks that do not require various angles between tool and surface. However,

only a factor in the ProactiveAssistance component has to be changed to allow

varying orientations during the demonstrations. So far, the system was only

tested for drawing tasks on a flat surface. Nevertheless, an extension to allow

more sophisticated tasks,e.g. planing, should not require much more than ad-

justing certain variables. An open question is how the system would perform

for tasks that requires a certain timing, e.g. playing an instrument. The current

implementation of DTW has a similar execution timing, i.e. which movements

are performed at a certain point of time, than the demonstration timing, yet

the difference and possible implications have to be tested.
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Conclusions

The goal of this thesis was the creation of a system to assist users in providing

better demonstrations of a skill to a robot and thus allowing a user to train

a robot in an easy, intuive and flexible way, especially for skills that are hard

to program because of contact forces, uncertain and unstructured scenarios and

similar reasons. From the analysis of the general framework of PbD, Incremental

Learning stood out as a promising method to assist and facilitate the user during

demonstrations of the task, being complementary to the natural and intuitive

user experience promised by PbD. Incremental Learning is suited for usage in

an assistance system, as it is a supervised method that allows a user to improve

the trained skill where necessary, while having control over the forces exerted

by the robot. Accordingly, the system presented in this thesis was implemented

as an incremental approach, extended with virtual tool dynamics, that provided

increasing assistance with increased knowledge of the task. Finally, the system

is evaluated with respect to its performance, simplicity, intuitivity and usability

by novice users. The experiments showed a distinct improvement of the prim-

itives learned from assisted teaching trials over unassisted demonstrations for

experienced users. Furthermore the user study revealed that the system is easy

and intuitive to use and can also improve the demonstrations of novice users

greatly.

The work of this thesis is based on the infrastructure implemented by Steinmetz

[2013]. The contribution of this work is to extend the existing infrastructure

to an assistance system. The implemented system is based on two main ideas

with the aim to assist a user in giving better demonstrations. The first idea
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was to reduce the effective inertia perceived by the user, making the robot

easier to move. This was achieved by implementing virtual tool dynamics. The

second idea was to utilize incremental learning to enable the user to physically

guide the robot during the execution of tasks. This method allows to teach

natural movements. Additional to assisting the user the system improves the

quality of learned trajectories by using Dynamic Time Warping. Various paces

during demonstrations result in a primitive that can be rather different from

the intended primitive, e.g. distinctive elements like sharp angles are smoothed.

Dynamic Time Warping was implemented to cope with this problem by aligning

the demonstrated trajectories thus improving the quality of the learned skill.

The experiments reported in this thesis analyze both quantitatively and quali-

tatively the implemented approach. The quantitative evaluation examined the

general performance of the assistance system. It was shown that the assistance

system has a huge impact on the quality of the learned skills. The assistance

system can help the user to train the robot in a way that the accuracy can be

satisfactory once compared to results achieved by hardcoding the robot. The

strength of the assistance system is twofold. It can be utilized by users with-

out programming knowledge and assisted teaching trials are conducted more

natural, simpler, faster and more flexibly than hardcoding the robot, even for

comparably simple tasks like drawing basic geometric figures. Also teaching

trials can be used to program a robot in cases not enough information is avail-

able for hardcoding, e.g. in in-contact tasks. The qualitative evaluation was

performed in form of a user study to show that no knowledge of the particular

robot or experience with the assistance system was necessary to achieve a swift

and obvious improvement in the quality of the trained skill. The assistance sys-

tem was implemented with the demand to be easy and intuitive to use, without

being perceived as threatening. A further goal is to increase the accuracy of the

training phase with respect to unassisted teaching trials. All these demands are

positively addressed. However, a comparison of the results between an experi-

enced user and novice users show that the system can be utilized more effective

by experienced users. Nevertheless, it was shown that even just a few assisted

teaching trials are sufficient to novel users to build a good feeling with the robot

and remarkably improve the overall performance.

Not much research has been performed earlier to examine the possibilities of

incremental learning in combination with kinesthetically teaching with state of
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the art robots like the KUKA LWR4+. The technical literature reports two

approaches similar to the one described in this work. Saveriano et al. [2015]

utilized incremental learning in combination with a LWR4+ to kinesthetically

teach trajectories and null-space motions. In their work the authors use incre-

mental learning to add several subtasks to a main task, e.g. avoiding obstacles

while following a trajectory, and to refine the learned end-effector trajectory.

In abstract terms, the multi-priority kinematic controller implemented in the

approach by Saveriano et al. [2015] is more sophisticated than the implemented

AssistanceControl in this work, as it assigns priorities to corrections exerted by

the user and groups these corrections into subtasks. The work by Saveriano

et al. [2015] confirms the finding of this thesis that physically guiding the robot

during execution can result in more natural movements. An earlier approach

was described by Wrede et al. [2013], where a neural network was first trained

to avoid obstacles and then, in a second teaching trial, to perform a certain

task. This approach is not an Incremental Learning approach, as the under-

lying model is not updated. Thus it is not possible to improve the quality of

the trained skill further after one demonstration. But similar to this work, the

approach aims to reduce the mental demand on the user and helps the user

to provide better demonstrations, as only the end-effector position has to be

considered and not the whole joint configuration of the robotic arm. A user

study, comparable to the one presented in this thesis, was performed to show

how the system was perceived by novice users. This study had 49 participants,

split into two groups, allowing the authors to extract useful information with

the analysis of variance. Wrede et al. [2013] showed that an assistance system

can have a positive effect on the usability and performance of kinesthetically

teaching skills on redundant robots, which was also shown in this thesis.

6.1 Future Work

Several aspects need to be improved in order to seamlessly integrate the system

in a work environment.

One of these aspects consists on providing additional cues to the user in or-

der to make the currently learned trajectory visible. This visualization could

be done by projecting the trajectory onto the surface. Another aspect would
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be the different pace of demonstrations. For every point in time during the

demonstration, cues could be provided that denote the position of the tool at

the same time in the previous demonstration. This could help novice users to

utilize the system more efficiently as discussed at the end of Chapter 5. The

user friendliness should also be improved by implementing a graphical user in-

terface, which gives clear instructions to the user and allows an easy selection

of different modes and saving and reloading learned skills. All the necessary

functionalities have already been implemented, but they currently have to be

controlled in a terminal.

So far the system has been tested on relatively simple tasks and it has yet to

be shown that the system can also be generalized to more complex tasks. As

the system is implemented to transfer skills from an expert in his field to the

robot, future work would consist of testing the system with skilled participants

for complex tasks and comparing the results of the teaching trials with results

manually achieved, without the robot involved. It would be interesting to ex-

plore whether and how much the process of transferring complex skills from an

expert to the robot can be improved by the use of the assistance system.

The results of the performed user study indicated an improvement of several

attributes of the assisted system over unassisted teaching trials. However, a

larger pool of participants is required to show that the reported observations

are not only valid within the participants of this study, but are statistical signif-

icant. Furthermore could the assessment of additional data, e.g. time required

to teach skills, provide a better insight in the advantages and disadvantages

of the assistance system. An interesting aspect that could be investigated is

the performance development of the participants, i.e. how the quality of the

demonstrations is dependent on the experience with the assistance system.

Another possible area of future research would be to develop a method that ex-

tends Dynamic Time Warping to simultaneously time align several trajectories

with each other. This would further increase the reproduction quality of skills

trained with different paces, as the discrepancies between several alignments,

which are discussed in Chapter 5, would vanish and reduce smoothing of the

learned primitives.
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Appendix A

Dynamic Time Warping

Input: trajectory s,t

Output: DTW

DTW = array(N,M);

DTW[0,0]=0;

for i = 0 to N do

for j = 0 to M do
minimum = inf;

dist = |(sx − tx)|+ |(sy − ty)|+ |(sz − tz)|;
if i>0 then

minimum = DTW[i-1, j];

if j>0 then
minimum = min(minimum,DTW[i-1,j-1]);

if i==0 && j==0 then
DTW[i,j] = dist;

else
DTW[i,j] = minimum + dist;

end

end

end

Algorithm 1: Calculation of the distance matrix



A Dynamic Time Warping II

Input: DTW

Output: WarpPath

vector<x,y> WarpPath;

i = N-1;

j = M-1;

while true do

if i==0 && j==0 then
break;

if i==0 then
j–;

else

if j==0 then
i–;

else
min = inf;

if DTW[i-1][j]<min then
min = DTW[i-1][j];

i–;

if DTW[i][j-1]<min then
min = matrix[i][j-1];

j–;

if DTW[i-1][j-1]<min then
i–;

j–;

end

end

WarpPath.add(i,j);

end

Algorithm 2: Calculation of the warppath

Input: s,t,WarpPath

Output: s dtw,t dtw

for i = 0 to WarpPath.length do
s dtw[i] = s[WarpPath[i].x];

t dtw[i] = t[WarpPath[i].y];

end

Algorithm 3: Warping the trajectories
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