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1

1 Introduction

The Lunar craters, regoliths and Lunar volcanic features (mare and terra) provide
valuable information about the formation of the solar system. Future manned
missions or settlement plans on Moon, makes it vital to have a better understanding
of the surface of the Moon and find the presence of water. National Aeronautics and
Space Administration (NASA) has enlisted several objectives [26] for future Moon
exploration.

Figure 1.1: Landing accuracy of various Mars missions [28]

A historical perspective of the increase in landing accuracy of rover missions to Mars
is provided by NASA [28] and shown in figure: 1.1. From an elliptical accuracy
of 280 × 100 km in 1976 (Viking mission) to an accuracy of 19 × 6 km in 2012
(Curiosity mission), the precision has improved approximately 15 times. Although
this seems like a big leap in landing accuracy, given the fact that remotely navigating
a rover is risky and costs lot of time and money, a more cost efficient landing system
(probably with accuracy in only hunderds of meters) would be efficient and save
time for scientific experiments. Global Positioning System (GPS) is a promising
option on Earth for position determination, but it is not available for the Moon. The
most promising alternate option is to use terrain based optical navigation, and use
landmarks for navigation guidance and control during the descent phase.

1.1 Background

Terrain based optical navigation augments the navigation capabilities of the state
of art guidance and navigation control technology, by adding visual information.
The visual information gathered from an on-board camera, exploits the geographical
features of the landing site to enhance the landing precision of the robotic lander.
The use of visual information also makes the system more autonomous and requires
minimal assistance from the earth mission control centre. In addition, the visual
system provides the capability to identify safe areas during the descent phase and
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hence avoid a hazardous landing.

Figure 1.2: Basic representation of optical navigation system (based on Kaufmann [17])

Figure: 1.2 shows the basic representation of an optical navigation system. It combines
data from an Inertial Measurement Unit (IMU), a Light Detection and Ranging
(LIDAR), an Altimeter, a camera and a star tracker sensors by using computer vision
modules and data fusion algorithms such as Kalman filter. The filter provides a pose
estimate and a confidence measure to the Guidance Navigation and Control System
(GNCS) system, which controls the landing trajectory of the spacecraft.

Autonomous navigation of a spacecraft based on visual information, has been proposed
by various organisations. Autonomous Landing and Hazard Avoidance Technology
(ALHAT) [13] proposed by NASA targets to have an accuracy of 90 m. Vision based
navigation has also been proposed for aerial vehicles by Kaiser et al. [15] using Scale
Invariant Feature Transform (SIFT) to detect and track features, from one frame
to another locally and match identified features at global level. Optical Guidance
for Autonomous Landing of Spacecraft (OGALS) [21] proposed by Japan Aerospace
Exploration Agency (JAXA) to autonomously land on small celestial bodies, is based
on surface features. The attitude of the spacecraft relative to the celestial body is
computed using the range measurement and location of detected features on the
descent image. The simulation results of the proposed method seemed to be accurate
with a guidance error of 7.1 m, but the application of the method is limited to small
bodies (like comets). Landing with Inertial and Optical Navigation (LION) proposed
by European Space Agency (ESA) [6] uses 3D rendering of the surface and compares
it with the built in digital elevation model to estimate the pose. The LION system
also combines data from inertial sensors.

Autonomous Terrain based Optical Navigation (ATON) is an ongoing project at
the German Aerospace Centre to develop a comprehensive closed loop system for
localization and position estimation for future landing missions to the Moon. The
ATON system fuses data from different on-board sensors together, using Kalman
filter for a more robust, accurate and reliable pose estimation [17].

The ATON system combines the relative pose estimate of a feature tracker with the
absolute pose estimates of a crater navigation module and a 3D matching pipeline. For
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the last landing phase the Binary Shadow Matching (BSM) was recently proposed by
Kaufmann et. al [18]. The BSM is based on the idea of using shadows as landmarks.
As the Moon has virtually no atmosphere and as the surface of the Moon is covered
with numerous shadow generating features such as craters and mountains. Due to
these factors Moon has abundant and distinct shadows, which can be used as features.
This supports the basic need of every matching and pose estimation, for as many
features as possible to have a more robust and accurate solution.

As shown in figure: 1.3 a slight possible deviation from the planned trajectory
is corrected based on the pose estimate computed by matching the shadows of a
reference image with the shadows of an actual image taken during the descent phase.
The pose estimate is fed to the GNCS and if required a course correction is performed
to precisely land at the designated landing site.

Figure 1.3: Application of binary shadow matching during descent phase (Kaufmann et al. [18])

Binary shadow matching

As shown in figure: 1.4, the BSM combines the shadow information from a rendered
image and a descent image to estimate the pose of the spacecraft. A geo-referenced
shadow map of the Lunar surface is created using the rendered images rendered
from geo-referenced DTM files, based on the designated landing site and the planned
landing trajectory. The BSM consists of four main processing steps: shadow segmen-
tation, shadow description, shadow matching and pose estimation as illustrated by
figure: 1.4. The shadows are segmented based on the maximum entropy thresholding
proposed by Kapur et al. [16]. The result is a binary image referred as Binary
Shadow Image (BSI), which only contains the shadow information of the images.
Each shadow is described with its neighbouring shadows, by projecting their centroids
to a two dimensional grid. Kaufmann et al. [18] have stressed the need of several
grids with different resolution in a pyramidal structure as shown in figure: 1.4. The
proposed pyramid structure has two advantages, it makes the system robust against
different image resolutions and it speeds up the matching process. The matching
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itself reduces to a simple binary comparison between the descriptor grids. Based on
the matching result the pose is estimated.

Figure 1.4: Binary shadow matching working principle (based on Kaufmann et al. [18])

1.2 Objective

The BSM was tested with virtually rendered images (from DTM) at different illumi-
nation conditions and trajectory shifts. To further test the robustness of the method,
it was proposed to use recorded real mission data. Initial investigation suggested
that the surface reflectance and surface features of Lunar surface vary from one
region to another, which makes the shadow segmentation process very challenging.
The performance of the BSM is directly related to the amount of detected shadow,
hence it is imperative to detect the maximum number of existing shadows in a scene.
To minimise the effect of aforementioned artefacts on the performance of BSM, it
was decided to use a radiometric enhancement pipeline which would balance the
information content of the image to improve the shadow segmentation.

Need for radiometric enhancement

The real time images of the Lunar surface can vary largely in surface reflectance
and illumination condition during acquisition. New craters on the Lunar surface
have high reflectance due to smooth surfaces, whereas old craters have relatively low
reflectance. Mare regions of the Moon have a relatively dark surface which generates
similar grey level values as shadow, and hence makes it difficult for an adaptive
thresholding method to segment the shadows from the background. Figure: 1.5 shows
an example of the same mare region using a rendered image, a real Lunar image
and an enhanced Lunar image. The binary shadow image for each of the grey scale
images is also shown. As shown in figure: 1.5, the total shadow count for the rendered
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image is 33, and the total shadow count for the segmented image (original) is 5,
where as the total shadow count for the enhanced image is 21. The shadow count
considers only the shadows with a contour area1 more than or equal to 10 pixels, as
any shadow with a contour area less than 10 pixels is assumed to be insignificant to
be considered as a feature. As this simple example shows, the number of shadows
after enhancement of the image is much higher than for the original image.

Figure 1.5: Shadow segmented rendered, NAC and enhanced images of the same mare region

Radiometric enhancement

Figure: 1.6 shows the intended use of the proposed radiometric enhancement pipeline
within the BSM system. The descent image is enhanced on-board before the shadow
segmentation is performed.

Figure 1.6: Application of the radiometric enhancement method within the BSM system

1the contour area is calculated using the Green’s theorem [42]
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As mentioned before the contrast of the images vary, due to the illumination conditions
during the acquisition and due to the surface in the scene. Because of these variations
in the Lunar images, it might be difficult to find one algorithm which is suitable
for all images. Different images might require different enhancement algorithms to
achieve the required performance of shadow segmentation.

Based on this observation, the thesis objective is divided into two parts. The first
goal is the analysis of the state of art enhancement methods and check if one method
is suitable for all the images with respect to shadow segmentation. If there is no
unique method, then the second objective is to implement a radiometric enhancement
pipeline, consisting of an image classifier and a set of suitable enhancement methods.
Figure: 1.7 shows the basic structure of the radiometric enhancement pipeline. As
shown, the enhancement pipeline first classifies the images subjectively based on the
visual information of the scene e.g., whether the area lies in light terra region or dark
mare region. After this a parametric evaluation of the image is performed, based on
mathematical parameters. The values of the different mathematical parameters are
used to select the suitable enhancement algorithm.

Figure 1.7: Basic structure of radiometric enhancement pipeline

This work involves analysis of available Lunar images with respect to quality, data
formats and availability. The Lunar images will be classified based on scenery
information of surface features and through parametric information. Based on the
classification, a training data set will be created. This data set will be used to build
the classification logic using the parameter value.

1.3 Methodology

To achieve the objective, the following major steps are performed:

1. Classification of scenes in Lunar images: The classification is based on scene
analysis in the images (through visual inspection) and mathematical parameters.

2. Study and identify image enhancement techniques: Literature review of various
available image enhancement techniques and selection of suitable techniques
for Lunar image enhancement.

3. Check for unique algorithm: Out of all the enhancement algorithms identified
for the enhancement, check if there is an algorithm which is applicable on all
the images.
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4. Set-up a pipeline of identified enhancement techniques: If a unique algorithm
does not exist for all of the images, implement a classification method based
on visual information and mathematical parameters.

5. Evaluation of the implemented pipeline: Evaluate the performance of the
pipeline against a large data set.

1.4 Thesis overview

Chapter 2 explains the image classification methodology with examples. The third
chapter discusses the state of the art image enhancement techniques investigated and
an explanation of the selected algorithms. Chapter 4 describes the implementation
of the pipeline. The fifth chapter describes the experimental set-up description
which includes the data selection and the method used to validate the pipeline.
Chapter 6 discusses the obtained results. The last chapter provides a summary of
the thesis objectives and the obtained results, as well as a discussion on possible
future improvements.
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2 Image classification

The type of images acquired by the in-flight camera of the lander vary depending
on the region of interest and the illumination conditions. The size and type (hard
and soft) of the shadows depend on the incidence angle1 combined with the surface
morphology. Another factor affecting the shadow extraction process is the surface
reflectance. Areas with low reflectance would make it difficult to differentiate between
the shadows and the background. Due to variation in surface feature and the
illumination condition, it is important to classify all the possible situations which
might occur in a real mission. The classification of images is also important for the
selection of the enhancement algorithms as one enhancement algorithm might not be
applicable for all types of images. Further the classified images will be used to verify
the performance of the implemented enhancement pipeline.

This chapter gives a brief introduction to shadows, followed by a detailed discussion
on the classification methods used to classify the images.

Shadows

A shadow is created when an object comes between a surface and a ray of light.
Shadows can be classified into two categories, hard shadows and soft shadows. Hard
shadows give a binary appearance as shown in figure: 2.1, the existence of shadow is
a simple yes or no question. The region of a hard shadow is well defined and there
is a sharp boundary between the shadow and the illuminated region. Soft shadows
on the other hand do not have a very well defined boundary and the strength of
the shadow decrease radially outwards from the centre of the shadow as shown in
figure: 2.2.

Figure 2.1: Example of
hard shadow [31]

Figure 2.2: Example of soft
shadow [31]

Ideally, hard shadows are created due to a point light source. Other factors such
as lack of atmosphere (absence of light scattering) or presence of hard light can
create shadows which are very close in appearance to hard shadows. In case of the
Moon, where there is no atmosphere and hence there is no diffusion, the sun rays
obstructed by craters, mountains or boulders produce strong shadows, i.e. with high
contrast between the shadow and the surrounding. A hard appearance of shadow is

1the incidence angle is the angle between the sun and the surface normal [41]
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more prominent at high incidence angle, due to low inter-reflection effect from Lunar
surface.

Soft shadows are formed due to an area light source, which generates parallel light
beams. Soft shadows are also the result of scattered, diffracted and inter-reflected
light from an object. In case of Moon, there is no atmospheric scattering, but at low
incidence angle the strength of shadows is diminished by the inter-reflectance effect.

2.1 Classification of Lunar images

Classification of scenes in Lunar images is required to select the optimal enhancement
techniques to be implemented in the pipeline for automatic radiometric enhancement.
The images are mainly classified based on the image brightness and topographic
features in the scene. All the images considered for classification are taken from the
Lunar Reconnaissance Orbiter Camera (LROC) website [44], otherwise the source
is explicitly mentioned. The following major criteria has been identified for the
classification of the images:

1. Visual classification: A subjective classification based on the visual inspection.

2. Parametric classification: An objective classification based on mathematical
parameters such as image entropy.

2.1.1 Visual classification

The fundamental principal behind BSM is to match shadows and estimate the
absolute position of the spacecraft, which makes it imperative to identify all the
features responsible for shadow generation on the Lunar surface. Another factor
which is important in digital image processing is the reflectance of the surface as an
image is a combination of both the reflectance and the illumination. As the camera
sensors convert the amount of light received to a grey value, it can happen that for
dark regions the dark surface is misclassified as shadows.

The visual classification of Lunar images are based on the geographical information.
As the designated landing site on the Lunar surface is known for a mission, the
geographical feature information is assumed to be a prior knowledge. Based on
visual analysis of NAC images and Lunar geography information provided by various
sources [45, 14], images were classified based on the following:

1. Surface reflectance: The Lunar surface contains areas with both (high terra)
region and (low mare) region reflectance.

2. Topography: Flat and hilly or mountainous regions on the Moon.

3. Surface feature: Depending upon the region of interest, the Lunar surface might
contain craters, boulders and/or fractures.



10

Surface reflectance

The surface of the Moon is mainly classified into two regions based on the reflectance
of the surface material. The light highland regions called terra and the dark plain
regions called mare. Figure: 2.3 (section of M105795162RC1) shows a mare region
with low surface reflectance and figure: 2.4 (section of M181495512LC) shows a terra
region with high surface reflectance. This classification is important as for the darker
regions, shadow segmentation is difficult under low illumination condition. Due to
its limited dynamic range, the camera sensor would read similar grey level values for
the shadow and the background.

Figure 2.3: Low reflectance
mare region

Figure 2.4: High re-
flectance terra region

Figure 2.5: Lunar surface
with mare and terra region
[46]

An image of a scene containing mare and terra is challenging for the shadow seg-
mentation process. As shown in figure: 2.5, due to low surface reflectance the mare
region appears darker compared to the terra region with its high surface reflectance.
In such regions the grey value acquired by the camera sensor for illuminated surface
of a mare could match with the grey value of the cast shadow in the terra region.

Topography

Moon topography can be classified into two major categories, flat areas and moun-
tainous region. The shadows in the flat surface areas are created due to the surface
features such as craters. Figure: 2.6 (section of M102000149RC) shows an example
of such flat region on the Moon. Depending on the surface reflectance and the illu-
mination, the shadows due to a mountain can be large compared to crater shadows.
Additionally, due to back reflectance there might be soft appearing shadows on the
mountain slopes. In figure: 2.7 (section of M1123519889RC) a mountain region on
the Lunar surface is shown.

1the numbering is the official image identifier of the LROC website [44, 2]
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Figure 2.6: Flat area of the
Lunar surface

Figure 2.7: Mountain on
the Lunar surface

Surface feature

The surface of the Moon has various topographic features such as craters, boulders,
rilles and fractures, which can generate shadows. Craters are a robust and prominent
source of shadows. Figure: 2.8 (section of M147163861LC) shows examples of crater
shadows. The craters can be further classified by their age. Young craters are
brighter than their surrounding and has sharp boundaries which leads to hard
shadows, whereas the old craters have smooth edges which leads to soft shadows.
Figure: 2.9 (section of M186056576LC) gives a comparison of young and old craters.
The young crater has a distinct texture and crater ring compared to its surrounding.
The bright texture of the crater, increases the dynamic range of the image, which
makes the shadow segmentation process more challenging.

Figure 2.8: Crater on the
Lunar surface

Figure 2.9: Example of
young and old crater

Shadows are also generated by boulders. The size and type of the shadows depend
upon the size of the boulder and the incidence angle. Figure: 2.10 (section of
M187340587LRC) shows the boulders and generated shadows on the Lunar surface.
Further shadows arise from fractures on the Lunar surface shown in figure 2.11
(section of M182253065RC). The shadows generated by fractures and boulders are
small and it needs to be investigated if they can be used with BSM, perhaps at lower
altitude, when the cast shadows appear long.
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Figure 2.10: Boulders on
the Lunar surface

Figure 2.11: Fractures on
the Lunar surface

Rilles are another prominent Lunar feature which generates shadows. The rilles can
be continuous as shown in figure: 2.12 or might appear like chained craters as shown
in figure: 2.13. The chained craters are considered to be undeveloped rilles [25]. The
shadows generated by rilles are long and have a small width.

Figure 2.12: Rille on the
Lunar surface

Figure 2.13: Chained
craters (undeveloped rille)
on the Lunar surface

Figure 2.14: Graben on the
Lunar surface

The grabens are features on Moon formed between two surface faults and downwards
relative to the fault blocks, shown in figrue: 2.14. Similar to the rilles, the grabens
are source of long shadows with a small width.

Figure: 2.15 shows the visual classification structure. In each classification section, it
is possible to have a combination of spatial features such as craters and boulders. The
first level of the classification is based on the reflectance of the surface, i.e. whether
the scene belongs to the mare or the terra region. The next classification is based on
the topography. The type of shadows vary based on whether the scene contains only
flat surface with surface features or mountain. The shadow generated by mountains
are large whereas an individual crater generates smaller shadow.

The next classification is based on the surface features, the surface of the Moon
contains various shadow generating features. The strength of shadows cast by each
feature, depends largely on the incidence angle and the surface reflectance. Due to
rilles and graben, the cast shadow strength is high at high incidence angle, where as
at relatively lower incidence angles the shadows from craters and boulders are more
evident.
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Figure 2.15: Analytical classification table

Visual classification review

In order to test the image enhancement algorithms with real images, first classification
based on the classification table: 2.15 is performed. The strength of cast shadows by
these features depends on the incidence angle and surface reflectance.

2.1.2 Parametric classification

The Lunar images were also classified objectively based on the following information:

1. Incidence angle: The incidence angle if based on the time of descent. It has a
large influence on the shadow content of a scene.

2. Grey level co-occurrence matrix: Grey Level Co-occurrence Matrix (GLCM) is
a texture based image classification method.

Incidence angle

Kaufmann et al. [18] have shown that the accuracy of a pose estimate based on
the BSM decreases with a decrease in number of key points, which depends on the
amount of shadows detected in the Lunar image. The size, quality (hard or soft) and
direction of a shadow depends on the incident angle (time of descent). Figure: 2.16
(section of M116161085RC) and figure: 2.17 (section of M111443315RC) show the
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effect of the incident angle on the same region of the Lunar surface. The images
show the Apollo 11 landing site. As it can be seen the incidence angle affects the
shadow information and due to reflectance also the dynamic range of the image.

Figure 2.16: Image with in-
cidence angle i = 81.78o

Figure 2.17: Image with in-
cidence angle i = 26.24o

Grey level co-occurrence matrix

The GLCM is a texture based image classification technique, proposed by Haralick
and Shanmugam [10]. GLCM is based on the statistical information of the image
for assessing the image texture. The statistics is based on the spatial relationship of
the image pixels. Jia et al. [20] have used the GLCM for the analysis of Synthetic
Aperture Radar (SAR) images and for urban and agricultural land classification by
Umaselvi et al. [43]. Further, the GLCM has been used for the analysis of medical
images by Ting and Shu [48], Mitrea et al. [22] and Mustafa et al. [22].

He and Wang [11] have proposed another texture based classification method called
texture spectrum approach. In this method, the texture information is extracted
from the whole 3× 3 neighbourhood for each pixel. Although the method is effective,
it requires huge amount of data to extract the texture, which is not available from
Lunar images, hence GLCM was selected.

The GLCM was selected because of the multiple parameters which can be calculated
using the GLCM matrix. Different parameters computed from GLCM, gives the
measure of the image properties, hence a combination of these parameters can be
used to classify the images. In this method, the frequency of a combination of grey
values are stored in a matrix called grey level spatial dependence matrix.

The GLCM for an image with L levels for grey values can be computed as follows:

Decide the spatial relationship

The simplest form of the spatial relationship is the selection of the neighbour pixel
next to the reference pixel in horizontal direction for each row, from left to right.
The neighbour pixel can also be selected with a gap of n pixels. Based on the desired
texture information, the neighbour pixel can also be selected in the vertical direction
or at a desired angle. For table: 2.1, the GLCM matrix is created for the horizontal
direction and the neighbour pixel is the immediate next to the reference pixel.



15

Build the matrix

To explain the GLCM matrix an image with a depth of 2 bit and a resolution of
4× 4 is selected, as shown in table: 2.1. The GLCM matrix of this image is shown in
table: 2.2. For the image the relation of 0 as reference pixel and 1 as neighbouring
pixel occurs 3 times, hence the row with grey value 0 and column with grey value 1
of GLCM shown in table: 2.2 is updated with 3. It is important to note that the
GLCM matrix is horizontal, from left to right and for each row.

0 1 2 0
1 0 1 2
3 0 1 2
1 3 2 0

Table 2.1: Example image with depth of 2 bits

0 1 2 3
0 0 3 0 0
1 1 0 3 1
2 2 0 0 0
3 1 0 1 0

Table 2.2: GLCM matrix of table: 2.1

Based on above example the general form of GLCM horizontal matrix MG is shown
in table: 2.3.

0 1 2 · · · L-2 L-1
0 0,0 0,1 0,2 · · · 0,L-2 0,L-1
1 1,0 1,1 1,2 · · · 1,L-2 1,L-1
2 2,0 2,1 2,2 · · · 2,L-2 2,L-1
...

...
...

... . . . ...
...

L-2 L-2,0 L-2,1 L-2,2 · · · L-2,L-2 L-2,L-1
L-1 L-1,0 L-1,1 L-1,2 · · · L-1,L-2 L-1,L-1

Table 2.3: GLCM matrix

Make the matrix symmetrical

To make the matrix symmetrical the horizontal build up has to be repeated for the
vertical direction, which can be achieved by transposing the matrix and add the
transposed matrix with the original matrix as given in equation: 2.1

V = MG +M
′

G (2.1)

where, V is the symmetrical GLCM matrix.

Normalize the matrix

Normalise the GLCM matrix using the equation: 2.2.

Pv(i, j) = V (i, j)
N−1∑
i,j=0

V (i, j))
(2.2)
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where, Pv(i, j) is the normalised value at (x, y). The parameters which can be
calculated from the GLCM matrix are GLCM contrast, GLCM correlation, GLCM
energy, GLCM entropy, GLCM dissimilarity, GLCM homogeneity, GLCM mean and
GLCM variance for image analysis and classification.

A combination of three parameters namely contrast, correlation and entropy (of
GLCM) were used to classify the Lunar image. The selection of the aforementioned
parameters computed from the GLCM matrix are considered based on the results
discussed by Clausi [5]. In his research the author found that the combination of
contrast, correlation and entropy outperforms a combination of all other measures
(such as energy, dissimilarity, etc.).

GLCM Contrast

GLCM contrast contv is calculated as shown in equation: 2.3. A GLCM contrast
value of 0 means that the image contains only one grey level and hence has no
contrast. Though the maximum value of the GLCM contrast depends on the size
of the GLCM matrix, for a given matrix size, higher value would represent higher
contrast level in the image.

contv =
N−1∑
i,j=0

Pv(i, j)(i− j)2 (2.3)

GLCM correlation

The calculation of GLCM correlation corrv value is based on the mean and standard
deviation, as shown by equation: 2.4e. GLCM correlation provides the linear depen-
dency of a pixel value with neighbouring pixels. A value of 0 means that the pixels
are uncorrelated and a value of 1 means perfect correlation.

µ(i) =
N−1∑
i,j=0

iPv(i, j) (2.4a)

µ(j) =
N−1∑
i,j=0

jPv(i, j) (2.4b)

σ(i)2 =
N−1∑
i,j=0

(i− µ(i))Pv(i, j) (2.4c)

σ(j)2 =
N−1∑
i,j=0

(j − µ(i))Pv(i, j) (2.4d)

corrv =
N−1∑
i,j=0

Pv(i, j)[
(i− µ(i))(j − µ(j))√

(σ(i)2)(σ(j)2)
] (2.4e)

GLCM Entropy

The computation of GLCM entropy is similar to image entropy with the change
of natural log. GLCM entropy hv computation is shown in equation: 2.5. The
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GLCM entropy tells the uniformity of the contrast level of the GLCM matrix, this
information also varies from image to image and is related with the image entropy.
If the grey level distribution in the image is even, the value of the GLCM entropy is
maximum.

hv =
L−1∑
i,j=0

pv(i, j)(− log pv(i, j)) (2.5)

In addition to parameters computed from GLCM matrix, Image entropy was also
considered for classification.

Image entropy

Entropy is a measure of randomness, and an image of high randomness means that
the histogram is evenly equalised. The value of image entropy provides the average
information content of the image. The formula to calculate image entropyH discussed
by Gonzalez and Woods [9] [page: 263] in bits is given by equation 2.6.

H = −
i=L−1∑
i=0

p(i) log2 p(i) (2.6)

where L is the number of grey levels, p(i) is the probability of grey level i. Entropy in
thermodynamics gives the randomness measure of the system. In image processing,
the entropy value provides the amount of information contained by the image. The
minimum amount of information contained by the image is 0 when all the grey pixels
have the same value. The maximum entropy value for an image (of depth 8) is 8,
when the occurrence probability of all the grey values between 0 to L− 1 is the same.

Classification structure

Figure: 2.18 shows the objective classification structure. The image is classified based
on the incidence angle, GLCM entropy, GLCM contrast, GLCM correlation and
image entropy. Based on the value of these parameters, the enhancement algorithm
is selected.

Figure 2.18: Objective classification table
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Parametric classification review

Parametric classification is based on the image acquisition conditions of the image
and the information content of the image. As discussed earlier, the incidence angle
affects the strength of shadows. And the incidence angle depends on the image
acquisition time. Next the image is classified based on the contrast, entropy and
correlation calculated from the GLCM matrix and the image entropy.

Parametric classification is proposed for the second objective, that is if there is no
unique algorithm which is applicable on all the images. A relation between the
different parameters and the enhancement algorithm can be established based on a
sample execution. And this relation can be used to select the applicable algorithm
based on the parameter values of an image.
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3 Radiometric enhancement methods

This chapter investigates the state of the art image of enhancement methods. The
focus is on methods which provide contrast enhancement for grey scale images. It is
assumed that the landing spacecraft will be equipped with a monochrome camera,
which provides grey scale images.

As discussed in the previous chapter, Lunar images vary largely in brightness and
texture, which means one enhancement method might not provide desired result for
all images under-consideration. Based on the global and local brightness level and
texture information the radiometric enhancement pipeline has to include different
enhancement algorithms. Sanchez and Canton [36] [chapter: 9] have classified space
image processing primarily into two groups, spatial domain methods and frequency
domain methods.

3.1 Spatial domain processing

In spatial domain methods pixels are directly manipulated. The spatial domain is
based on pixel level mapping, where the mapping function is based on the selected
enhancement method. The spatial domain methods can be further divided into two
major categories point processing techniques and mask processing techniques. These
two methods are discussed in detail in the next sections.

3.1.1 Point processing methods

In point processing methods, the input pixel value is computed solely based on that
pixel’s value. The point processing methods are simple and efficient techniques for
radiometric image enhancement. Point based methods are mainly used for contrast
enhancement and colour value modification for coloured images, improving the image
quality subjectively. As an individual pixel is modified for enhancement, the methods
fails to remove noise or perform segmentation, for noise reduction and segmentation
mask based processing techniques are used.

Based on mathematical functions

Image Negatives (IN) [9] [page: 130] can be used to view the relatively small
bright or grey regions in an image with dominant dark areas. Log Transformation
(LT) [23] [page: 48] can be used to compress the dynamic range of the images for
display. Gonzalez and Woods [9] [page: 131] have shown the effect of dynamic range
compression using the Fourier Transform (FT). Images can also be enhanced based
on a piecewise transformation called contrast stretching, where the range of the pixel
values are divided into sub-sets and each subset is mapped using a different mapping
[9] [page: 137]. To highlight a particular region in the image, another piecewise linear
transformation called grey level slicing1 [9] [page: 137] can be used.

1also known as intensity level slicing



20

Power Law Transforms (PLT)1 [9] [page: 132], can be used to both increase or
decrease the dynamic range of the images. Scott and Pusateri [38] have proposed an
automatic method to select the value of gamma based on the statistical information
of the image for hardware implementation. However, their implementation uses the
information from the previous frame to calculate the gamma value to be used for
the correction of the current frame, which is applicable only in video enhancement
as the information change from one frame to another is assumed to be very low.
A localised gamma correction is proposed by Qiao and Ng [34], where the gamma
value is updated based on the local statistics of the image. The method calculates
the weight for the current kernel, and the computed weight is used to adjust the
gamma value. The benefit of using this method is that the pixels of dark regions are
enhanced more than the ones in bright regions. However gamma correction is applied
for display systems and it controls the brightness of the image, not the contrast.

Based on the histogram of the image

Histogram Matching (HM) [9] [page: 150] is a technique in which the histogram of
the input image is matched with the user defined histogram. The disadvantage of
this method is that it is not adaptable and for each image based on the information
content or application a desired output histogram has to be specified. As the scene
information during the descent phase is assumed to be dynamic, fixing a predefined
output histogram was not considered to be an efficient solution.

Histogram Equalization (HE) [9] [page: 144], utilises the Cumulative Distribution
Function (CDF) to map the grey levels from the original image to the grey levels of
the enhanced image. Although, HE is computationally very efficient, the performance
of the method is limited to low dynamic range images. HE of high dynamic range
images results in intensity saturation and amplification of noise. HE was selected to
test its performance on images with low contrast. The algorithm of HE is discussed
in section: 3.3.1.

To balance the effect of localised bright and dark regions in HE, Adaptive Histogram
Equalization (AHE)2 was proposed for cockpit displays by Ketcham et al. [19]. The
AHE is a non-linear method, where the local statistics of the image is used to adap-
tively compute the grey level value. Although this method is very effective in image
enhancement, it is computationally very expensive. To reduce the computational
requirement Pizer et al. [32] have proposed a sampling and interpolation method
to speed up the basic form of AHE. Another method to improve the speed of AHE
is proposed by Zhiming and Jianhua [49] for hardware implementation. By using a
combination of an iterative sliding window (for histogram calculation) and a bit wise
shift (to speed up the multiplication and the division process), a speed-up of 98.1%
over AHE (for window size of 128 and depth of 8 bit) was achieved. Based on its
capability to equalise the local areas evenly, AHE was selected for enhancing images
with high dynamic range. The AHE algorithm is explained in detail in section: 3.3.2.

1also known as Gamma Correction (GC)
2the authors in the document have used the term Local Area Histogram Equalization (LAHE)

for AHE.
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The AHE in general produces good results for high dynamic range images, but as
discussed by Pizer et al. [32], it also enhances the noise. The noise amplification
is high in a homogeneous neighbourhood, where the transformation applied maps
the narrow pixel range to whole range of the image, over amplifying the noise. To
prevent this, CLAHE was proposed by Pizer et al. [32].

In CLAHE an individual histogram of each region is clipped using a clipping limit.
The clipped region is then redistributed to the neighbourhood and the same process is
iterated until an acceptable excess value is achieved. CLAHE was selected for images
with high dynamic ranges, with the advantage of the clip limit, the enhanced images
can avoid high output dynamic range, which should be suitable for the adaptive
shadow segmentation method. More about the CLAHE algorithm is discussed in
section: 3.3.3.

Singh and Kapoor [39] have proposed an exposure based sub-image histogram equal-
isation technique. The image is divided into two sub images of different intensities
and to avoid saturation the histograms are also clipped using a clip limit as the
average value of the grey level. The two sub-images are enhanced individually and
combined to get the enhanced image. This method was selected for Lunar image
enhancement as it increases the contrast of low exposure images. This algorithm is
explained in detail in section: 3.3.4.

Other point based techniques such as image subtraction is used in robotics [7] for
target tracking (by subtracting the background) and to observe asteroids [8], by
removing the static objects in the background. Subtracting two consecutive images
makes it easier to track a moving object (or multiple moving objects) in a cluttered
background. Image averaging is used to remove uncorrelated noise with zero mean
value. It is very often used to enhance the image quality of a distant galaxy as
discussed by Sanchez and Canton [37]. Aforementioned methods were not selected,
as these methods are not suitable for image contrast enhancement.

3.1.2 Mask processing methods

In mask processing methods, the enhanced pixel value is computed from the input
pixel value and the values of neighbouring pixels using a Spatial Filter (SF). The
spatial filters are selected based on the desired operation to be performed on the
image.

The mean and median filters are used to remove noise as discussed by Moeslund [23]
[page: 71], some spatial filters are used to detect geometrical shapes in the image
(such as Hough transform for circle detection).

Another important field of spatial filtering is morphology as discussed by Pratt [33]
which is mainly used in binary images to increase the size (dilution) [page: 455] or
reduce the size of an object (erosion) [page:457].

Template matching is used to locate an object in the image as discussed by Moeslund
[23] [page: 78]. Huihui et al. [40] have proposed the shadow segmentation of coloured
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images through the template matching approach.

The two fundamental operations used in mask processing methods are convolution
and correlation.

g(i, j) =
k=n/2∑
k=−n/2

l=n/2∑
l=−n/2

h(k, l)f(i− k, j − l) (3.1)

The convolution operation represented by equation: 3.1 is used for image smoothing
or noise filtering where as the correlation operation shown in equation: 3.2 is used
for template matching.

g(i, j) =
k=n/2∑
k=−n/2

l=n/2∑
l=−n/2

h(k, l)f(i+ k, j + l) (3.2)

Mask processing methods were not investigated further as the focus of this thesis is
on contrast enhancement of the image, not on noise reduction or object detection.

3.2 Frequency domain processing

In frequency domain processing the Discrete Fourier Transform (DFT) of the image is
modified (using frequency domain filter). The enhanced image is obtained by taking
the Inverse Discrete Fourier Transform (IDFT) of the modified DFT as discussed by
Gonzalez and Woods [9] [chapter: 4]. The DFT of the image f(x, y) is calculated as
shown in equation: 3.3.

F (u, v) =
i=M−1∑
i=0

j=N−1∑
j=0

f(i, j) exp−j2π(ui/M+vj/N) (3.3)

Considering the DFT of filter h(x, y) to be H(u, v), the processed DFT of the image
G(u, v) is given by equation:3.4.

G(u, v) = H(u, v)× F (u, v) (3.4)

The IDFT is calculated using the equation: 3.5

g(i, j) =
i=M−1∑
i=0

j=N−1∑
j=0

G(u, v) exp−j2π(ui/M+vj/N) (3.5)

Frequency domain filtering, when used for image smoothing and image sharpening are
computationally very efficient compared to spatial domain filtering as the convolution
in spatial domain is only a multiplication in frequency domain.

One of the important filtering methods in frequency domain is called Homomorphic
Filtering (HF) discussed by Gonzalez and Woods [9] [page: 185]. The advantage
of such a filtering technique is in suppressing the effect of uneven low frequency
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illumination by applying a high pass filter. The homomorphic filtering is based on
the fact that an image is a combination of two factors, illumination i(k, l) (the low
frequency component) and reflectance r(k, l) (the high frequency component) as
shown in equation: 3.6.

f(k, l) = r(k, l)× i(k, l) (3.6)

Section: 3.3.5 explains the homomorphic filtering in detail.

3.3 Selected algorithms

As the objective is to detect shadows in the descent image after the enhancement, the
methods are studied with the main focus on their enhancement capabilities in terms
of contrast. So that the shadow segmentation can be robust and reliable. During
image classification, as mentioned in chapter: 2, it was observed that the images
vary mainly in contrast level. In some of the images, localised low exposed regions
were observed. Uneven illumination in the images is another issue in the images,
which makes some of the areas much brighter than the rest. These variations in the
image affect the adaptive threshold selection for shadow segmentation, leading to
false detection or rejection of shadows. Among the various algorithms for image
enhancement, the algorithms were selected based on the following capabilities:

1. Contrast improvement at global level: The algorithm is capable to enhance the
global contrast of the image (applicable for low dynamic range images).

2. Contrast improvement at local level: The algorithm is capable to enhance the
local contrast of the image (applicable for images with localised brightness or
high dynamic range).

3. Capability to equalise the uneven illumination: The algorithm is capable to
filter the illumination (Some of the images were found to have bright areas,
due to illumination).

4. Capability to enhance low exposed areas: The algorithm is capable to enhance
the low exposure areas.

5. Capability to avoid grey level saturation: During the enhancement, the algo-
rithm is capable of preventing the saturation effect1 in the image.

6. Adaptive across images: The algorithm is adaptable and enhances the image
at local and global level.

The level of improvement in contrast is important for the shadow segmentation, as
the contrast level in the image decides the dynamic range of the image, which in
turn affects the shadow thresholding value. Very high contrast levels might lead to

1the image pixels have minimum or maximum grey value, which makes some regions in the
image darker or brighter than desired
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false shadow detection and very low contrast level might miss some of the actual
shadows. Hence, it is critical to enhance the images with the optimal contrast for
the desired results. The state of the art of image enhancement algorithms and their
properties are listed in table: 3.1.

LT GC HE AHE CLAHE ESIHE SF HF
Contrast improvement at global level × × X X X X × X
Contrast improvement at local level × × × X X X × ×
Capability to equalise the uneven illumination × × X × × × × X
Capability to enhance low exposed areas × × X X X X × ×
Capability to avoid grey level saturation × × × × X X × X
Adaptive across images × × × × X X × ×
Selected × × X X X X × X

IN: Image Negative, LT: Logarithmic Transform, GC: Gamma Correction, HE: Histogram Equalisation
AHE: Adaptive Histogram Equalisation, CLAHE: Contrast Limited Histogram Equalisation

ESIHE: Exposure based Sub-Image Histogram Equalisation, SF: Spatial Filtering, HF: Homomorphic Filtering

Table 3.1: Algorithm selection matrix,

The algorithms were selected based on the following justification:

1. Histogram equalisation: Expected to work well on images with low dynamic
range.

2. Adaptive histogram equalisation: Expected to work well on images with high
dynamic range.

3. Contrast limited histogram equalisation: Expected to work on images with
high dynamic range and to avoid the saturation effect.

4. Exposure based sub-image histogram equalisation: Expected to work well on
images with low and high exposure areas.

5. Homomorphic filtering: Expected to normalise the brightness in the image.

In the following, the selected algorithms are explained in more detail to provide a
deeper understanding for the implemented and tested methods.

3.3.1 Histogram equalisation

HE is a contrast adjustment technique for images with low dynamic range. The
normalised histogram (also the probability distribution) is given by equation: 3.7.

p(k) = nk
n

(3.7)

where, p(k) is the probability of the occurrence of grey level value k, nk is the total
number of pixels with value k, n is the total number of pixels in the image and
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k = 0, 1, 2, ..., L − 1. L is the grey level values. The new pixel value is computed
based on the CDF of the normalised histogram described in equation: 3.8 and 3.9.

ck =
k∑
j=0

p(j) =
k∑
j=0

nj
n

(3.8)

gk = (L− 1)× ck (3.9)

where, ck is the CDF from 0 to the input grey level k and gk is the new pixel value.
The HE is summarised in algorithm: 1.

Algorithm 1 Histogram equalisation
1: for i← 0,M − 1 do → histogram
2: for j ← 0, N − 1 do
3: n(f(i, j))← n(f(i, j)) + 1
4: end for
5: end for
6: for k ← 0, L− 1 do → probability distribution
7: p(k)← n(k)/(M ×N)
8: end for
9: c(0)← p(0)
10: for k ← 1, L− 1 do → cumulative distribution
11: c(k)← c(k − 1) + p(k)
12: end for
13: for k ← 0, L− 1 do → lookup table
14: t(k)← c(k)× (L− 1)
15: end for
16: for i← 0,M − 1 do → enhanced image
17: for j ← 0, N − 1 do
18: g(i, j)← t(f(i, j))
19: end for
20: end for

3.3.2 Adaptive histogram equalisation

To reduce the computational overload of the original AHE by Ketcham et al. [19],
Pizer et al. [32] proposed a sampling and interpolation method to perform AHE,
which is also used in this thesis.

In the proposed method an image is divided into equally sized rectangular tiles
(typically W ×W ). A CDF is computed for each tile, shown in the left part of
Figure: 3.1. The green region is bi-linearly interpolated using the CDF of the four
region, the orange region is linearly interpolated and the blue region is transformed
with the corner tile CDF.
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Figure 3.1: Tile based AHE: sampling and interpolation [19]

The linear interpolation is achieved by:

ml = x2 − x
x2 − x1

m11 + x− x1

x2 − x1
m21 (3.10)

The bilinear interpolation is achieved by:

mb = 1
(x2 − x1)(y2 − y1)(m11(x2 − x)(y2 − y)+

(m21(x− x1)(y2 − y)+
(m12(x2 − x)(y − y1)+
(m22(x− x1)(y − y1))

(3.11)

In equation: 3.10, ml is the linearly interpolated new intensity value of the pixel
at location (x, y) for the orange region. In equation: 3.11 mb is the bi-linearly
interpolated new intensity value of the pixel at location (x, y) for the green region,
m11 is the mapped intensity of the upper left tile centre at position (x1, y1), m21 is
the mapped intensity of the upper right tile centre at position (x2, y1), m12 is the
mapped intensity of the lower left tile centre at position (x1, y2), m22 is the mapped
intensity of the lower right tile centre at position (x2, y2).
Using algorithm: 2, the image is divided into multiple tiles. For each tile the CDF
and lookup table is calculated. P × Q gives the total number of tiles. m and n
are the number of rows and columns respectively for each tile. fxy represents an
individual tile.
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Algorithm 2 Adaptive histogram equalisation: part 1
1: m←M/P
2: n← N/Q
3: for x← 0, P − 1 do → tile and lookup table
4: for y ← 0, Q− 1 do
5: fxy ← f [m× x : (m× (x+ 1))− 1, n× y : (n× (y + 1))− 1]
6: for r ← 0,m− 1 do → histogram for each tile
7: for c← 0, n− 1 do
8: nxy(fxy(r, c))← nxy(fxy(r, c)) + 1
9: end for
10: end for
11: for k ← 0, L− 1 do → probability distribution for each tile
12: pxy(k)← nxy(k)/(m× n)
13: end for
14: cxy(0)← pxy(0)
15: for k ← 1, L− 1 do → cumulative distribution for each tile
16: cxy(k)← cxy(k − 1) + pxy(k)
17: end for
18: for k ← 0, L− 1 do → lookup table for each tile
19: txy(k)← cxy(k)× (L− 1)
20: end for
21: end for
22: end for

For interpolation the method proposed by Zuiderveld [50] is used in algorithm: 3.
This method was selected instead of the method proposed by Pizer et al. [32], as the
method by Zuiderveld is computationally more efficient. R() represents the region as
shown in figure: 3.2. The region classification is shown in figure: 3.1.

Figure 3.2: Region classification for interpolation [19]

Region 1, 3, 7, 8 are the corner regions which are enhanced with the CDF of respective
tiles. Regions 2, 4, 6, 8 are enhanced using the linear interpolation and the region 5
is enhanced using the bi-linear interpolation.
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Algorithm 3 Adaptive histogram equalisation: part 2
1: for i← 0,M − 1 do
2: for j ← 0, N − 1 do
3: x← bi/mc
4: y ← bj/nc
5: if (i, j) ∈ R(1, 3, 7, 9) then → map corners
6: g(i, j) = txy(f(i, j))
7: end if
8: if (i, j) ∈ R(2, 8) then → map horizontal border regions
9: y ← (j − bn/2c)/n
10: if (i, j) ∈ R(8) then
11: x← P − 1
12: end if
13: w1 ← ((j − bn/2c)%n)/n
14: w2 ← 1− w1
15: g(i, j)← uint8(txy(f(i, j))× w2 + tx(y+1)(f(i, j))× w1)
16: end if
17: if (i, j) ∈ R(4, 6) then → map vertical border regions
18: x← (i− bm/2c)/m
19: if (i, j) ∈ R(6) then
20: y ← Q− 1
21: end if
22: w1 ← ((i− bm/2c)%m)/m
23: w2 ← 1− w1
24: g(i, j)← uint8(txy(f(i, j))× w2 + t(x+1)y(f(i, j))× w1)
25: end if
26: if (i, j) ∈ R(5) then → map the centre region
27: y ← (j − bn/2c)/n
28: x← (i− bm/2c)/m
29: w1 ← ((j − bn/2c)%n)/n
30: w2 ← 1− w1
31: w3 ← ((i− bm/2c)%m)/m
32: w4 ← 1− w3
33: g(i, j)← uint8(w4 × (txy(f(i, j))× w2 + t(x+1)y(f(i, j))× w1))
34: +w3 × (tx(y+1)(f(i, j))× w2 + t(x+1)(y+1)(f(i, j))× w1))
35: end if
36: end for
37: end for

3.3.3 Contrast limited adaptive histogram equalisation

AHE in general produces good results, but it also enhances the noise as discussed
by Pizer et al. [32]. The noise amplification is high in homogeneous neighbourhood,
where the applied transformation maps the narrow pixel range to the whole range of
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the image. To prevent this, CLAHE was proposed by Pizer et al. [32] and Zuiderveld
[50]. The author has proposed to set a maximum value for the count of each grey level
in the histogram, the clipped region is then redistributed to the neighbourhood and
the same process is iterated until an acceptable excess value is achieved. Figure: 3.3
shows the working principal of CLAHE.

Figure 3.3: Working principle of CLAHE [32]

Pizer et al. [32] have proposed the binary search method to select the clipping limit.
Another method of adaptive clip limit selection is proposed by Bhat and Tarun
[1], using a least mean square algorithm. For the the implementation, the method
proposed by Jintasuttisak and Intajag [12] is used. The selected method is efficient
as it does not require multiple iterations as proposed by Pizer at al. or complex
computation as proposed by Bhat and Tarun. Moreover after the clipping there
is no overshoot in the histogram (as is the case in the method proposed by Pizer
et al.). The clip limit calculation is corrected for the loss of clipped values due to
non-adaptive averaging.

Since the only difference between the AHE and the CLAHE is the clipping of the
histogram, only the algorithm to calculate the clip-limit is discussed in algorithm: 4.
In algorithm: 4, A is the average bin content, T is the clip threshold, c is the clip
value between [0,1] set by user, δ is the summation of clipped values, δa is the average
of clipped values, Nb is the number of bins which are not clipped.
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Algorithm 4 CLAHE (clip-limit)
A← b(m× n)/Lc → average pixel to each bin
T ← A+ bc× (m× n− A)c → threshold
δ ← 0
Nb ← L
for k ← 0, L− 1 do → store the clipped values

if nxy(k) > T then
δ ← δ + nxy(k)− T
Nb ← Nb − 1

end if
end for
δa ← bδ/Nbc → distribute the clipped value to each bin
for k ← 0, L− 1 do → set the threshold in histogram

if nxy(k) > T then
nxy(k)← T

else if nxy(k) + δa > T then
nxy(k)← T
δ ← δ − (T − nxy(k)) → remove the used clipped values
Nb ← Nb − 1 → remove adjusted bins

end if
end for
δa ← bδ/Nbc
for k ← 0, L− 1 do → redistribute the clipped values

if nxy(k) < T then
nxy(k)← nxy(k) + δa

end if
end for

3.3.4 Exposure based sub-image histogram equalization

Proposed by Singh and Kapoor [39] for grey scale images, ESIHE works well for
low exposure region contrast enhancement. To avoid saturation the histogram is
clipped and divided into two sub-histograms based on the exposure level. Each sub
histogram is equalised individually and combined to obtain the enhanced image. The
underexposed sub-histogram is compensated by increasing the count of higher grey
level values. The grey level count for overexposed regions is reduced by clipping the
histogram. Algorithm: 5 explains the implementation of ESIHE.
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Algorithm 5 Exposure based sub-image histogram equalization: part 1
for i← 0,M − 1 do → histogram

for j ← 0, N − 1 do
n(f(i, j))← n(f(i, j)) + 1

end for
end for

Ev ← 1
L

∑
k=0

L−1n(k)k∑
k=0

L−1n(k) → exposure

c← 1
L

∑
k=0

L− 1n(k) → clip-limit

for j ← 0, L− 1 do → apply clip-limit
if n(k)>c then

n(k)← c
end if

end for
Xa ← L(1− Ev)
nu(k)← n[0 : Xa] → separate the histogram
no(k)← n[Xa + 1 : L− 1]

The calculated CDF of the underexposed sub-histogram nu(k) is cu(k) and for the
overexposed sub-histogram no(k) is c0(k), the enhanced image is computed based on
algorithm: 6

Algorithm 6 Exposure based sub-image histogram equalization: part 2
for i← 0,M − 1 do → combine the two histograms

for j ← 0, N − 1 do
if f(i, j) ≤ L(1− Ev) then

g(i, j)← Xa × cu(f(i, j))
else

g(i, j)← (Xa + 1) + (L−Xa + 1)× co(f(i, j)−Xa)
end if

end for
end for

3.3.5 Homomorphic filtering

Homomorphic filtering is based on an image model, which considers the image to be
a combination of reflectance and illumination.

f(x, y) = i(x, y)r(x, y) (3.12)

The reflectance factor is mainly responsible for the contrast in the image, where as
the illumination controls the dynamic range of the image. As the illumination is a
low frequency component it can be filtered to achieve smooth contrast, by using a
high pass filter.
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To take the Fourier transform, log is taken to separate the individual components.
Equation: 3.13 shows the separation of the components using log.

log(f(x, y)) = log(i(x, y)× r(x, y))
fl(x, y) = il(x, y) + rl(x, y)

(3.13)

Then the Fourier transform of equation: 3.13 is taken as shown in equation: 3.14

F(fl(x, y)) = F(il(x, y) + rl(x, y))
Fl(u, v) = Il(u, v) +Rl(u, v)

(3.14)

The high pass filter B(u, v) used to filter the illumination effect is the Butterworth
filter represented by equation: 3.15.

B(u, v) = 1
1 + (

√
2− 1)(D0/D(u, v)2n)

(3.15)

where, D(u, v) = (u2 + v2)1/2, D0 is the locus, n is the order of the filter.

The filter is applied on the Fourier transform of the image as shown in equation: 3.16

S(u, v) = B(u, v)(Il(u, v) +Rl(u, v)) (3.16)

The inverse Fourier transform (shown in equation: 3.17) followed by the exponent
(shown in equation: 3.18) is taken to retrieve the original image.

s(x, y) = F−∞(B(u, v)(Il(u, v) +Rl(u, v))) (3.17)

g(x, y) = exp(s(x, y)) (3.18)
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4 Pipeline implementation

As discussed in the first chapter the objective of the thesis is to implement a
radiometric enhancement pipeline which can be used on-board the robotic lander to
enhance the performance of the BSM module. This chapter provides details on this
pipeline and its implementation.

4.1 Pipeline structure

Figure 4.1: Overview of the radiometric enhancement pipeline structure

The overview of the radiometric enhancement pipeline structure is shown in figure: 4.1.
The pipeline structure is divided into two main parts, in the first part the image is
classified based on the classification of images discussed in chapter: 3, followed by
the second part where the image is enhanced using the selected method. The image
classification part starts with the geographical classification. This classification is
done at the mission design centre as the landing site is known.

During the descent phase the first classification is based on the time of descent. The
time of descent provides the position of the sun with respect to the Moon and hence
the the incidence angle.

The next classification step is made based on the mathematical parameters computed
from the real image data. These properties are computed based on the GLCM matrix
values (such as contrast) as proposed in the second chapter. A classification logic
is developed based on the classification parameters and the outcome of the logic is
used to select the enhancement algorithm. Based on a combination of the values of
individual parameters, an enhancement algorithm is selected. The classification logic
is developed based on a training data set (explained in chapter: 5).



34

This classification is important as the images vary in grey level distribution, illumina-
tion condition, local contrast and global contrast and a single enhancement algorithm
might not be sufficient for all kinds of images.

4.1.1 Geographical classification

Figure 4.2: Image classification based on geographical information

The first stage of the pipeline is to classify the image based on geographical information
as shown in figure: 4.2. Based on chapter: 2, the data set is classified into different
images based on surface reflectance, topography and surface features based on the
landing site. The first classification is based on surface reflectance. Again the surface
of Moon has two dominant regions mare and terra. Mare regions are a relatively
dark, whereas terra region is relatively old, bright highlands. Due to its old age, the
crater content is much denser in terra region compared to mare region. Hence with
respect to the BSM requirements, terra has the most suitable geography as more
craters mean more shadows.

Figure: 4.1 also shows a possible path, shown in orange colour arrow taken by an
image. To explain the pipeline, the image shown in figure: 4.3 is regarded as a desired
landing site. Based on visual inspection it can be concluded that the image belongs
to high reflectance terra region.

Figure 4.3: Image of a terra region with craters

The terrain of the Moon can be further classified based on its topography, namely
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plains, mountains and rilles. The source of shadows in plains are the surface features
like craters, boulders and fractures. Some regions are a combination of a flat region
and mountains, or a flat region and rilles. Generally, mountains are large features
and hence depending on the incidence angle are a source of large shadows. Rilles are
grooves in the surface of the Moon,they are a source of structured shadows and could
act as strong markers for pose estimation. The image shown in figure: 4.3 contains
old craters, has no mountain or any other topographical feature.

4.1.2 Illumination classification

Figure 4.4: Image classification based on illumination angle

As shown in figure: 4.4, during the descent phase, the image is classified based on
the incidence angle, which depends on the time of descent. The incidence angle
combined with Lunar surface features are responsible for the size and strength of the
shadows. As the Moon has virtually no atmosphere, the shadows are classified as
hard shadows. The factors affecting the strength of the shadows are the incidence
angle and the surface reflectance. At low incidence angles the intensity of the light is
high and the reflected light from the surface reduces the strength of the shadows.

For incidence angles, i.e. sun is high on the Lunar horizon between 0o and 20o the
amount of shadows observed in the images are negligible and hence the use of BSM
based navigation at these angles is not possible. At high incidence angles (values
between 60o and 80o) the shadows are hard and distinct from the surface and are
highly suitable for BSM to be used for matching and pose estimation.

Figures: 4.5 to 4.7 show the effect of illumination at different incident angles. As it
can be observed, it is difficult to differentiate between the shadow and the surface in
figure: 4.5 at a low incidence angle in a mare region. Whereas with an increase in
incidence angle, the distinction between the surface and the shadows becomes more
prominent.
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Figure 4.5: Illumination
with incidence angle i =
15.02o

Figure 4.6: Illumination
with incidence angle i =
45.0o

Figure 4.7: Illumination
with incidence angle i =
75.1o

4.1.3 Parametric classification

Figure 4.8: Parametric classification

This section of the pipeline implements the logic to select the enhancement algorithm,
based on the outcome of the image classification logic as shown in figure: 4.8. The
classification logic is a combination of four parameters namely GLCM correlation,
GLCM contrast, GLCM entropy and Image entropy as explained in chapter: 2.
The GLCM correlation provides the linear dependency of a grey value with its
neighbour and hence it provides the level of the measure of smoothness in the image,
GLCM contrast provides the contrast level of the image and GLCM entropy provides
the measure of the contrast distribution in the image. Image entropy gives the
randomness of the grey values in the image. As these four parameters cover the
possible variations in a grey scale image, a classification based on these parameters
is expected to be robust.

Table: 4.1 shows different parameter values of two images. The images selected are
of two different regions, figure: 4.9 is from a mare region, whereas the image in
figure: 4.10 is from a terra region. As it can be seen, the values of the parameters
depend on the image contrast, and hence they can be used as classifier.
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Figure 4.9: Image of a mare region Figure 4.10: Image of a terra region

Parameter Figure: 4.9 Figure: 4.10
GLCM correlation 0.423379 0.830038
GLCM contrast 44.5753 1814.31
GLCM entropy 6.02499 7.06847
Image entropy 4.07680702209 5.67372512817

Table 4.1: Values of different classification parameters

4.1.4 Enhancement algorithms

Figure 4.11: Enhancement algorithm

In this section all the selected enhancement algorithms as shown in figure: 4.11
(explained in chapter: 3) are implemented. After the selection of the enhancement
algorithm by the parametric classification logic, the image is enhanced using the
selected method. Histogram equalisation is expected to work well on images with low
GLCM contrast values. AHE and CLAHE are expected to work well on images with
high contrast value, while CLAHE should limit the saturation effect in the images.
ESIHE is expected to work well on the low exposure images and Homomorphic
filtering (by using a high pass filter) should filter the low frequency illumination in
the image.
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Figure 4.12: Original NAC
image

Figure 4.13: HE enhanced
image

Figure 4.14: AHE
enhanced image

Figure 4.15: CLAHE en-
hanced image

Figure 4.16: ESIHE en-
hanced image

Figure 4.17: HF enhanced
image

Figures: 4.12 to 4.17 (NAC image M1162384686RC) show the original image and
in sequence the HE, AHE, CLAHE, ESIHE and HF enhanced images. As it can
be seen, the HE and the AHE methods gives a more binary appearance, whereas
CLAHE and ESIHE give a smooth appearance by clipping the histogram. Whereas,
homomorphic filtering reduces the illumination effect in the image.
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5 Experiments

The purpose of the radiometric enhancement pipeline is to enhance the capability of
the BSM system by reducing the effects of uneven illumination and surface texture
on the shadow segmentation. The implemented pipeline shall provide an equalized
output, irrespective of the surface texture, for a specified range of incidence angles.
It should be able to suppress the brighter regions (new craters, sharp peaks) in the
image and create a contrast between the dark regions and shadows to avoid false
shadow identification.

To validate the implemented pipeline, NAC images from the LROC camera are used
instead of real descent images, as they are the most complete data source. The
virtual images rendered from the corresponding DTM file of NAC images are used as
reference images. The performance of the enhancement method is tested by comparing
the shadow information of the enhanced image with the shadow information of the
rendered image, as this affects the performance of the BSM.

This chapter describes the experimental set-up used in the thesis. The chapter starts
with a description of the instrument overview of LROC and then explains the different
image formats available from the LROC and which are used as input data. The next
section explains the methods used to validate the pipeline.

5.1 Image source

The images taken by the LROC1 will be used as experimental data. Among the
various available databases of Lunar images from recent missions such as LROC,
SELENE, Chandrayan, etc., LROC was selected because of the following reasons:

1. Large amount of (2D) images available with meta-data2: The database of the
LROC provides images of the whole Moon and for some locations the images
are available for different incidence angles.

2. High resolution of images: As the BSM is proposed to be used at a lower
altitude, the surface detail captured by the on-board camera will be higher
than the surface detail provided by the camera in a Lunar orbit. Therefore, it
is important to select the Lunar images with the highest available resolution,
in order to simulate descent image conditions. A review of available Lunar
images suggested that the data taken from the NAC camera during the LRO
mission are of high resolution of up tp 0.5 m/pixel, hence they were selected to
validate the performance of the pipeline.

1LROC is an instrument of LRO satellite launched for exploration of Moon[27]
2The meta-data of the image provides a description of the image. The information contained

by the meta-data includes details of the instruments, spacecraft, incidence angle, image content
and geographical region covered in terms of latitude and longitude among others



40

3. DTMs available for rendering: Even though LROC was not designed for stereo
image generation, DTM files are generated by slewing the spacecraft. Large
data set of DTMs corresponding to high resolution images are available for
rendering and analysis purposes.

5.2 LROC instrument overview

The instruments were studied to understand the resolution and information content
of the images in more detail, as the various available image formats depends on the
camera type and their resolution. Further more it is important to understand the
sensors as they image and its content.

LROC consists of three major components:

1. Narrow angle camera

2. Wide angle camera

3. Sequencing and compressor system

5.2.1 Narrow angle camera

LROC has two NACs, each with 700 mm focal length, a 5064 pixel line array Charge
Couple Device (CCD) and a cross-track field of view of 2.8502o for the left camera
and 2.8412o for the right camera. Each pixel value is sampled with a 12 bit Digital
to Analog Converter (DAC) which is then companded to 8 bit before being stored
into the internal NAC buffer of 256 MB. This gives a full resolution image dimension
of 52, 224 × 5064 pixels. The NAC is designed to have a spatial resolution of 0.5
m/pixel, though it varies with the altitude of the LRO satellite. The information is
taken from LROC manual [2].

5.2.2 Wide angle camera

LROC is equipped with one Wide Angle Camera (WAC), with a 1024× 1024 pixel
area array CCD. WAC captures images in different wavelengths (visible, near infra-
red and ultraviolet). Each pixel value is sampled with a 11 bit DAC which is then
companded to 8 bit. The WAC is designed to have a spatial resolution of 100 m/pixel,
though it varies with the altitude of the LRO satellite [2].

5.2.3 Sequencing and compressor system

LROC is equipped with one Sequencing and Compressor System (SCS), which is
responsible for the sequencing of the image acquisition by NAC and WAC. SCS
performs a lossless compression of the images before storing it to the spacecraft data
system [2].
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5.3 Image formats and image processing

The images acquired by NAC are available in three formats, Experiment Data Record
(EDR),Calibrated Data Record (CDR) and Pyramid Tagged Image File Format
(PTIF) [2]. Raw images from NAC are stored as a sequence of even and odd pixels,
divided with 1 MB of padding data. Every 1 MB of data is followed by a 20 byte
context camera heritage header. At Science Operation Center (SOC) the even and
the odd pixel data is extracted and interleaved together to obtain the actual image.
Further data from the meta-file and the SOC database are combined together to
form the Planetary Data System (PDS) label of the EDR file. Each (from left and
right NACs) EDR image is stored in 8 bit format with a maximum image dimension
of 52, 224× 5064 pixels. Based on the number of lines requested (programmed by
the user) for each image the size of the EDR images may vary (it would always be
less than or equal to the specified dimension of 52, 224× 5064 pixels, as the memory
of 256 MB is fixed) [2].

Each image from left and right NACs is radiometrically calibrated to radiance or I/F
(reflectance). The radiance images are calibrated to 4 byte floating value. I/F images
are converted to 2 byte signed integer values [2]. The CDR images are processed
at SOC on ground, the calibration method is explained in [35]. PTIF images are
compressed multi resolution images obtained from CDR images [2].

5.3.1 Image type for pipeline validation

The CDR files are created after the calibration of EDR files at SOC for non-linearity,
sensitivity, spectral response, dark noise and geometric alignment [35]. The calibration
process improves the raw image and brings out more information.

Due to their high image quality CDR images were considered over EDR images for
the validation of the pipeline. Although CDR images of LROC are calibrated at
SOC, it is assumed that at least a basic form of the calibration of the raw images in
a real mission will be done on-board the spacecraft.

The list of selected DTM files used for virtual image rendering and their corresponding
NAC images are provided in appendix: A.

5.4 Virtual image rendering

The DTM files for virtual image rendering were taken from the LROC website [47].
The DTM files are generated using two NAC pairs (left and right) combined with the
Lunar Orbiter Laser Altimeter (LOLA) data. To generate the DTMs, a combination
of two software are used. The Integrated Software for Imagers and Spectrometers
(ISIS) from the United States Geological Survey (USGS) and SOCET SET from
BAE systems. The DTM file generation technique is discussed in detail by Tran et
al. [4].



42

The fact that the DTM files are generated using the NAC images is advantageous for
this thesis. The virtual images rendered from the DTM files are used as the reference
images and the corresponding NAC images are used instead of descent images.

5.4.1 Virtual image rendering process

The virtual image rendering method was provided by the German Aerospace Centre.
As shown in figure: 5.1, from the Geospatial Tagged Image File Format (GeoTIFF)
(DTM file) the latitude, longitude and height information is extracted using the
method described by Bowman-Cisneros and Eliason in [3] [appendix: B]. The
transformation to Cartesian coordinates is done using the equations provided by the
National Oceanic and Atmospheric Administration (NOAA) [30].

With the help of SPICE kernels1 where the NAC was while taking a certain image
is calculated in the Lunar coordinate system. SPICE is also used to obtain the
illumination condition using the solar ephemeris.

Figure 5.1: Virtual image rendering process

Rendering Resolution

The resolution of DTM files varies based on the resolution of the NAC images. The
resolution of the NAC images in turn depends on the altitude of the LRO. The
selected DTM files have two spatial resolutions 2 m/pixel and 5 m/pixel. Further
due to memory limitations during the full scale rendering of the virtual image,
the resolution of the DTM was reduced by a factor of 4. The NAC images were
accordingly binned to compensate for the resolution loss in the rendered image. The
binning factor for NAC images is computed as:

bf = rD.Sf
rN

(5.1)

1the SPICE kernel contains navigation and other ancillary information of spacecraft, spacecraft
instruments and some celestial bodies, refer [29] for more information on SPICE kernel types and
their content
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where, rD is the spatial resolution of the DTM in m/pixel, Sf is the scale factor with
which the resolution of the DTM is reduced, rN is the resolution of the NAC image
in m/pixel and bf is the binning factor. The new width and height of the NAC image
is calculated as:

wn = wo
bf

(5.2)

hn = ho
bf

(5.3)

where, wo and ho are respectively the width and the height of the NAC image, wn
and hn are respectively the width and the height of the binned image.

The images from DTM files are rendered using the width and height calculated from
equations: 5.2 and 5.3. The rendering resolution of all the selected DTM files and
the corresponding NAC images is listed in appendix: C.

5.4.2 Correction of shift between NAC images and rendered images

The virtual images rendered using the method explained in section: 5.4 differed from
the NAC image in spatial feature location. There was shift in North-South and/or
East-West direction. A further investigation revealed that the DTM files are not
ground locked, i.e. there could be deviation in the latitude, longitude and height and
hence the spatial discrepancy in rendered image is justified. The spatial shift was
manually fixed by using the pitch angle to fix the East-West shift and further use a
manual comparison to fine tune the accuracy.

Initially and based on the assumption of ground locked DTMs and NAC images, the
validation of the implemented pipeline was based on an automated test between the
segmented shadows of rendered image and segmented shadows from enhanced image
on a very large database of approximately 500 DTMs. Due to the now necessary
manual pre-processing involved, it was decided to use only 20 DTMs and split them
up in tiles in order to achieve a database large enough for testing.

Pitch offset calibration

As mentioned earlier the rendered images were not at the same position as the NAC
images, as there was always an offset towards left-right or/and up-down direction.
On analysis, it was observed that the offset in left-right direction is high (up-down
offset was low and it has been taken care of manually) and hence to fix this a pitch
angle was added in the rendering process. The value of the pitch angle was selected
after multiple iterations based on manual comparison of the NAC images and the
rendered images.

Manual offset calibration

In order to improve the spatial match between the NAC image and the rendered image
an offset was set during the cropping. The offset value was calculated by selecting four
features in a NAC image and find the pixel location of the features in the rendered
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image. Let’s consider that the four selected features are F1, F2, F3 and F4 and their
corresponding locations in NAC image are (X1N , Y 1N), (X2N , Y 2N), (X3N , Y 3N)
and (X4N , Y 4N) respectively and their corresponding locations in rendered image
are (X1V , Y 1V ), (X2V , Y 2V ), (X3V , Y 3V ) and (X4V , Y 4V ). Using these points the
offset for column ox is calculated using equation: 5.4 and the offset for row oy is
calculated using equation: 5.5.

ox = X1N −X1V +X2N −X2V +X3N −X3V +X4N −X4V
4 (5.4)

oy = Y 1N − Y 1V + Y 2N − Y 2V + Y 3N − Y 3V + Y 4N − Y 4V
4 (5.5)

These offset values were used during the cropping of the NAC image in order to
match the spatial feature location. With this method the offset in spatial feature
location was reduced to less than 3% for most of the cases. The offset percentage was
obtained by selecting four spatial features in the cropped NAC image and comparing
them with the same spatial features in the rendered image.

Additional issues

Even after the manual calibration, in some cases the deviation of the spatial feature
match was higher than 5%. The offset percentage was obtained by selecting four
spatial features in the cropped NAC image and comparing them with the same spatial
features in the rendered image. On analysis, it was observed that in some cases the
DTM rendered images were compressed at some locations and in some cases there
was a variable angular shift in the top and at the bottom part of the rendered image.

The 20 calibrated DTM files were each divided in to 5 sub images making the total
number of 100 images in the data set.

5.5 Experiment description

Based on the objectives from chapter: 1, the experiment was divided into two parts:

1. Performance analysis of selected enhancement methods

2. Performance analysis of the parametric classifier

5.5.1 Performance analysis of selected enhancement methods

To check for the first objective of the thesis, i.e. a suitable enhancement method with
respect to shadow segmentation, the NAC images are enhanced using the selected
enhancement methods and the performance of the enhancement methods is assessed
using the shadow information. The shadow information from the enhanced image
will then be compared with the shadow information from the rendered image. The
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performance of each enhancement method is evaluated based on two factors. The first
factor is the number of correct matches, i.e. the number of shadow points matched
between the shadow segmented rendered image and the shadow segmented enhanced
image, this is termed as the Matched Shadow Count (MSC). For example, consider
that the total number of identified shadow from a image is 20 and the total number
of identified shadows from an enhanced image is 23. Out of this, if 14 shadows match
between the shadow segmented rendered image and the enhanced image, the MSC
count is 14.
The second factor is the number of shadow points detected from the enhanced image
which has no corresponding shadow in the rendered image, this is termed as the
Unmatched Shadow Count (USC). Considering the previous example, the total
shadow count from the enhanced image is 23 and the MSC value is 14. Hence, the
USC value is 23− 14 = 9.
The analysis of MSC and USC tells the performance of an enhancement method.
A value of MSC close to the shadow count from the rendered image, would mean
that the performance of the enhancement method is good, where as a high USC
value could mean two things. Either there are additional shadows from the enhanced
image, which were not present in the rendered image or due to the enhancement
some non-shadow regions are being identified as shadows. The first situation is only
possible in real missions, where new craters are formed after the reference image
was created. As the NAC images used are the same NAC images used to create the
DTM file, this situation is not valid and hence all the USC values will be considered
as noise.

Enhancement methods analysis

To perform the comparison, first the NAC image is resized based on the binning
factor bf as explained earlier. Then the images are enhanced, using the selected
methods, followed by the shadow segmentation. The images from DTM files are
rendered with the resolution wn and hn from the DTM file, followed by shadow
segmentation as shown in figure: 5.2. The comparison is based on the location of
shadow contour centroids on the image, in terms of row and column. Each centroid
point from the rendered image is matched with the centroid points from the enhanced
image, with a threshold. As mentioned earlier, even after manual calibration, there
is a shift in the spatial feature location hence, a threshold value of 9 is selected.

Homomorphic filtering before enhancement

Another approach used is to apply HF before the enhancement as shown in figure: 5.2.
As the homomorphic filtering removes the illumination effect, it is expected to reduce
the effect of locally bright regions in the enhanced image and hence, provides a
smooth contrast enhancement. For comparison of performance the MSC and USC
values are compared with and without homomorphic filtering.
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Figure 5.2: Experiment set-up to verify the enhancement pipeline

5.5.2 Performance analysis of the parametric classifier

The second objective of the thesis is to design an automatic classifier, based on the
values of the parameters listed in chapter: 3. The first step is to find the values
of the classifier based on the training data. The second step is to use the classifier
values to select the suitable enhancement algorithms. Figure: 5.3 shows the structure
of the training process.

Training process

Figure 5.3: Training process for parametric classification

For training, 25% of the selected rendered images and there corresponding enhanced
NAC images were used. During the training process GLCM entropy, GLCM contrast,
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GLCM correlation and Image Entropy values were calculated for each image. The
training data set of NAC images were enhanced using all the implemented algorithms
and then the binary shadow image was generated. Each binary shadow image was
compared with the corresponding binary shadow image of the rendered image and the
best enhancement algorithm was selected based on the number of MSC. A relationship
was established between the parametric values and the most suitable enhancement
algorithm and this relationship was used to classify the images autonomously during
the validation process, with a test data set.

Two methods were used to design the classification logic, in the first method the
classifiers were given a weight based on the confidence. The confidence of the
parameter was based on the standard deviation of that parameter, i.e. the lower the
standard deviation, the higher the confidence.

Multiple linear regression was used as second option, where the parameter values
were used as independent variables and the enhancement methods were used as
dependent variables. Each enhancement method was allocated a number and treated
as an output of the model.

Validation process

The implemented pipeline as shown in figure: 4.1 is used during the validation
process with the remaining 75% images. During the validation process the automatic
classification logic developed during the training process is used. The validation
process is classified into two steps.

Step 1

In the first step, by using the classification logic developed during the training phase
the images in the test data set are enhanced and the corresponding binary shadow
images are generated, which are then compared with the corresponding binary shadow
images of the rendered images.

Step 2

The second step is to verify the performance of the autonomous classification method.
The idea behind this step is to ensure that the selected enhancement method by
the classification logic is valid and selects the correct enhancement method for all
test images. The test image set is executed on all the enhancement algorithms and
for each of them, binary shadow image is generated, which is compared with the
corresponding binary shadow image of the rendered image. The MSC value from the
classifier selected algorithm is compared with the MSC values from all the selected
methods. If the MSC value for the selected algorithm is the highest, then the classifier
selection is correct.

5.6 Expected results

This section discusses the expected results from the experiments. As the idea is to
identify the correct shadows using the enhancement algorithms, first the expected
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results from different algorithms are explained, followed by the expected results for
classifier performance.

5.6.1 Enhancement methods

The expected performance of each of the enhancement methods is listed below:

1. Histogram equalisation: HE shall work well on images with low dynamic range
(low contrast). In cases where both the foreground and the background are
either bright or dark the HE is expected to perform well.

2. Adaptive histogram equalisation: As the AHE uses the local histogram to en-
hance the image, the AHE shall perform well with images with local brightness.

3. Contrast limited histogram equalisation: The principal of the CLAHE is to
limit the contrast level and hence avoid the saturation effect. The CLAHE
images shall provide less noise amplification.

4. Exposure based sub-image histogram equalisation: ESIHE method should be
able to enhance the contrast of low exposure images.

5. Homomorphic filtering: Homomorphic filtering shall remove the uneven illumi-
nation effects and keep the reflectance of the surface.

5.6.2 Parametric classifier

The performance of the classifier is evaluated based on the ability of the classifier to
select the correct enhancement method, based on the values of different parameters.
An acceptable classifier must exceed 90% of correct selections of the best enhancement
methods.
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6 Results and discussion

This chapter discusses the results obtained in the thesis. The chapter is divided
into two parts based on the experimental set-up explained in the previous chap-
ter. The first part shows the result of different enhancement methods in terms of
shadow segmentation and compares them with the performance of the original image.
The performance of the enhancement methods based on geographical features and
incidence angle is discussed in the next part. Followed by the performance of the
parametric classifier.

6.1 Performance of selected enhancement methods

As the goal is to evaluate the performance of the enhancement methods using the
shadow information, the first step was to identify the rendered and NAC images
with shadow content.

Shadow information analysis

Out of 100 selected rendered and NAC image pairs, that were chosen for the ex-
periment, only 74 of the rendered images (RI) contained shadows, as shown in
figure: 6.1.

Figure 6.1: The number of images which contain shadows, for
the rendered images (RI), each of the enhancement method
and the original images (OI)

It is also evident from the figure: 6.1, that all the HE and the AHE enhanced images
contain shadows. Since the total number of rendered images with shadow content
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is 74, 26 images that were enhanced using the HE and the AHE method contain
false shadows. Whereas, out of 100 images enhanced using CLAHE and ESIHE, 7
and 1 images, respectively, contain no shadows. As can be seen in figure: 6.1, the
performance of the HF and shadow segmentation using the Original Images (OI) is
worst with 40 and 47 images, respectively, without shadows.

Figure 6.2: The pi-charts show the distribution of images in
terms of %MSC in four regions: 0− 25, 25− 50, 50− 75 and
75− 100

The pi-charts in figure: 6.2 show the performance of each enhancement method in
terms of %MSC. The %MSC is calculated using the equation: 6.1.

%MSC = MSC

Nvi

100 (6.1)

where, Nvi is the total number of shadows detected in the rendered image and MSC
is the number of matched shadows between the rendered and the NAC image, as
explained in the previous chapter.

Based on the %MSC images were distributed into four categories 0− 25, 25− 50,
50− 75 and 75− 100 for each enhancement method. To make this more clear, 16
images enhanced by using the CLAHE method has %MSC between 25− 50. Hence,
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as shown in figure: 6.2, for range 25 − 50 the percentage is (16/74) × 100 ' 22.
As is visible in the figure: 6.2, the AHE has highest percentage of MSC between
75− 100, followed by the HE. The CLAHE and the ESIHE has approximately the
same performance. The performance of the HF and the OI is worst, as 81% of the
images have %MSC between 0− 25.
From the above result, it is evident that the image enhancement is necessary before
shadow segmentation to detect more number of correct shadows. From figure: 6.1, it
can be concluded that for shadow detection, image enhancement is necessary as no
shadows were detected in 21 original images. Figure: 6.2 shows that the number of
matched shadows between the rendered image and the NAC image also increases
after enhancement. The percentage of images with %MSC between 0− 25 is 81%
for original image, whereas for the AHE, it is 11%.

The performance of the HF and the OI are not considered to be satisfactory, hence
they are not used for further comparison. As only 74 rendered images contain shadows,
only these rendered and NAC image pairs were used to evaluate the enhancement
methods.

MSC and USC analysis

As explained in the previous chapter, MSC is the count of the number of shadows
matched between the rendered image and the real image. If an enhancement method
would lead to segmentation of all the shadows which are present in the rendered
image, the %MSC would be 100. Hence higher the %MSC, better the enhancement
method. A categorical distribution of %MSC for all the enhancement methods is
shown in figure: 6.2. The percentage of images with the %MSC between 75− 100,
is the highest for the AHE (35%), followed by the HE (31%), the ESIHE (22%) and
the CLAHE (20%) as depicted in figure: 6.2. The performance of the enhancement
algorithms are similar for the other %MSC ranges (50− 75, 25− 50, 0− 25).
Another important aspect identified by Kaufmann et al. [18] in BSM is the USC,
the shadow points identified in descent image which do not match with the shadow
points in the reference image. These points have a negative low weight in the BSM,
which reduces the overall match percentage between the reference and the descent
image. Even though the weight allocated to a USC point is low compared to a MSC
point, higher number of USC points can affect the matching process. Hence, the
analysis of USC points in the shadow segmented enhanced image is important. The
%USC is calculated as per equation: 6.2.

%USC = TSC −MSC

TSC
100 (6.2)

where, TSC is the total shadow count from the enhanced image.

The number of USC points for all the algorithms are higher than the number of MSC
points. As shown in figure: 6.3 the distribution of USC for HE and AHE enhanced
images are more concentrated towards higher percentage. Whereas, the distribution
of USC is relatively more sparse for CLAHE and ESIHE, hence per MSC the number
of USC is less.
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Figure 6.3: Comparison of %MSC and %USC for the selected enhancement methods

To get an absolute difference between the shadow segmented enhanced image and
the shadow segmented rendered image an XOR operation is used. XOR is a simple
and efficient operation to check the similarity between the shadow segmented images.
If the two images are identical the summation of XOR value should be zero. The
XOR values increases with increase in the dissimilarity between the two images.

Figure: 6.4 shows the distribution of the normalised XOR values of the enhanced
images. The XOR value is normalised by dividing the total number of 1 in the XOR
result with the total number of pixels in the image.

As shown in figure: 6.4, AHE enhanced images have the highest XOR value meaning
it differs more from shadow segmented rendered images compared to other methods.
CLAHE has the least difference, as the distribution is aligned towards 0. The XOR
box plot is the normalised plot with summation of XOR value divided by the total
number of pixel in the image.
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Figure 6.4: Normalised XOR values of the images for each enhancement method

The analysis of the MSC and USC plots shows that, the enhancement algorithms
with high MSC also has the drawback of high USC value. This means that, due
to enhancement, surface regions of the image also being classified as shadows. The
enhancement stretches the dynamic range of the image and relatively darker surface
regions due to thresholding are wrongly classified as shadows. Further analysis of
this failure reviles that, the shadows in the selected NAC images are not hard in
terms of visual interpretation. This is due to the low incidence angle, as the DTM
files are created only using NAC images at low incidence angle due to information
requirement.

Applying HF before enhancement

Another method investigated was to preprocess the original images, before applying
the enhancement method. This was implemented with an objective to remove the
illumination effect from the images before enhancing them. The illumination effect
causes unwanted local brightness in the images and this affects the enhancement of
the images. The performance of the enhancement with and without HF preprocessing
was compared with respect to MSC and USC percentage.

Figure 6.5: MSC comparison of preprocessed image for HE
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Figure 6.6: MSC comparison of preprocessed image for AHE

As shown in figure: 6.5 and 6.6 the percentage of the total number of detected MSC
points remains same, except one or two cases where it increases by a small margin,
but in most of the cases it is below the percentage of MSC without preprocessing.
As shown in figure: 6.7 and 6.8 the percentage of the total number of detected USC
points remains almost same with slight variation.

Figure 6.7: USC comparison of preprocessed image for HE

Figure 6.8: USC comparison of preprocessed image for AHE

Hence, the HF pre-processing does not seem to have an effect on the number of
MSC points or on the number of USC points. This may be because reducing the
illuminance, affects all the pixels and the dynamic range of the image remains close
to the dynamic range value without HF filtering.

6.2 Automatic image classification

This section discusses the shadow segmentation performance of enhanced images with
respect to the classification techniques discussed in chapter: 2. First the performance
of the enhancement methods is compared with respect to the geographical information,
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then a relation between the incidence angle and the enhancement methods is presented.
Later the performance of the automatic classifier is discussed.

Figure 6.9: Percentage of images, for each enhancement method with the highest MSC value

Figure: 6.9 shows the percentage of images for which the performance of the enhance-
ment method was best. As can be seen from the figure, there is no unique method
which is applicable on all of the images. Hence, a pipeline based on automatic
classification of images is required.

For some of the images multiple enhancement techniques show the same number of
maximum MSC points. Out of 74 images, only 46 images had a unique enhancement
method. Therefore, only these images were used to train and test the classifier logic.
It is to be noted that, none of the images had HF as the unique best performer and so
was the case with original image, hence they are not considered in the classification
analysis.

Surface reflectance and incidence angle comparison with the enhancement
methods

A detailed list of the selected DTMs and the region type they cover is mentioned
in appendix: D. The analysis of the shadow segmentation results showed that the
selection of image enhancement was largely dependent on the surface reflectance. As
shown in figure: 6.10, the performance of HE and AHE are dominating in all the
regions. In low reflectance region approximately 5% of the images worked well with
CLAHE and 10% with ESIHE, but the majority of the images enhanced using HE
and AHE showed better performance. This is also true for high reflectance region,
the overall dynamic range of the image in high reflectance region is low and hence
HE and AHE are the best applicable methods.

For the region with a combination of low and high surface reflectance the performance
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of CLAHE and ESIHE increases to 15% and 20% respectively, even though HE and
AHE are dominant, the result supports the argument that for high dynamic range
images the performance of CLAHE and ESIHE is better.

Figure 6.10: Image enhancement methods comparison with surface reflectance

Figure 6.11: Image enhancement methods comparison with incidence angle

Figure: 6.11 shows the relation between the incidence angle and the enhancement
methods. For low incidence angle the performance of HE and AHE are most suitable
with a small percentage of ESIHE. For higher incidence angles, the percentage of
CLAHE and ESIHE increases. CLAHE and ESIHE works well with high dynamic
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range images, which occurs at low illumination due to high reflectance of smooth
crater surface of new craters and sharp features like mountain peaks.

Figure 6.12: Image with in-
cidence angle i = 81.78o

Figure 6.13: Image with in-
cidence angle i = 26.24o

Figures: 6.12 and 6.13 show the effect of both surface reflectance and incidence
angle in one region. At high incidence angle (i = 81.78o) the shadow appearance
is strong and can be easily differentiated from the surface as shown in figure: 6.12.
The shadows at high incidence angle can be segmented using a basic thresholding
method, based on a threshold value (for example a pixel value less than 10 can
be classified as shadow). Whereas, at low incidence angle (i = 26.24o) the surface
reflectance becomes prominent as evident in figure: 6.13. The cast shadow grey level
from craters at the centre of the image appear similar to the grey value of the low
reflectance surface at the border of the image, which can lead to false classification
of the surface as shadow, even after enhancement. Hence, a high incidence angle is
highly recommended for accurate shadow segmentation.

Objective classifier

As discussed earlier, only 46 images result in a unique enhancement methods. Out
of these 46 images, 14 were selected to train the classifier as a training data set.
The images in the training data set were selected from each of the enhancement
methods. A maximum of 25% and minimum of 2 images were selected from each of
the enhancement methods.

To establish a relationship between the classification parameters and the enhancement
techniques, two methods were used. The first method was based on the confidence of
the parameters. The confidence was based on the standard deviation, i.e. the lower
the standard deviation the higher the confidence. Hence the weight was computed
as the inverse of the standard deviation. The combination of the weighted values of
the parameters was then used to classify the image. As shown in figure: 6.14, the
performance of this classifier was not as desired and only 28.26% of the images were
enhanced with the correct enhancement method.

On analysis it was observed that the parameter range for HE and AHE are very close
and hence the classifier selects the enhancement methods (between HE and AHE)
interchangeably. Further it was also observed that the performance of HE and AHE
in terms of MSC percentage does not vary much (mentioned in appendix: F). Hence
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the classification logic of HE and AHE were combined and treated as one method.
As shown in figure: 6.14.c the combination of HE and AHE increases the correct
enhancement method selection percentage to 55.56. Whereas at individual correct
selection percentage for HE is 23.08 and for AHE is 17.39. Another interesting result
is the correct selection percentage for CLAHE. As shown in figure: 6.14.c CLAHE has
a correct selection percentage of 100 which shows that the classifier works perfectly
in case of CLAHE. This is mainly because the weighted combine values of the images
for which CLAHE is the best method are very unique. In case of ESIHE, the correct
percentage is 33.33.
Another approach used to build the classifier logic was to use multi linear regression
explained in appendix: E. Each of the enhancement methods were assigned a
numerical value and used as dependent variable. The selected parameter values were
considered as independent variable. The coefficients computed from the multi linear
regression, were used to classify the test data. The output of the regression during
the test, was bounded for a minimum and a maximum output value, based on the
range of the numerical values assigned to the enhancement methods. As shown in
figure: 6.14 the performance of the classifier is better than the weighted classifier
with correct selection percentage of 50%. But it is still less than the desired value of
90%.

Figure 6.14: a. Performance of weighted (W) and regression based classifier
(R), b. Performance of classifier for individual methods using regression, c.
Performance of classifier for individual methods using weight

Figure: 6.14.b shows the correct selection percentage for the combination of HE and
AHE to be 94.44. Whereas, the individual percentage for HE is 69.23 and of AHE
is 56.52. The performance for CLAHE and ESIHE is not as desired. The correct
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selection percentage of CLAHE is 25 and correct selection percentage for ESIHE is 0.
The performance gap for CLAHE and ESIHE is attributed to the availability of less
amount of training data for CLAHE and ESIHE.

6.3 Discussion

Experimental results show that image enhancement is necessary for a better perfor-
mance of the BSM, as the number of MSC from the shadow segmented enhanced
images is higher compared to the number of MSC obtained from the original NAC
images. In terms of individual performance, HE and AHE provide the highest per-
centage of MSC compared to CLAHE and ESIHE. The performance of AHE is good
compared to other methods in terms of percentage of MSC points. The disadvantage
of using AHE and HE is the number of USC points. The percentage of USC is very
high in case of HE and AHE and the effect of high USC points on BSM needs to be
checked.

The comparison of the enhancement methods with respect to the incidence angle
shows that HE and AHE are dominating compared to CLAHE and ESIHE. But
the performance of CLAHE and ESIHE increases with higher incidence angle. The
analysis of the performance of enhancement algorithms with respect to the surface
reflectance shows that the performance of AHE and HE are good for high or low
reflectance regions. Whereas for regions combined with high and low reflectance
surface the percentage performance of CLAHE and ESIHE increases. This supports
the idea of selecting CLAHE and ESIHE as the suitable candidate for image enhance-
ment of high dynamic range images (images with bright and dark region). It can also
be concluded from these results that different enhancement algorithms are required
for different images and hence an automated classification pipeline is required.

As discussed in chapter: 5 the major issue faced during the experiment was the
spatial shift in the rendered images. The images rendered using the DTM models
had spatial shift in both latitude and longitude compared to the corresponding NAC
images. Due to the manual correction process required to correct the shift, the
database available for testing was largely reduced.

Two methods were used to create the classification logic. In method one the parameter
values were assigned a weight, based on the standard deviation, which was calculated
from the tests with a training data set. A classification logic was developed using the
combined weighted parameter values. Using this classification logic 28.26% of the
images were enhanced with the correct method. The second method to design the
classifier was to use the multi linear regression method, where each of the methods
were assigned a numeric value and used as dependent variable. The parameter values
were used as independent variable, and the obtained coefficients were used on the
test data set. For 50% of the images, the selected enhancement method were correct
when the classifier based on the multi linear regression was used. Both methods are
below the desired 90% desired classifier performance.

On analysis it was observed that the parameter values of images for which HE and
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AHE were best methods are similar and hence the classifier selects HE and AHE
interchangeably. Another reason for the lag in the performance of the classifier was
identified to be the lack of data. For the training of enhancement methods CLAHE
and ESIHE only 2 images were available, which is not enough to decide the confidence
or fit the model using multi-linear regression.
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7 Summary and conclusion

This chapter starts with a summary of the thesis and how well the objectives were
fulfilled. The next section gives an overview of the future improvements, by proposing
possible solutions for the issues faced during the thesis, and the last section gives the
conclusion.

7.1 Thesis summary

The BSM proposed by Kaufmann et al. [18] works on the principle of using shadows
on the lunar surface for navigation. The shadows are identified as features and the
pose of the landing spacecraft is estimated by comparing these features between a
reference image and a real image. To test the concept Kaufmann has used rendered
image for both, reference and descent image. As a next step it was necessary to test
the BSM system with real lunar images. A preliminary analysis of real lunar images
suggested that image enhancement is necessary to increase the number of segmented
shadows.

Based on the preliminary analysis, two objectives were identified. The first objective
was to look for an enhancement method, which is applicable on all the images. In
case, one such algorithm is not available, the second objective was to set up an
automatic pipeline for choosing the best enhancement method. The purpose of the
pipeline is to classify an image based on visual information and parametric values,
and enhance the image with the applicable enhancement algorithm.

For this purpose, data from the LRO mission was selected due to high resolution
2D NAC images and large amount of DTMs available for reference image rendering.
As the performance of one enhancement method might not be suitable for all the
images, as a first step NAC images were classified based on surface reflectance,
topography and surface feature. The major factor affecting the enhancement method
was considered to be the surface reflectance, as in the low reflectance region the
surface can be misclassified as shadow, due to similar grey level values registered by
the camera sensor. Various terrain and surface features such as craters mountains,
rilles responsible for shadow generation on moon were also identified.

An image enhancement pipeline was implemented to classify and enhance the images
automatically. The first stage of classification was to visually classify the images
based on the scene information in the images, this is assumed to be prior mission
knowledge. In the next stage the images were classified based on incidence angle1 as
the variation in illumination level affects the dynamic range of the images. Hence,
the applied enhancement method might be different. Further the images were
classified objectively, based on classification parameter values. The performance
of the enhancement algorithms was tested by comparing the shadows segmented

1for a mission the incidence angle is known as the time of landing on the lunar surface is decided
during the mission planning
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from the enhanced NAC image with the shadows segmented from the rendered
image. The selected enhancement algorithms were Histogram Equalisation (HE),
Adaptive Histogram Equalisation (AHE), Contrast Limited Adaptive Histogram
Equalisation (CLAHE), Exposure based Sub-Image Histogram Equalisation (ESIHE)
and Homomorphic Filtering (HF).

The results show that, the enhancement of the real images is necessary. The number
of the matched shadows between the rendered and the real images increases due to
the applied enhancement. The most suitable image enhancement algorithms were
the AHE and the HE, followed by the ESIHE and the CLAHE. The performance of
the classifier was not as desired, but using multi-linear regression gives promising
result for a combination of HE and AHE enhancement methods.

7.2 Future work and conclusion

As concluded in the previous section, it is required to enhance the images for correct
shadow detection. HE and AHE were proposed to be the best candidate for image
enhancement based on the available data, but they also provide a lot of USC points.
The degradation in performance of BSM, due to the presence of the USC points in
the images needs to be analysed. Although Kaufmann et al. [18] have given a low
negative weight to USCs, a large number of USC points (as evident in HE and ALHE)
might have an impact on the performance of BSM. The image rendering process
does not include the reflectance of the lunar surface, this creates more shadows in
the rendered image, compared to the NAC image. This happens because at low
incidence angle the strength of the shadow for example, cast by a crater is reduced
due to the lower surface reflectance of the Lunar surface. And since there is no
surface reflectance in the current rendering process, the shadow cast by the same
crater is much stronger in the virtual image. Hence, the reflectance factor should be
included in the rendered image rendering process.

The major problem encountered during the thesis was with data to test the enhance-
ment pipeline. Initially, it was decided to use 500 DTMs to test the pipeline, but
due to the inaccurate ground lock of the DTMs and due to the time spent to fix the
problem manually, the total number of DTMs to be used was reduced to 20. For
the implementation of the proposed radiometric enhancement pipeline into a real
mission, the performance should be further tested with a large data set.

One of the reason of the failure of the classifier, apart from the variation in different
parameter values, is considered to be the small amount of data in the training data
set. Weights allocated using a large data set might be more robust. The same is true
for the regression method, as regression methods fit the model better with larger data
set, with a larger training data set, the performance of the classifier might improve.
As discussed in previous chapter the selection of the enhancement algorithms also
depends on the incidence angle, hence it should also be included in the classifier.

BSM system estimates the pose of the spacecraft, by comparing the segmented
shadows from the reference and the real image. The shadow segmentation in turn



63

depends on the contrast level of the image. The proposed image enhancement pipeline
augments the shadow segmentation process by enhancing the contrast level of the
image, which is vital for the performance of the BSM system.
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A Selected DTM and NAC pair

Table: A1 shows the DTM-NAC pair selected to validate the radiometric enhancement
pipeline. In the table i is the incidence angle.

DTM NAC i

NAC_DTM_MAUROLYCS M1162384686RE 44.75
NAC_DTM_PITISCUS M1149280834RE 53.42
NAC_DTM_WHALE M1114490755RE 45.6
NAC_DTM_LARMORQ4 M1097686764RE 60.1
NAC_DTM_BUFFON M1117380495RE 47.22
NAC_DTM_CAUCHY M1108039362RE 63.38
NAC_DTM_CHAPPELLT M1117723384RE 52.48
NAC_DTM_LAPLACEA M1103723246RE 47.83
NAC_DTM_HARDINGH M173327696RE 45.89
NAC_DTM_FOWLERSCRP M143221393RE 53.5
NAC_DTM_FRSHCRATER13 M185396720RE 59.02
NAC_DTM_HANSTEENAL3 M181494651RE 62.91
NAC_DTM_MANILUS M1121188383RE 43.99
NAC_DTM_MOSCOVNSE1 M158999646RE 45.14
NAC_DTM_POSIDONIUS M1098658474RE 53.15
NAC_DTM_PRINZVENT M1129759205RE 47.67
NAC_DTM_ROSSELAND2 M1135724889RE 44.84
NAC_DTM_VSCHROTERI M1114497847RE 43.54
NAC_DTM_GRUITHUIS10 M160221419RE 58.61
NAC_DTM_BHABHAPLAIN M112653051RE 63.12

Table A1: Selected DTM-NAC pair
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B Adjustment to fix the spatial shift

Table:B1 gives the pitch (θ), roll (ψ) and yaw (φ) values used and the manual offset
(∆R and ∆C) used to match the spatial shift. The table also provides the spatial
resolution (Scale) of the rendered virtual image.

DTM NAC θ ∆R ∆C Scale
NAC_DTM_MAUROLYCS M1162384686RE 0 85 -10 8
NAC_DTM_PITISCUS M1149280834RE 0 37 -19 8
NAC_DTM_WHALE M1114490755RE 0 82 -12 20
NAC_DTM_LARMORQ4 M1097686764RE 0 29 3 20
NAC_DTM_BUFFON M1117380495RE -0.15 -4 -14 8
NAC_DTM_CAUCHY M1108039362RE -0.3 0 0 20
NAC_DTM_CHAPPELLT M1117723384RE -0.25 0 0 20
NAC_DTM_LAPLACEA M1103723246RE 0 0 0 20
NAC_DTM_HARDINGH M173327696RE 0 0 0 8
NAC_DTM_FOWLERSCRP M143221393RE -0.15 0 0 8
NAC_DTM_FRSHCRATER13 M185396720RE -0.35 0 0 8
NAC_DTM_HANSTEENAL3 M181494651RE -0.45 0 0 20
NAC_DTM_MANILUS M1121188383RE 0.7 0 0 20
NAC_DTM_MOSCOVNSE1 M158999646RE 0.2 0 0 8
NAC_DTM_POSIDONIUS M1098658474RE -0.49 0 0 20
NAC_DTM_PRINZVENT M1129759205RE -0.52 0 0 20
NAC_DTM_ROSSELAND2 M1135724889RE -0.05 0 0 12
NAC_DTM_VSCHROTERI M1114497847RE -0.4 0 0 20
NAC_DTM_GRUITHUIS10 M160221419RE 0 0 0 0
NAC_DTM_BHABHAPLAIN M112653051RE 0 0 0 8

Table B1: Calibration information of DTM-NAC pair
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C Rendering resolution of DTM and NAC images

Table:C1 gives the rendering resolution of all the DTM and NAC images using the
formula explained in chapter: 5.

DTM NAC Row Column
NAC_DTM_MAUROLYCS M1162384686RE 4361 423
NAC_DTM_PITISCUS M1149280834RE 3244 315
NAC_DTM_WHALE M1114490755RE 2845 276
NAC_DTM_LARMORQ4 M1097686764RE 3885 377
NAC_DTM_BUFFON M1117380495RE 4218 409
NAC_DTM_CAUCHY M1108039362RE 3120 303
NAC_DTM_CHAPPELLT M1117723384RE 4154 403
NAC_DTM_LAPLACEA M1103723246RE 4308 418
NAC_DTM_HARDINGH M173327696RE 3361 326
NAC_DTM_FOWLERSCRP M143221393RE 4342 421
NAC_DTM_FRSHCRATER13 M185396720RE 3412 331
NAC_DTM_HANSTEENAL3 M181494651RE 2552 248
NAC_DTM_MANILUS M1121188383RE 2953 287
NAC_DTM_MOSCOVNSE1 M158999646RE 4252 413
NAC_DTM_POSIDONIUS M1098658474RE 3792 368
NAC_DTM_PRINZVENT M1129759205RE 3475 337
NAC_DTM_ROSSELAND2 M1135724889RE 3109 302
NAC_DTM_VSCHROTERI M1114497847RE 3435 334
NAC_DTM_GRUITHUIS10 M160221419RE 3235 313
NAC_DTM_BHABHAPLAIN M112653051RE 4075 395

Table C1: Selectted resolution of DTM-NAC pair
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D Surface features covered by NAC images

Table:D1 lists the surface reflectance, terrain and surface features contained by
selected NAC images. The acronyms used in the table are explained below:

B: Boulder
CC: Chained Crater
F: Fracture
FS: Flat Surface
G: Graben
H(T): High reflectance region (Terra)
L(M): Low reflectance region (Marre)
R: Rilles
WR: Wrinkled Ridges

DTM NAC Surface Terrain Surface
reflectance feature

NAC_DTM_MAUROLYCS M1162384686RE L(M) FS CC, OC, NC, R
NAC_DTM_PITISCUS M1149280834RE H(T) FS OC, NC, R
NAC_DTM_WHALE M1114490755RE L(M) FS, WR OC, NC
NAC_DTM_LARMORQ4 M1097686764RE L(M) FS, B OC
NAC_DTM_BUFFON M1117380495RE L(M) FS, G OC, NC
NAC_DTM_CAUCHY M1108039362RE H(T) FS, G OC, NC
NAC_DTM_CHAPPELLT M1117723384RE L(M) FS, WR OC
NAC_DTM_LAPLACEA M1103723246RE H(T) FS OC
NAC_DTM_HARDINGH M173327696RE H(T) FS OC
NAC_DTM_FOWLERSCRP M143221393RE H(T) FS, WR OC
NAC_DTM_FRSHCRATER13 M185396720RE H(T) FS, B OC
NAC_DTM_HANSTEENAL3 M181494651RE L(M) FS, WR OC
NAC_DTM_MANILUS M1121188383RE L(M) FS, WR OC
NAC_DTM_MOSCOVNSE1 M158999646RE L(M) FS OC
NAC_DTM_POSIDONIUS M1098658474RE H(T) FS, R OC
NAC_DTM_PRINZVENT M1129759205RE L(M) FS, G, R OC
NAC_DTM_ROSSELAND2 M1135724889RE L(M) FS OC
NAC_DTM_VSCHROTERI M1114497847RE L(M) FS, F OC
NAC_DTM_GRUITHUIS10 M160221419RE H(T) FS, WR OC
NAC_DTM_BHABHAPLAIN M112653051RE H(T) FS OC, NC

Table D1: Surface and terrain information of DTM-NAC pair
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E Multi linear regression

The multi linear regression mean function [24] [page: 67] used for to fit the model
between the parameters and the enhancement algorithms is shown in equation: E1

E(Y |X) = β1X1 + β2X2 + β3X3 + β4X4 (E1)

where, Y is the response vector of the dependent values. In this case the numerical
values assigned to each of the enhancement methods, shown in table: E1

Method Numerical values
HE 1
AHE 2
CLAHE 3
ESIHE 4

Table E1: Numerical values assigned to each method

X is the design matrix, and β is the slope for individual parameters. Equation: E1
can be represented as Y = Xβ. The objective is to find the β values using least
mean square error approach. For this purpose the equation: E2 should be minimised.∑

(Y − βX)2 (E2)

After differentiating the equation: E2 and rearranging the β value can be calculated
by equation: E3

β = (X ′X)−1X ′Y (E3)
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F Matched shadows for each enhancement method,
for the selected images

Image HE AHE CLAHE ESIHE HF OI
M1162384686RE_0 100 100 100 100 100 100
M1162384686RE_1 100 100 100 100 100 100
M1162384686RE_2 87.500 87.500 87.500 87.500 87.500 87.500
M1162384686RE_4 66.667 66.667 66.667 66.667 66.667 66.667
M1149280834RE_1 100 100 100 100 0 0
M1114490755RE_0 41.667 50 33.333 0 0 0
M1114490755RE_1 85.714 100 71.428 57.143 28.571 28.571
M1114490755RE_2 62.500 62.500 37.500 37.500 12.500 0
M1114490755RE_3 81.818 36.364 45.454 63.636 0 0
M1114490755RE_4 44.444 44.444 33.333 22.222 0 0
M1097686764RE_0 8.3333 11.111 2.778 13.889 2.778 2.778
M1097686764RE_1 17.78 28.889 11.111 15.555 2.2222 2.2222
M1097686764RE_2 20.833 27.083 22.917 22.917 2.0833 2.0833
M1097686764RE_3 8.064 17.742 9.677 9.677 0 0
M1097686764RE_4 17.857 21.428 10.714 19.643 5.3571 5.3571
M1108039362RE_0 87.234 87.234 4.255 14.894 0 0
M1108039362RE_1 70.588 64.706 8.823 38.235 2.941 2.941
M1108039362RE_2 66.667 84.444 6.667 6.667 2.222 0
M1108039362RE_3 78.571 83.928 8.928 76.785 0 0
M1108039362RE_4 86.956 84.782 15.217 69.565 0 0
M1117723384RE_0 33.333 30.158 11.111 23.809 1.587 1.587
M1117723384RE_1 50 50 0 50 0 0
M1117723384RE_2 54.545 36.364 13.636 45.454 0 0
M1117723384RE_3 36.170 51.064 2.128 21.28 2.128 2.128
M1117723384RE_4 44.444 40.741 25.926 40.741 7.407 7.407
M1103723246RE_0 22.727 27.273 0 18.182 0 0
M1103723246RE_1 37.500 37.500 0 56.250 6.2500 0
M1103723246RE_2 40 53.333 0 20 0 0
M1103723246RE_3 71.428 74.285 11.428 60 0 0
M1103723246RE_4 75 75 0 33.333 0 0
M173327696RE_2 100 100 100 100 100 100
M173327696RE_4 100 100 100 100 66.667 66.667
M185396720RE_2 78.8 60.606 18.182 69.697 0 0
M185396720RE_3 59.091 68.182 27.273 77.273 0 0
M185396720RE_4 80 60 60 80 0 0
M181494651RE_0 69.231 69.231 10.256 70.513 5.128 5.128
M181494651RE_1 58.889 66.667 2.2222 58.889 1.1111 1.1111
M181494651RE_2 30.303 30.303 12.121 24.242 3.0303 0
M181494651RE_3 28.571 57.143 0 9.524 0 0
M181494651RE_4 23.529 20.588 29.412 5.882 2.941 2.941
M1121188383RE_0 42.857 42.857 28.571 42.857 0 0
M1121188383RE_1 71.428 85.714 57.143 71.428 28.571 14.285
M1121188383RE_2 100 100 100 100 16.667 16.667
M1121188383RE_3 100 50 50 50 0 50
M1121188383RE_4 62.500 37.500 25 37.500 25 25
M158999646RE_3 100 100 100 100 100 100
M158999646RE_4 100 100 100 100 100 100
M1098658474RE_0 62.500 75 12.500 62.500 0 0
M1098658474RE_1 23.809 42.857 19.048 47.619 0 0
M1098658474RE_2 47.059 35.294 47.059 35.294 0 0
M1098658474RE_3 41.379 51.724 48.276 44.827 0 0
M1098658474RE_4 47.059 44.118 20.588 20.588 0 0
M1129759205RE_0 87.500 87.500 87.500 87.500 75 62.500
M1129759205RE_1 94.118 94.118 94.118 94.118 47.059 47.059
M1129759205RE_2 88.461 96.154 84.615 88.461 34.615 69.231
M1129759205RE_3 82.353 82.353 64.706 76.470 52.941 52.941
M1129759205RE_4 41.667 16.667 25 16.667 16.667 16.667
M1135724889RE_0 50 100 50 50 0 0
M1135724889RE_4 65.517 72.414 41.379 72.414 0 0
M1114497847RE_0 63.636 81.818 0 54.545 0 0
M1114497847RE_1 50 64.285 0 57.143 0 0
M1114497847RE_2 37.500 37.500 0 37.500 0 0
M1114497847RE_3 50 0 0 0 0 0
M1114497847RE_4 62.500 75 0 62.500 0 0
M160221419RE_0 70 80 90 70 0 0
M160221419RE_1 100 85.714 85.714 57.143 0 0
M160221419RE_2 100 100 50 0 0 0
M160221419RE_3 20 20 60 0 0 0
M160221419RE_4 75 75 75 37.500 0 0
M112653051RE_0 50 25 75 50 0 0
M112653051RE_1 75 100 100 75 25 25
M112653051RE_2 62.500 75 75 75 12.500 12.500
M112653051RE_3 47.059 41.176 47.059 64.706 11.765 11.765
M112653051RE_4 75 100 50 75 25 25

Table F1: MSC % of each enhancement method for the selected 74 images
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