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Chemotherapeutic drugs such as carboplatin/gemcitabine administerd to non
small cell lung cancer (NSCLC) patients frequently induce myelosuppression tox-
icity potentially leading to reduction or removal of drugs. We set out to iden-
tify the genetic variants associated with toxicity induced myelosuppression by
whole exome sequencing (WES) 216 NSCLC patients and associating biallelic
variants with different quantitative and qualitative measurements of myelosup-
pression phenotypes.

WES identified on average 29834 variants in each patient. Biallelic variants from
combined patients genotype were associated with each myelosupression pheno-
type - Thrombocytopenia (TPK), Leukopenia (LPK) and Neutropenia (NPK)
using quantitative Log-transformed (LN) and Empirical normal quantile trans-
formation(ENQT) phenotypes and qualitative high/low toxicity study design in
linear and logistic regression methods. Additionally, gene-based SKATO tests
were performed for transformed quantitative phenotypes to investigate enrich-
ment of rare and common variants.

Due to sample size limitation, none of the variants reached multiple corrected
Bonferroni significant or FDR-BH p - values. However, variants with p-value
< 1.00 × 10−3 in each study design were evaluated for high toxicity. We found
five, one and two variants for TPK, LPK and NPK respectively associated in all
quantitative and qualitative single variant association study. Furthermore, single
variant rs4808 in CAPZA2 and rs8018462 in SLC7A7 genes were identified by
Gene-based SKATO test for TPK and LPK phenotypes. This results could im-
plicate association of CAPZA2 and SLC7A7 to TPK and LPK myleosupression.
However, validation and replication of the variants and genes needs to be further
studied in an independent studies.
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Abbreviations and Acronyms

GWAS Genome wide association study
AC Adenocarcinoma
LCC Large cell lung cancer
SCC Squamous cell lung cancer
NSCLC Non small cell lung cancer
CTC Common toxicity criteria
VCF Variant calling files
NGI National genomics infrastructure
SNP Single nucleotide polymorphism
MAF Minor allele frequency
QC Quality control
SKAT Sequence kernel association test
SKATO Sequence kernel association test optimal
RBC Red blood cells
WBC White blood cells
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NPK Neutropenia
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indel Insertion and Deletion
IBD Identity by descent
IBS Identity by state
ADS Adverse drug reaction
FDR False discovery rate
SVA Single variant association
HSC Haematopoeitic stem cells
LPI Lysinuric protein intolerance

v



CAST Cohort Alleleic Sum test
CMC Combined multivariate and collapsing
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Chapter 1

Introduction

1.1 Cancer Pharmacogenomics

Pharmacogenomics is the application of modern genomic medicine in drug
therapy. It deals with the interaction between the human genetic compo-
nents and effect of the drug uptake mechanisms - pharmacokinetics and
pharmocodymanics. One aspect of pharmacokinetics is time duration a drug
remains in a body fluids after administration of a certain dose. The primary
objective of pharmacokinetics is to increase efficacy and decrease toxicity of a
drug. Pharmacodynamics studies effect of drugs on body indicating desired
results from certain administered doses [1].

Pharmacogenomics research aims at identifying genes or gene variants in-
volved in the interaction between the drugs and body. Genetic variants can
have profound influence on effect and dose requirement to produce the desired
effect. Pharmacogenomics have potential to elucidate adverse and positive
influence of drug based on these genetic make-up of individuals. Modern-
day advancement in genotyping technologies from microarray to massively
parallel DNA sequencing provides unprecedented potential to interrogate the
nucleotide to single base-pair level. Germline variations within patients help
in understanding individualized response to a drug [2]. This understanding
results in correct dosing and effective treatment strategies for various human
diseases. Specifically, these pharmacogenomics approaches are taken towards
cancer and neurological disorders [3]. These cancer chemotherapeutic drugs
target cellular machineries involved in cancer growth. However, these drugs
can induce adverse reaction in normal cells leading to undesired complica-
tions.

Genome-wide association studies are used to interrogate relationship be-
tween phenotype of interest and genotype of an individuals. In regards with
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CHAPTER 1. INTRODUCTION 2

the pharmacogenomics, genome wide association studies consider the traits
as the drug dose dependent responses or the adverse event profiles. Asso-
ciation methods are used to discover novel associations between the drugs
and genes cases and control i.e cases being the patients that show adverse
drug reaction and controls reacting ’normally’ from drugs [2–4]. A study in
genetic variation in TPMT gene was associated with myelosupression after
6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) therapy [5]. Another
study of pharmacogenomics influencing the drug therapy is based on the
effect of the genetic variation of UGT1A1 gene in irinotecan- induced neu-
tropenia [6, 7]. Similar study associated the variations in CYP2D6 gene with
Tamoxifen (an oestrogen inhibitor) induced toxicity [8]. Another successful
study associated the genetic variants with DPYD with the 5- Fluorouracil
toxiciteis. Specific mutation in DPYP∗2A gene are associated with the 5-FU
associated leucopenia and severe mucositis [9].

However, chemotherapy toxicity traits are multi-genic with smaller influ-
ence and follow complicated underlying biological mechanisms. Most of these
phenotypes are probably complex traits dependent upon multiple SNPs in
modifiers genes that have the small effect [3] resulting into association efforts
to be underpowered and difficult to replicate [2]. Hence, often the associa-
tion signals do not reach the genome-wide significance although they may be
contributing to the drug adverse reaction to some extent.

1.2 Lung cancer and chemotherapy

Lung cancer is the most lethal of all the cancer types. According to World
Heath Organization (WHO) [10] fact sheet of 2015, lung cancer caused 1.56
million death worldwide in 2012. With overall survival rate of 18%, it was
estimated for 26% of the all cancer deaths in 2014 and thus, the leading cause
of cancer death in the USA [11].

Chemotherapy with standard platinum agents are frequently adminis-
tered to patients with advanced lung cancer [12]. Platinum based drugs such
as cisplatin, carboplatin and oxaliplatin are widely used. Platinum based
agents thwart cellular process forming DNA adducts and lead to apoptosis
[13]. The standard chemotherapeutic treatments for lung cancer are based
on using platinum based agents with other agents, known as third generation
drugs [14]. Microtubule - targeting agents such as paclitaxel, docetaxel, or
vinorelbine and DNA-damaging agents such as gemcitabine or irinotecan are
paired with the platinium-based agents in chemotherapeutic treatment [12].

Chemotherapeutic drugs are administered to various cancer patients in
different regimens and doses based on the somatic mutation profiles and are
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aimed at inhibiting cancer cell growth and genomic integrity [15]. However,
these chemotherapeutic drugs can induce various adverse reaction mecha-
nism. Adverse reaction such as toxicity not only impacts the quality of life
but sometime leads to reduction in dose or even to circumvention of the
treatment in extreme of conditions [16].

Drug-toxicity induced myelosuppression is one of side effects caused due
to these platinium based chemotherapies [17]. Myelosuppression is the debil-
itating condition that leads to decreased immunity, oxygen carrying capacity
and normal blood clotting activity in individuals. The condition is charac-
terized by suppression in bone marrow activity which leads to decrease in
production of platelets, white blood cells and red blood cells [18]. Myelo-
suppressive effect characterized by decreased production of white blood cells
(WBCs) causes leukopenia in cancer patients. Specifically, chemotherapeu-
tic drugs induces neutropenia, condition characterized by decreased count of
a specific type of WBCs - neutrophils in blood . Additionally, these drugs
can lead to decreased platelets in blood results causing thromobocytopenia
resulting in poor blood clotting [17, 18].

1.3 Exome sequencing and association stud-

ies

Genome wide association studies are modern powerful tools to understand
human genetics. It includes screening of genomewide variants for association
to complex traits. These techniques identify common, low penetrant variants
at greater statistical power and resolution than conventional linkage studies
or candidate gene studies [19]. Last decade witnessed exponential rise in
GWAS for many complex traits [20]. However, as these methods are based
on SNP tags it can identify risk alleles that are usually in linkage with causal
variants [21].

Whole exome sequencing involves the sequencing of all protein coding
region of human genome and have been extensively used as discovery tool
in identification of genes in Mendelian disorders [22, 23]. With the rapid
development and steep decrease in cost of next generation sequencing tech-
nologies, whole exome sequencing association studies have been an emerging
tool in the study of complex traits genetic architecture [24, 25]. The ma-
jor advantage of whole exome sequencing from microarray based genotyping
method is it provides unbiased variant discovery and direct association with
phenotype [21]. An early example of exome sequencing identified variants in
DCTN4 as a modifier in chronic Pseudomonas aeruginoas infection in cys-
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tic fibrosis [25]. Similarly a schizophrenia study identified a polygenic rare
mutations using exome sequencing association study [26]. A pharmacoge-
nomic study associated risk of multiple rare variants in KCNE1 and ACN9
for drug-induced long QT interval syndrome [27].

1.4 Statistical association methods for genotype-

phenotype correlation

1.4.1 Single variant tests for association studies

A commonly used genetic variation for the association tests are single nu-
cleotide polymorphism (SNPs). These tests involve testing each SNP inde-
pendently for association to the phenotype [20] . Various statistical methods
are developed based on this study design [21]. Single variants statistical
tests such as chisquared (χ2) test, Fischer exact test, Cocharan-Amritage
tests and logistic regression are used in the association of variants with the
diseases/healthy design in Diabetes, Melanoma, and Alzheimer’s disease [28–
30]. These methods test enrichment of allele in case and control groups.
While, quantitative phenotypes such as blood cholesterol level, body weight
and measurements are tested for association to genetic variants using linear
regression methods [30–32].

1.4.1.1 Linear regression for quantiative association

Regression methods are based on the dependence between response variables
(Y) and the several or single predictor variables (X). In the association study,
the outcome variables are either quantitative or binary based on the study
design. Linear regression is based on the linear relationship between the
quantitative traits and genotypes. These linear regression analysis assume:
1) quantitative traits being normal distributed; 2)genotype groups have same
variance and independent from each other [20]. A simple linear regression
model with single independent variables such as genotype G and quantitative
phenotype Y is given by

E[Y ] = β0 + βGG (1.1)

where βG is the parameter for the genotype and E[Y ] is mean of pheno-
type. Furthermore, using the variable X, we can add covariates to the above
equation, such as age and gender to give the fuller model as

E[Y ] = β0 + βGG+ βXX (1.2)
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where additional parameters βX for the covariates accounts for adjustment
of the model to the new additional variables in the regression analysis [33].

The null hypothesis for single SNP regression analysis assumes no differ-
ence between the quantitative trait means and genotype classes implicating
no association between the phenotype and genotype classes while the al-
ternate hypothesis assumes there is no association between genotype and
phenotype.

1.4.1.2 Logistic regression for case-control association

The categorical response variables in case-control study design code response
variables with binary outcomes. For example: diseased individuals are coded
as 1 while healthy ones are coded 0 . For these binary outcomes, the linear
regression is modeled using transformation of outcome with logistic function
(logit). Logit function predicts probability of diseased group in a given geno-
type classes. The logistic transformation (logit) is given as log p

1−p
where p

is the conditional probability of the discrete variables given the whole data,
Pr(Y = 1 | X = x). This value of the logit is equated with the geno-
type groups of the individuals [34]. The simple logistic regression for the
association studies is given as:

log
p

1− p
= β0 + βGG (1.3)

The simple logistic models assess the relationship between the dichotomous
dependent variable (Y) and predictor genotype variables (G). Logisitic re-
gression are extensively used in association studies as the model is flexible
enough to incorporate other interesting clinical variables [34].

1.4.2 Gene based association tests

Sequencing based association methods provide an unprecedented opportu-
nity to interrogate and understand rare and common variants implication
in a complex traits. Traditional single-variant studies are underpowered to
detect rare variants as few of the individuals in study group have rare vari-
ants. Hence, genes/regions are defined where single variants are aggregated
together. The rationale is applying these approaches would enrich rare vari-
ants in a region and decrease the number of tests for multiple corrections
[35, 36]. Broadly classifying, gene/region based tests are classified as burden
and non-burden methods.

Burden tests are based on collapsing or aggregating the variants in a single
genomic regions and associating these regions with the phenotype of inter-
est [21]. In a recent study, burden tests identified polygenic rare mutations
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in schizophrenia [26]. Gene-based association test such as Cohort Alleleic
Sum test (CAST) [37], Combined multivariate and collapsing (CMC) [38],
Weighted sum test (WST) [39] are developed based on the burden test prin-
ciple. These methods are based on evaluating enrichment of rare mutations
between cases and controls and assume rare variants influence phenotype in
same direction and with equal magnitude. However, most variants sequenced
in a gene/region could have either no effect on phenotype with only few in-
fluencing the phenotype. Thus, collapsing all variants into genes will have
spurious association and loss in statistical power [36, 40].

Another category of tests are non-burden tests which are independent of
magnitude and directionality of the variant effect. Statistical tests such as
C-alpha [40] and Sequence Kernel Association test (SKAT) [36] is a non-
burden tests developed for gene based association studies. SKAT are kernel
machine regression method that aggregates variants information through the
kernel function and uses variance component test for variant association in a
gene/region. For each regions/genes SKAT calculates p value for association
while adjusting for covariates. However, the tests suffer when large number
of variants are causal in same direction. Lee et al. 2012 [41] developed
the generalized form of SKAT- SKAT Optimal, a data adoptive methods
which includes linear combination of burden and SKAT, and based on the
parameter provided to identify the optimal test which maximizes the power
of the study .

1.5 Structure of thesis

The thesis consists of the analysis of the exome sequence of 216 cancer pa-
tient cohort treated with combination of chemotherapy drugs: carboplatin
and gemcitabine. In this retrospective study the lung cancer patients with
myelosuppression toxicity measured as individual nadir values of thrombo-
cytopenia (TPK), neutropenia (NPK), and leukopenia (LPK) for individual
patient, are associated with the exome variants of the patient. The thesis
addresses two major goals: firstly, we describe the bioinformatic analysis and
quality control pipeline of the exome sequencing and secondly, the study of
the association test in quantitative and qualitative case-control study designs.

The work-flow of the overall thesis project is described below in the Fig-
ure 1.1. In the following chapter, I describe methodologies and rationales
from the study. In chapter 4 and 5, I discuss the results from whole study
and conclude with the future directions in chapter 6.
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Meta Analysis of Study Cohort

Sample Preparation, DNA Extraction
and Exome-Sequencing of Study Cohort

Preprocessing/Quality con-
trol of Sequencing Reads

Alignment and Variant Call-
ing of Sequencing Reads

Post processing/Quality control of VCF files

Qualitative
Trait

Association
in Extreme
Phenotypes

Quantitative
Trait

Association
in all sample

cohort

Figure 1.1: Overall flow-chart of project
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Materials and Methods

2.1 Study cohort

A total of 216 patient diagnosed with Non-small cell lung cancer (NSCLC)
were included in the study. All patients were scheduled to be treated with
carboplatin and gemcitabine for four cycles and received at least one cycle
of carboplatin and/or gemcitabine chemotherapy. After the chemotherapy
cycle, the nadire values for leukocytes, neutrophils, platelets and haemoglobin
are monitored. Based on the observed nadir values, the patient cohort was
graded as 0, 1, 2, 3 or 4 based on the Common Toxicity Criteria (CTC) [42]
grade set up by National Cancer Institute (NCI).

2.2 Whole exome sequencing of the patient

cohort

In the current project, DNA was extracted from the patient blood samples
and libraries were prepared using Nextera R© Rapid capture exomes kit. The
sequencing of the individual samples was performed on Illumina R©Hiseq2500
platform to generate read lengths of 2×150 base pairs. The exome sequencing
was done at the National Genomics Infrastructure (NGI) platform at Science
For Life Laboratory, Solna, Stockholm.

2.3 Preprocessing of raw sequencing reads

The exome sequencing FASTQ files are provided from the NGI platform. The
format includes sequence reads and the quality score associated with the each
nucleotide in the sequence [43]. Some quality control measures were applied

8



CHAPTER 2. MATERIALS AND METHODS 9

before mapping reads with reference genome. Quality measure and adapter
removal was performed with a utility program, Trim Galore[44]. TrimGalore
is programming script to trim adapter sequences and low quality ends using
Cutadapt [45]. The program keeps reads with quality threshold of 25 on
Phred scale and discards read pairs from analysis if either read in a pair is
shorter than 25 bp.

2.4 Mapping and variant calling of sequenc-

ing reads

After trimming, the reads are aligned to the reference genome and then
the mapped reads are processed through some further quality control before
GATK pipeline tools are applied to call variants. Details of these steps are
described below and summarized in the flowchart in Figure 2.1 below.
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Raw Sequence Reads

Quality Trimming: Trim-Galore

Mapping: BWA-MEM/BOWTIE

QC Filtering: Sam-tools

Duplicate Removal: Picard tools

Local-Realignment: realign Target Creator

Local-Realignment: Indel Realigner

Base Quality Recalibration:Bse Calibrator

SNP and Indel calling: Haplotype caller

Combine Individual VCF into one Common VCF Files

Filter Variants files based on QC criteria

Mapping and Alignment

Variant Calling

Post Variant Calling

Figure 2.1: Overall Flow-chart of GATK pipeline and toolkits used
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The trimmed reads are aligned to GRCh37 /hg19 human reference genome
(UCSC Genome Browser) with Burrows - Wheeler Aligner (bwa/0.5.9) [46]
software package. The bwa mem command is used to align the sequence
with the read length greater than 100 base pair. The resulting sequence
alignment/map (sam) files were converted to bam files using SAMtools [46].
The SAMtool consists of the C implementations for the manipulation of sam
and bam files [47]. Obtained bam files were processed with MarkDuplicates
command in picard (http://broadinstitute.github.io/picard/) software
tool to mark the duplicate reads from the mapped reads. Picard consists of
the java toolsets for next-generation sequencing data manipulation.

Post processing of these aligned reads was done using GATK (v3.3-0)
where the reads were processed to command-line tools IndelRealigner and
Base Quality Score RecalibrationBQSR. The IndelRaligner tools perform
local alignment of aligned reads around indels. The main objective is re-
duce the mismatches bases by locally realigning the aligned reads at indel
positions. Base quality recaliberator recalibrates the base quality scores of
aligned reads such that a quality score generated are closer to the actual
probability of mismatching in the reference genome.

Variant calling in aligned reads is done using HaplotypeCaller package
from GATK and performed on the targeted regions in an individual sample.
Variant calls were initially made on the individual samples and written in
raw gvcf file. HaplotypeCaller estimate the probability that a given site is
variant or non variant given the likelihood of the haplotype generated from
the read data. The individual gvcfs are collectively collected and formatted
to generate the multi-sample Variant call Format (VCF) file. The raw vari-
ants in the VCF files were flagged if the quality scores < 50,FisherSB filter
> 60, quality by depth < 5. Thus, obtained VCF file is termed as rawV CF
(called henceforth) file which contain variant informations of all sample co-
hort. Finally, all the variants in VCF file was annotated using SNPEff [48]
which annotates and predicts the effects of variants on genes (such as amino
acid changes).

2.5 Quality control of rawV CF

The rawV CF file consists of 211691 variants across the 216 samples. The
variants were filtered using vcftools [49] –remove- filtered all and –min-
meanDP commands based on quality measures of the variants outputted
by GATK pipeline. The criteria for filtration was that the variants should
passed the GATK filter and have a mean sequencing depth ≥ 10. A total of
156049 variants passed the filter and were stored in a file called Filter VCF

(http://broadinstitute.github.io/picard/)
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(henceforth). The quality control metrics such as reads counts mapped to
hg19, reads mapped to the target, transition/transversion (Ti/Tv) ratio was
evaluated using plinkseq [50] tool i-stats command. The summary statistics
of variants are reported in Appendix A.1. An average of 29834 variants were
identified in whole sample at the genotype rate of 0.99. The Ti/Tv ratio was
on average 2.180 per individual. The genotyping rate of 0.95 was considered
as the threshold for the accurate genotype of the individuals as shown in the
Figure 2.2. The genotyping rate provides information regarding quality and
quantity of variants called in the sample.

Genotyping Rate Of the Cohort Sample

Study samples

G
en

ot
yp

in
g 

ra
te

0 50 100 150 200

0.90

0.92

0.94

0.96

0.98

1.00

S0328

S0664

S0724

Figure 2.2: Genotyping rate for all sample. Three of the samples: S0724,
S0328, S0664 have a genotyping rate lower than 0.95, threshold genotyping
rate in study.

The mean alternate allele counts in the study cohort was found to be
29832 and further to find outlier sample number of read length was plotted
against the alternate count as shown in Figure 2.3.
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Alternate Allele Counts in Sample Cohort
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Figure 2.3: Alternate allele count in the cohort in both genders. Three sam-
ples S0580, S0664, S0328 are considered as an outliers based on the alternate
allele counts.

2.6 IBS clustering in Cohorts

Identity by state is a method to measure the similarity between unrelated
patients. Based on the genotype called on the filtered variant files, we carried
out identity based on state (IBS) clustering of the samples. IBS clustering
was performed using –cluster command in plink [30]. The clustering of the
whole sample is seen in the Figure 2.4.
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PCA plot of the whole sample cohort

PCA1
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Figure 2.4: Identity by similarity clustering in whole sample in Filter1V CF .
Two samples S0922 and S0156 are out-clustered from the rest of the samples.

All the samples apart from two samples S1056 and S0922 are clustered
together which defines the samples are homogeneous with the same ancestral
descent. We confirmed the similar metadata information for the two of the
out-clustered samples and considered it could possibly be sequenced twice.
On further inquiry we found that the two samples were from same patient
and decided to drop sample S0922 from further analysis. Furthermore, we
performed pairwise IBD analysis in the sample cohort. Pairwise Clustering
measures the relatedness between the individuals by calculating the estimates
of getting too similar samples by random chance. The command –genome
was run in plink files of the Filter1V CF .

The pair-wise IBS clustering results samples S0580 and S0664 are re-
lated to all the other samples in the cohort implying these samples could
be contaminated during sample preparation. Furthermore, these samples
were flagged as outliers in alternate count allele analysis. S0328 was also
flagged as being an outliers in the alternate allele count analysis. Thus,
we removed S0580, S0664, S0328, and S0922 from down-streaming analysis
based on these result. Hence a total of 212 exome samples were used for the
rest of the analysis.
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Figure 2.5: Pair-wise IBS clustering in whole sample in Filter1V CF file.
The red dots indicate the pair-wise comparison between the S0664 and rest
of samples while the green dots indicate the pair-wise comparision between
S0580. Similarly, the outliers show the pairwise comparision between S0922
and S0156.

2.7 Filtration of Filter1V CF

The vcftool command -exclude was used to remove outliers S0580, S0664,
S0328, and S0922 the from Filter1V CF file in the study cohort. Further-
more, we only kept the variants with the genotyping rate greater than 95% in
212 sample cohort. The total variant count after filtration in the whole sam-
ple was 152042. We called the file as Common rare VCF. Based on the minor
allele frequency (MAF) of 0.01 in the sample, the Common rare VCF file was
further separated in Common and Rare VCF files. The CommonV ariant
files consist of variants with the MAF > 0.01 in study cohort while rare vari-
ants MAF < 0.01. The final variant count in the Common and Rare variants
were 74281 and 77761 respectively.

2.8 Quantitative Association Tests

In the present study, the measures of nadir values of myleosupression phenotype-
leukopenia, neutropenia, and thrombocytopenia were defined as quantitative
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trait of interest. The initial blood concentration was measured before and af-
ter administration of chemotherapy treatment reported as baseline and nadir
count respectively. Specifically, rank (ENQT) and logarithm (LN) normal-
ization of the individual nadir values for the each phenotypes were considered
as the quantitative traits. These quantitative traits represent the effect of
the chemotherapy treatment on the patient’s adverse drug reaction (ADRs).
The missing values in the phenotypes were coded as −9 for the association
test to make the file compatible with plink phenotype file format. We an-
alyzed the QC filtered variants with the phenotype in single marker (SNV)
and gene based association tests for both transformed data.

2.8.1 Single Variant Association test for Quantitative
Traits

A total of 72855 biallelic variants in Common VCF were used in the as-
sociation studies. We used the default additive genotype model in linear
regression for all common variants. The linear regression was performed
using −− linear command in plink [30].

Two types of multiple correction: strict Bonferroni adjusted p-value <
6.75× 10−7 and less conservative FDR-BH of p-value < 0.05 were considered
for the variant to be statistically significant in the association test. The
bonferroni correction adjusts threshold p-value from 0.05 to new corrected
threshold p-value of 0.05/k (k =number of tests, here 72855) while FDR
estimates the proportion of the significant results that are false positive.
[20, 51]

Since our sample cohort is small, the statistical significant p-values for
the variants were unable to be obtained. Thus, we applied an alternate
strategy: we divided the variants into high and low toxicity based on the
β values obtained from the regression association. The positive β values
were regarded as the variants that were associated with low toxicity while
the negative β values variants as the high-toxicity associated variants. This
approach was applied to only variants with p < 10−3 in the linear association
studies.

SNPs associated with high toxicity were mapped and annotated using the
bioinformatic tool SNPnexus [52] and associated pathway are analyzed using
LifeMap [53].

2.8.2 Gene/Region based Association test

For the gene/region based association, we investigated the effect of both rare
and common variants of the genes to the individual toxicity phenotype. Thus,
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we used the CommonRare VCF file - the bi-allelic variants for gene based
association tests. The rationale for using both common and rare variants
in association test is we consider an adverse drug reaction as the complex
trait with equal contribution of both rare and common variants in the pre-
disposition of the toxicity phenotype. Additionally, aggregating variants into
gene/region provides us with an opportunity to study the effect of rare and
commmon variants in toxicity. We set the parameters for equal contribution
of rare and common variants in SKATO analysis in SKAT [54] package in
R[55].

2.8.3 Gene/Region definition for association studies

For the Gene based association study, we initially mapped the variants in the
CommonRare VCF to the corresponding standard Refseq [56] genes using
the − − assoc command in plink with the baseline TPK values. The SNV
generated in .assoc files was then mapped to the corresponding genes, exon
and exons ± six base-pairs regions of the genome using the gene reporting
tool in plink. The −− gene− report command in plink mapped the SNV to
corresponding region and generated a gene region file.

We investigated three definition of the gene/regions - gene only, exon
only and exons ± six in the association with the quantitative phenotypes.
First we considered the standard gene segment as defined in Refseq and
USSC Genome Browser [57] databases. We downloaded the corresponding
genomic coordinates for genes and assigned the longest transcript as standard
genes. We found 155239 variants in CommonRare VCF mapped to the
standard 19142 genes in Refseq. In order to reduce the redundancy of tests
in variants associated with Single variant test, we only considered using the
genes with the number of variants greater than one. So that we can identify
the combined effect of rare and common variant in the phenotype. That lead
to the 153095 variants in the study cohort.

However, we found that there were 11275 variants that were present
within same genomic coordinates. This could be due to orientation of the
gene; as different genes could have same genomic position but could differ-
ently oriented (sense and antisense) or in some condition fusion genes were
also seen. In order to reduce these discrepancies, we further segmented indi-
vidual genes into different regions such as exons ± six base-pairs and exon
only.

This definition of gene/region into exons minimized the number of repet-
itive variants found within same genomic coordinates but in different genes.
However considering only exome as region definition lead to exclusion of
intronic variants. Hence to incorporated the splice site variants in further



CHAPTER 2. MATERIALS AND METHODS 18

down-streaming gene/region based association tests we further defined region
into exons ± six base-pairs. As seen in the Table 2.1 exons ± six base-pairs
definition of gene region leads to 109588 variants identified in the 15334 genes
in Refseq.

Region
Defination

Variant Count
Total
Variants
Count

Genes with
Multiple
Variants

Unique
Variants

Total Genes
Before
processing

Total Genes
After
processing

Genes from Refseq 155239 153095 141820 19142 16261
Exon ±6 basepair 114047 111300 109588 18220 15334
Exon only 111144 108373 106704 18117 15178

Table 2.1: Variants count in defination of exome. Total count refers to
the number of variants before processing of the genes. Genes with multiple
variants refers to the genes where variant count > 1 . Unique variants refers
to the variants non redundant variants in the genes.

These exon± six basepair regions were then used in SKATO test in SKAT
R package [54] using both LN transformed and ENQT for each of the toxic-
ity phenotypes. Similar to the single variant association test we considered
two types of multiple corrected p-values for the a gene to be statistically
significant. We set the threshold of strict Bonferroni correction of p-value
< 3.2× 10−6 and more flexible FDR-BH threshold at < 0.05.

2.9 Case/Control Based Association Studies

in Extreme Phenotypes

Qualitative study design includes taking into consideration the binary phe-
notypes such as diseased/non-diseased or high/low toxicity group. In the
current study, we were provided with the Common Toxicity Criteria (CTC)
[42] score of individual patient phenotype. We used CTC score to classify
the patients to either high or low toxicity group. The rationale for the ex-
treme phenotype study is finding the variants enriched within these individual
groups.
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2.9.1 Definition of extreme High Toxicity cases and
Low Toxicity control group from the study Co-
hort

For each of the individual myelosuppression toxicity phenotypes we classified
patients as high toxicity (cases) with the CTC score of either 3 or 4 and
as low toxicity (controls) groups of CTC score 0 or 1. Number of patients
in each group for each phenotype is shown in the Table 2.2. The number
of patients in different CTC group for TPK, LPK and NPK phenotypes as
shown in Figure 2.6

Phenotype High Toxicity(Cases) Low Toxicity (Control)
Thrombopenia (TPK) 75 93
Leucopenia (LPK) 49 91
Neutropenia (NPK) 97 76

Table 2.2: Number of patients in each phenotype. The different toxicity
phenotypes of the individual patients are given in the first column and the
corresponding cases of High toxicity group with CTC score of either 0 or
1 and control group of Low toxicity with CTC score of either 3 or 4 are
tabulated in each successive columns.
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Figure 2.6: The color red indicates the patient in high toxicity cases while
green depicts patients in low toxicity control in each phenotype. As seen in
the figure there are 5 patients with CTC score of 4 for LPK while there are
4 patients with CTC score of 1 in NPK phenotypes.
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2.9.2 Single Variant Association test for Qualitative
phenotypes

The Single variant association study was performed on bi-allelic variants
with MAF > 0.01 in Common VCF file for each phenotype case and control
group. We performed logistic association for the all common variants. The
phenotype information was provided for the individual phenotype in fam
files where the cases were coded with 2 and the control group as 1. The
logistic regression was performed using −− logistic command in plink [30].
The bialleic single nucleotide polymoprhisms (SNP) with multiple corrected
Bonferroni p-value < 6.8× 10−7 or less lenient BH-FDR p-value < 0.05 after
multiple correction was considered as statistically significant.

As in the quantitative analysis, the statistical significant p-values for the
variant were unable to obtained due to small sample size. Thus, we applied
alternate strategy: we took the variants with p < 1.0 × 10−3. The variants
were then annotated to respective genes using SNPnexus tools. Those genes
were analyzed in LifeMap GeneAnalytics tools. The rationale for the alter-
nate analysis is the potential variants for the phenotype are enriched in each
sample cohort as we have divided it into cases and control.
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Results

3.1 Summary Statistics of the study cohort

clinical data

The study cohort consists of non small cell lung carcinoma (NSCLC) patients
treated with carboplatin and gemcitabine chemothereupaetic drugs. The
phenotypic characters of the lung cancer patients are shown in Table 3.1
below.

The study cohort consists of 115 female and 101 male NSCLC patients.
61% of patients have been diagnosed with adenocarcinoma lung cancer his-
tological subtype. And 90% of patients have a smoking history of either
being a current smoker (44%) or former smoker (46%). Most of the patients
(70%) in the study cohort are diagnosed with lung cancer in advanced stages
- IIIa/IIb/IV.

142 patients in advanced stages of lung cancer in study cohort were pro-
vided with combination of carboplatin and gemcitabine while 74 of them are
treated with adjuvant treatment. Adjuvant treatment mode are additional
chemotherapy drugs, carboplatin and gemcitabine given after the surgery to
reduce the cancer risk.

21
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Clinical Features Patients
Gender of the Samples

Female 115
Male 101

Age of treatment
Overall 64.5 (60-71)*
Female 64 (59.50-70.00)*
Male 67 (61-72)*

Histological Subtype
Adenocarcinoma (AC) 133
Squamous Cell Carcinoma (SCC) 41
Large Cell Carcinoma (LCC) 10
Uncharacterized Non-Small Cell Lung Cancer 31

Smoking History
Current 95
Former 100
Never 21

Pathological Stages
Stage Ia/Ib 40
Stage IIa/IIb 29
Stage IIIa/IIIb 64
Stage IV 81

Treatment Type
Advanced disease 142
Adjuvant treatment 74

Table 3.1: Clinical Features of Study Cohort. The figures in the right indicate
the number of patients with the clinical features. The median age of the
patients with the inter-quantile range in the brackets

Additionally, the cancer histology and pathological condition were evalu-
ated in male and female cohorts independently. We found that in both the
group of cohort, adenocarcninoma is the most abundant histological condi-
tion with patients depicting the pathological stage-IV lung cancer. In sum-
mary, we found that our study cohort to be homogeneous in both gender
groups based on pathological and cancer histology phenotype as shown in
the Figure 3.1.
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Figure 3.1: The gender and lung cancer phenotype of the study cohorts. The
barplot depicts the number of the female patients are higher than the male
patients with the most of the patients are treated for advanced treatment.
However the proportion of the patents with the different stages of the lung
cancer are similar in both the sexes in the study cohort.

Similarly, we investigated the lung cancer histological subtypes and patho-
logical stages in the three groups of smoking history. We found that more
than half the patients had adenocarcinoma histology in all the smokers in-
cluding the current and former smoker and even in never smoking groups.
Also, we found that half of the smokers and non-smokers had the advanced
pathological stages of lung cancer as shown in Figure 3.2.
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Figure 3.2: Smoking history and the lung cancer phenotype of the study
cohorts in each of the categories. More than 50% of the current and former
smokers were diagnosed with adenocarcinoma lung cancer which is half of the
total study cohort. The adenocarcinoma lung cancer are present in 76.19%
of the non-smokers

3.2 Transformation of the Nadir TPK, LPK

and NPK

The change in the initial baseline and nadir values of the individual patient
platelets, leukocytes and neutrophils counts are measured and provided as
baseline information. The myelosuppression toxicity phenotype are provided
in the nadir values of the individual measured after the adminstration of the
drugs. The Figure 3.3 below shows the change in the individual myleosu-
pression toxicity in all the CTC groups in each phenotype.

The nadir values represent the lowest blood count after chemotherapy
[58]. From Figure 3.3, we can say that nadir values of each phenotype is
skewed with the presence of extreme of outliers. These outliers represent
patients who are unaffected by the administration of the drugs. Therefore, we
used normalization techniques such as logarithm (LN) and Empricial Normal
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Figure 3.3: The figure illustrates the decrease in the count of the thrombo-
cytes, leukocytes and neutrophil after the patients administered with combi-
nation of gemcitabine and carboplatin. Additionally, boxplot illustrates the
distribution of the baseline and nadir values of each phenotype.

Quantile transformation (ENQT), a rank-based transformation to transform
the data. The normalcy of the data is tested with Shapiro test in R[59].
The Table 3.2 and Figure 3.4 below show the result of the normality test for
untransformed, logarithm transformed and ENQT transformed data.
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Phenotype Shapiro-Wilk Score p-value
Nadir TPK 0.7944 4.103×10−16

Log-TPK 0.9909 0.1937 *
ENQT-TPK 0.9987 0.9999 *
Nadir LPK 0.7582 2.2×10−16

Log-LPK 0.9498 7.736 ×10−07

ENQT-LPK 0.9978 0.9926 *
Nadir NPK 0.6447 2.2×10−16

Log-NPK 0.9886 0.1141 *
ENQT-NPK 0.9948 0.7268 *

Table 3.2: Shapiro-Wilk Test for different phenotype data. The null hy-
pothesis of the test assumes the data to be normality distributed at p-value
> 0.01. The values ∗ indicates the data is normally distributed.
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Figure 3.4: The figure illustrates histogram plot of different transformed
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CHAPTER 3. RESULTS 27

3.3 Read Counts in Mapping and Alignment

of the sequenced reads

We calculated the read counts in each step of the mapping steps of the
sequencing reads to the reference genome. Figure 3.5 shows the counts of
reads in each step of exome sequencing.

Figure 3.5: Read Counts in each quality-control step of the exome alignment
and sequencing. Figure in right(a) shows the read counts in the three samples
while figure (b) shows the read counts in the overall cohort. The mean read
counts of the whole sample cohort is denoted as the red line in the figure (b)

From above Figure 3.5, it can be seen that during each processes of map-
ping and alignment pipeline of the sample, there is substantial decrease in
the read count. In average we see 22.12% decrease in the read counts from
raw read counts to the usable reads for variant calling. Similarly another in-
dex for measuring the efficiency of the sequencing reactions are the coverage
at each base of the reads. The coverage at each for the final mapped reads
were extracted from using HSMetric toolkit. The Table 3.3 below shows the
target coverage of the three sample exomes.

We compared the variant called in three random exomes that were mapped
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Sample Target
Cover-
age at
2X

Target
Cover-
age at
10X

Target
Cover-
age at
20X

Target
Cover-
age at
30X

Target
Cover-
age at
40X

Target
Cover-
age at
50X

Target
Cover-
age at
100X

S0561 95.88 91.31 85.94 79.97 73.42 66.49 34.45
S1169 95.32 89.47 83.03 76.41 69.52 62.50 31.66
S1422 93.23 82.63 71.93 62.48 54.01 46.41 19.61

Table 3.3: Base Target Coverage for three samples.

with two different alignment methods: Bowtie and BWA MEM. Variants
called on three exomes S0561, S1169, and S1442 from both alignment meth-
ods were PCA plotted as shoen in the Figure 3.6. There is a complete match
between the variants called by the two alignment methods.
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Figure 3.6: PCA plot of the exomes of S0561, S1169, S1442 mapped
with Bowtie and BWA-MEM methods. The figures depicts both align-
ment methods identified near identical variants in these three samples.
Thus, it illustrates that the we can further continue the analysis using the
Bowtie/BWA-MEM methods.
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3.4 Quantitative trait single variant associa-

tion test

3.4.1 Thrombocytopenia (TPK)

The Q-Q plot 3.7 shows probability distribution of p-values from empirically
distributed p-values of single marker association test for common variants
in log transformed and ENQT nadir thrombocytopenia values. Both trans-
formation methods result in variants with the p-value in concordance with
expected p-values. However, none of biallelic single variant reached the statis-
tical significance Bonferroni corrected p-value of 6.75×10−6 or FDR corrected
p-value of < 0.05.
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Figure 3.7: Q-Q plots of the LN and ENQT TPK

Manhatton plots, Figure 3.8 and Figure 3.9 visualizes chromosome posi-
tion of biallelic variants. Lowest p-valued variant rs149407483 with 4.84 ×
10−6 mapped to chromosome 19 for LN TPK while rs145707160 and rs4440539
with p-value 3.336 × 10−5 and 4.450 × 10−5 mapped in chromosome X and
7 for ENQT TPK respectively.
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Figure 3.8: Manhatton Plot: LN-TPK

Figure 3.9: Manhatton Plot: ENQT-TPK

Both the transformation methods identified 82 and 79 variants associated
with TPK at p-value < 10−3. As both methods were introduced to normalize
nadir TPK values, we concluded that using intersection of the transformation
methods we were able to identify at least 58 variants associated with the TPK
phenotypes. This is depicted in Venn diagram 3.10. In the alternate analysis
of variants with p < 10−3 and negative β values, we identified 46 variants
associated high toxicity in LN TPK phenotype and 31 variants in ENQT
TPK. 25 of the variants were common in the both the method as shown in
the Venn diagram 3.11.
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Figure 3.10: SNP comparision between the two transformed phenotypes at
p < 10−3. A total of 103 SNPs were identified to be associated in both the
transformation methods at p < 10−3 of which 58 variants are identified in
both the transformations.
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Figure 3.11: Venn diagram depicting the common variants associated with
the high toxicity group (negative β values) in the regression analysis. 25
common variants were associated in both the phenotypes for high TPK in
cohort

We annotated 25 common variants from both the transformed phenotypes
into the genes using the SNPnexus [52] (a SNP annotation tool) and analyzed
gene associated pathway in LifeMap GeneAnalytics tools [53]. Pathways such
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as Ion Transport by P-type ATPase and Factors involved in megakaryocyte
development and platelet production were found to be over-represented with
high toxicity associated genes. Genes FXYD1, FXYD7 were over-represented
in Ion Transport by P-type ATPase pathway while CAPZA2, JMJD1C in
factors involved in megakaryocyte development and platelet production path-
way. These pathway were curated and derived from reactome database [60].

3.4.2 Leukopenia (LPK)

Similarly, results from linear regression analysis of single variant associated
with LN and ENQT LPK are shown in Q-Q plot 3.12. None of the variants
result in statistically significant Bonferrroni corrected p-values of 6.75×10−6.
However, we found two SNPs rs79823754 and rs111710000 significant at p-
value < 0.05 for FDR-BH for LN transformed Nadir values. These SNPs
mapped to genes HDAC7 and OLFM3 respectively.

In contrary to LN LPK, none of the variant results into statistically sig-
nificant p-value for ENQT leukopenia phenotypes. SNP rs8018462 gave the
lowest p-value at 2 × 10−5. The SNP was mapped to SLC7A7 gene. A
Manhatton plot of variants and chromosome position of transformed LPK
phenotypes are shown in the following Figure 3.13, 3.14
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Figure 3.12: Q-Q plots for the transformed phenotype for LPK. The Q-Q plot
for the LN LPK phenotype shows deviation from the theoretical empirical
red line indicating distribution of the p-values are deviating from normal
distribution in observed p-values
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Figure 3.13: Manhatton Plot: LN-LPK

Figure 3.14: Manhatton Plot: ENQT-LPK

A comparative study of single variants at p-value < 10−3 from both trans-
formation methods identified total of 136 and 66 variants. There were 55 vari-
ants identified from both transformation methods as seen in the Figure 3.15.
An alternative analysis of high toxicity variant at p-value < 1.00 × 10−3

and negative β values depicted 15 common variants for both transformed
phenotypes as seen in the Figure 3.16.

We annotated 15 common variants from both the transformed pheno-
types into the genes using the SNPnexus [52] and analyzed pathway associ-
ated in LifeMap GeneAnalytics tools [53]. Two genes DNMT1 and HDAC7
were over represented in Macrophage Differentation and Growth Inhibition
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Figure 3.15: SNP comparision between the two transformed phenotypes at
p < 10−3. A total of 147 SNPs were identified to be associated in both the
transformation methods at p < 10−3 of which 55 variants are identified in
both the transformations.

66 715

High− Tox LN LPK High−Tox ENQT LPK

Figure 3.16: Venn diagram depicting the common variants associated with
the high toxicity group (negative β values) in the regression analysis.15 com-
mon variants were associated in both the phenotypes for high LPK in cohort

by MEts and DNA Methylation and Transcriptional Repression pathways.
These pathways are curated from Ingenuity pathway knowledge databases
[61].



CHAPTER 3. RESULTS 35

3.4.3 Neutropenia (NPK)

The SNV regression analysis, as shown in Figure 3.17, identified variant
rs143522213 with p-value of 2.979 × 10−5 and 3.010 × 10−5 for the LN and
ENQT NPK. The variant mapped to chromosome 3 as shown in Figure 3.18,
and 3.19. There were 16 patients with the missing nadir values. These values
were coded as −9 in phenotype file and association studies were carried out.
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Figure 3.17: Q-Q plot for the transformed phenotype for NPK

As seen in Figure 3.20 72 of variants are associated with either of the
transformed phenotype at p-value < 1 × 10−3. 31 high toxicity variants are
identified for both transformed phenotypes as seen in the Figure 3.21. Upon
annotation of common 31 variants in SNPnexus [52] and pathway analysis
in LifeMap GeneAnalytics tools, genes CYFIP2 and ITGAE are over rep-
resented in E-cadherin signaling in the nascent adherens junction and are
curated in NCBI Biosystem pathway[62].
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Figure 3.18: Manhatton Plot: LN-NPK

Figure 3.19: Manhatton Plot: ENQT-NPK
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ENQT NPK LN NPK

Figure 3.20: SNP comparision between the two transformed phenotypes at
p < 10−3.103 SNPs were identified to be associated in both the transforma-
tion methods at p < 10−3 of which 72 variants are identified in both the
transformations.

5 231

High−Tox ENQT NPK High− Tox LN NPK

Figure 3.21: Venn diagram depicting the common variants associated with
the high toxicity group (negative β values) in the regression analysis. 31
common variants were associated in both the phenotypes for high NPK in
cohort
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3.5 Qualitative trait single variant associa-

tion study

3.5.1 Thrombcytopenia (TPK)

73429 bialleic variants from the 168 Case-Control Thrombocytopenia group
were association with the logistic regression methods. Q-Q plot 3.22 and
Manhatton plots 3.27 plot depicts the distribution and position of the vari-
ants high/low toxicity TPK phenotype.

Figure 3.22: Q-Q plot of high/low toxicity group of TPK. The reference red
line depicts theoretical line between the expected and observed distribution.
The distribution of the observed p-values is deviating from the expected dis-
tribution. The possible explanation for the deviation could be we undertook
only the cases of high and low toxicity which could cause the skewness in the
distribution.

As in quantitative analysis, p-values for individual bi-allelic SNPs are un-
derpowered to reach genome wide significance of Bonferroni corrected thresh-
old of < 6.8×10−7 or adjusted Benjamini-Hochberg FDR threshold of < 0.05.
The highest ranked SNP from the SNV association was intronic variant,
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Figure 3.23: Manhatton plot of High/Low Toxicity group of TPK.The unad-
justed p-value were taken on the y-axis with the SNV position on the x-axis.
None of the SNPs reached the genome-wide significance of < 6.8× 10−7

rs66772001 with p-value of 1.07× 10−4. The SNP mapped to HLA-C gene.
In the alternative analysis approach, 27 biallelic SNPs with p-value <

1.00 × 10−3 were identified. Upon SNPs annotation in SNP nexus [52] and
pathway analysis in GeneAnalytics tools, Genes ITGB1, LAMB2 were over
represented in cell adhesion ECM remodeling pathway curated in GeneGo
Metago database [60].

3.5.2 Leukopenia (LPK)

78333 variants in 140 high/low toxicity leukopenia cohort were analyzed in
logistic regression analysis. The distribution of p-values and position of as-
sociation SNPs are shown in Q-Q plot 3.24 and Manhatton plot 3.27.
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Figure 3.24: Q-Q plot of high/Low Toxicity group of LPK.The reference red
line depicts theoretical line of a perfect match between the expected and
observed distribution.

None of the variants reached statistically significant multiple corrected
Bonferroni and FDR p-values. SNP rs61735550 was the top hit with the p-
value of 8.54×10−5 and mapped to ZFHX3 gene on chromosome 16:72958322
position.

19 SNPs with p-value < 1 × 10−3 were mapped to the corresponding
genes using the SNP nexus [52]. These SNPs mapped to 14 unique genes in
RefSeq databases. These genes were upon analysis in LifeMap Gene toolkit
found Protein digestion and absorption pathway, curated in KEGG path-
way database [63] over represented. Two genes COL24A1 and SLC7A are
associated in protein digestion and absorption pathway.
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Figure 3.25: Manhatton plot of high/Low Toxicity group of LPK.The unad-
justed p-value were taken on the y-axis with the SNV position on the x-axis.
None of the SNPs reached the genome-wide significance of < 6.8× 10−7

3.5.3 Neutropenia (NPK)

97 high toxicity and 76 low toxicity NPK sample cohort with 75354 bialleic
variants are associated using logisitic regression. The visualization of the as-
sociation test are shown in following Q-Q plot 3.26 and Manhatton plot 3.27.
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Figure 3.26: Q-Q plot of High/Low Toxicity group of NPK.The reference
red line depicts theoretical line of a perfect match between the expected
and observed distribution. The observed p-values is deviating from the ex-
pected distribution. The possible explanation for the deviation could be we
undertook only the cases of high and low toxicity which could effect the
distribution.

None of the variants were able to reach the Bonferronin multiple test
correction p-value of < 6.8 × 10−7 or adjusted Benjamini-Hochberg FDR
threshold of < 0.05. A SNP rs2301664 was the top hit with the p-value of
2.2×10−4. The SNP mapped to SV2B gene on the chromosome 15:91827264
position.

30 SNVs with p-value with < 1 × 10−3 mapped to corresponding gene
using SNP-Nexus tool. These mapped genes were run through the LifeMap
GeneAnalytics tools to observe the genes represented in the pathways. Two
genes KLRK1 and KLRC4-KLRK1 are genes represented in Malaria path-
way. However, same two genes are also represented in the pathway relating
to Immune response Role of DAP2 receptors in NK cells implicating role in
our Neutropenia phenotype.
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Figure 3.27: Manhatton plot of High/Low NPK Toxicity group.The unad-
justed p-value were taken on the y-axis with the SNV position on the x-axis.
None of the SNPs reached the genome-wide significance of < 6.8× 10−7

3.6 Quantitative trait gene based association

test

3.6.1 Thrombcytopenia (TPK)

The Q-Q plot distribution of the genes identified by SKATO test associated
with both phenotypes are plotted and shown in Figure 3.28. The highest
ranked genes for LN and ENQT TPK were UBXN7 and MYL7 at p-value
1.13×10−4 and 5.87×10−5 respectively. As in the SNV analysis, we analyzed
genes using alternative strategy with p-value < 1.00× 10−3. 15 and 13 genes
are found to be associated for LN and ENQT modified phenotypes. 11 of
the genes were found common in both the transformed phenotype. The Venn
diagram 3.31 below representation of the genes found in both the transformed
methods.
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Figure 3.28: Q-Q plots: Gene based SKATO for the LN-transformed TPK.
Both the transformed phenotypes have the qq-plot that deviates from the
empirical p-value distribution

Four genes ZSCAN26, CAPZA2, TRIM27 and UBXN7 were identified in
both SKATO gene tests and high toxicity single nucleotide variant regression
tests at p-value < 1.00 × 10−3. The genotype frequency of the variants
in 212 sample cohort is shown in Appendix A Table A.2. Both common
variants rs4808 and rare variant rs374052696 are found to enriched at p-
value < 1.00 × 10−3 in CAPZA2. Another interesting gene ZSCAN26 are
enriched with five rare variants in study cohort with single common variant
allele.
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Figure 3.29: Comparison of the Genes identified by SKATO association
methods in LN and ENQT TPK.
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3.6.2 Leukopenia (LPK)

The Q-Q plot 3.30 distribution of p-values obtained for each transformed
LPK phenotypes results CFAP126, FTMT, RPL19, GSTK1, LONP2, GTF2E2,
TSPO2 to be statisitcally significant values of adjusted FDR BH p-value
< 0.05 and Bonferroni corrected p-value of < 3.2 × 10−6. However, for
ENQT LPK no such significant genes are found. The top ranked gene is
TSPO2 at unadjusted p -value < 5.85× 10−5. This discrepancy in the genes
associated with LN and ENQT is caused due deviation of the LN-LPK phe-
notype from the normal distribution of the phenotype as seen in the earlier
with Shapiro-Wilk test Table 3.2.

0 1 2 3 4

0
1

2
3

4
5

6
7

All variants LN−LPK 
(Equal weight to variants)

Expected  − log10(p)

O
bs

er
ve

d 
 −

lo
g 1

0(p
)

0 1 2 3 4

0
1

2
3

4
5

All variants ENQT−LPK 
(Equal weight to variants)

Expected  − log10(p)

O
bs

er
ve

d 
 −

lo
g 1

0(p
)

Figure 3.30: Q-Q plots-Gene based SKATO for the LN and ENQT
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Figure 3.31: Comparision of the Genes identified by the both transformation

Thus, as in earlier studies, all genes with p-values < 1.00×10−3 from both
phenotypes were compared. 49 LN-LPK and 16 ENQT-LPK associated genes
were identified at < 1.00×10−3. Upon comparative analysis of genes 12 genes
were identified with both methods as represented in the Venn diagram 3.31.

In order to identify genes associated with high toxicity, genes identified
from SKATO gene association test was compared with the high toxicity
genes identified in the Single variant association for both the phenotypes.
SVIL,SLC7A7, RGS17, HMGXB4 ,UBXN7 genes were identified in both of
the methods. The Appendix Table A.3 shows counts of the variants in the
cohort samples in the identified genes.

3.6.3 Neutropenia (NPK)

Identical analysis pipeline was carried out with the LN and ENQT modified
NPK phenotypes. No statistical significant p-values threshold was achieved
for each of the transformed phenotype. Apart from small sample size, 16
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patients were missing data. These samples were subsequently non-used in
the association tests which further reduced sample cohort. Near identical
Q-Q plot 3.32 was seen for both phenotypes. The highest ranked gene was
HOMER2 for both LN and ENQT transformed phenotypes with p-value of
2.98×10−5 and 2.87×10−5 respectively. As in previous comparative analysis,
20 and 15 genes were identified by the both LN and ENQT transformed
methods at p-value < 1× 10−3. All of the genes in ENQT were identified by
LN NPK phenotype as seen in Figure 3.33.
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Figure 3.32: Q-Q plots-Gene based SKATO for the LN-transformed NPK
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We compared the genes identified by both the phenotypes at p-value
< 1 × 10−3 for both the single variant and gene variant association tests.
Two genes HOMER2 and ZZEF1 were identified in both test. Upon further
analysis, both rare and common variants were seen in NPK sample cohort.
Appendix table A.4 shows the variants counts in the sample cohort for two
genes.
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Figure 3.33: Comparison of the Genes identified by the both transformation
in NPK
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Discussion

In the current study, we exome sequenced 216 NSCLC patients treated with
the combination of carbolpatin and gemcitabine. Many patients showed dif-
ferent grades of adverse bone marrow myleosuppression upon the administra-
tion of drug. We investigated genetic variants associated with the individual
phenotypes by analyzing the quantitative and qualitative traits based on
individual phenotype.

4.1 Quantitative and Qualitative Single Vari-

ant Association tests

In the both quantitative and qualitative study, sample size of 216 study
cohort made it infeasible to hunt down multiple corrected statistically sig-
nificant p-values for genetic variants. Thus, we resorted to the alternative
analysis strategy where the variants with p-values < 1×10−3 were taken into
consideration. For the quantitative phenotypes we categorized the variants
into high and low toxicity based on the β values for the linear regression anal-
ysis. Similarly, logistic regression was carried out in all the myelosupression
phenotypes of case/control group with high toxicity as the patients with the
CTC score of either 3 and 4. This strategy was adopted to find true pos-
itives variants that are associated in all of phenotype definition. 5 biallelic
variants were identified in SNV analysis for both quantitative and qualitative
TPK phenotype. The Figure 4.1 summarizes the variants identified in all of
two of transformed quantitative phenotype and qualitative case-control TPK
cohorts.

50
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Figure 4.1: Biallelic SNP in all methods with p-value < 1.0×10−3. TPK LN

and TPK ENQT refers to the log transformed nadir values for nadir throm-
bopenia values and CC represents the case − control cohort of high/low
toxicity TPK phenotypes.

SNPs rs56070322, rs10496192, rs61739531, rs4808, rs2298141 were iden-
tified by the above three methods. The SNPs mapped to genes KIF17,
ALMS1, MYO1G, CAPZA2, ITGB1 respectively. Interestingly, CAPZA2
was also identified by the quantitative gene−based SKATO association meth-
ods in the both transformed phenotypes. This supports that the idea that
both rare and common variants could be enriched in the gene. Furthermore,
SNPs rs374052696, rs4808 and 7:116502628 in the gene were enriched in the
TPK case-control cohort as shown in Table 4.1. rs374052696 was present
in a high toxicity patient while 7:116502628 and rs4808 was enriched in the
high toxicity patients with the odd ratio of 2.51 and 2.86 respectively. Vari-
ant rs374052696 present in high toxicity patients is a 5-prime-UTR variant
present at -41 position from the transcription site and reported at MAF of
0.0002 in 1000 genome project while 7:116502628 is an in-frame deletion that
leads to GCC deletion. This provides inclination of CAPZA2 and associated
variants in the thrombocytopenia phenotype in the study cohort.

And potentially validates the advantage of using whole exome sequenc-
ing in genotyping patients rather than microarray based methods as we can
profile all the common and rare variants in a gene.
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Gene SNP Alt
Alle

Freq
Alt
Alle

Freq
Ref
Alle

Ref
Allele

ChisQ p-value Odd
Ratio

CAPZA2 rs374052696 T 0.006667 0 C 1.23 0.2673 NA
CAPZA2 7:116502628 T 0.04 0.0163 TGCC 1.77 0.1834 2.514
CAPZA2 rs4808 T 0.32 0.1398 C 15.7 7.409×10−3 2.896

Table 4.1: CAPZA2 variants in TPK Case-Control Cohort

Similar approach applied to LPK phenotypes identified a single variant
rs8018462 in all of the study design as shown in Figure 4.2

Figure 4.2: Biallelic SNP in all methods with p-value < 1.0 × 10−3 for
LPK phenotype.Biallelic SNP in all method with p-value < 1.0 × 10−3.
LPK LN and LPK ENQT refers to the log transformed nadir values for
nadir leukopenia values and CC represents the case − control cohort of
high/low toxicity TPK phenotypes.

The rs8018462 SNP maps to SLC7A7 gene at position 14:23282110 a
common variant in our sample cohort. Additionally, SLC7A7 gene was also
identified in the gene based association SKATO test. Furthermore, in case
control 12 variants were identified in the case-control LPK cohort were ob-
served as shown in Table. Couple of SNPs such as rs1805062, rs8018462,
rs1805059,rs2281677 in the SLC7A7 genes are present in the odd ratio greater
than 2.0 which might indicate the variants int the genes are associated with
the leukopenia phenotype in our study cohort. However, variants rs373156106
and rs199522527 were absent in LPK cases which might suggest these vari-
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ants might provide protective advantage in our study cohort.

Gene SNP
Alt
Alle

Freq Alt
Allele

Freq Ref
Allele

Ref
Allele

ChisQ p-value Odd
Ratio

SLC7A7 rs143575981 A 0.0102 0.01099 G 0.003703 0.9515 0.9278
SLC7A7 rs1061040 C 0.8367 0.8846 T 1.273 0.2591 0.6685
SLC7A7 rs373156106 A 0 0.005495 G 0.5404 0.4623 0
SLC7A7 rs199522527 A 0 0.005495 T 0.5404 0.4623 0
SLC7A7 rs1805062 T 0.02041 0.005495 C 1.337 0.2476 3.771
SLC7A7 rs1805061 G 0.1429 0.1319 A 0.06558 0.7979 1.097
SLC7A7 rs8018462 G 0.6939 0.4451 A 15.84 6.89e-05 2.826
SLC7A7 rs11568438 A 0.02041 0.01099 G 0.4013 0.5264 1.875
SLC7A7 rs1805059 T 0.7174 0.5 C 11.76 0.0006041 2.538
SLC7A7 rs45479698 T 0.0102 0.02198 C 0.5035 0.478 0.4588
SLC7A7 rs2281677 G 0.6735 0.4725 A 10.36 0.001285 2.302
SLC7A7 rs28364570 G 0.06122 0.07143 A 0.1049 0.7461 0.8478

Table 4.2: SLC7A7 Variants in Case-Control LPK phenotype

Similar analysis pipeline for the transformed NPK phenotypes and the
case-control cohort sample of high toxicity NPK led to the identification of
the two SNPs rs55842403, and rs1049172 in all SNV association test at p-
value < 1.0×10−3. The Venn diagram 4.3 summarizes number of SNPs iden-
tified in the association test in all methods used. rs55842403 and rs1049172
mapped to genes LPPR5 and KLRK1 respectively. However, the gene based
association methods didn’t identify these genes as these SNP have a single
nucleotide polymorphism called by GATK variant calling pipelines. Addi-
tionally, our definition of region/gene included only genes that had the more
than one variants.
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Figure 4.3: Biallelic SNP in all method with p-value < 1.0 × 10−3 for
NPK phenotype.Biallelic SNP in all method with p-value < 1.0 × 10−3.
NPK LN and NPK ENQT refers to the log transformed nadir values
for nadir leukopenia values and CC represents the case − control cohort
of high/low toxicity TPK phenotypes.

4.2 Biological Interpretation of Associated Genes

In the study, we found that CAPZA2 gene was associated with the high
toxicity thrombocytopenia phenotypes in the patient cohort. CAPZA2 gene
codes protein, F-actin-capping protien subunit 2, a member of F-actin cap-
ping protein and regulates the growth of the actin filament. CAPZA2 gene
is related to megakaryocyte development and platelet production pathway in
curated reactome database [60]. Precursor cells megakaryocytes are derived
from haemotopoietic stem cells (HSC), primarily in bone marrow. These
cells differentiates into circulating platelets with development of cytoplas-
mic the structural and functional characteristics [64, 65]. Furthermore, pe-
gylated recombinant human megakaryocyte growth and development factor
(PEG-rHuMGDF) has been shown to reduce severe thromobocytopenia in
chemotherapy treatment in cancer patients [66].

SLC7A7 variants were found to be associated with leukopenia phenotype
with p-value < 1.0×10−3 for both case/control and quantitative phenotypes.
SLC7A7 are cationic and neutral amino acid transporter gene necessary for
normal and abnormal cell growth and proliferation [67]. Studies have sug-
gested SLC7A7 gene mutations are responsible for rare recessive disorder,
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Lysinuric protein intolerance (LPI) [68, 69].A Japanese and Korean stud-
ies have shown Lysinuric protein intolerance study patients presented with
pulmonary disease, haematological abnormalities of which leukopenia is one
of the clinical features [70, 70]. Moreover, study has shown the mutations
in SLC7A7 leading to a dysfunctional LPI macrophages [71] which might
implicate its role in immune response.
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Future perspectives

In the current study, we investigated to identify variants associated with
the myleosupression phenotypes at p < 1 × 10−3 using both quantitative
and qualitative study design. However, these variants and genes are un-
able to achieve statistically significance due to limited sample size in the
study. Since toxicity phenotypes are hypothesized to be multigenic traits,
it might need large number of sample size to reach statistical significance.
At the meantime, it is essential to understand that it is substantially hard
to assemble a homogeneous study patient cohort treated with same drugs in
same cancer patients. This is to our knowledge the largest effort to dissect
myelosuppression toxicity in non-squamous lung cancer patient treated with
carboplatin/gemcitabine with sequencing technologies.

Furthermore, the variants identified in the study needs to be validated.
One method of validation of the results would be functional assay of identi-
fied genes and variants in-vitro conditions. The functional studies could be
performed either using cell-line or knock-down mutations in model animals
that is usually done in candidate based genetic studies. Currently, we are
undertaking functional studies in CAPZA and variants in TPK phenotype to
validate the findings in our study. Another approach for validation could be
using replication of the association study in independent, identical NSCLC
patients. However, the replication study should be performed in same pop-
ulation as the original association study.

Currently, in the project we performed whole exome sequencing for the
extracting variants from the patient samples. However, exome consists of 2 %
of the whole genome and apart from exomic variants, intronic variants are re-
ported to play important role in toxicity and disease. Hence a whole genome
sequencing of current patient sample and association of variants would be
able to identify and elucidate biological mechanisms in finer details. In order
to improve our understanding, we have scaled up to whole genome sequencing

56
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of 98 sample cohort and starting data analysis of study cohorts.
Finally, in order to understand the effect of the variants we could inte-

grate different data analysis from multitude of omics technologies such as
transcriptomics, proteomics to further investigate the association of myelo-
suppression toxicity in NSCLC patients.
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Raúl Estévez, Rafael de Cid, Pablo Sanjurjo, Antonio Zorzano, Vir-
ginia Nunes, Kirsi Huoponen, et al. Identification of slc7a7, encoding
y+ lat-1, as the lysinuric protein intolerance gene. Nature genetics,
21(3):293–296, 1999.

[70] Akio Koizumi, Norio Matsuura, Sumiko Inoue, Maki Utsunomiya, Jun-
Ichi Nozaki, Kayoko Inoue, and Yuhei Takasago. Evaluation of a mass
screening program for lysinuric protein intolerance in the northern part
of japan. Genetic testing, 7(1):29–35, 2003.

[71] Amelia Barilli, Bianca Maria Rotoli, Rossana Visigalli, Ovidio Busso-
lati, Gian C Gazzola, Rita Gatti, Carlo Dionisi-Vici, Diego Martinelli,
Bianca M Goffredo, Mariona Font-Llitjós, et al. Impaired phagocytosis
in macrophages from patients affected by lysinuric protein intolerance.
Molecular genetics and metabolism, 105(4):585–589, 2012.



Appendix A

First appendix

66



APPENDIX A. FIRST APPENDIX 67

ID
No.
ALT

No.
MIN

No.
HET

No.
VAR

RATE SING TITV PASS
PASS
Sin

QUAL DP

S0143 30245 22331 18699 158553 0.999 463 2.023 22331 188 143678 NA
S0156 30172 22330 18581 158583 0.999 509 2.035 22330 234 145227 NA
S0160 30512 22481 18856 158554 0.999 494 2.048 22481 219 144403 NA
S0162 30641 22537 19109 158623 0.999 474 2.041 22537 198 142552 NA
S0164 30739 23021 19689 158643 0.999 488 2.012 23021 213 143158 NA
S0170 30729 22832 19810 158634 0.999 475 2.048 22832 200 142167 NA
S0172 30933 23512 19470 158554 0.999 1011 2.044 23512 749 142381 NA
S0174 30228 22467 18749 158633 0.999 494 2.088 22467 218 145628 NA
S0177 30459 22191 18189 158570 0.999 503 2.032 22191 227 139713 NA
S0178 30954 22953 19407 158562 0.999 500 2.067 22953 224 143826 NA
S0225 30196 22256 18609 158610 0.999 530 2.051 22256 254 142733 NA
S0229 30699 22645 19197 158464 0.998 540 2.057 22645 267 141723 NA
S0237 30734 22804 19316 158550 0.999 494 2.09 22804 218 143465 NA
S0240 30409 22505 18877 158528 0.999 486 2.054 22505 216 142811 NA
S0243 30400 22516 18666 158490 0.998 484 2.087 22516 209 143958 NA
S0253 30428 22616 18899 158485 0.998 527 2.066 22616 255 143996 NA
S0258 30321 22423 19120 158473 0.998 483 2.086 22423 208 146239 NA
S0259 30604 22400 18728 158452 0.998 462 2.056 22400 186 142318 NA
S0264 30679 22957 19330 158436 0.998 496 2.071 22957 221 144332 NA
S0267 30820 22660 19278 158522 0.999 523 2.079 22660 257 142090 NA
S0269 30783 22872 19022 158495 0.998 725 2.064 22872 452 142113 NA
S0274 30572 22714 19270 158540 0.999 512 2.039 22714 236 144230 NA
S0279 29998 22128 18574 158422 0.998 612 2.115 22128 337 143632 NA
S0280 29793 22231 18255 158487 0.998 501 2.154 22231 225 146290 NA
S0282 30077 22100 18699 158415 0.998 519 2.159 22100 244 144884 NA
S0286 30112 22170 18273 158454 0.998 466 2.147 22170 191 145216 NA
S0287 29648 21822 18218 158447 0.998 493 2.148 21822 218 147216 NA
S0290 30274 22441 18782 158517 0.999 504 2.131 22441 229 146387 NA
S0295 30405 22609 19035 158496 0.998 588 2.149 22609 314 145738 NA
S0306 30450 22551 18924 158495 0.998 510 2.15 22551 236 143701 NA
S0307 30272 22227 18654 158406 0.998 487 2.117 22227 212 144173 NA
S0309 30157 22469 18791 158407 0.998 509 2.14 22469 233 147981 NA
S0313 30485 22584 19013 158438 0.998 512 2.152 22584 237 145460 NA
S0322 28625 20989 17243 156689 0.987 448 2.151 20989 180 151345 NA
S0325 30075 22194 18730 158139 0.996 521 2.09 22194 245 145001 NA
S0328 25474 18541 13921 149703 0.943 371 2.237 18541 128 162352 NA
S0330 29854 21879 18435 158197 0.996 501 2.169 21879 225 146422 NA
S0333 30478 22688 19145 158534 0.999 518 2.138 22688 243 144647 NA
S0338 30003 22047 18217 158521 0.999 505 2.157 22047 229 145463 NA
S0340 29854 21883 18073 158432 0.998 482 2.156 21883 209 145030 NA
S0341 29902 22090 18472 158488 0.998 494 2.102 22090 223 146774 NA
S0347 30224 22202 18518 158392 0.998 488 2.131 22202 216 144303 NA
S0349 30194 22219 18759 158501 0.998 487 2.16 22219 212 143988 NA
S0351 28595 20946 16888 156239 0.984 445 2.213 20946 185 151474 NA
S0353 30109 22238 18499 158388 0.998 491 2.183 22238 216 145089 NA
S0365 29907 22166 18331 158504 0.998 504 2.133 22166 228 146494 NA
S0376 30614 22530 19071 158513 0.998 500 2.144 22530 224 142620 NA
S0380 30365 22498 18845 158576 0.999 508 2.15 22498 232 144815 NA
S0397 30100 22252 18612 158504 0.998 565 2.15 22252 290 146659 NA
S0400 30349 22422 18747 158538 0.999 491 2.136 22422 216 145353 NA
S0404 30214 22279 18588 158451 0.998 477 2.129 22279 202 146260 NA
S0406 30330 22291 18714 158495 0.998 510 2.098 22291 235 143085 NA
S0407 30604 22696 18813 158559 0.999 592 2.086 22696 319 142947 NA
S0409 30321 22431 18726 158495 0.998 534 2.094 22431 258 144838 NA
S0411 30520 22506 18680 158577 0.999 544 2.111 22506 268 143188 NA
S0415 30308 22420 18648 158561 0.999 500 2.094 22420 225 144204 NA
S0416 30117 22416 18744 158509 0.998 469 2.162 22416 193 145258 NA
S0428 30283 22423 18795 158410 0.998 477 2.133 22423 203 143276 NA
S0437 30464 22563 18906 158487 0.998 496 2.138 22563 221 143123 NA
S0439 30303 22499 18526 158453 0.998 733 2.108 22499 463 142432 NA
S0445 29900 22387 18450 158443 0.998 483 2.138 22387 209 146241 NA
S0447 30038 22278 18663 158363 0.998 485 2.124 22278 209 145442 NA
S0451 30415 22708 19038 158454 0.998 546 2.134 22708 270 144935 NA
S0459 30314 22335 18345 158424 0.998 516 2.119 22335 241 142761 NA
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ID
No.
ALT

No.
MIN

No.
HET

No.
VAR

RATE SING TITV PASS
PASS
Sin

QUAL DP

S0466 29899 22123 18261 158382 0.998 513 2.119 22123 237 146383 NA
S0469 29555 21839 18267 158469 0.998 523 2.114 21839 248 148653 NA
S0472 30086 22184 18481 158321 0.997 503 2.091 22184 230 144637 NA
S0477 30391 22418 18891 158450 0.998 618 2.098 22418 346 144717 NA
S0488 30262 22482 18730 157815 0.994 473 2.098 22482 203 145179 NA
S0490 29999 22000 18271 158357 0.998 492 2.071 22000 221 143948 NA
S0492 30295 22394 18801 158330 0.997 490 2.102 22394 216 144177 NA
S0494 29979 22244 18442 158465 0.998 481 2.095 22244 207 146177 NA
S0496 30077 22305 18570 158327 0.997 494 2.098 22305 223 144629 NA
S0497 30304 22407 19028 158420 0.998 516 2.122 22407 246 145855 NA
S0498 30183 21975 18374 158368 0.998 519 2.093 21975 245 143762 NA
S0500 30233 22292 18485 158478 0.998 501 2.1 22292 225 142835 NA
S0512 29943 22351 18630 158298 0.997 504 2.05 22351 232 147166 NA
S0525 30356 22353 18659 158344 0.997 482 2.11 22353 211 144356 NA
S0527 29655 21806 18157 157950 0.995 463 2.117 21806 191 146374 NA
S0532 28832 21213 17326 155427 0.979 464 2.213 21213 201 150015 NA
S0552 28551 21047 17118 157283 0.991 452 2.159 21047 182 151408 NA
S0559 29990 22613 18156 158033 0.995 816 2.121 22613 547 145472 NA
S0561 30606 22980 19071 158449 0.998 859 2.109 22980 590 142329 NA
S0579 30093 22089 18485 158160 0.996 501 2.092 22089 227 144411 NA
S0580 37823 31505 30699 158419 0.998 498 2.194 31505 229 147326 NA
S0584 29009 21469 17657 156664 0.987 460 2.178 21469 198 149486 NA
S0591 29647 22004 18078 157822 0.994 491 2.125 22004 217 148559 NA
S0594 27805 20479 16296 153681 0.968 443 2.248 20479 188 153559 NA
S0600 29747 21997 18424 157491 0.992 483 2.154 21997 212 147573 NA
S0601 28693 21109 16968 156205 0.984 456 2.142 21109 190 151407 NA
S0604 30395 22319 18671 158292 0.997 509 2.099 22319 236 144380 NA
S0607 29893 21940 17993 158433 0.998 485 2.084 21940 211 144366 NA
S0611 30071 22279 18543 158296 0.997 479 2.112 22279 206 145107 NA
S0620 30014 22174 18437 157382 0.991 432 2.073 22174 164 146308 NA
S0626 27689 20221 16074 152675 0.962 415 2.155 20221 160 155139 NA
S0629 29163 22354 17310 156373 0.985 999 2.12 22354 739 147158 NA
S0631 26893 19982 15801 151297 0.953 405 2.139 19982 158 158389 NA
S0648 28880 21336 17263 155626 0.98 480 2.118 21336 220 148924 NA
S0650 29636 21823 18196 157418 0.992 478 2.1 21823 208 148029 NA
S0651 29677 21725 17877 157931 0.995 475 2.062 21725 204 145105 NA
S0653 30217 22459 18756 158348 0.997 495 2.129 22459 223 145872 NA
S0659 30110 22292 18087 158209 0.997 487 2.083 22292 217 143850 NA
S0664 30443 24418 22296 148320 0.934 351 2.193 24418 106 163973 NA
S0671 28859 21315 17111 155520 0.98 454 2.082 21315 191 151211 NA
S0677 26946 19723 15334 151116 0.952 415 2.158 19723 166 155236 NA
S0680 28777 21259 17014 155407 0.979 456 2.136 21259 196 150183 NA
S0681 28980 21339 17379 156352 0.985 462 2.139 21339 197 149778 NA
S0682 29708 21910 17990 158006 0.995 500 2.117 21910 230 146265 NA
S0683 29878 22184 18379 157689 0.993 465 2.132 22184 194 146824 NA
S0687 29822 22080 18271 158246 0.997 476 2.075 22080 207 147979 NA
S0693 28179 20857 16869 153871 0.969 443 2.111 20857 186 155092 NA
S0718 28779 21151 16950 155616 0.98 478 2.143 21151 215 147532 NA
S0724 26999 19905 15681 150612 0.949 393 2.195 19905 142 157665 NA
S0728 29072 21644 17852 156057 0.983 492 2.168 21644 225 148998 NA
S0732 29217 21443 17573 157317 0.991 481 2.096 21443 208 147950 NA
S0761 29785 22095 18180 158064 0.996 542 2.12 22095 268 147406 NA
S0762 29841 22043 18216 158004 0.995 483 2.074 22043 210 147089 NA
S0773 29784 21929 18172 158080 0.996 487 2.119 21929 219 147010 NA
S0774 27877 20699 16570 153488 0.967 474 2.14 20699 211 153359 NA
S0790 28390 20933 16815 154831 0.975 433 2.115 20933 172 151708 NA
S0791 27925 20542 16397 153929 0.97 413 2.136 20542 158 154204 NA
S0801 29054 21452 17404 156204 0.984 446 2.104 21452 180 146652 NA
S0804 29765 22047 18431 158058 0.996 470 2.102 22047 199 148598 NA
S0807 30254 22216 18698 157798 0.994 491 2.093 22216 222 145093 NA
S0812 29905 22103 18302 157860 0.994 505 2.109 22103 235 143912 NA
S0828 27802 20674 16871 153941 0.97 430 2.145 20674 180 154309 NA
S0832 29376 21593 17863 157272 0.991 495 2.11 21593 227 147639 NA
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S0837 29851 21965 18345 158003 0.995 469 2.093 21965 198 146107 NA
S0862 29658 22269 18581 158121 0.996 488 2.067 22269 214 148610 NA
S0864 29268 21668 17768 156698 0.987 460 2.078 21668 193 146790 NA
S0867 29153 21466 17537 158132 0.996 426 2.066 21466 154 148251 NA
S0873 30709 22564 18972 158498 0.998 544 2.044 22564 274 142600 NA
S0883 30237 22255 18533 158491 0.998 464 2.08 22255 190 145310 NA
S0886 30555 22768 18919 158544 0.999 524 2.066 22768 248 144863 NA
S0895 30014 22148 18234 158212 0.997 504 2.128 22148 232 145430 NA
S0900 27802 20432 16326 152660 0.962 416 2.149 20432 156 153266 NA
S0922 28330 20752 16789 153769 0.969 261 2.136 20752 1 150760 NA
S0933 27250 19879 15628 151600 0.955 442 2.145 19879 191 153795 NA
S0934 28465 20888 16988 154584 0.974 446 2.12 20888 187 150547 NA
S0935 30518 22573 19151 158552 0.999 519 2.098 22573 244 144195 NA
S0940 28871 21239 16982 157238 0.99 435 2.112 21239 168 147887 NA
S0944 30641 22609 18998 158580 0.999 539 2.091 22609 264 142108 NA
S0947 29155 21681 17817 157073 0.989 505 2.08 21681 237 147521 NA
S0956 29565 21826 18031 157959 0.995 465 2.119 21826 196 147910 NA
S0958 29830 22152 18350 158432 0.998 513 2.093 22152 245 147473 NA
S0979 30553 22666 18917 158554 0.999 527 2.153 22666 253 142518 NA
S0984 30191 22195 18549 158584 0.999 461 2.077 22195 186 142878 NA
S0986 28247 20437 16515 154398 0.973 453 2.114 20437 196 149567 NA
S1003 30644 22826 19249 158589 0.999 485 2.101 22826 210 144259 NA
S1025 30511 22461 18710 158581 0.999 501 2.061 22461 228 142697 NA
S1032 30253 22309 18770 158527 0.999 494 2.108 22309 219 143706 NA
S1041 30414 22459 18873 158535 0.999 509 2.058 22459 233 144184 NA
S1054 30643 22640 19223 158459 0.998 537 2.091 22640 261 142796 NA
S1056 30622 22473 18973 158526 0.999 299 2.113 22473 24 142614 NA
S1066 30865 22902 19535 158544 0.999 530 2.047 22902 254 143797 NA
S1070 30307 22453 18888 158588 0.999 519 2.08 22453 245 143695 NA
S1071 28920 21260 17379 156185 0.984 507 2.112 21260 240 148524 NA
S1079 30414 22469 18765 158543 0.999 517 2.059 22469 241 144086 NA
S1089 30548 22829 18716 158554 0.999 813 2.057 22829 537 143909 NA
S1109 27548 20236 16166 152732 0.962 400 2.14 20236 152 154671 NA
S1111 30155 22292 18843 158576 0.999 472 2.106 22292 196 145239 NA
S1116 30592 22537 18969 158494 0.998 456 2.086 22537 180 142367 NA
S1123 28903 21372 16896 156163 0.984 775 2.137 21372 521 148415 NA
S1126 29536 21626 17869 157335 0.991 518 2.092 21626 248 146876 NA
S1132 30294 22543 19090 158574 0.999 608 2.074 22543 335 143302 NA
S1135 30425 22564 18829 158557 0.999 513 2.106 22564 237 145265 NA
S1153 30143 22319 18720 157752 0.994 469 2.078 22319 199 145558 NA
S1156 30111 22345 18563 158485 0.998 499 2.126 22345 223 145347 NA
S1168 30625 22554 18914 158594 0.999 549 2.083 22554 274 142758 NA
S1169 30059 22347 18687 158230 0.997 486 2.119 22347 213 145335 NA
S1180 30247 22338 18952 158557 0.999 518 2.063 22338 243 144908 NA
S1193 30470 22719 19055 158592 0.999 513 2.077 22719 237 144343 NA
S1197 30113 22283 18607 158575 0.999 537 2.116 22283 261 144899 NA
S1205 30737 22738 19269 158528 0.999 493 2.062 22738 218 143145 NA
S1208 30373 22385 18899 158592 0.999 513 2.128 22385 237 144681 NA
S1211 30006 21980 18246 158574 0.999 500 2.133 21980 224 144682 NA
S1214 30088 22471 18554 158592 0.999 474 2.132 22471 198 144394 NA
S1217 30302 22286 18679 158626 0.999 504 2.049 22286 229 141923 NA
S1218 29356 21897 18322 158250 0.997 478 2.097 21897 205 149530 NA
S1219 30236 22397 18478 158643 0.999 506 2.068 22397 230 144932 NA
S1220 29614 22057 17080 158556 0.999 554 2.097 22057 279 144510 NA
S1228 29820 22095 18198 158336 0.997 585 2.097 22095 312 146504 NA
S1231 28140 20755 16476 154238 0.972 439 2.124 20755 183 151032 NA
S1232 30363 22857 19233 158260 0.997 494 2.048 22857 220 146012 NA
S1240 30358 22529 18997 158568 0.999 499 2.15 22529 223 144058 NA
S1244 30776 23032 19355 158557 0.999 638 2.078 23032 364 142952 NA
S1254 30542 22632 19014 158562 0.999 460 2.068 22632 185 143954 NA
S1259 30401 22469 18825 158639 0.999 472 2.051 22469 197 143593 NA
S1272 30293 22686 19000 158623 0.999 515 2.089 22686 239 145840 NA
S1273 30624 22715 19189 158592 0.999 502 2.026 22715 227 143752 NA
S1283 29316 21788 17889 156410 0.985 474 2.085 21788 211 148110 NA
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S1292 28151 20724 16735 154106 0.971 425 2.144 20724 173 153921 NA
S1319 30095 22302 18444 158555 0.999 528 2.144 22302 254 146414 NA
S1325 28880 21136 17047 156573 0.986 482 2.095 21136 215 148267 NA
S1327 29542 21859 17852 157806 0.994 510 2.122 21859 243 146345 NA
S1361 29845 21957 18407 158208 0.997 460 2.1 21957 189 146585 NA
S1364 30088 22338 18647 158202 0.997 567 2.125 22338 296 146971 NA
S1366 30369 22505 18876 158588 0.999 485 2.088 22505 210 145381 NA
S1368 29712 21982 18077 158112 0.996 465 2.144 21982 193 146604 NA
S1374 28263 20855 16915 154621 0.974 502 2.114 20855 248 152764 NA

Table A.1: Summary Statistics of indiviudal genotype

Gene Variant Genotype in Cohort
CAPZA2 rs374052696 T/T=0 T/C=1 C/C=210
CAPZA2 7:116502628 T/T=0 T/TGCC=9 TGCC/TGCC= 202
CAPZA2 rs4808 T/T=12 T/C=64 C/C=136
TRIM27 rs41270608 A/A=0 A/G=2 G/G=210
TRIM27 6:28887823 C/C=0 C/T=3 T/T=209
TRIM27 rs143463783 A/A=0 A/G=1 G/G=211
TRIM27 rs2230683 C/C=3 C/T=30 T/T=176
UBXN7 rs61742253 C/C=0 C/T=2 T/T=210
UBXN7 rs73213957 G/G =0 G/A=5 A/A=207
ZSCAN26 rs76463649 G/G =0 G/A=2 A/A=210
ZSCAN26 rs16893892 G/G =0 G/A=2 A/A=210
ZSCAN26 rs11965538 A/A =6 A/G=37 G/G=162
ZSCAN26 rs11965542 A/A=0 A/G=2 G/G=210
ZSCAN26 rs187327081 T/T=0 T/C=1 G/G=211
ZSCAN26 6:28244225 C/C=0 C/G=1 G/G=211

Table A.2: Common genes and variants identified by high Toxicity single
variant Association and Gene based association studies in whole cohort
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Gene Variant Genotype in Cohort
HMGXB4 rs148351517 T/T= 0 T/C=5 C/C=207
HMGXB4 rs1053593 T/T=88 T7G=98 G/G=26
HMGXB4 22:35661305 A/A=0 A/G=1 G/G=211
HMGXB4 22:35661371 T/T=0 T/C=1 C/C=211
HMGXB4 rs2272789 C/C=101 C/T=88 T/T= 23
RGS17 rs2295230 C/C=17 C/A=90 A/A=105
RGS17 rs41292882 A/A=0 A/G=27 G/G=185
SLC7A7 rs143575981 A/A=0 A/G=4 G/G=208
SLC7A7 rs1061040 C/C=160 C/T=51 T/T= 1
SLC7A7 rs373156106 A/A=0 A/G=1 G/G=211
SLC7A7 rs199522527 A/A=0 A/T=1 T/T=1
SLC7A7 rs1805062 T/T=0 T/C=6 C/C=206
SLC7A7 rs1805061 G/G=1 G/A=58 A/A=153
SLC7A7 rs8018462 G/G=62 G/A=103 A/A=47
SLC7A7 14:23282335 T/T=0 T/C =1 C/C=211
SLC7A7 rs11568438 A/A=0 A/G=8 G/G=204
SLC7A7 rs1805059 T/T=74 T/C=85 C/C=45
SLC7A7 rs45479698 T/T=0 T/C=8 C/C=204
SLC7A7 rs2281677 G/G=63 G/A=106 A/A=43
SLC7A7 14:23284892 A/A=0 A/G=1 G/G=211
SLC7A7 rs28364570 G/G=1 G/A=1 A/A=180
SVIL rs56022643 A/A=0 A/G=4 G/G=208
SVIL rs1057952 C/C=27 C/T=43 T/T=137
SVIL rs7921306 C/C=9 C/T=30 T/T=173
SVIL rs11007607 G/G=12 G/A=85 A/A=115
SVIL 10:29762907 C/C=0 C/G= 1 G/G= 207
SVIL rs61737920 T/T=1 T/C=25 C/C=186
SVIL rs10763720 A/A=4 A/G=55 G/G=153
SVIL rs11007612 G/G=4 G/A=51 A/A=157
SVIL rs1056782 G/G=41 G/A= 129 A/A=42
SVIL rs56817459 A/A=0 A/G=42 G/G=170
SVIL rs146267453 A/A=0 A/C=1 C/C=211
SVIL rs7070135 A/A=1 A/C=41 C/C=170
SVIL rs145392867 T/T=0 T/G=2 G/G=210
SVIL rs7070678 T/T=37 T/G=112 G/G=63
SVIL 10:29813439 G/G=0 G/A=1 A/A=211
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Gene Variant Genotype in Cohort
SVIL 10:29820187 A/A=0 A/G=1 G/G=211
SVIL rs17756919 T/T=40 T/C=98 C/C=74
SVIL rs41284748 A/A=1 A/G=31 G/G=180
SVIL rs1328323 C/C=45 C/T=103 T/T=64
SVIL rs147010426 T/T=0 T/C=5 C/C=207
SVIL rs150826046 A/A=0 A/G=1 G/G=211
SVIL rs1247696 T/T=204 T/C=7 C/C=1
SVIL rs7076239 C/C=45 C/T=103 T/T=64
SVIL rs142262993 T/T=0 T/C=1 C/C=211
SVIL rs138539716 C/C=0 C/T=1 T/T=211
SVIL rs143011277 A/A=0 A/G=1 G/G=211
SVIL rs141506698 T/T=0 T/C=2 C/C=210
SVIL 10:29839785 T/T=0 T/C=1 C/C=211
SVIL rs10160013 G/G=15 G/A=75 A/A=122
SVIL rs17834991 G/G=7 G/A=69 A/A=136
SVIL rs1270874 C/C=120 C/A=77 A/A=15
SVIL 10:29839886 G/G=0 G/T=1 T/T=211
SVIL rs3740003 G/G=15 G/A=76 A/A=121
SVIL rs3740002 G/G=18 G/A=66 A/A=126
SVIL rs1547169 T/T=15 T/C=74 C/C=123
SVIL rs375845375 C/C=0 C/G=1 G/G=211
SVILP1 10:30993387 C/C=0 C/G=1 G/G=210
SVILP1 rs112090325 A/A=0 A/G=2 G/G=209
SVILP1 rs11008192 A/A=79 A/G=93 G/G=39
SVILP1 rs79612491 C/C=0 C/T=1 T/T=211
SVILP1 rs10826848 A/A=178 A/G=32 G/G=2
SVILP1 rs141761009 A/A=0 A/G=2 G/G=210
SVILP1 rs1826619 C/C=144 C/A=60 A/A=8
UBXN7 rs61742253 C/C=0 C/T =2 T/T=210
UBXN7 rs73213957 G/G =0 G/A=5 A/A=207

Table A.3: Table: Gene and SNP identified by High Toxicity Single Nu-
cleotide and Gene based test
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Gene Variant Genotype in Cohort
HOMER2 rs34287296 A/A=0 A/G=6 G/G=206
HOMER2 rs74416301 A/A=0 A/G=10 G/G=202
HOMER2 rs79448007 C/C=0 C/T=3 T/T=209
HOMER2 rs76145073 C/C=0 C/T=1 T/T=211
HOMER2 rs200280749 A/A=0 A/G=2 G/G=210
ZZEF1 rs62072392 G/G=5 G/A=67 A/A=140
ZZEF1 rs116870033 G/G=0 G/A=1 A/A=211
ZZEF1 17:3912217 A/A=0 A/G=1 G/G=211
ZZEF1 rs76915727 A/A=0 A/G=6 G/G=206
ZZEF1 rs112497098 A/A=0 A/G=1 G/G=211
ZZEF1 rs8075562 A/A=11 A/G=70 G/G=131
ZZEF1 rs201134194 A/A=0 A/G=1 G/G=211
ZZEF1 rs72827323 C/C=0 C/G=3 G/G=209
ZZEF1 rs711177 G/G=2 G/C=23 C/C=187
ZZEF1 rs35511240 A/A=0 A/G=3 G/G=209
ZZEF1 rs1006954 A/A=5 A/G=56 G/G=151
ZZEF1 rs35284780 T/T=0 T/C=16 C/C=196
ZZEF1 rs781831 C/C=31 C/T=117 T/T=64
ZZEF1 rs34719232 A/A=0 A/G=1 G/G=211
ZZEF1 rs781853 C/C=26 C/T=115 T/T=71
ZZEF1 rs781852 G/G=28 G/A=113 A/A=71
ZZEF1 rs146287047 A/A=0 A/G=4 G/G=208
ZZEF1 rs117408376 A/A=0 A/G=1 G/G=211
ZZEF1 rs781825 G/G=28 G/A=113 A/A=71
ZZEF1 rs4790555 C/C=0 C/A=1 A/A=211
ZZEF1 17:3970468 C/C=0 C/G=1 G/G=211
ZZEF1 rs9891850 T/T=0 T/G=9 G/G=203
ZZEF1 rs139226355 A/A=0 A/G=1 G/G=211
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Gene Variant Genotype in Cohort
ZZEF1 rs34760976 A/A=1 A/G=53 G/G=158
ZZEF1 17:3978633 T/T=0 T/C=1 C/C=211
ZZEF1 rs143736611 T/T=0 T/C=2 C/C=210
ZZEF1 rs7207986 A/A=3 A/G=62 G/G=147
ZZEF1 rs8065185 A/A=5 A/G=59 G/G=148
ZZEF1 rs78806449 G/G=1 G/A=30 A/A=181
ZZEF1 17:3994109 G/G=0 G/A=1 A/A=211
ZZEF1 rs12947597 T/T=3 T/C=60 C/C=149
ZZEF1 rs7222392 C/C=6 C/T=58 T/T=148
ZZEF1 rs143093880 A/A=0 A/G=1 G/G=211
ZZEF1 17:4015912 C/C=0 C/T=1 T/T=211
ZZEF1 rs150456516 A/A=0 A/G=1 G/G=211
ZZEF1 rs58625333 G/G=8 G/A=81 A/A=123
ZZEF1 rs138134000 C/C=0 C/T=11 T/T=201
ZZEF1 rs117738178 T/T=0 T/C=5 C/C=207
ZZEF1 rs188631556 T/T=0 T/A=1 A/A=211
ZZEF1 rs111724159 A/A=0 A/G=6 G/G=205

Table A.4: Table: Gene and SNP identified by High Toxicity Single Nu-
cleotide and Gene based test NPK
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