
Aalto University

School of Science

Master’s Programme in ICT Innovation

Wang Chen

SwipeLauncher:

Fast Application Switch for Mobile Multitask
Optimization

Master’s Thesis
Espoo, August 2, 2015

Supervisor: Professor Antti Oulasvirta, Aalto University School of Elec-
trical Engineering

Instructor: Anna Maria Feit, M.Sc.(Tech)

Aalto University

School of Science

Master’s Programme in ICT Innovation

ABSTRACT OF MASTER’S THESIS

Author: Wang Chen

Title: SwipeLauncher: Fast Application Switch for Mobile Multitask Opti-
mization

Number of pages: 69 Date: August 2, 2015 Language: English

Professorship: Communications and
networking

Code: S-38

Supervisor: Professor Antti Oulasvirta

Instructor: Anna Maria Feit, M.Sc.(Tech)

Abstract:

The growing of functions of smart phones brings the need of handling multitasking
behavior on mobile devices. Nowadays, mobile multitasking takes quite some
steps, especially while looking for a less frequently used application, which brings
the need of optimizing mobile multitasking to make it smoother and faster.

In this thesis, I looked into the collaboration of interface design and prediction
algorithm, aiming at providing a better mobile multitasking solution which is easy
to control and fast to use. My work mainly includes two aspects: new gesture
control method for reducing the operation steps while switching between multiple
applications; new application recommendation algorithm to reduce the time and
effort of reaching target applications.

I applied my findings to a mobile application launcher, SwipeLauncher, which
defined a new gesture control method with fast access to certain applications. To
validate my design, I first used model-based method for making design decisions,
including the menu layout design and number of applications in the launcher.

Afterwards, I conducted an experiment with SwipeLauncher and Android home
screen’s performance for opening designated applications. The evaluation in-
dicators include operation speed, accuracy, system complexity and user com-
fort. SwipeLauncher gets better performance in most dimensions: using
SwipeLauncher is 34.2% faster than Android home screen, with lower error rate
and ignore rate. SwipeLauncher can be used as an alternative of Android home
screen in the future for mobile multitasking optimization.

Keywords: multitasking, mobile, gesture, model-based design

2

Acknowledgements

I wish to thank my supervisor Prof. Antti Oulasvirta for offering me the
opportunity of working on this exciting master thesis topic; inspiring me
for creative solutions of problem solving; and providing me all the helpful
resources in time.

Thanks my advisor Anna Feit for guiding me through the actual op-
eration process as well as the thesis writing process. She gave me lots of
useful suggestions. I’m also grateful to Yunhe Guo for helping me during
the developing process, and turning my prototype into a real working mobile
application.

I would also like to thank the volunteers for participating in my experi-
ment. They not only provided me with data for product evaluation, but also
gave me valuable feedbacks for possible future work.

And thanks to my coordinators, Stefanie Schulz and Aino Roms, their
help makes the thesis project process clearer and smoother.

Thanks to all the members at User Interface Research Lab for the inspi-
rations during the group meetings.

Last but not the least, I appreciate my parents for supporting my study
and caring every part of my life.

Espoo, August 2, 2015

Wang Chen

3

Contents

1 Introduction 6
1.1 Mobile Multitasking . 6
1.2 Launching Application on Mobile Devices 7
1.3 Research Problems . 8
1.4 Scope of the Work . 8
1.5 Outline . 9

2 Related Work 11
2.1 Algorithm Prediction . 11

2.1.1 Context Aware Based 12
2.1.2 Application Usage Sequence Based 12

2.2 Menu Layout . 13
2.3 Gesture Control . 14

2.3.1 FastTap . 15
2.3.2 Finger-Count and Radial Stroke-Shortcuts 15

3 Design Foundation 17
3.1 Goals . 17
3.2 Design Space . 18

4 Design Process 21
4.1 Gesture . 21
4.2 Visual Layout . 24
4.3 Modeling . 26

4.3.1 Which Applications . 27
4.3.2 How Many Applications 27

5 Modeling Based Design Decisions 30
5.1 SwipeLauncher Operation Time 30

5.1.1 KLM Analysis . 30
5.1.2 Operation Time Analysis 31

4

5.1.3 Accuracy . 38
5.1.4 Expectation of Operation Time 38

5.2 Android Original Solutions Operation Time 39
5.2.1 KLM Analysis . 42
5.2.2 Android Original Solution Time Measurement 43
5.2.3 Accuracy . 44
5.2.4 Expectation . 44

5.3 Comparison . 44

6 Experiment 45
6.1 Experiment Design . 45

6.1.1 Factors . 45
6.1.2 Participants . 46
6.1.3 Software and Apparatus 46
6.1.4 Experiment Procedure 48

6.1.4.1 Home Screen 48
6.1.4.2 SwipeLauncher 49

6.2 Experiment Result . 50
6.2.1 Analysis . 50
6.2.2 Result . 52

6.2.2.1 Operation Time 52
6.2.2.2 Error Rate 54
6.2.2.3 Ignore Rate 54
6.2.2.4 Questionnaire 54

6.2.3 Discussion . 55
6.2.3.1 Operation Time 55
6.2.3.2 Error Rate 56
6.2.3.3 Ignore Rate 56
6.2.3.4 Interview . 56

7 Discussion and Conclusion 58

A Informed Consent Sheets 64

B Participant Basic Information Questionnaire 67

C Assessment Questionnaire 69

5

Chapter 1

Introduction

The way of using smart phones has changed a lot in the past few years,
with their functions and interaction method disruptively developed. The
huge amount of available applications greatly enriched the functions of smart
phones, extending smart phone usage method while accompanied with prob-
lems of handling multitasking.

According to Mobile Technology Fact Sheet [16] , over 50% smartphone
users download applications and use their smart phones for extended func-
tions, besides basic functions like making calls and sending text messages.
The most popular services of smart phones include surfing the internet, read-
ing email, getting directions and listening to the music.

However, the current mobile multitasking experience is far from perfect.
According to Accenture Video Solutions Survey 2013 [2], only 6% users think
multitasking on mobile devices is “very satisfactory” when accessing video
services, 39% think it is “satisfactory”, other 55% people think it is “not
satisfactory at all” or “somewhat satisfactory”. Therefore, there should be
huge space for optimizing multitask interaction on mobile devices.

1.1 Mobile Multitasking

In my thesis work, “mobile multitasking” typically refers to controlling more
than one application on mobile, including switching between opened appli-
cations and launching a new application. Here are two scenarios explaining
the current mobile multitasking situation:

• User A is on the bus, looking at Google Map to ensure he will not miss
his station. Meanwhile he is also listening to the music, while switching
between Facebook to see friends’ recent activities. When he switches

6

CHAPTER 1. INTRODUCTION 7

back to Google Map, he does not know why the application has been
refreshed and he loses his previous route information.

• User B is using Adobe Reader for reading a document on her smart
phone. Since there are some unfamiliar words in the document, she
needs to use Google Translate to check the meaning of the words. For
each iteration, she needs to go to application list, search for the Google
Translate icon, open it and translate, then repeat the same steps to go
back to the document. These steps take her quite some time, and each
time when she returns to the document, she needs to look over for her
paused point.

1.2 Launching Application on Mobile Devices

Current smart phones provide three solutions for opening an application:

• Home screen, in which users can choose certain applications and put
them in customized order;

• Application list, which lists all applications in a fixed order (in most
cases, by alphabet order);

• Overview window, which lists recent applications in usage order.

As we can see, opening an application inside application list always takes
some time looking for an application among dozens of applications, though
it is a “safe option” which guarantee the success of finding the application.
The overview window is faster for reaching the most recent applications, but
since it keeps floating all the time, it becomes uncomfortable when users need
to switch between more than 2 applications, or finding an earlier application.

While compared with desktop solutions, since the need of desktop mul-
titasking occurs much earlier, and more works have been done in this field,
there are more completed solutions for desktop multitasking. Common desk-
top multitasking solutions includes task thumbnails in the task bar, using
shortcut keys to switch between opened tasks, spliting the screen by mul-
tiple tasks, etc. However, directly copying desktop multitasking to smart
phone does not work well, mainly for the following reasons:

• Different Screen Size
Small screens limit the amount of displayed information, and also make
it difficult to handle two or more tasks on the foreground at the same
time, as spliting the screen will make the small mobile screen even

CHAPTER 1. INTRODUCTION 8

smaller. On the other hand, it still needs to keep a comfortable size
of operation target, in order to get acceptable targeting time and click
accuracy.

• Different Interaction Methods
Interaction on desktop nowadays highly relays on keyboard and mouse,
which is totally different on smart phone. Recent mobile interaction in-
cludes finger touch (also multi-touch), physical buttons, and sometimes
voice recognition and sensor interaction. Different interaction methods
will therefore leads to different multitasking manifestations.

1.3 Research Problems

Based on previous analysis, mobile multitasking problems can be concluded
into three aspects, which are not really solved by current technologies:

• Visual search
It takes time to look for an application icon, especially applications
that are not often used.

• Performance
Switching between applications is not comfortable enough, it always
requires several clicks on different screen positions;

• Ergonomics
Some applications (usually the left top ones on the screen for right-
handed users) cannot be reached under single hand operation, espe-
cially on large mobile screens.

As a conclusion, the goal of the research is to design a new launcher,
which makes it easier and faster to launch applications on mobile devices.

1.4 Scope of the Work

Based on the three current mobile multitasking interaction problems men-
tioned in section 1.3 Research Problems, I am aiming at designing a new
application launcher, which makes it faster and easier to switch between ap-
plications, by predicting the applications will be used next, thus providing
quick access to them. My work mainly includes these two aspects:

CHAPTER 1. INTRODUCTION 9

• A new gesture-evoked launcher, which provides a more natural in-
teraction experience, while shortening item selection time. This launcher
is different with current launchers, but it is very easy to learn and works
faster than existing ones;

• A new mode for showing applications in the launcher, which
considers both the algorithm accuracy and user predictability. In par-
ticular, it is not only about the highest success rate of finding the target
application in the launcher, but also for the users to be aware of which
applications will appear in the launcher before open it.

1.5 Outline

In the previous sections, I stated the current limitation of mobile multitask-
ing and design opportunities. The following sections will focus on detailed
problem solving methods and approaches.

In chapter 2 Related Work, I will analyze previous work in both launcher
interface design and algorithm prediction. For launcher interface design, I
will focus on operation gesture and layout design, which I want to optimize
in my launcher; on algorithm prediction aspect, I will pick up one of the
algorithms with highest accuracy for my launcher prediction.

Chapter 3 Design Foundation introduces the most important elements
I consider as the foundation for my design. I will analyze the key aspects for
optimizing mobile multitasking behavior, which should be considered for my
launcher design. I will also list the essential functions of the launcher, and
arrange a full design space based on the functions. The design space provides
a qualitative criteria for the following work.

Chapter 4 Design Process is the core work of the thesis, in which
I defined my design space as these aspects: 1) Visual Layout. Inculdes
launcher visual expression and menu layout. 2) Gesture. Inculdes the gesture
of calling out menu, exit menu and select an item among the menu; 3) Menu
Parameters. Includes number of applications in the menu, which applications
will appear in the menu and in which order. For Visual Layout and Gesture
design, I will do several rounds of design sketching and design critique, and
get the best design. For Menu Parameters, I will first analyze the interaction
process for opening an application through my launcher with KLM model,
and decomposed into serveal specific steps; then for each step, I will measure
operation time through theoretical or experimental approaches, and compare
total operation time under different menu parameters and select the best
design.

CHAPTER 1. INTRODUCTION 10

Chapter 5 Modeling Based Design Decisions focuses on the launcher
layout decisions, finds out the best launcher design and compares my launcher
with traditional Android home screen. In this chapter, I will discuss the menu
layout designs based on previous chapters. The decision is based on the
operation time modeling, which includes KLM modeling, visual searching
time and pointing time prediction. Afterwards, the comparison between
my launcher and Android home screen operation is aiming at providing the
convenience of SwipeLauncher.

After decided final best design, I will evaluate my launcher in chapter
6 Experiment, in which I did a user experiment to see how the launcher
works in the real world and how it compares with existing launchers, in order
to verify its usability.

Finally, in chapter 7 Discussion and Conclusion I will talk about the
strength and limitation about the new launcher, look into the expected usage
scenarios and possible future works.

Chapter 2

Related Work

There are quite some works about optimizing multitask behavior, existing
works can be roughly divided into the following three categories:

• Algorithm Prediction
Focus on predicting user behavior, in particular the applications with
highest possibility to be used next, and put these applications at posi-
tions which are easiest to reach. Since algorithm need certain amount
of data to make precise prediction, it usually takes time to collect data
and learn user behavior, the accuracy is relatively low at beginning.

• Menu Layout
Focus on how to use least steps and shortest time to reach an applica-
tion. These methods also consider how to organize menu contents on
an interface, and how to switch between interfaces.

• Gesture Control
Use specific gestures to control a menu. These methods always use
the combination of several unique gestures to select an item in the
menu quickly. Gesture controlled menus always need longer learning
time for new users, but operation time always shortens significantly for
advanced users.

2.1 Algorithm Prediction

Algorithm prediction solutions aim at “let application with highest usage
possibility appears at easiest operation position”. It uses previous user op-
eration data for predicting following user behavior. There are mainly two
kinds of prediction algorithms: Context Aware Based, and Application
Usage Sequence Based.

11

CHAPTER 2. RELATED WORK 12

2.1.1 Context Aware Based

Shin et al. [19] designed a new context model, which collects a wide range of
contextual information on the smart phone, and makes personalized applica-
tion predictions based on a Naive Bayes Model. Shin et al. found these three
issues: last application, cell id, hour of day. They are the most important
factors when predicting next applications to be used.

Based on this context aware model, Shin et al. developed Dynamic Home
Screen application, which is a customized home screen launcher with the top
possibility applications (predicted by algorithm). The applications on this
home screen are ordered by predicted possibility. Among the applications,
the one with biggest possibility increase is highlighted.

Since only a few applications will appear on the Dynamic Home Screen,
it is relatively easier and faster to find an application among them. However,
since the order of applications keeps changing, users need to adjust to a new
menu each time. In this way, visual search time and target pointing time in
the launcher will not decrease much with user learning.

Yan et al. [23] designed a system, FALCON, which uses contexts such
as location and temporal access patterns to predictively launch applications
before they occur, thereby reduces perceived delay for users. FALCON adap-
tively balances latency reduction benefit with energy launch costs. It rep-
resented the predicted applications as pure text, which is slower than icon
(image) recognition, but does not support opening the application through
widget.

FALCON appears as a smart phone widget, which displays the predicted
applications. When users open an application which needs long loading time,
opening time reduces significantly because FALCON has launched the ap-
plication in advance. But for small applications, the optimization is not
significant. On the other hand, users could not open an application directly
through FALCON widget, but still need to open from application list. Figure
2.1 shows the screen shots for context aware solutions.

2.1.2 Application Usage Sequence Based

Parate et al. [15] mitigated long network content retrieval times by accurately
predicting which applications will be used, and prefetching their application
content in order to reduce operation time. They developed an Android wid-
get, AppSensor, which not only provides the top possibility applications, but
also pre-fetch them to shorten users’ waiting time while opening new appli-
cations. Their algorithm treats each application as a “character” in a word,
and an application usage sequence as a “word”. The algorithm uses longest

CHAPTER 2. RELATED WORK 13

preceding character (application) sequence to compute the conditional prob-
ability for the following character (application).

Similar with Dynamic Home Screen, the applications and their order
keeps changing all the time, which takes users longer time to find a target
application in the list.

Figure 2.1: Screenshots of Dynamic Home Screen, PREPP widget and FAL-
CON

2.2 Menu Layout

A good menu layout design should be convenient to enter and exit, and easy
to find an application in the menu. In particular, aiming at using least click
and shortest time to open an application on mobile.

Android uses an overview window to solve this problem. [11] As shown
in figure 2.2, an overview window provides fast access to the recently used
applications. The applications are ordered by usage time, represented by an
application icon and interface thumbnail. Since an interface thumbnail is
much bigger than a single icon, it is faster and easier to select an application
in the overview window rather than in the application list. What is more,
the possibility of selecting a recently used application is always high, since
the applications used together always have high relevance with each other.

However, since the order of applications in the overview window keeps
changing according to application usage, users could not remember or predict
which applications will appear in the overview window, which leads to high
failure rate (of finding an application in the overview window).

Samsung provides a different solution by allowing two or more windows
sharing a screen, of which each screen size is adjustable. [10] This solution is

CHAPTER 2. RELATED WORK 14

especially suitable for switching frequently between two applications, since
it provides two screen views at the same time.

Split the screen by multiple windows is a traditional desktop multitask so-
lution. However, since mobile screen is relatively smaller, separating multiple
windows on small screens makes each window even smaller, reduces content
area size and increases operation difficulty. What is more, the operation is
difficult under one-hand control mode.

Figure 2.2: Android 4.4 on Nexus 5 (left) and Samsung TouchWiz Nature
UX 3.0 on Galaxy Note 3 (right)

2.3 Gesture Control

Gesture control methods focus on how to select certain item by simplest
gesture and least operation steps.

CHAPTER 2. RELATED WORK 15

2.3.1 FastTap

FastTap [12] interface uses two fingers of one hand for menu selection. The
thumb selects first level menu item, and forefinger selects secondary menu
item. This menu works pretty fast for skilled users, and it also supports
pressing two fingers at the same time, without expanding the whole menu,
which even improves operation speed.

Figure 2.3 shows the interaction of FastTap. Before touching, the interface
have a blank grid with triggering button. When evoked, the menu will be
expanded for selection.

The limitation of this design is, it requires the second hand to hold the
device for assistance. Always pressing thumbnail is also not quite comfort-
able.

Figure 2.3: FastTap interface.

2.3.2 Finger-Count and Radial Stroke-Shortcuts

The highlight point of Finger-Count and Radial Stroke-Shortcuts [3] is the
cooperation of two hands. As shown in figure 2.4, the left (non-dominant)
hand is always used for first layer menu selection, while the right (domi-
nant) hand selects an item within the corresponding menu. Finger-Count
method controls by the gesture (finger swipe direction). With this interac-
tion method, users could make very quick respond when they get familiar
with the menu. Instead of pointing at a certain area for selection, users use
a specific gesture at any touchable area instead.

However, this layout only fits menus with two layers, and items in each
layer cannot be over 5. Same as FastTap, it also cannot work under single-
hand mode.

CHAPTER 2. RELATED WORK 16

Figure 2.4: Finger-Count and Radial Stroke-Shortcuts.

Chapter 3

Design Foundation

This chapter introduces the most important elements that are considered as
the foundation of design.

Section 3.1 Goals will analysis key aspects for optimizing mobile mul-
titasking behavior. Chapter 4 Design Process and chapter 5 Modeling
Based Design Decisions will describe how to reach these design goals in
details.

Section 3.2 Design Space will list essential functions of the launcher,
and arrange a full design space based on these functions. Design space pro-
vides a qualitative criteria for future work.

3.1 Goals

The goal of this thesis project is to design a gesture-controlled launcher to
assist mobile multitasking. Mobile multitasking behavior can be optimized
in the following aspects:

• Fast adaption
Different usage frequencies of mobile applications not only depend on
users’ preference, but also affected by contextual factors. If the appli-
cations which will be used next can be precisely predicted and easily
accessible, the operation time of reaching an application can be short-
ened.

• Easy to find target application
Current application launchers are all “static”, only arrange applications
icon based on certain role, such as user definition, alphabet order or
application usage, and always take long time when searching for an
unfamiliar application. There are also some researches about algorithm

17

CHAPTER 3. DESIGN FOUNDATION 18

prediction of next applications in use, but that leads to the frequently
updating of applications order, and thus makes visual search difficult.
If an application list can adjusts to users’ real-time need while ensures
partially stabilized, then finding application should be much easier.

• Simplified Interaction
Most launchers need at least two steps for opening an application: 1)
click to open application list; 2) slide or scroll list to find the target
application (optional); 3) click to open the target application. These
steps could be promisingly simplified, so that users could use less steps
and shorter time to open an application.

• Support for single-hand operation
The launcher could be easily operated with one hand, because some-
times users prefer or have to use smart phone with one hand. Un-
der single-hand mode, the thumb of the dominant hand is most often
used [22]. By arranging all possible operations within thumb’s comfort-
able area, the launcher can be used under single-hand mode as well,
which guarantees efficiency and convenience of operation. Besides, it
could also be customized for left-handed users.

3.2 Design Space

The launcher design should be minimized, so as to ensure operation efficiency
and learnability. In this case, I simplified functions of the launcher in 4
aspects:

• Enter Menu and Exit Menu. The menu can be called out for appli-
cation selection. Users are also able to exit the menu if they changed
their mind.

• Select Application. Users can select a target among candidates pro-
vided by the launcher.

• Full Application List. If the launcher failed with predicting the next
application, users can enter full application list quickly.

• Go Back to Previous Application. Since the possibility of going
back to the last application is always high, it would be useful to have
a short cut for going back to the last application without entering the
full menu.

CHAPTER 3. DESIGN FOUNDATION 19

Based on these functions, a design space is arranged with following as-
pects:

• Gesture. More detail will be discussed in section 4.1 Gesture.

– Call out menu. The gesture of calling out the menu should
be easy to learn, fast to operate, not overlapping with existing
functions, and can avoid misuse.

– Exit menu. The gesture of exit should be easy to find when
the launcher is extended, but should not be considered as a high
priority function.

– Select item. Select an application in the launcher should be easy
and fast, with low error rate.

• Visual layout, which will be discussed in section 4.2 Visual Layout.

– Application arrangement. The way of arranging applications
in the menu, and the order of applications.

– Application visual expression. The visual appearance of ap-
plications in the list. For example, with icon or thumbnail; with
or without application name.

• Menu parameters. More details will be discussed in section 4.3
Modeling and chapter 5 Modeling Based Design Decisions.

– Number of applications, which means how many applications
will appear in the launcher. Allow more applications appear in the
launcher will increase the possibility of finding the target applica-
tion in the launcher, but meanwhile increases the visual selection
time and target pointing time.

– Which applications. The applications appear in the launcher
should have high usage possibility, meanwhile the launcher should
be as stable as possible.

– Order of applications. The position of applications in the
launcher will affect positioning time. Generally, the applications
closer to the launcher triggering point are easier to find and reach.

This parameter is highly bounded with “which applications”. If
the launcher shows the algorithm predicted highest possibility ap-
plications, then the applications will be ordered by possibility,

CHAPTER 3. DESIGN FOUNDATION 20

while the highest possibility application should be placed as eas-
iest to find and easiest to reach; if the launcher shows the most
frequently used applications, then they will be ordered by usage
frequency, and so forth.

Figure 3.1 gives an overview of the design space.

Figure 3.1: Launcher design space

Chapter 4

Design Process

The goal of this chapter is to figure out a unique interaction method, which
could make mobile multitasking as fast and easy as possible. The design
process is mainly divided into these three aspects: Gesture, Visual Layout
and Modeling.

Section 4.1 Gesture starts with three different initial sketches based on
brainstorming, which lead to different interaction gestures and visual lay-
outs. This section analyses the strength and limitation of each design, then
selects an optimal one and refined by design critique [14] and cognitive walk-
through [5] methods.

Section 4.2 Visual Layout looks into several menu layouts, then picks
up a most comfortable and efficient layout based on multiple design factors.

Section 4.3 Modeling builds up an evaluation model of design param-
eters of menus and analyses the impact of design parameters on total oper-
ation time. Further prediction will be discussed in chapter 6 Experiment.
The design will be verified empirically during chapter 7 Discussion and
Conclusion.

4.1 Gesture

During a brainstorming section, I explored various possibilities of launcher
designs which focused on the visual layout and gesture dimensions of
the design space. Afterwards, three typical solutions are selected, as shown
in figure 4.1.

Solution 1: Multi-touch gesture
Use three fingers to touch the screen for menu evoking. Then swipe up
and down to make item selection. Release finger at an application area
to open it.

21

CHAPTER 4. DESIGN PROCESS 22

Vertical lists make item selection easier than horizontal lists, and en-
sures the application list is not overlapped by user’s hand. This design
uses multi-touch for menu control for avoiding gesture overlapping with
existing Android interactions. But three-finger gesture is not the most
comfortable way, and almost impossible to use under single-hand op-
eration.

Solution 2. Dragging button control
Similar with iPhone AssistiveTouch button, the triggering button will
always hovers on the screen. Press down the button to call out the
application list. Drag this button to make item selection. Release at
the selected application to open it.

Finding a button on the screen and pressing is the easiest solution.
However, according to previous users’ feedback about iPhone Assis-
tiveTouch button, having a button always visible on top of the screen
and covering some screen area is quite annoying. What is more, it
is also a common case that users accidently touched the button and
triggered something unexpected.

Solution 3. Swipe to choose
Swipe form left bottom corner to trigger the launcher, and release finger
at an application to open it.

Swiping from left bottom to screen center is a quite natural gesture for
right-handed users (for the left-handed ones, it’s also easy to provide
another vertical mirrored version). Another advantage of this design
is, all applications are reachable by user’s thumb, which means it could
be handled easily under single-hand operation.

Figure 4.1: Sketches of launcher design solutions

CHAPTER 4. DESIGN PROCESS 23

I finally picked Solution 3. Swipe to choose, because it’s easy to use,
supports single-hand operation, and avoids distracting of general smart phone
usage. A more detailed interaction mock-up is designed as shown in figure
4.2, with its detailed function list:

• By swiping from the left bottom corner to the screen center, the launcher
will be called out with a list of applications, which is predicted by our
algorithm. Each application is shown as an icon and application name.
By releasing finger on the selected item, the application will be opened,
meanwhile the launcher is folded.

• If users did not find the target application in the launcher, they can
open full application list by releasing finger at “application list” button.

• If users triggered the launcher by accident, just release at left bottom
corner to fold it.

• By double-tap the left bottom corner, users can go back to the previous
application.

• The left bottom “sensitive area” is transparent, which means it won’t
overlap with any original screen space. The red rectangle in figure 4.2
is just used to announce the size and position of the area.

Figure 4.2: prototype wireframe for “Swipe to Choose”.

For better indication of SwipeLauncher’s interaction process, figure 4.3
shows a state machine [20] of all possible statuses of SwipeLauncher, and the
interaction for switching between these statuses.

A state machine stores the status of a system, operates on input to change
the status and causes actions or outputs.

CHAPTER 4. DESIGN PROCESS 24

Figure 4.3: State Machine for “Swipe to Choose” prototype.

4.2 Visual Layout

Four different types are listed for the evaluation of different application selec-
tion methods, which are Horizontal, Vertical, Diagonal and Angle, as show
in Figure 4.4.

Figure 4.4: Different menu layouts of application selection methods

Vertical and diagonal solutions have wider selection areas for each ap-
plication, which makes item selection easier. However, these solutions also
bring the need of reaching a target on upper screen area, which is difficult
under single-hand operation mode, especially for big screen smart phones.
According to Wroblewski.L’s research [22] on touch device comfort, the most

CHAPTER 4. DESIGN PROCESS 25

comfortable area for mobile phone is the left bottom area, as shown in fig-
ure 4.5. In this case, horizontal and angle design have the most comfortable
selection area, as they have most selection space within the “easy” area,
thus ensures all possible operations within thumbnail’s available area under
single-hand mode. What’s more, angle design also provides bigger effective
selection area for each application. The curved trajectory fits users’ thumb
movement trace. For these reasons, dividing selection area by angle is the
most natural, ergonomic and efficient choice. Therefore, solution 3, “Swipe
to choose”, is selected as the final design for its easy assessment and natural
interaction gesture.

Figure 4.5: Thumb functional area while using smart phone (Wroblewski
2012)

At this point, two possible menu layouts are also discussed within Swipe
to choose. The two menu layouts are shown in figure 4.6. According to
the design space, the difference between the two layouts are mainly about
menu parameters: which applications, how many applications, order of ap-
plications. In particular, the first menu layout provides only one row of
applications predicted by algorithm, the second menu layout provides two
rows of applications, the first row is user’s most frequently used applications,
second row is algorithm predicted applications.

Menu layout 1
Release at green areas to open corresponding applications; release at
yellow area at the bottom to exit the launcher, in case the target ap-
plication is not in the list.

CHAPTER 4. DESIGN PROCESS 26

(a) (b)

Figure 4.6: Two possible menu layout design. (a) Menu layout 1. (b) Menu
layout 2.

Menu layout 2
Release at green or blue areas to open corresponding applications.
Here, the “fast” applications refer to algorithm predicted ones, which
are highly related with user’s recent behavior, and keep updating ac-
cording to users’ operation; the “slow” applications refers to most fre-
quently used applications in general, which always stays the same and
reflects users’ long-term preference.

Section 4.3 Modeling will build a model for menu parameters evalua-
tion, including which and how many applications in each layout, in order
to give a best combination of menu parameters and further select a best
launcher design. The most important evaluation indicator is operation time
for selecting target application.

4.3 Modeling

This section mainly looks into menu parameters: which applications and how
many applications in the launcher.

CHAPTER 4. DESIGN PROCESS 27

4.3.1 Which Applications

Section 4.2 Visual Layout already described two menu layouts under “Swipe
to Choose”, which are different in number of applications and which appli-
cations.

The two menu layouts both used algorithm prediction of “most possible
applications to be used”. In my design, I use APPM algorithm [15] for
prediction.

APPM algorithm was implemented by Parate et al. in 2013, which pre-
dicts the next-likely applications to be used and the likelihood of an event
to occur within some time interval. APPM uses the previous used applica-
tions to predict the following ones. Since the prediction is highly related on
previous user data, the prediction is highly personalized for each user, and
could adjust to user’s current behavior quickly. Parate et al. used APPM
algorithm for application usage prediction, and reached over 80% accuracy
when predicting the top 5 ranking for the next application to be used. After-
wards, they also implemented an adaptive shortcut menu, PREPP, with top
applications predicted by APPM algorithm. (More details are in Chapter
2.1, Algorithm Prediction)

However, if the applications in the launcher are only based on algorithm
prediction, the applications will probably update frequently, thus user needs
to adjust to a new launcher every time, which is not always comfortable. Shin
et al. [19] also mentioned in his work, that dynamically changing home screen
decreases user satisfaction, and users prefer certain icons to be static. In this
way, I use a combination of “fast applications” and “slow applications”. “Fast
applications” are based on algorithm prediction of users’ current behavior,
and these applications keeps changing frequently; “Slow applications” refers
to the applications with most usage over a long-term period, which makes
the launcher more static. The combination of “fast applications” and “slow
applications” not only ensures the accuracy of finding the target application
in the launcher, but also makes the launcher more static.

4.3.2 How Many Applications

With SwipeLauncher, user could have a general impression of which appli-
cations will appear in the launcher before opening, but will not be able to
predict exactly which application will appear where. So, users need to spend
time searching for an application, and will face the risk of failing to find the
application in the launcher, which leads to the two operation situations to
be discussed:

1. Find target application in the launcher. Users opened launcher,

CHAPTER 4. DESIGN PROCESS 28

reach the target application and open it via launcher.

2. Switch to application list. Users opened launcher but did not find
the target application, then they open application list via launcher.
Since the launcher provides a shortcut to application list, users do not
have to make any additional switch between screens for application list.
Launcher provides a fast access into application list as well.

It’s clear that opening an application within the launcher takes shorter
time than switching to application list. However, with the increasing number
of applications in the launcher, the possibility of finding the target application
in the launcher increases, as well as the visual search time and pointing time.
Figure 4.7 shows the accuracy and operation time relationship within the
launcher, with different application number N in the launcher. The goal is to
find out the best number of applications N for reaching a balance of launcher
accuracy and selection time, so as to get the shortest expected operation
time.

Chapter 5 Modeling Based Design Decisions will describe the effect
of N changing on accuracy, visual searching time and pointing time of an
application.

CHAPTER 4. DESIGN PROCESS 29

Figure 4.7: Relationship between launcher accuracy, selection time and num-
ber of applications N in the launcher.

Chapter 5

Modeling Based Design Decisions

This chapter focuses on layout decisions of SwipeLauncher. I will find out
the best user interface design and compare SwipeLauncher with traditional
Android home screen.

In section 5.1 SwipeLauncher Operation Time, I will discuss the two
menu layout designs came up in section 4.2 Visual Layout, decided the best
menu layout, as well as the best number N of applications within each menu
layout. The decision is based on the operation time modeling, which includes
KLM modeling, visual searching time and pointing time prediction.

In section 5.2 Android Original Solutions Operation Time, I will
discuss the typical solutions for launching applications provided by Android
system, and pick up the most typical one as the baseline.

In section 5.3 Comparison, I will compare the efficiency of SwipeLauncher
with Android home screen to prove the convenience of SwipeLauncher.

5.1 SwipeLauncher Operation Time

5.1.1 KLM Analysis

Keystroke-Level Model (KLM) [8] is a method for predicting task execution
time from a specific task scenario. KLM method is used to evaluate interac-
tion process complexity of a design. The sequence of keystroke-level actions
is listed for analyze the operational time and complexity.

Main keystroke steps are as following:

• K - Keystroke pressing a key or button on the keyboard;

• P - Pointing with mouse to a target on the display;

• M - Mental act of routine thinking or perception;

30

CHAPTER 5. MODELING BASED DESIGN DECISIONS 31

• W - Waiting for the system to respond.

On mobile devices, Holleis et al. [21] adapted a set of operators according
mobile phone operation characteristic. Here are some that I used within
modeling scope:

• K - The time needed to tap a button by finger;

• P - The time needed to move a finger from one position to another
position.

For operation within SwipeLauncher, KLM steps are as following:

1. Find it in the launcher
T1 : 2(M + P) + K
The first step is to trigger the launcher, which takes M (mental re-
flection of the operation gesture) + P (point at triggering area to open
launcher); the second step is to open target application in the launcher,
which takes M (visual search for target application) + P (point at tar-
get application location) + K (release finger to open the application)

2. Did not find it in the launcher, and turn to application list
T2 : 2(M + P) + K + TAppList

The first step is to trigger the launcher, which takes M (mental reflec-
tion of the operation gesture) + P (point at triggering area to open
launcher); the second step is to open application list in the launcher,
which takes M (visual search in launcher) + P (point at application list
button) + K (release finger to open application list)

Opening target application from launcher takes less KLM steps and op-
eration time than application list. In subsection 5.1.2 Operation Time
Analysis, I will build a more detailed model for evaluation of each KLM
step’s operation time. After working out the operation time of the launcher
and application list with different number of applications N, the best number
of N comes out with the best balance between accuracy and operation time.

5.1.2 Operation Time Analysis

The expectation of operation time TN can be calculated with the following
formula:

TN = A(TP1 + TV 1) + (1 − A)(TV 2 + TP21 + TP22)

CHAPTER 5. MODELING BASED DESIGN DECISIONS 32

• A: Algorithm prediction accuracy

• TP1: Pointing time for an application in the launcher

• TV 1: Visual search time for an application in the launcher

• TV 2: Visual search time for an application not in the launcher

• TP21: Pointing time for open application list in the launcher

• TP22: Time for open an application from application list

Here, TP1 + TV 1 refers to situation 1 “Find target application in the
launcher”. The possibility of situation 1 depends on algorithm prediction
accuracy A. TV 2 + TP21 + TP22 refers to situation 2 “Switch to application
list”. The possibility of situation 2 is (1 − A).

The goal is to find the best N which results in minimum TN and best
performance.

In menu layout 2, TP22 is different from traditional solution of opening an
application from application list. Based on KLM analysis, tradition solutions
usually take 3 steps: 1) find and touch “home screen” button (M + P +K);
2) find and touch application list icon on home screen (M + P + K); 3)
find and touch target application icon on application list (M + P + K) .
Design 2 skipped the first and second step, replaced with a gesture of evoking
SwipeLauncher. So in design 2, TP22 refers only the time of finding and
touching target application icon on application list (M + P + K).

Visual Search Time

According to Brumby et al.’s research [7] on visual search behavior, visual
search time mainly depends on two factors: distance between targets and
color of target application.

Distance between targets. Vertical separation between items affects
distance between item visual visits. Figure 5.1 shows the duration and dis-
tance of item visits by condition. The bigger the gap is, the shorter visual
search time users will spend on an item and the fewer items can be viewed
as a group.

For the manipulation of menu layout, vertical separation between items
was systematically classified into small gap (17 pixels, 0.40◦visual angle),
medium gap (35.5 pixels, 0.85◦visual angle), and large gap (55 pixels, 1.3◦visual
angle).

Since the task is to open a known application, visual search within SwipeLauncher
should be considered as known-item search. According to figure 5.1 (Brumby

CHAPTER 5. MODELING BASED DESIGN DECISIONS 33

Figure 5.1: Left: duration of item visits by condition; Right: Distance be-
tween item visits by condition. (Brumby 2014)

2014), in menu layout 1 (with only one row of algorithm-predicted applica-
tions), when the number of applications in the launcher is from 3 to 6, the
distance between application icons is bigger than 55 pixel. It is considered
as large gap, and the visual search duration under this situation is 395ms.
When there are 7 applications in menu layout 1, the distance between appli-
cation icons is between 55 and 35.5 pixel, which belongs to medium gap, and
leads to visual search duration 415ms. In menu layout 2 (with two rows of
applications, the first row is users’ most frequently used applications, second
row is algorithm predicted applications), when there are 4-8 applications in
the launcher, the virtual and horizontal distances between application icons
are bigger than 55 pixel, which belongs to large gap, and leads to visual
search duration of 395ms.

Color of target application. According to Kieras et al.’s research [13]
on visual search influence factors, while searching for a known target, color
is the most important distinguishing factor. People would first search for
the targets with same color, then look into its shape, content and other
details. I simulated the color of alternative applications through #Home-
screen’s statistical result [4]. #Homescreen is a tool for home screen sharing
and application discovering. It collects data of most popular applications of
its members, and orders them by usage statistics. The screenshot of most
popular applications on #Homescreen is shown in figure 5.2.

Here is an example showing how visual search works: if users are looking
for “YouTube”, and assume the application candidates are first six applica-
tions in figure 5.2. So the gap between items belongs to “large gap”, and
visual search duration of each item is 395 ms.

The first step is looking for a red target (color of YouTube icon), this step

CHAPTER 5. MODELING BASED DESIGN DECISIONS 34

Figure 5.2: Top applications by #Homescreen users

takes 395ms. Since there is only one red icon in the menu (suppose the top
6 applications of #Homescreen’s statistics), so the goal achieved when users’
sight is located on the only red application (Youtube). The whole visual
search time is 395 ms.

In another situation, if users are looking for Twitter, then in the first step
of looking for blue icons, there is 50% possibility that the users’ sight is first
located on Twitter icon, and another 50% on Facebook icon, because their
colors are similar. In the second case of users focusing on Facebook first,
then users spend 395ms to distinguish that the icon not the right goal, and
jump to the next blue icon. So the expectation of visual search time should
be:

395 × 0.5 + (395 + 395) × 0.5 = 592.5ms

If the user is searching for an application not in the list, it takes longer
time to look into all possible targets, because the decision is made after
viewing each visual “unit”.

Visual search time for the two menu layouts is shown in table 5.1, 5.2,
5.3, 5.4, figure 5.3, 5.4, 5.5, 5.6. In general, having more applications in
the launcher will increase visual search time. However, visual search time
not only depends on the number of applications in the launcher and their
distance, but also the icons’ color. In this way, it would be easier to search
applications with special colors. That is why sometimes having more appli-
cations in the launcher does not always increase visual search time.

CHAPTER 5. MODELING BASED DESIGN DECISIONS 35

Table 5.1: Menu layout 1, when the target application is in the launcher
Number Same color percentage Gap Visual search duration(ms) TV 1(ms)
3 0 Large 395 395
4 50 Large 395 493
5 40 Large 395 474
6 50 Large 395 592
7 71 Medium 420 660

Figure 5.3: Menu layout 1, visual search time when the target application is
in the launcher

Table 5.2: Menu layout 1, when the target application is not in the launcher
Number Gap Visual search duration(ms) TV 1(ms)
3 Large 395 395
4 Large 395 790
5 Large 395 790
6 Large 395 1185
7 Medium 420 1260

Table 5.3: Menu layout 2, when the target application is in the launcher
Number Same color percentage Gap Visual search duration(ms) TV 1(ms)
2*2 0 Large 395 395
3*2 50 Large 395 493
4*2 40 Large 395 474

Pointing Time

For the calculation of pointing time, I built some prototypes using MIT APP
Inventor [1], an interactive prototyping tool. Each prototype was built up
with gesture-evoked control. The only difference from a real launcher is that,

CHAPTER 5. MODELING BASED DESIGN DECISIONS 36

Figure 5.4: Menu layout 1, visual search time when the target application is
not in the launcher

Figure 5.5: Menu layout 2, visual search time when the target application is
in the launcher

Table 5.4: Menu layout 2, when the target application is not in the launcher
Number Gap Visual search duration(ms) TV 1(ms)
2*2 Large 395 790
3*2 Large 395 1185
4*2 Large 395 1580

when pressed icons, it only shows a picture of the corresponding application,
not open real application. I make this simplification because at this moment
the goal is only to evaluate operation time for reaching an application.

Reasons of using prototyping method instead of Fitts Law for measure-
ment of pointing time are: 1) Fitts Law model is used for pressing a target
in a distance, while SwipeLauncher uses swiping instead of clicking. 2) The

CHAPTER 5. MODELING BASED DESIGN DECISIONS 37

Figure 5.6: Menu layout 2, visual search time when the target application is
not in the launcher

operation time for touching targets at different location on the screen is dif-
ferent, not only because of the distance from triggering point, but also affects
by the gesture easiness.

With menu layout 1, the relationship of pointing time changing with
number of applications N is shown in table 5.5.

Table 5.5: Pointing time for different N (number of applications) with
SwipeLauncher menu layout 1

N TP1(s)
3 1.23
4 1.35
5 1.35
6 1.38
7 1.45

With menu layout 2, the relation of pointing time changing with number
of applications N is shown in table 5.6.

Table 5.6: Pointing time for different N (number of applications) with
SwipeLauncher menu layout 2

N TP1(s)
2*2 1.2
3*2 1.2
4*2 1.3

CHAPTER 5. MODELING BASED DESIGN DECISIONS 38

5.1.3 Accuracy

With menu layout 1, the accuracy (of finding the target application in the
launcher) depends on algorithm prediction accuracy; with menu layout 2, the
accuracy (of finding the target application in the launcher) depends on both
algorithm prediction accuracy and most frequent used applications’ usage
percentage.

Algorithm prediction accuracy is based on APPM algorithm [15] predic-
tion within LiveLab [18] database. APPM is an algorithm implemented by
Parate et al., which predicts next-likely events and likelihood of an event to
occur within some time interval. More detailed information about APPM is
mentioned in section 2.1 Algorithm Prediction.

LiveLab is a database that contains traces of 34 volunteers’ application
usage data on iPhone 3GS for a period of up to 14 months. The data used
in my experiment includes app-usage traces and appusage.sql, which provide
the start time and the duration of each application usage.

While using APPM algorithm to predict the application usage in LiveLab
database, the accuracy data is shown in table 5.7.

Table 5.7: The APPM prediction accuracy changing with predicting number
of applications

N (number of applications) Accuracy
2 0.7007
3 0.7759
4 0.8302
5 0.8658
6 0.8873
7 0.9042

5.1.4 Expectation of Operation Time

Based on previous formula TN = A(TP1 + TV 1) + (1 − A)(TP1 + TV 2 + TP2),
time for opening target application with menu layout 1 and menu layout 2
under different numbers of applications are listed in table 5.8 and 5.9:

In menu layout 1, the best design comes when N = 4, and expectated
task completion time is 2.207s.

In menu layout 2, the best design comes when N = 3*2 (3 “fast applica-
tions” and 3 “slow applications”, expectated task completion time is 1.968s.

So, the best SwipeLauncher design is menu layout 2, with 3*2 applications
in the launcher. Launcher layout is shown in figure 5.9.

CHAPTER 5. MODELING BASED DESIGN DECISIONS 39

Table 5.8: Operation time result for SwipeLauncher menu layout 1
N A TV 1(s) TP1(s) TV 2(s) TP2(s) TN(s)
3 0.7759 0.395 1.23 0.395 3.6 2.432
4 0.8302 0.494 1.35 0.790 3.6 2.207
5 0.8658 0.474 1.35 0.790 3.6 2.350
6 0.8873 0.593 1.38 0.185 3.6 2.445
7 0.9042 0.660 1.45 0.260 3.6 2.362

Figure 5.7: Pointing time for different N (number of applications) with
SwipeLauncher menu layout 1.

Table 5.9: Operation time result for SwipeLauncher menu layout 2
N A TV 1(s) TP1(s) TV 2(s) TP2(s) TN(s)
2*2 0.8302 0.494 1.2 0.79 2 2.084
3*2 0.8873 0.461 1.2 1.185 2 1.968
4*2 0.916 0.494 1.3 1.58 2 2.053

This “best layout design” does not lead to fastest operation speed, but
the balance between operation speed and accuracy. It does not only consider
the operation time within the launcher, but also considers the situation of
switching to application list.

5.2 Android Original Solutions Operation Time

This section analyzes existing solutions provided by Android system, then
selects the best combination among them. Afterwards, I will compare the
best SwipeLauncher design with best Android solution’s operation time.

I define the operation time through Android’s solution as: start from a

CHAPTER 5. MODELING BASED DESIGN DECISIONS 40

Figure 5.8: Operation time result for SwipeLauncher menu layout 2.

Figure 5.9: SwipeLauncher final design

random application interface and trigger an operation, to click the target
application icon and open it. For example, in the “home screen” case, tim-
ing starts when the home screen button is pressed, ends when the target
application is opened.

Figure 5.10 shows all possible launching methods provided by Android
5.0 system. Different Android operation systems are slightly different, and
many manufacturers customized their own Android system. I am not going
to discuss the difference between Android systems in this thesis. Here, I
limited the range within the existing three solutions on Nexus 5, system
Android 5.0 “Lollipop”.

1. Home Screen Shortcut. Users can customize application shortcuts’

CHAPTER 5. MODELING BASED DESIGN DECISIONS 41

Figure 5.10: Android original solutions for launch applications

existence and position on home screen. The four applications and the
shortcut of application list in the bottom appears on all home screen
pages (if there are more than one), other applications only appear on a
single home screen page. Here are two possible situations for opening
an application on home screen:

1.1 Find it directly on the home screen page. Users press
the “home” button to open home screen page, and press an application
icon to open it.

1.2 Switch to application list. This is an optional situation.
If users viewed all home screen pages but still did not find the target
application, users can press the “application list” button to view all
applications.

When users are familiar with users’ own home screen applications, users
can switch quickly to application list if he is sure the target application
is not on home screen. This could help to reduce operation time for
experienced users.

2. Recent Task List. Recent used applications are listed by recent usage
in this list. Users can scroll up and down to view the applications in
a flow menu. This solution is efficient for the most recent 2-3 applica-
tions, but the efficiency drops quickly while looking for more previous

CHAPTER 5. MODELING BASED DESIGN DECISIONS 42

applications, since users do not always remember which applications
are used in which order some hours ago.

2.1 Find it directly on the recent task list screen. If an
application is recently used, it will appear directly on the screen. The
more recent it is, the larger space it takes.

2.2 Scroll down and find it.This is an optional situation. Users
scroll down to view more previous application.

2.3 Switch to application list. This is an optional situation. If
users did not find it in the recent task list, or feel tired of scroll down so
many times, users should first go back to the home screen, then press
“application list” button to view application list. This takes longer time
than situation 1.2 Switch to application list on home screen, because in
this case, users will not know the applications in recent applications list
before opening, so should view all applications in this list to decide the
target application is not here. What’s more, because of the instability
of recent task list, there is quite some chance of switch to application
list under this solution.

3. Application List. This is the safest option, since all applications
installed on the mobile will appear in the list. However, it is always
slower to find an application here, because icons are arranged with
high density. Since the application list is always static, users could
roughly remember the location of frequently used applications, but not
all applications.

3.1 Find it directly on the first page.If the application appears
on the first page on application list.

3.2 Switch to another page.If the application is not on the first
page, then users need to switch between pages for searching.

5.2.1 KLM Analysis

I also analyzed the KLM steps of launching an application for all the situa-
tions mentioned above:

1. Home Screen Shortcut

T1.1 = 2(M + P + K)

T1.2 = M + P + K + xS + TAppList

CHAPTER 5. MODELING BASED DESIGN DECISIONS 43

2. Recent Task List

T2.1 = 2(M + P + K)

T2.2 = 2(M + P + K) + xS

T2.3 = M + P + K + xS + TAppList

3. Application List

T2.1 = 3(M + P + K)

T2.2 = 3(M + P + K) + xS

In the KLM steps of 3 App list, S refers to a swipe and x is the number
of screen swipe.

5.2.2 Android Original Solution Time Measurement

I also used prototyping method for measure the operation time of each situ-
ation, the operation time for all Android solutions are as following:

1. Home Screen Shortcut

T1.1 = 2.2s

T1.2 = 2.2s + TAppList

2. Recent Task List

T2.1 = 3s

T2.2 = 7s

T2.3 = 7s + TAppList

3. Application List

T2.1 = 2.6s

T2.2 = 2.6s + x

(Time for swipe a page S = 1s, x refers to the application location
page, range from 0, 1, 2, 3 . . .)

CHAPTER 5. MODELING BASED DESIGN DECISIONS 44

5.2.3 Accuracy

For Home Screen, “accuracy” refers to the possibility of finding the target
application on home screen. In order to get the best efficiency for home
screen, I consider the most frequently used applications are put on home
screen. According to comScore’s U.S. Mobile App Report [3] about home
screen application numbers, the average number of applications on a home
screen is 12. According to Bohmer et al.’s previous work [6], the usage of top
12 applications is around 54%.

5.2.4 Expectation

The expected operation time of Android home screen + application list is
2.6 s. Calculated by:

T = AT1 + (1 − A)T2

A: Possibility of finding target application on home screen;
T1: Time of finding target application on home screen;
T2: Time of finding target application on application list.
Since 2. Recent Task List shows longer operation time than home

screen, also has high uncertainty, I will not put it into the baseline plan.
The combination of Home Screen and Application List is used as a base-

line in the following, for comparison with SwipeLauncher.
Home screen can be highly customized by users. If users are familiar with

their own home screen and put frequently used applications on home screen,
there would be a high possibility of finding target application on home screen,
and the operation should be faster. In addition, application list is used as a
fallback solution. If users did not find the target application on home screen,
they can always find it in application list.

5.3 Comparison

As a conclusion, best design of SwipeLauncher is menu layout 2, with 3*2 ap-
plications and “all applications” button in the launcher, expected operation
time is 1.968 s. Best design of traditional solution is Home screen, expected
operation time is 2.6 s. So, SwipeLauncher is predicted to be 0.632 s faster
than traditional solution, increased operation time by 24.3%.

The operation time calculation in this chapter is based on theories. Chap-
ter 6 Experiment will use an empirical study section to compare the best
design of SwipeLauncher and Home Screen.

Chapter 6

Experiment

6.1 Experiment Design

In previous section 5 Modeling Based Design Decisions, I find a best
SwipeLauncher design through prediction of operation time. In this chapter,
I will use an experiment for evaluating the application opening process of the
best SwipeLauncher design and Android home screen. Android home screen
is used as a control group. During the experiment, participants were asked to
open applications for 150 times on SwipeLauncher and Android home screen,
include the situations of target application in the launcher and application
list. Afterwards, participants fill in a questionnaire and did an interview for
ranking SwipeLauncher and give further suggestions. The evaluation includes
operation speed, error rate, comfort, etc.

6.1.1 Factors

The study was a within-subjects 2*2 factorial design. The factors and levels
were:

• Interface: SwipeLauncher and Home Screen. SwipeLauncher is the
new interaction method I developed. Home Screen is a function of
Nexus 5, in which users can customize the shortcuts for certain appli-
cations, and order them freely on the screen.

• Opening solution: Open application through launcher or application
list. Participants need to open the target application provided by ex-
perimenter. The target application could appear in launcher randomly.

45

CHAPTER 6. EXPERIMENT 46

6.1.2 Participants

12 participants are involved in this experiment, includes 7 females and 5
males, age range 22-28 (mean age 25.6 years old, standard deviation 2.121).
All the participants are familiar with Android 4.0 or newer version system,
and have Android phones for over 6 months.

All the participants are right-handed and not color-blind.

6.1.3 Software and Apparatus

The experiment is held in an enclosed room, with a camera recording partic-
ipants’ operation, a table and desk for the participants. The experimenter
sits beside the participants during the experiment for observation.

The experiment device is Nexus 5, with Android 5.0 System installed. The
phone already has 66 applications installed (which is the average number of
applications installed on smart phone), with 12 applications on home screen
and 6 in SwipeLauncher.

The number of applications in SwipeLauncher is based on analysis in
chapter 5 Modeling Based Design Decisions.

Since I want to make both scenarios as realistic as possible, I not only
control the number of applications in each solution, but also which applica-
tions. The applications used in the experiment should be generally popular,
so that participants could quickly recognize the target application, which
helps decrease error rate and operation time. What’s more, it also ensures
that participants are searching by icon color and shape, instead of looking at
application name.

The applications that appear during experiment are selected among the
most popular applications according to comScore’s U.S. Mobile App Re-
port [9] in Figure 6.1. The statistics data is based on American people
mobile phone usage in 2014, age 18-55+.

During the experiment, I fixed the SwipeLauncher “slow applications”
to Facebook, Youtube, and Google Play, which are the generally most fre-
quently used mobile applications, also according to comScore’s U.S. Mobile
App Report. The “fast applications” will always be selected among these 15
applications, which are the next most frequently used applications: Google
Maps, Gmail, Instagram, Facebook Messenger, Twitter, the weather channel,
Google +, Netflix, Snapchat, Amazon Shopping, Pinterest, Skype, What-
sapp, Evenote, Dropbox. The appearance probability of each application is
based on its usage frequency, according to Figure 1, but removed the applica-
tions only available on IOS, such as Apple Maps and iTunes. An application

CHAPTER 6. EXPERIMENT 47

Figure 6.1: Top application usage (U.S. Mobile App Report, 2014)

with higher usage frequency in the real life have higher possibility of appear-
ance in SwipeLauncher.

During the experiment, the applications on home screen are: Instagram,
Facebook, Twitter, Google Maps, Facebook Messenger, Youtube, Whatsapp,
Snapchat, Dropbox, Evenote, Skype and Gmail. They are the most popular
applications on home screen, according to the statistical results on http:

//homescreen.is/top-applications. All the applications are on one home
screen, which is also the only home screen on the experiment device. Figure
6.2 shows the final visual layout for home screen and SwipeLauncher used
during the experiment.

http://homescreen.is/top-applications
http://homescreen.is/top-applications

CHAPTER 6. EXPERIMENT 48

Figure 6.2: Home Screen and SwipeLauncher design

6.1.4 Experiment Procedure

During the experiment, half of the participants are asked to start with
SwipeLauncher section first, then home screen; another half participants
starts with home screen section, then SwipeLauncher. This design is to
avoid the experiment order affect issue, such as long operation induced fa-
tigue, familiarity with experiment device leads to faster operation speed.

Each section includes two conditions: target application is in the launcher;
or target application is in application list. These two conditions will occur
randomly, and participants could not predict the order in advance.

6.1.4.1 Home Screen

Ask participants to open certain applications through home screen. The
workflow of home screen is shown in figure 6.3. Participants can switch
quickly to app list if they are sure the target application is not on home
screen.

• Trail task section: participants complete the task for 60 times in
order to get familiar with the system.

CHAPTER 6. EXPERIMENT 49

• Real task section: participants complete the task for 90 times, task
complete time will be recorded. 50% target app on home screen and
50% not.

In both situations, there is 50% possibility of finding the target app on
home screen and 50% not. These two situations happens randomly and
participants will not know the order in advance.

Figure 6.3: Workflow of home screen section

6.1.4.2 SwipeLauncher

Ask participants to open certain applications through SwipeLauncher. The
workflow of SwipeLauncher is shown in figure 6.4. Participants should always

CHAPTER 6. EXPERIMENT 50

open SwipeLauncher to see if the target application is in the launcher. If not,
participants open application list (must through SwipeLauncher) and select.

• Trail task section: participants complete the task for 60 times in
order to get familiar with the system.

• Real task section: participants complete the task for 90 times, task
complete time will be recorded.

In both situations, there is 66% percentage of finding the app directly in
the launcher (33.3% from “slow applications” and 33.3% from “fast applica-
tions”), and 33.3% of turn to app list. These two situations happens ran-
domly and participants will not know the order in advance.

After the experiment, participants are asked to fill in an assessment ques-
tionnaire (see Appendix 3: Assessment Questionnaire), and a short interview.

6.2 Experiment Result

6.2.1 Analysis

The experiment result includes the data recorded by device during the ex-
periment, such as operation time, error rate, etc.; and participants’ feedback
through questionnaire and interview after the experiment, such as comfort,
system complexity, etc.

The device recorded data include the following aspects:

• Operation time: The operation time starts when the “start” but-
ton on the instruction interface is pressed; ends when an applica-
tion is opened, no matter if it is the target application or not. For
SwipeLauncher, I recorded the operation time for “fast applications”,
“slow applications” and application list; for Android home screen, I
recorded the operation time for the home screen launcher and applica-
tion list.

Afterwards, I calculated the overall operation time based on the oper-
ation time in each situation and the prediction accuracy (calculated in
Chapter 5. Modeling Based Design Decisions).

• Error Rate: participants opened a wrong application.

• Ignore Rate: when the target application is in the launcher, but
participants ignored it and open it in application list.

The participants’ feedback questionnaire includes these aspects:

CHAPTER 6. EXPERIMENT 51

Figure 6.4: Workflow of SwipeLauncher section

• Comfort:The comfort degree of using SwipeLauncher to open appli-
cations, compare with Android home screen.

• Speed: Participants’ feeling about SwipeLauncher’s operation speed,
compare with Android home screen.

• Complexity: Whether SwipeLauncher is easy to learn and use, com-
pare with Android home screen.

CHAPTER 6. EXPERIMENT 52

6.2.2 Result

6.2.2.1 Operation Time

While opening an application within launcher (SwipeLauncher or home screen,
not considering finding target application in application list), the average
time of SwipeLauncher is 1.552 s, home screen 1.927 s. SwipeLauncher is
0.375s, 24.5% faster than home screen.

For SwipeLauncher tasks, I also looked into the performance of “slow
applications” and “fast applications”. Participants take 1.499s while open
target application in “slow applications”, and 1.600s with “fast applications”.
“Slow applications” is 0.101s, 6.67% faster than “fast applications”.

Figure 6.5: Operation time of SwipeLauncher and home screen (in the
launcher)

While opening target application in application list, home screen perfor-
mance is better than SwipeLauncher. On average, home screen takes 3.3s,
which is 42% better than SwipeLauncher.

For the overall performance, I used the prediction accuracy of SwipeLauncher
and home screen calculated in Chapter 5. Modeling Based Design Decisions.
The overall operation time is as following:
SwipeLauncher:

TSL = A(TP1 + TV 1) + (1 − A)(TP1 + TV 1 + TP2) (6.1)

A: Accuracy of finding target application in SwipeLauncher: 0.8873
TP1 + TV 1: Time of opening target application in SwipeLauncher: 1.552

s
TP1 + TV 2 + TP2: Time of opening target application in application list

(through SwipeLauncher): 4.701 s

CHAPTER 6. EXPERIMENT 53

Figure 6.6: Operation time of SwipeLauncher and home screen (in applica-
tion list)

So TSL = 1.907s

Home Screen:

THS = AT1 + (1 − A)T2 (6.2)

A: Accuracy of finding target application on home screen: 0.54
T1: Time of finding target application on home screen: 1.927 s
T2: Time of finding target application on application list: 3.301 s
So THS = 2.559s
As a conclusion, SwipeLauncher is overall 0.652s, 34.2% faster than home

screen.

Figure 6.7: Operation time of SwipeLauncher and home screen (overall)

CHAPTER 6. EXPERIMENT 54

6.2.2.2 Error Rate

Comparing the error rate of SwipeLauncher and home screen, SwipeLauncher
have a much lower error rate of 1.569%, while home screen is 3.352%.

Figure 6.8: Error rate of SwipeLauncher and home screen

6.2.2.3 Ignore Rate

According to the data, SwipeLauncher have a slightly better error rate of
2.309%, while home screen is 2.5%.

Figure 6.9: Ignore rate of SwipeLauncher and home screen

6.2.2.4 Questionnaire

Each participant is asked to fill in a questionnaire (see appendix 2) after
the experiment for evaluation of SwipeLauncher. The questionnaire contains

CHAPTER 6. EXPERIMENT 55

results of the following dimensions: operation comfort, speed, complexity
and overall ranking. Each dimension is evaluated by a score from 1-5, in
which 5 is the best and 1 is the worst. The result is shown in figure 6.10.

For operation comfort, most participants think SwipeLauncher is more
comfortable than home screen.

For operation speed, most participants think the two solutions are not
very different.

For operation complexity, home screen have a better ranking than SwipeLauncher.
However, since all the participants are already Android users, which means
they are already familiar with Android home screen. So they are tend to feel
easier to work with home screen.

For the overall ranking, SwipeLauncher gets a better ranking than home
screen.

Figure 6.10: Questionnaire result of SwipeLauncher and home screen

6.2.3 Discussion

6.2.3.1 Operation Time

User performance with “slow applications” is slightly better than with “fast
applications”, which approves making applications more stable will help im-
proving user performance. The reason of this difference is “slow applications”
are fixed and “fast applications” keep updating all the time.

What’s more, since all “fast applications” are generated randomly during
this experiment, users could not predict which applications will appear in
“fast applications”, so every visual search inside “fast applications” is an un-
known list searching. In a real scenario, the “fast applications” are based on
user behavior, which means users could have a better understanding about

CHAPTER 6. EXPERIMENT 56

“fast applications”, this may lead to better performance and shorter opera-
tion time.

In the application list part, home screen have better performance than
SwipeLauncher. I see the influencing factors in two aspects:

• Visual Search Time: Since the applications on home screen are fixed,
users have a expectation of whether the target application is on home
screen or not, thus reduced the visual searching time of deciding “the
target application is not on home screen” and continue open the appli-
cation list.

• Pointing Time: The button of opening home screen is very close to
the button of open application list on home screen; while in SwipeLauncher,
the button of open application list is most far away from the triggering
area.

Based on these reasons, although home screen takes one more step for
opening application list, it still gets better performance than SwipeLauncher.

6.2.3.2 Error Rate

While designing the experiment, home screen ensures the success rate of
finding target application by adding more applications on home screen, while
SwipeLauncher solves the problem by keep updating applications in SwipeLauncher.

Since SwipeLauncher gets lower error rate than home screen, which means
the strategy of updating applications in the launcher is successful.

6.2.3.3 Ignore Rate

In a real scenario, users should have more training time and understand the
system better, so the ignore rate of both SwipeLauncher and home screen
should be decreased. However, since home screen applications are fixed, the
ignore rate of home screen is supposed to get a bigger decrease.

6.2.3.4 Interview

This is the last step after the experiment and questionnaire, which con-
tributes to a better understanding about SwipeLauncher’s user experience.

• Gesture Control: Since SwipeLauncher provides a new gesture-evoked
method, one of the most important thing is to understand if it is com-
fortable and fast for users.

CHAPTER 6. EXPERIMENT 57

Most participants believe SwipeLauncher is more comfortable and eas-
ier to open an application, some participants even pointed out that
SwipeLauncher takes fewer steps than home screen, and there is no
need of exit current application to continue opening another applica-
tion, while home screen always requires users to go back to home screen
first.

Four participants feel it is strenuous to keep pressing the triggering
area while looking for target application, they feel it is more difficult
to keep pressing rather than press buttons twice.

Two participants think it would be a problem for them under single
hand mode, especially with a bigger screen (on their own device). Es-
pecially when swiping from triggering area (left bottom corner) to a
target application on the right side of the screen, for it has longest
swiping distance.

Most participants’ performance improved quickly while learned to use
SwipeLauncher.

• Visual Search: Most participants believe searching in “slow appli-
cations” is faster than searching in “fast applications”, they gradually
remember the “slow applications” and their order in SwipeLauncher
during the experiment. This also supports the result of operation tim-
ing, in which opening target application within “slow applications” is
faster than “fast applications”.

About half participants mentioned unfamiliarity with some target ap-
plications and lead to operation error or cannot find target application.
But this situation could be prevented in a real scenario, because users
are more familiar with the applications they installed on their own de-
vices. So SwipeLauncher and home screen’s visual search performance
should both get better in a real scenario.

Chapter 7

Discussion and Conclusion

In this thesis project, I looked into the possibility of optimizing multitask-
ing behavior on mobile devices. Due to small screen sizes and few control
buttons on mobile devices, handling multitask is difficult. A reasonable so-
lution is to optimize the performance of switching between applications, so I
designed SwipeLauncher, a mobile application launcher which supports fast
application access.

There are two main unique points about SwipeLauncher: 1) New gesture
evoke method. Users do not need to switch back to application list to select an
application, but can open another application right on the current interface,
which makes SwipeLauncher operation faster and easier. 2) Combination of
long-term and short-term preference. By letting the first row of applications
the most frequently used ones, the second row algorithm predicted ones,
SwipeLauncher ensures the accuracy of finding target application within the
launcher while still keeps it stable.

In the aspect of gesture control, I also looked into other gesture selec-
tion methods, such as FastTap, Finger-Count Shortcuts, etc. These methods
all designed a unique set of gestures which help users open certain menu
items quickly, especially when users are already familiar with the system.
SwipeLauncher also designed a unique gesture for item selection, which en-
sures easy item selection. What’s more, SwipeLauncher also works well with
single hand, because all the operations of SwipeLauncher can be handled by
a thumb, and interaction is performed within thumb’s “easy access area”.

In the aspect of application selection, previous works mainly focused on
predicting applications with the highest possibility to be used next, such
as Dynamic Home Screen (Shin 2012), FALCON (Yan 2012) and PREPP
(Parate 2013). However, these solutions did not consider the instability it
brings, which not only leads to longer visual search time for the target,
but also makes users face the risk of failure. SwipeLauncher solves these

58

CHAPTER 7. DISCUSSION AND CONCLUSION 59

problems by combining algorithm prediction and frequency statistics, so that
the launcher keeps partially stabilized while ensures the prediction accuracy.
Even though a part of the items in the launcher keep updating, users can
still make decisions in a quite short time.

According to the overall operation (including launcher applications and
full application list) result in chapter 6 Experiment, SwipeLauncher takes
1.907 s to open an application on mobile devices, which is 34.2% faster than
original home screen launcher of Android. According to Yahoo’s study [17],
Android users have averagely 100 times of interaction with the phone per
day. So, SwipeLauncher could help to save 65.2 seconds per day, 6.61 hours
per year, the time and effort saving by SwipeLauncher in a long term can be
quite considerable. Considering people are depending on mobile applications
more and more nowadays, this improvement will become more valuable in
the future.

For the operation within SwipeLauncher (full application list not in-
cluded), the operation time predicted in chapter 5 Modeling Based Design
Decisions is 1.968s, while user performance mentioned in chapter 6 Experi-
ment is 1.552s. In experiment result, home screen is faster than prediction
because the “Slow applications” in SwipeLauncher are fixed, which reduced
visual search time for all the situations.

There are still some limitations of the experiment, which may influence
the user performance in real world: 1) the accuracy of SwipeLauncher is pre-
dicted based LiveLab database. In the real world, when users just start using
SwipeLauncher, there are not so many user data, which will affect predic-
tion accuracy; 2) the “fast applications” in SwipeLauncher appear randomly
during the experiment. But in the real world, SwipeLauncher will predict
the next applications in use according to users’ behavior, which means users
should have some ideas about what will be the “fast applications”. What’s
more, the applications in SwipeLauncher should be ordered by usage pos-
sibility. The applications with higher usage possibility are easier to access.
This will also help to improve user performance.

I see the possibility of future work in the following areas: 1) Make cus-
tomized optimization for different users, like customize launcher’s triggering
area size and location. Because users’ preference of phone holding varies a
lot, as well as users’ finger length compares to mobile phone size. These
will all lead to different satisfaction and performance on a same launcher.
2) Optimize the launcher layout. Such as make application icon with higher
accessing possibility bigger, or arrange applications by color. So that users
can access the application with higher usage possibility easier.

In my thesis work, I provided a new possibility for optimization of mo-
bile multitasking behavior. SwipeLauncher proved that mobile multitasking

CHAPTER 7. DISCUSSION AND CONCLUSION 60

can be optimized with the cooperation of gesture control and application
selection.

Bibliography

[1] Mit app inventor. http://appinventor.mit.edu/.

[2] Accenture. Video-Over-Internet Consumer Survey 2013: Multi-
tasking and Taking Control Winning the trust of the sophisticated con-
sumer. Tech. rep., 2013.

[3] Bailly, G., Lecolinet, E., and Guiard, Y. Finger-count & radial-
stroke shortcuts: 2 techniques for augmenting linear menus on multi-
touch surfaces. In CHI (2010), E. D. Mynatt, D. Schoner, G. Fitzpatrick,
S. E. Hudson, W. K. Edwards, and T. Rodden, Eds., ACM, pp. 591–594.

[4] betaworks. #homescreen. http://homescreen.is/top-apps.

[5] Blackmon, M. H., Polson, P. G., Kitajima, M., and Lewis, C.
Cognitive walkthrough for the web. In Proceedings of the SIGCHI con-
ference on human factors in computing systems (2002), ACM, pp. 463–
470.

[6] Böhmer, M., Hecht, B., Schöning, J., Krüger, A., and Bauer,
G. Falling asleep with Angry Birds, Facebook and Kindle – a large
scale study on mobile application usage. In Proceedings of MobileHCI
’11: 13th International Conference on Human Computer Interaction
with Mobile Devices and Services, Stockholm, Sweden (2011), pp. 47–
56.

[7] Brumby, D. P., Cox, A. L., Chung, J., and Fernandes, B. How
does knowing what you are looking for change visual search behavior? In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (2014), ACM, pp. 3895–3898.

[8] Card, S. K., Moran, T. P., and Newell, A. The keystroke-level
model for user performance time with interactive systems. Communica-
tions of the ACM 23, 7 (1980), 396–410.

61

http://appinventor.mit.edu/
http://homescreen.is/top-apps

BIBLIOGRAPHY 62

[9] comScore. comscore’s u.s. mobile app report available for down-
load. https://www.comscore.com/Insights/Press-Releases/2014

/8/comScore-s-US-Mobile-App-Report-Available-for-Download.

[10] Dobie, A. Multitasking on the samsung galaxy note 4. http:

//www.androidcentral.com/multitasking-samsung-galaxy-note-4-0.

[11] Google. Android 4.4 kitkat. http://www.android.com/intl/en_

us/versions/kit-kat-4-4/.

[12] Gutwin, C., Cockburn, A., Scarr, J., Malacria, S., and Ol-
son, S. C. Faster command selection on tablets with fasttap. In CHI
(2014), M. Jones, P. A. Palanque, A. S. 0001, and T. Grossman, Eds.,
ACM, pp. 2617–2626.

[13] Kieras, D. E., and Hornof, A. J. Towards accurate and practical
predictive models of active-vision-based visual search. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
(2014), ACM, pp. 3875–3884.

[14] Nielsen, J., and Molich, R. Heuristic evaluation of user interfaces.
In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (New York, NY, USA, 1990), CHI ’90, ACM, pp. 249–256.

[15] Parate, A., Böhmer, M., Chu, D., Ganesan, D., and Marlin,
B. M. Practical prediction and prefetch for faster access to applications
on mobile phones. In UbiComp (2013), F. Mattern, S. Santini, J. F.
Canny, M. Langheinrich, and J. Rekimoto, Eds., ACM, pp. 275–284.

[16] Pew Research Center. Mobile technology fact sheet, 2014.
http://www.pewinternet.org/fact-sheets/mobile-technology-fact-s

heet/.

[17] Sawers, P. Android users have an average of 95 apps in-
stalled on their phones, according to yahoo aviate data.
http://thenextweb.com/apps/2014/08/26/android-users-average

-95-apps-installed-phones-according-yahoo-aviate-data/.

[18] Shepard, C., Rahmati, A., Tossell, C., Zhong, L., and Kor-
tum, P. Livelab: measuring wireless networks and smartphone users
in the field. ACM SIGMETRICS Performance Evaluation Review 38, 3
(2011), 15–20.

https://www.comscore.com/Insights/Press-Releases/2014/8/comScore-s-US-Mobile-App-Report-Available-for-Download
https://www.comscore.com/Insights/Press-Releases/2014/8/comScore-s-US-Mobile-App-Report-Available-for-Download
http://www.androidcentral.com/multitasking-samsung-galaxy-note-4-0
http://www.androidcentral.com/multitasking-samsung-galaxy-note-4-0
http://www.android.com/intl/en_us/versions/kit-kat-4-4/
http://www.android.com/intl/en_us/versions/kit-kat-4-4/
http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/
http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/
http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/
http://thenextweb.com/apps/2014/08/26/android-users-average-95-apps-installed-phones-according-yahoo-aviate-data/
http://thenextweb.com/apps/2014/08/26/android-users-average-95-apps-installed-phones-according-yahoo-aviate-data/
http://thenextweb.com/apps/2014/08/26/android-users-average-95-apps-installed-phones-according-yahoo-aviate-data/

BIBLIOGRAPHY 63

[19] Shin, C., Hong, J.-H., and Dey, A. K. Understanding and predic-
tion of mobile application usage for smart phones. In Proceedings of the
2012 ACM Conference on Ubiquitous Computing (New York, NY, USA,
2012), UbiComp ’12, ACM, pp. 173–182.

[20] Wikipedia. Finite-state machine. http://en.wikipedia.org/wik

i/Finite-state_machine.

[21] Wolf, T. V., Rode, J. A., Sussman, J., and Kellogg, W. A.
Dispelling design as the black art of chi. In Proceedings of the SIGCHI
conference on Human Factors in computing systems (2006), ACM,
pp. 521–530.

[22] Wroblewski, L. Responsive navigation: Optimizing for touch across
devices, 2012. http://www.lukew.com/ff/entry.asp?1649.

[23] Yan, T., Chu, D., Ganesan, D., Kansal, A., and Liu, J. Fast app
launching for mobile devices using predictive user context. In MobiSys
(2012), N. Davies, S. Seshan, and L. Zhong, Eds., ACM, pp. 113–126.

http://en.wikipedia.org/wiki/Finite-state_machine
http://en.wikipedia.org/wiki/Finite-state_machine
http://www.lukew.com/ff/entry.asp?1649

Appendix A

Informed Consent Sheets

This informed consent sheet is used before the experiment starts. It intro-
duced the content of experiment and participants’s task. Participants must
read and sign the document before experiment, for get a rough understand-
ing of the experiment process and authorizing the usage of operation data
during the experiment.

Research Topic

Optimizing Multitasking User Behavior on Mobile

Researcher In Charge

The experiment will be fully responsible by Chen Wang, master student of
ICT Innovation programme, Aalto University. The research is supported by
User Interface group, School of Electrical Engineering, Aalto University.

Background And Objectives Of Study

The aim of this study is to evaluate a mobile application launcher. The
experiment will last 0.5 - 1 hours, the whole process will be video recorded.
During the study, you will be instructed to perform movements with your
right hand. Your performance will be recorded by a mobile application on
the experiment device. You are welcome take breaks at any time during the
experiment.

The whole experiment includes two series: SwipeLauncher and Home
Screen. Each part begins with a trail section, which helps you understand

64

APPENDIX A. INFORMED CONSENT SHEETS 65

how the task works, last about 5-10 min; then the real experiment section,
last about 10-20min. The operation data will be used for further research
analysis, for comparison of the two application launching methods.

Nature Of Study

The study represents the research field of Human Computer Interaction.
The studies conducted are of non-medical nature. This study does not

aim to increase knowledge of health or of the reasons, symptoms, diagnostics,
treatment or prevention of diseases or of the nature of diseases in general.
No drugs are administered to the study subjects during the study.

Data Protection

The recorded data will be used for scientific purposes by the User Interface
group of Aalto University, School of Electrical Engineering. In particular it
will be used for scientific publications and presentations. It will not be given
to any third party. All recorded data will be completely anonymized.

If you have any further questions regarding this experiment, please con-
tact the following researcher:

Chen Wang. Aalto University, School of Computer Science. Email:
chen.3.wang@aalto.fi

Consent Clause

I have read and understood the study information sheet given to me and I
have sufficient information on the process of the study. I understand that my
participation in the study is completely voluntary and that I have the right
to discontinue my participation at any stage without any consequences. It
has been explained to me that a designated researcher will, at my request,
provide me with additional details of the general principles of the study and
its progress or of the results concerning myself.

I have understood that the material and research data is gathered for
scientific purposes only and it will not be given even in part to the study
subject him/herself.

The research results related to me are only available to the researchers of
the research group and they will not be presented to a third party without
my written consent. The researcher in charge of the study may, however,
give permission to his/her other cooperation partners to analyse my research

mailto:chen.3.wang@aalto.fi

APPENDIX A. INFORMED CONSENT SHEETS 66

results for scientific purposes or ask for a professional consultation on pos-
sible unexpected incidental findings without separate consent provided that
the anonymity of the results has been ensured. Any type of commercial
exploitation of the results is prohibited.

I am not aware of any medical condition preventing me to attend the
tests. I approve that in case there appears an unexpected incidental finding
I will be informed about this.

By my signature, I confirm my participation in this study and agree to
volunteer as a study subject.

Name Place and Date

Signature

Appendix B

Participant Basic Information Ques-
tionnaire

The Participant basic information questionnaire is used for collecting partic-
ipants’ general information before experiment sections start. The aim is to
confirm that the participants meet the needs of experiment and prove the
selection of participants is not bias.

1. How old are you?

2. What’s your gender?
A.Male B.Female

3. What?s your smart phone model? And what?s the system version (if you
know)?

4. How long have you been using your current smart phone?
A. Under 6 month B. 6 month - 1 year
C. 1-2 years D. Over 2 years

5. How long have you been using Android smart phone(s)?
A. Under 1 year B. 1-2 years
C. 2-3 years D. Over 3 years

6. How much time do you use smart phone every day?
A. Under 1 hour B. 1-2 hour

67

APPENDIX B. PARTICIPANT BASIC INFORMATIONQUESTIONNAIRE68

C. 2-3 hour D. Over 3 hour

7. Please leave your email address (your email address will only be used
within this research project)

Appendix C

Assessment Questionnaire

Participants are asked to fill this assessment questionnaire after the exper-
iment. This questionnaire is used for evaluation of users’ subjective user
experience of SwipeLauncher and Home Screen design.

Please rank the operation comfort degree of SwipeLauncher, 1-very uncomfortable
5-very comfortable
1 2 3 4 5
Please rank the operation comfort degree of home screen, 1-very uncomfortable;
5-very comfortable
1 2 3 4 5
Please rank the operation speed of SwipeLauncher, 1-very slow; 5-very fast
1 2 3 4 5
Please rank the operation speed of home screen, 1-very slow; 5-very fast
1 2 3 4 5
Please rank the operation complexity of SwipeLauncher, 1-very difficult; 5-very easy
1 2 3 4 5
Please rank the operation complexity of home screen, 1-very difficult; 5-very easy
1 2 3 4 5
Please give an overall ranking for SwipeLauncher, 1-very bad; 5-very good
1 2 3 4 5
Please give an overall ranking for home screen, 1-very bad; 5-very good
1 2 3 4 5

69

	Cover page
	Contents
	1 Introduction
	1.1 Mobile Multitasking
	1.2 Launching Application on Mobile Devices
	1.3 Research Problems
	1.4 Scope of the Work
	1.5 Outline

	2 Related Work
	2.1 Algorithm Prediction
	2.1.1 Context Aware Based
	2.1.2 Application Usage Sequence Based

	2.2 Menu Layout
	2.3 Gesture Control
	2.3.1 FastTap
	2.3.2 Finger-Count and Radial Stroke-Shortcuts

	3 Design Foundation
	3.1 Goals
	3.2 Design Space

	4 Design Process
	4.1 Gesture
	4.2 Visual Layout
	4.3 Modeling
	4.3.1 Which Applications
	4.3.2 How Many Applications

	5 Modeling Based Design Decisions
	5.1 SwipeLauncher Operation Time
	5.1.1 KLM Analysis
	5.1.2 Operation Time Analysis
	5.1.3 Accuracy
	5.1.4 Expectation of Operation Time

	5.2 Android Original Solutions Operation Time
	5.2.1 KLM Analysis
	5.2.2 Android Original Solution Time Measurement
	5.2.3 Accuracy
	5.2.4 Expectation

	5.3 Comparison

	6 Experiment
	6.1 Experiment Design
	6.1.1 Factors
	6.1.2 Participants
	6.1.3 Software and Apparatus
	6.1.4 Experiment Procedure
	6.1.4.1 Home Screen
	6.1.4.2 SwipeLauncher

	6.2 Experiment Result
	6.2.1 Analysis
	6.2.2 Result
	6.2.2.1 Operation Time
	6.2.2.2 Error Rate
	6.2.2.3 Ignore Rate
	6.2.2.4 Questionnaire

	6.2.3 Discussion
	6.2.3.1 Operation Time
	6.2.3.2 Error Rate
	6.2.3.3 Ignore Rate
	6.2.3.4 Interview

	7 Discussion and Conclusion
	A Informed Consent Sheets
	B Participant Basic Information Questionnaire
	C Assessment Questionnaire

