
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Gopika Premsankar

Design and Implementation of a Dis-
tributed Mobility Management Entity
(MME) on OpenStack

Master’s Thesis
Espoo, July 15, 2015

Supervisor: Professor Antti Ylä-Jääski
Advisor: Sakari Luukkainen D.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80716589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Gopika Premsankar

Title: Design and Implementation of a Distributed Mobility
Management Entity (MME) on OpenStack

Date: July 15, 2015 Pages: 77

Major: Data Communication Software Code: T-110

Supervisor: Professor Antti Ylä-Jääski

Advisor: Sakari Luukkainen D.Sc. (Tech.)

Network Functions Virtualisation (NFV) involves the implementation of network
functions, for example firewalls and routers, as software applications that can
run on general-purpose servers. In present-day networks, each network function
is typically implemented on dedicated and proprietary hardware. By utilising
virtualisation technologies, NFV enables network functions to be deployed on
cloud computing infrastructure in data centers.

This thesis discusses the application of NFV to the Evolved Packet Core (EPC) in
Long Term Evolution (LTE) networks; specifically to the Mobility Management
Entity (MME), a control plane entity in the EPC. With the convergence of cloud
computing and mobile networks, conventional architectures of network elements
need to be re-designed in order to fully harness benefits such as scalability and
elasticity. To this end, we design and implement a distributed MME with a three-
tier architecture common to web applications. We highlight design considerations
for moving MME functionality to the cloud and compare our new distributed
design to that of a standalone MME. We deploy and test the distributed MME
on two separate OpenStack clouds. Our results indicate that the benefits of
scalability and resilience can outweigh the marginal increase in latency for EPC
procedures. We find that the latency is dependent on the actual placement of
MME components within the data center. Also, we believe that extensions to the
OpenStack platform are required before it can meet performance and availability
requirements for telecommunication applications.

Keywords: Network Functions Virtualisation, Mobility Management En-
tity, Evolved Packet Core, OpenStack

Language: English

3

4

Acknowledgements

I would like to thank my supervisor Professor Antti Ylä-Jääski and my in-
structor Docent Sakari Luukkainen for giving me the opportunity to work
on this topic. I would also like to thank my co-worker Kimmo Ahokas for
helping me with the testbed. I am grateful to Dr. Jose Costa-Requena,
Vicent Ferrer Guasch and Jesús Llorente Santos for our discussions on this
thesis. I would also like to thank Professor Keijo Heljanko for his insights
into distributed design and Professor Mario Di Francesco for our discussions
on the presentation of scientific results.

I would like to thank my friends and colleagues for their support. Special
thanks to my husband for encouraging me and motivating me to do my best.
This thesis would not have been possible without the help and support from
my family.

Espoo, July 15, 2015

Gopika Premsankar

This work has been performed in the framework of CELTIC-Plus project
C2012/2-5 SIGMONA. The authors would like to acknowledge the contribu-
tions of their colleagues, although the views expressed are those of the author
and do not necessarily represent the project. This information reflects the
consortium’s view, but the consortium is not liable for any use that may be
made of any of the information contained therein.

5

6

Abbreviations and Acronyms

3GPP 3rd Generation Partnership Project
APN Access Point Name
BTS Base Transceiver Station
DHT Distributed Hash Table
ECGI E-UTRAN Cell Global Identifier
ECM EPS Connection Management
EMS Element Management System
EMM EPS Mobility Management
eNodeB Evolved Node B
ESM EPS Session Management
EPC Evolved Packet Core
EPS Evolved Packet System
E-UTRAN Evolved Universal Terrestrial Access Network
GPRS General Packet Radio Service
GRE Generic Routing Encapsulation
GSM Global System for Mobile Communication
GTP GPRS Tunneling Protocol
GTP-C GPRS Tunneling Protocol for Control Plane
GUMMEI Globally Unique MME Identifier
GUTI Globally Unique Temporary Identifier
IE Information Element
IMSI International Mobile Subscriber Identity
IMS IP Multimedia Core Network Subsystem
IP Internet Protocol
ISDN Integrated Services Digital Network
LTE Long Term Evolution
MAC Medium Access Control
MME Mobility Management Entity
MSISDN Mobile Station ISDN Number
NAS Non Access Stratum

7

NFV Network Functions Virtualisation
O&M Operation and Management
OVS Open vSwitch
PDCP Packet Data Convergence Protocol
PDN Packet Data Network or Public Data Network
PGW PDN Gateway
PHY Physical layer
PLMN Public Land Mobile Network
QoS Quality of Service
REST Representational State Transfer
RLC Radio Link Control
RRC Radio Resource Control
S1AP S1 Application Protocol
SCTP Stream Control Transmission Protocol
SDN Software-Defined Networking
SGW Serving Gateway
SMS Short Message Service
SQL Structured Query Language
SSH Secure Shell
TA Tracking Area
TAI Tracking Area Identity
telecom telecommunication
UDP User Datagram Protocol
UE User Equipment
UMTS Univeral Mobile Telecommunications System
VLAN Virtual Local Area Network
VM Virtual Machine

8

Contents

Abbreviations and Acronyms 7

1 Introduction 11
1.1 Motivation . 11
1.2 Research statement . 12
1.3 Contribution . 13
1.4 Research methodology . 13
1.5 Structure of thesis . 13

2 Background 15
2.1 Evolved Packet Core (EPC) 15

2.1.1 Architectural elements of EPC 16
2.2 Mobility Management Entity (MME) 18

2.2.1 Interfaces and protocol stacks 19
2.2.2 State information maintained by MME 20

2.3 EPS procedures . 21
2.3.1 E-UTRAN initial attach procedure 21
2.3.2 Detach procedure . 24

2.4 Network Functions Virtualisation (NFV) 26
2.4.1 Benefits . 27
2.4.2 Challenges . 28

2.5 Architecture of virtualised EPC network elements 29
2.5.1 1:1 mapping . 29
2.5.2 1:N mapping . 30
2.5.3 N:1 mapping . 32
2.5.4 N:2 mapping . 32

2.6 Related work . 33
2.6.1 Distributed design for network elements 33
2.6.2 Moving telecommunication systems to the cloud 34

2.7 Summary . 35

9

3 Implementation 37
3.1 Overview of system . 37
3.2 Design of front end (FE) . 38

3.2.1 Forwarding S1AP messages 39
3.2.2 Forwarding GTP messages 39
3.2.3 Communicating with the OpenStack load balancer . . . 40
3.2.4 Design considerations 40

3.3 Design of worker . 42
3.3.1 Attach procedure . 42
3.3.2 Detach procedure . 42
3.3.3 Design considerations 43

3.4 Design of state database . 44
3.4.1 Redis cluster . 45
3.4.2 Redis persistence policies 46
3.4.3 Design considerations 47

3.5 Summary . 47

4 Experimental setup and plan 49
4.1 OpenStack . 49
4.2 Software components and VMs 50
4.3 Experiments . 52
4.4 Summary . 53

5 Evaluation 55
5.1 Attach latency compared to original MME 55
5.2 Attach latency depending on placement of FE and worker . . 56
5.3 UE context retrieval time . 57
5.4 Effect of Redis persistence policy on attach latency 58
5.5 Demonstration of autonomous scaling on distributed MME . . 59
5.6 Demonstration of resilience . 60
5.7 Summary . 60

6 Discussion 65
6.1 Evaluation of distributed design for MME 65
6.2 Suitability of OpenStack for telecommunication applications . 67
6.3 Testing framework . 67

7 Conclusion 69
7.1 Conclusion . 69
7.2 Future work . 70

10

Chapter 1

Introduction

Mobile networks today comprise of specialised routers built on proprietary
hardware that is designed to meet high performance requirements. Upgrad-
ing or expanding the network demands investment in expensive hardware and
the deployment process is slow and cumbersome [60]. Network Functions Vir-
tualisation (NFV) has emerged as a solution for mobile network operators to
rapidly meet the growing demand for mobile data [11] while simultaneously
allowing them to reduce expenditure in specialised hardware. By using vir-
tualisation technologies, NFV enables network functions to be deployed on
cloud computing infrastructure in data centers. Mobile network operators
can then utilise distributed data centers to virtualise and decentralise their
networks elastically and cost-effectively [59].

This convergence of mobile networks and cloud computing enables the
creation of a flexible, scalable and intelligent core network. A flexible core
network is required to meet the requirements of future 5G networks and to
integrate new radio access technologies with existing Long Term Evolution
(LTE) and WiFi access networks [22, 27]. This thesis focuses on the virtu-
alisation of the Evolved Packet Core (EPC) in Long Term Evolution (LTE)
networks. We design and implement a distributed Mobility Management
Entity (MME), an important control plane element in the EPC network.

1.1 Motivation

The MME is an ideal candidate for virtualisation as it is purely a control
plane element and does not handle user data traffic. This means that the
MME does not need to make use of specialised hardware for processing data
packets and thus its functionality can be moved to general-purpose hard-
ware in the cloud. Furthermore, in present-day networks, signalling traffic

11

CHAPTER 1. INTRODUCTION 12

is growing rapidly [24, 53, 62]. This can be attributed to continuous keep-
alive signalling generated from smartphones [53] and emerging machine to
machine applications [24, 62]. An MME deployed on the cloud can employ
virtually infinite computing resources to handle this load. However, moving
the MME software as a standalone application to the cloud does not allow us
to fully leverage the benefits of cloud computing. Our work in re-designing
the MME architecture is motivated by the following factors:

• Network functions in the EPC are designed to run on dedicated hard-
ware. If the signalling traffic increases substantially, operators need to
deploy additional MMEs to handle the increasing load. With an in-
telligent architecture, an MME deployed on the cloud can be made to
scale autonomously and with minimal network management tasks.

• Network elements in the mobile core are usually overprovisioned to
meet peak load demand. However, this can lead to waste of resources
during non-peak hours [60]. The MME, being a stateful network ele-
ment, cannot be scaled in without affecting existing sessions. A good
design for the MME software can enable elasticity through efficient
scaling in of virtual resources when no longer required and without
affecting end users.

• The failure of a network element impacts the delivery of services to
end users. The failure of an MME is particularly significant as it is the
main control element in the EPC and is involved in setting up connec-
tions for users [63]. Thus, it is important to ensure resilience of the
MME and restoration of user sessions in case of failures in the under-
lying hardware. Currently, an active-standby redundant architecture
with vendor-specific built-in support for transparent failover is used
to ensure resilience [31, 51]. State checkpointing and network logging
are not suited for cloud deployments as they can contribute to net-
work congestion and increased network latency [31]. Virtualisation of
network functions requires resilience to be built into the software ar-
chitecture [46]. Thus, it is necessary to build resilience into the MME
software.

1.2 Research statement

Section 1.1 identifies the requirements for a virtualised MME in order to
harness the benefits of cloud computing. Our goal is to develop a suitable
software architecture to achieve a cloud-optimised design for the MME. We

CHAPTER 1. INTRODUCTION 13

aim to demonstrate the advantages and disadvantages of the chosen archi-
tecture through experimental evaluation.

1.3 Contribution

We present a new three-tier architecture for the MME, designed to be flex-
ibly scaled out or scaled in depending on user traffic. This new design also
achieves resilience to the failure of certain Virtual Machines (VMs) in the
cloud. We develop a prototype implementation of the distributed MME and
demonstrate the benefits of the new architecture. Additionally, we discuss
design choices made for each tier of the architecture and evaluate the effects
of these choices. We test and evaluate the performance of the MME on two
OpenStack installations.

1.4 Research methodology

We assess the new MME architecture and design choices by experimental
evaluation. More specifically the methodology used is experimental computer
science [40], wherein we evaluate our solution through the development of a
prototype system. The MME software developed in this thesis is a prototype
implementation which supports the basic functionality required to compare
its performance to the original design. The developed software is intended
as a proof-of-concept to demonstrate the benefits and drawbacks of a novel
architecture for the MME.

1.5 Structure of thesis

The rest of the thesis is structured as follows: Chapter 2 introduces the
relevant background topics and describes various architecture choices for vir-
tualising elements in the EPC. Chapter 3 presents the chosen architecture
for the MME and describes our implementation and design considerations.
Chapter 4 describes the testbed and experimental plan to evaluate the dis-
tributed MME. Chapter 5 presents the results of the experiments. Chapter 6
discusses the results obtained and enhancements to the testbed. Finally,
Chapter 7 concludes the thesis.

14

Chapter 2

Background

This chapter provides background information on the technologies and con-
cepts relevant to this thesis. Section 2.1 introduces the EPC and its con-
stituent elements. Section 2.2 describes the functions and interfaces of the
MME in detail. Section 2.3 discusses two procedures used in the EPC to
provide connectivity to end users. Section 2.4 introduces the concept of Net-
work Functions Virtualisation (NFV) and its application to EPC. Section
2.5 describes architecture choices for a virtualised element in the mobile core
network. Finally, Section 2.6 provides a literature review of current work in
the virtualisation of EPC.

2.1 Evolved Packet Core (EPC)

The continuous need for higher data rates, improved Quality of Service
(QoS), lower latencies for connection setup, and shorter round trip times
has led to a diverse and evolving set of technologies in mobile networks [59].
Figure 2.1 shows the evolution of mobile network architectures from circuit-
switched Global System for Mobile Communications (GSM) networks to
the current Evolved Packet System (EPS). GPRS networks first introduced
packet switching, thereby removing the need for dedicated end-to-end paths.
However, these networks could not sufficiently support the high data rates
needed for multimedia services. The demand for faster data rates resulted in
a new access network in the next generation of Universal Mobile Telecommu-
nications System (UMTS) networks. UMTS networks have a core network
similar to that in GPRS networks. The need for even faster networks led
to the development of a completely new core network and access technol-
ogy in the EPS networks. The 3rd Generation Partnership Project (3GPP),
a collaboration between seven telecommunication standard development or-

15

CHAPTER 2. BACKGROUND 16

BTS Node B eNodeB

Controller Controller

Circuit-switched Packet-switchedCore network

Access network

GSM GPRS UMTS

GSM/GPRS UMTS LTE

Packet-switched

EPC

EPS

Figure 2.1: Evolution of mobile network architecture [13]

ganisations1, maintains and develops the standardised specifications related
to GSM (including GPRS), UMTS and EPS networks.

The EPS represents the 4th generation (4G) in the evolution of mobile
networks. The radio access network of the EPS is known as Long Term Evo-
lution (LTE) or Evolved Universal Terrestrial Access Network (E-UTRAN).
The Evolved Packet Core (EPC) is the core network of the EPS. The EPC
is an all-IP based packet-switched system. Since the EPC no longer contains
a circuit-switched domain, all data, voice and Short Message Service (SMS)
services are transported over the IP protocol. The EPC has a flat architec-
ture with only a few nodes involved in handling user traffic, thereby resulting
in fewer protocol conversions, lower latencies and higher performance [14].
Another key feature of the EPC architecture is the separation of control plane
(or signalling plane) and data plane (or user plane) elements. Control plane
signalling consists of messages related to mobility and management, whereas
the data plane carries data packets for user sessions. This separation enables
operators to dimension and adapt their networks [14].

2.1.1 Architectural elements of EPC

Figure 2.2 shows the basic EPS architecture with the main network elements
and interfaces relevant to this thesis. The User Equipment (UE) is the device
used by the end user in the network. We use the term UE and user inter-
changeably in this thesis. The UE connects to the EPC over the E-UTRAN
radio access network. The eNodeB is part of the radio access network and is

1http://www.3gpp.org/about-3gpp/

http://www.3gpp.org/about-3gpp/

CHAPTER 2. BACKGROUND 17

eNodeB

MME

SGW PGW

HSS

IP Services

S1-MME

S1-U

S11

S6a

S5/S8 SGi

 EPC E-UTRAN

Control plane

Data plane

UE

Figure 2.2: Basic EPS architecture comprised of E-UTRAN radio access
network and the core network, EPC

responsible for the air interface towards the UE. The EPC includes the Mo-
bility Management Entity (MME), Home Subscriber Server (HSS), Serving
Gateway (SGW) and PDN Gateway (PGW). The EPC is connected to exter-
nal Packet Data Networks (PDN) which provide IP services to the UE. The
EPC could also be connected to the IP Multimedia Core Network Subsystem
(IMS) to deliver IP multimedia services (not shown in figure).

A brief description of the elements in EPC is provided below. The MME,
being the topic of this thesis, is described in greater detail in Section 2.2.

• HSS – The HSS is the master database for the UEs. It maintains
subscription information for each user, including identification param-
eters, security information for authentication, ciphering and integrity,
user location data, and user profile information [18]. Other network el-
ements provide services to the UE by querying the HSS for the required
information.

• MME – The MME is a control plane element responsible for man-
agement of users. The functions of the MME include authentication,
managing user session states, paging, mobility and EPS bearer state
management for each UE connected to it.

• SGW – The SGW serves a UE by routing IP data packets to and from
the UE [14]. It also acts as the anchor point for UE handovers between
eNodeBs and also between non-3GPP networks [18].

• PGW – The PGW is a data plane element that routes incoming and
outgoing IP packets from external data networks. Together, the PGW
and SGW enable data packets to be transferred between the UE and

CHAPTER 2. BACKGROUND 18

external IP networks. The PGW is also responsible for UE IP address
allocation, policy enforcement and packet filtering [18].

To provide data services to the UE, EPS networks employ the concept of
EPS bearers. An EPS bearer represents a logical connection between the UE
and the EPC. It comprises of tunnels between different network elements,
over which data packets are actually delivered using IP protocol. IP pack-
ets are sent over the radio interface between the UE and eNodeB, tunneled
over the S1-U interface between the eNodeB and SGW and transferred over
S5/S8 interface between the SGW and PGW. An EPS bearer uniquely iden-
tifies traffic flows between a UE and PGW and is associated with a common
Quality of Service (QoS) control [17].

2.2 Mobility Management Entity (MME)

The MME is responsible for mobility management of UEs. Right from the
moment a user attaches to the LTE network, the MME keeps track of the
location of the UE and its state information. It is involved in the initial
authentication procedure for a UE and authorises a user to attach to the
network. On successful authorisation, the MME manages the establishment
of bearers for data connectivity by selecting the appropriate SGW and PGW
for a user. It also assigns a temporary identifier to the UE, which is then used
in all subsequent procedures to identify the user in the network. When a UE
goes into idle mode due to inactivity, the MME is responsible for paging it
in case of network-initiated events. It is also the main mobility anchor for
a user and handles handovers between eNodeBs as well as to other access
networks. The MME terminates the Non Access Stratum (NAS) interface
towards the UE and is responsible for ciphering and integrity protection of
these NAS messages.

To summarise, among the main functionalities of the MME as listed in [17]
are:

• Authentication and authorisation of UEs

• PGW and SGW selection

• Maintaining UE reachability when in idle state

• Bearer management for PDN connectivity

• Mobility management, i.e. management of handovers between eNodeBs
or different access networks

CHAPTER 2. BACKGROUND 19

• NAS signalling and associated security towards UE

• Lawful interception of signalling traffic

2.2.1 Interfaces and protocol stacks

The interfaces towards the MME, as depicted in Figure 2.2, are described
below. In addition to these basic interfaces, the MME has several other
interfaces which are not described in this thesis and can be found in [17].

• S1-MME – S1-MME is the control plane interface between the eNodeB
and MME. This interface uses S1 Application Protocol (S1AP) [16] over
Stream Control Transmission Protocol (SCTP) [57]. SCTP is a reliable,
stream-oriented transport protocol, which ensures reliable delivery of
messages between the eNodeB and MME. The NAS protocol is used for
control plane messaging between the UE and MME. NAS messages are
delivered in S1AP messages and are transparent to the eNodeB. The
functionality performed by the NAS protocol can be broadly classified
into EPS Mobility Management (EMM) for mobility of the UE and
EPS Session Management (ESM) for the UE’s IP connectivity [19].
Figure 2.3 shows the protocol stack for communication between the
UE, eNodeB and MME. We do not discuss the radio interface protocol
stack for the LTE-Uu interface, details of which can be found in [20].

S1AP

SCTP

IP

L2

L1

RRC

PDCP

RLC

MAC

PHY

S1AP

SCTP

IP

L2

L1

NAS

RRC

PDCP

RLC

MAC

PHY

NAS

UE eNodeB MME

S1-MMELTE-Uu

Figure 2.3: Control plane protocol stack between UE, eNodeB and MME

• S11 – The MME and SGW exchange control plane messages over the
S11 interface. This interface uses GPRS Tunneling Protocol for the
control plane (GTP-C) [15] over User Datagram Protocol (UDP) [54],
as depicted in Figure 2.4. A GTP tunnel is established per UE over the

CHAPTER 2. BACKGROUND 20

S11 interface, which is used to exchange all control plane messages for
the particular user [15]. The MME and SGW each maintains a Tunnel
Endpoint ID (TEID), an IP address and UDP port number to identify
the GTP-C tunnel.

IP

L2

L1

IP

L2

L1

GTP-C GTP-C

UDP UDP

MME SGW

S11

Figure 2.4: Control plane protocol stack between MME and SGW (S11 in-
terface)

• S6a – The MME and HSS exchange information over the S6a interface.
This interface uses Diameter protocol [32] over SCTP. The protocol
stack is depicted in Figure 2.5.

IP

L2

L1

IP

L2

L1

MME HSS

Diameter Diameter

SCTP SCTP

S6a

Figure 2.5: Control plane protocol stack between MME and HSS (S6a inter-
face)

2.2.2 State information maintained by MME

An MME maintains information on a UE based on its state in the network.
For each UE attached to it, the MME maintains a mobility management

CHAPTER 2. BACKGROUND 21

context and information about EPS bearers established. A subset of the
information stored on an MME is provided in Table 2.1. Only those fields
relevant to this thesis have been included in this table. A complete list of
all fields stored on an MME is provided in [19]. The state information main-
tained on an MME is often referred to as the UE context. This information
varies depending on the state of the UE in the network. For example, when
a UE detaches from the network, a small subset of its information is still
stored, such as user identifiers and security context information. However,
the location of the UE is no longer stored. When a UE is connected to the
network and an EPS bearer exists, the MME associated with the UE knows
the location of the UE to the tracking area (TA) where it is registered from.

2.3 EPS procedures

This section describes two procedures – initial attach and detach procedures,
used in EPS networks to provide connectivity to end users. We implement
only these procedures on the MME.

2.3.1 E-UTRAN initial attach procedure

The attach procedure allows a UE to register to the network and enables
IP connectivity by creating a default EPS bearer [17] for the UE. Figure
2.6 shows the call flow for an initial attach to the LTE network. A brief
description of the initial attach procedure, including the main messages and
their important Information Elements (IEs), is provided below:

1. The UE attempts to attach to the network by sending an Attach
Request, which includes the UE’s International Mobile Subscriber
Identity (IMSI), attach type and ESM container for requesting data
connectivity.

2. On receiving this message, the eNodeB assigns an identifier to the UE,
known as the eNodeB UE S1AP ID. The eNodeB then selects an ap-
propriate MME and forwards the Attach Request to it. The message
is sent as part of an S1AP message, encapsulated in a NAS message
along with information on the current location of the UE.

3. As part of the authentication and security step, the MME requests for
authentication vectors from the HSS using an Authentication Infor-
mation Request. The HSS responds with the requested information

CHAPTER 2. BACKGROUND 22

Field Description
IMSI IMSI is the subscriber’s permanent identity
MSISDN Basic MSISDN of the UE; depending on whether

present in HSS
MM State MM state of the UE: ECM-IDLE, ECM-

CONNECTED or EMM-DEREGISTERED
GUTI Globally Unique Temporary Identity assigned to

the UE
MME IP address for S11 MME IP address for S11 interface used by SGW
MME TEID for S11 MME Tunnel Endpoint Identifier for S11 interface
SGW IP address for S11 SGW IP address for S11 interface
SGW TEID for S11 SGW Tunnel Endpoint Identifier for S11 interface
eNodeB address in use
for S1-MME

IP address of the eNodeB currently used for S1-
MME interface

eNodeB UE S1AP ID Unique identity for the UE within eNodeB
MME UE S1AP ID Unique identity for the UE within MME
TAI of last TAU Tracking Area Identity of the TA in which the last

Tracking Area Update was initiated
E-UTRAN CSG ID Last known E-UTRAN Cell Global Identity
NAS security context Key parameters for establishing the NAS security

context including security keys
For each active PDN connection
PDN type IPv4, IPv6 or IPv4v6
IP address(es) Allocated IPv4 or IPv6 address
APN in use Access Point Name (APN) currently used
PGW address (control
plane)

IP address of PGW used for sending control plane
signalling

PGW TEID for S5/S8
(control plane)

PGW TEID for S5/S8 interface for control plane

APN-AMBR Maximum Aggregated uplink and downlink MBR
values

EPS subscribed QoS pro-
file

Bearer level QoS parameters for the default bearer

For each bearer within the PDN connection
EPS Bearer ID Unique identifier for the EPS bearer
SGW IP address for S1-U IP address of the SGW for S1-U interface towards

eNodeB (data plane)
SGW TEID for S1-U Tunnel Endpoint Identifier of the SGW for the S1-

U interface towards eNodeB (data plane)
EPS bearer QoS QoS parameters for EPS bearer

Table 2.1: UE Context information stored on MME [19]

CHAPTER 2. BACKGROUND 23

in an Authentication Information Answer message. Once the au-
thentication vectors have been acquired, the MME and UE mutually
authenticate each other through Authentication Request and Au-
thentication Response messages. On completion of authentication,
the MME establishes a NAS security association towards the UE to en-
able ciphering and integrity protection of further NAS messages. The
MME assigns an MME UE S1AP ID to the UE to uniquely identify it
within the MME. A combination of eNodeB UE S1AP ID and MME
UE S1AP ID can be used to identify the S1-MME connection for a UE.

4. The MME now sends an Update Location Request message to the
HSS to inform the HSS of the user’s registration to the network and to
request subscription information for the UE.

5. The HSS acknowledges the request by sending an Update Location
Ack which includes the subscription data for the user, such as sub-
scribed PDN type, QoS profile and Access Point Name (APN). Based
on this information, the MME validates the UE’s presence in the Track-
ing Area (TA) and services requested by the UE. If all the checks are
successful, a new context is created for the user on the MME.

6. The MME then selects an SGW and allocates an EPS bearer Identity
for the default EPS bearer to be created. It sends a Create Session
Request towards the SGW to request the creation of a default EPS
bearer. This includes the IMSI, EPS bearer ID, IP address of the PGW
(which is selected based on subscription data), APN and subscribed
QoS values.

7. The SGW sends a Create Session Request to the PGW over the S5
interface, along with other required parameters.

8. On receipt of this message, the PGW creates a new entry in its EPS
bearer context table and allocates an IP address to the UE. The PGW
can now route packets between the SGW and external data network.
The PGW also enforces policy control and generates a Charging ID for
the bearer to enable charging of the subscriber. The PGW now sends
a Create Session Response to the SGW, which includes the QoS
profile and TEID for establishing the S5 tunnel between the SGW and
PGW.

9. The SGW then allocates a TEID for the S1-U interface for data trans-
fer. It includes this information in the Create Session Response and
sends it to the MME.

CHAPTER 2. BACKGROUND 24

10. The MME sends an Attach Accept message to the eNodeB in an
S1AP Initial Context Setup Request message. The Attach Accept
includes a Globally Unique Temporary Identifier (GUTI) allocated by
the MME for the UE. The Initial Context Setup Request contains pa-
rameters to enable the eNodeB to set up the S1-U bearer to the SGW
and allocate radio resources to the UE.

11. The eNodeB forwards the Attach Accept to the UE. This message
informs the UE of the newly allocated GUTI and the tracking area list
in which the UE can roam freely without having to initiate a Tracking
Area Update Procedure.

12. Through an RRC reconfiguration procedure, the eNodeB establishes
radio bearers to enable data transfer.

13. The eNodeB sends an Initial Context Setup Response to the MME
informing the MME of the eNodeB’s Tunnel Endpoint Identifier (TEID)
and IP address. This is required to set up a GTP tunnel on the S1-U
interface for data packet transfer between the eNodeB and SGW.

14. The UE sends an Attach Complete message to the MME in response
to the Attach Accept.

15. On receipt of both Initial Context Setup Response and Attach Com-
plete messages, the MME sends a Modify Bearer Request to inform
the SGW of the eNodeB’s TEID and IP address.

16. The SGW acknowledges the MME with a Modify Bearer Response.
With this message, downlink packets can be delivered from the external
data network to the UE through the established bearer.

2.3.2 Detach procedure

A detach procedure is used by the UE to disconnect from the EPS net-
work [17]. In this thesis, we only consider the explicit detach procedure
initiated by the UE. Figure 2.7 presents the call flow for the detach proce-
dure. A brief description of the call flow and its important messages is as
follows:

1. The UE sends a Detach Request over NAS, which includes the UE’s
EPS mobile identity (either GUTI or IMSI) and a switch off indicator.
The switch off flag is set if the UE initiates a detach due to the device
switching off.

CHAPTER 2. BACKGROUND 25

UE eNodeB MME SGW PGW HSS

1. Attach Request

2. Attach Request

3. Authentication and Security

6. Create Session

Request

7. Create Session

Request

8. Create Session

Response

9. Create Session

Response

4. Update Location Request

5. Update Location Ack

10. Initial Context

Setup Request /

Attach Accept

11. Attach Accept

12. Radio

reconfiguration

13. Initial Context

Setup Response

14. Attach Complete

15. Modify Bearer

Request

16. Modify Bearer

 Response

Figure 2.6: Call flow for initial attach procedure

2. The MME sends a Delete Session Request to the SGW for each
EPS bearer to be deactivated for the particular UE.

3. The SGW releases the EPS bearer context information and initiates
the deletion of the bearer on the PGW. It then acknowledges the MME
with a Delete Session Response.

4. The MME acknowledges the UE with a Detach Accept if the switch
off indicator was not set in the initial Detach Request.

5. The MME also tears down the S1 signalling connection between the
MME and eNodeB for the UE by sending a UE Context Release
Command.

CHAPTER 2. BACKGROUND 26

UE eNodeB MME SGW

1. Detach Request

2. Delete Session Request

3. Delete Session

Response

4. Detach Accept

PGW

5. UE Context Release

Command

6. UE Context Release

Complete

Connection release

Deletion of EPS bearer

Figure 2.7: Call flow for detach procedure

6. The eNodeB confirms the tear down of the S1 signalling connection by
sending a UE Context Release Complete.

2.4 Network Functions Virtualisation (NFV)

Network Functions Virtualisation (NFV) involves the implementation of net-
work functions as software modules that can run on commercial off-the-shelf
hardware. Currently, network elements run vendor-specific software on pro-
prietary hardware. Typically, each network function is deployed on a ded-
icated hardware device. NFV aims to decouple the software from the un-
derlying hardware by leveraging IT virtualisation technologies. With this
approach, network functions will be implemented as Virtualised Network
Functions (VNFs) which can be run on standard hardware in the form of
Virtual Machines (VMs). Figure 2.8 illustrates the concept of NFV.

NFV was first introduced in 2012 in an introductory white paper [41]
published by the NFV Industry Standards Group (ISG), comprising of seven
leading telecom operators within the European Telecommunications Stan-
dards Institute (ETSI). By 2015 the number of members has increased to
more than 270 companies, including 37 telecommunication operators, net-
work equipment providers and IT vendors. The NFV ISG has also published
several specifications including those for architectural framework, NFV in-
frastructure requirements, and management and orchestration.

CHAPTER 2. BACKGROUND 27

VPN Firewall DPI

CDN MME NAT

Standard Ethernet switches

Standard storage

Standard high volume servers

Classic network appliance approach NFV approach

Virtual appliances

Figure 2.8: NFV approach to virtualise traditional network elements, such
as Virtual Private Network (VPN), firewall, Deep Packet Inspection (DPI),
Content Delivery Network (CDN), MME, Network Address Translation
(NAT), etc. (Adapted from [41])

Among the nine use cases identified by the NFV ISG [42], this thesis
focuses on the use case “Virtualization of Mobile Core Networks and IMS
(IP Multimedia Subsystem)”. Mobile network operators have to keep up with
increasing demands from growing mobile data traffic and increasing number
of connected devices. Although radio access technologies have evolved to
allow faster data rates, the highly centralised core network and dependency
on proprietary hardware still constrain network operators from taking full
advantage of higher transmission rates [60]. Moving to the cloud computing
paradigm allows network operators to decentralise their network architecture
and minimise investments in hardware solutions [59].

2.4.1 Benefits

The application of NFV in EPC offers several benefits to network operators
as discussed below:

• In present-day networks, significant costs are incurred in acquiring and
installing hardware equipment for different network functions. In the
NFV approach, different VNFs can be aggregated and run on the same
standardised hardware platforms, thereby maximising utilisation of in-
frastructure and reducing energy consumption.

CHAPTER 2. BACKGROUND 28

• NFV aims to spur service innovation in the field of telecommunications,
as new services implemented as software modules can be deployed faster
in the network. Currently the installation of hardware equipment in
the network involves a build-integrate-deploy cycle [41] which requires
highly qualified personnel to install, test and manage the devices. NFV
reduces the time required for services to be deployed in the network as
software-based developments have a shorter integration cycle.

• NFV can also assist network operators in dimensioning their networks.
Core network elements are usually overprovisioned in order to han-
dle potential increases in traffic. However, this results in components
being unused or underutilised during periods of low activity. By lever-
aging IT virtualisation, operators can increase the number of virtual
instances when subscriber traffic increases and remove these instances
when no longer required. Thus, capacity can be dynamically increased
or decreased allowing operators to react to real-time traffic patterns.

• NFV offers the additional benefit of improved flexibility, as VMs can
be deployed in a location convenient for the operator. VMs can be
deployed closer to the end user to reduce latency and improve overall
Quality of Experience (QoE) for the user. For example, [59] introduces
the concept of a Follow-Me-Cloud, wherein data and network services
intelligently follow a user’s movement. This allows for an optimal end-
to-end service for the user.

2.4.2 Challenges

Although NFV offers several benefits, the virtualisation of network functions
in a mobile network brings a unique set of challenges, different from standard
IT virtualisation:

• Mobile network operators need to simultaneously meet requirements of
high availability and very low latency. An MME that has to be 99.999%
available can go offline for only less than 6 minutes per year [31].

• There is a possibility of performance degradation when moving soft-
ware from proprietary to standard hardware. EPC networks are built
on top of highly specialised hardware. This hardware generally of-
fer features such as acceleration engines and dedicated processors for
packet forwarding [41, 60]. The challenge is to provide the same level
of performance as standardised hardware through software technologies
and by using the appropriate hypervisor.

CHAPTER 2. BACKGROUND 29

• Another pertinent issue is that of security. Execution of multiple VNFs
over the same infrastructure requires that these instances be isolated
from each other and the data stored on shared resources be secure.
This is more problematic when different vendors are involved in the
deployment of the virtualised elements.

• NFV also introduces new management and orchestration challenges
in the network. It is now required to keep track of VNF instances,
move VMs when required, allocate hardware resources during scaling
operations, instantiate VNFs at the appropriate location depending on
QoS requirements, and determine faults in VMs as well as underlying
infrastructure.

2.5 Architecture of virtualised EPC network

elements

With the convergence of cloud computing technologies and mobile networks,
architectures of traditional network elements need to be re-invented to take
advantage of the benefits of cloud computing. These features include being
able to leverage the cloud platform for scalable infrastructure, handle scaling
events without downtime or user experience degradation, and ability to scale
proactively [67]. Network functions are designed for a static deployment in
mobile networks and not for the dynamic environment of cloud computing
where frequent scaling and redistribution activities can occur [59]. Further-
more, it is important to consider the resilience and adaptability of Virtualised
Network Functions (VNFs) in this dynamic environment. This section de-
scribes architecture choices for virtualised elements in the EPC.

2.5.1 1:1 mapping

The simplest architecture for a virtualised EPC element is where its entire
functionality is mapped to a single VM. This corresponds to a 1:1 mapping
[8]. In this architecture, the design of the state machine of the virtualised
element and interfaces to other network devices remain the same as in cur-
rent hardware-based solutions. The advantage of a 1:1 architecture is that
it is conceptually similar to existing implementations and follows the same
deployment model of one function on one device [8]. This allows for rapid
and easy migration to the NFV approach for EPC networks.

However, this approach has several disadvantages as outlined in [8]. To
explain these disadvantages, we consider the case of a 1:1 mapping for an

CHAPTER 2. BACKGROUND 30

MME. First, in a cloud computing domain, a new VM is created when the
number of subscribers increases beyond the running capacity of an existing
MME. In such a case, each newly created virtual MME needs to be con-
figured with EPC-specific parameters, including interfaces to other network
elements and a globally unique identifier for the MME. Handling the dynamic
configuration of many VMs may result in scalability issues for the Element
Management System (EMS). Furthermore, the addition of a new MME re-
quires informing other elements in the network. For instance, all eNodeBs
serving an MME pool area have to be informed of the creation of a new
MME. Secondly, once the VMs are configured and serving subscribers, they
maintain information of active subscribers in their local storage. In case a
VM is no longer required, for example due to reduction in subscriber num-
bers, a 1:1 mapping does not allow for a simple shutdown of the VM as active
sessions will be affected. Although 3GPP specifications [17] allow transfer-
ring subscriber information between MMEs in an MME pool area through
Overload or S1 Handover with MME Relocation procedures, this results in
signalling overhead.

2.5.2 1:N mapping

A second architecture option is a 1:N mapping [8] as depicted in Figure 2.9.
In this architecture, a network element is divided into three components -
front end (FE), worker and state database. This follows from the three-tier
architecture of web applications. The three components are described as
follows:

State Database

WorkerWorker Worker

Front end

Operational DB

Other EPC elements

Figure 2.9: 1:N architecture diagram

CHAPTER 2. BACKGROUND 31

• The FE maintains communication interfaces towards other elements in
the network and balances requests to the workers, which handle the
actual processing logic.

• Workers are stateless components which actually implement the func-
tionality of the network element. Each worker is configured with the
same network paramaters and is made stateless by moving user state
information to the state database. The workers are logically connected
to an operational data storage for storing log files and information re-
lated to basic operations and troubleshooting.

• The state database maintains user state information.

In this thesis, we choose this architecture for the MME due to the sev-
eral benefits it offers [8, 60]. First, all workers are configured with the same
parameters and in combination with the FE, can be visualized as a single
network element. This simplifies operations and management functions as
only one configuration scheme is required. Secondly, the workers being state-
less can be independently started or stopped, i.e. scaled in or out, without
impacting connected users. The change in state of the worker has to be
informed only to the FE and is transparent to external network elements.
Thirdly, a more granular control of load balancing is possible with this ar-
chitecture which results in better utilisation of the processing capabilities
of workers. Current load balancing techniques are based on weight factors
in DNS queries or S1AP messages between the MME and eNodeB [17]. Dy-
namic changes of DNS records and increased S1AP messaging can be avoided
with this architecture. Finally, this architecture leads to greater resilience as
the stateless workers can fail with minimal effect on the user sessions.

While this approach offers several advantages, the FE could become a
bottleneck for processing as all messages need to pass through the FE to the
appropriate worker. A solution to circumvent this could be to implement
multiple front end nodes. However, this increases complexity of the archi-
tecture and also requires appropriate load balancing procedures for the front
end itself. Also, scaling the FE results in new IP addresses, which can lead
to service interruption [58]. There may also be an increase in latency due
to increased number of nodes through which each message has to pass [60].
Accessing the state database can result in increased network and CPU util-
isation [68]. Additionally, synchronisation issues between different virtual
components in this architecture can result in serialised access of the state
database, which can cause lowered system performance [60].

CHAPTER 2. BACKGROUND 32

2.5.3 N:1 mapping

In an N:1 mapping, all elements of the EPC network (such as MME, SGW,
PGW, HSS) are virtualised and merged into a single virtualised compo-
nent [8]. A subscriber or a group of subscribers is served by one EPC VM,
which maintains subscriber state information in local storage. The only ex-
ternal interfaces for this component are towards the eNodeB and an external
data network as depicted in Figure 2.10. Since the remaining 3GPP elements
and interfaces are internal to the EPC VM, it is possible to optimise the pro-
cessing and sending of messages between these internal components. Thus,
this architecture option allows for a highly optimised software implementa-
tion of the complete EPC with low processing delays and minimal interfaces
[60].

State and subscriber

information

EPC VM

eNodeB IP services

Figure 2.10: N:1 architecture diagram

However, the N:1 architecture option presents scalability problems for
the EMS and other external components when maintaining and configuring
a large number of EPC VMs. Secondly, the virtualisation of the HSS as part
of the EPC VM means that the HSS handles only a part of the subscriber
information. Thus, subscriber data management becomes complicated with
this architecture. Thirdly, this architecture no longer allows for multi-vendor
solutions (wherein different elements in the EPC are developed by different
equipment vendors) and the entire EPC has to be provided by a single ven-
dor [60].

2.5.4 N:2 mapping

An N:2 architecture is similar to the N:1 architecture, but with the control
and data plane functionalities handled by different components. Figure 2.11
presents the N:2 mapping. There are three components in this architecture:

• A control (CTRL) component implements the complete control plane
functionality of the EPC. This includes the functionality of MME, HSS
and control plane functions of the SGW and PGW.

CHAPTER 2. BACKGROUND 33

• A switch (SW) handles forwarding of user data packets, i.e. the user
plane functions of the SGW and PGW. This component need not be vir-
tualised and can thus utilise the high performance of hardware switches.

• A state database maintains the user state information, implemented
either as an SQL or NoSQL database.

State and subscriber

information

CTRL

eNodeB IP servicesSW

Control plane

Data plane

Figure 2.11: N:2 architecture diagram

This architecture option arises from the difference in requirements of data
plane and control plane processing [60]. The control plane functionality de-
mands low latency and fast computation, but the throughput requirements
are not very high. However, the data plane functionality demands high data
throughput, which can be provided by specialised hardware or with appro-
priate virtualisation technologies. The advantages and disadvantages of the
N:2 mapping are similar to that of the N:1 architecture. An implementation
of the N:2 architecture is discussed in [9].

2.6 Related work

Virtualisation and distributed design for network elements in the EPC and
IMS are active areas of research. In this section, we first review existing
literature in distributed design. We then describe the concept of a telecom-
munication cloud and review research in this area.

2.6.1 Distributed design for network elements

The authors of [25, 26] provide a design for a distributed MME with a reliable
object store to save long term user state information. This architecture

CHAPTER 2. BACKGROUND 34

separates the processing capabilities of the MME (distributed over several
replicas) from the user state storage system. A one hop Distributed Hash
Table (DHT) is used for membership management within the MME replicas.
By moving the user information out of the MME replicas, they operate as
independently as possible. This allows for scaling out or scaling in of replicas
when required and migration of user states depending on the locality of
the user. An elastic core architecture is described in [64], which separates
state processing for virtualised network functions from the state information
stored in a database. Software-Defined Networking (SDN) is used to flexibly
allocate new resources for virtualised elements. The authors further analyse
the application of this architecture to a virtualised IMS. [58] presents the
application of elastic core architecture to an MME, which is able to provide
session continuity during scaling operations.

IMS is an architectural framework designed to deliver multimedia services
over IP protocol [21]. [34] discusses the application of different architecture
patterns (including 1:1 and 1:N described in Section 2.5) to a virtualised
IMS. Clearwater [2] is an open-source implementation of the IMS designed
to run on the cloud. In this design, long term state information is moved out
of the processing nodes to an external data store. Communication between
the front-end and back-end components are enabled using Representational
State Transfer (REST) commonly used in web applications. [50] presents
an IMS distributed over nodes configured in a DHT overlay network. This
architecture increases the robustness of the network elements and enables
self-organisation of component nodes.

2.6.2 Moving telecommunication systems to the cloud

The convergence of cloud computing and mobile networks is often referred to
as the telco cloud or carrier cloud. An overview of the telco cloud, its ben-
efits, and challenges for implementation are provided in [10, 31, 59–61, 69].
The authors of [47] discuss the benefits and challenges of implementing vir-
tual EPC networks. The authors propose grouping of virtualised elements in
order to reduce control plane signalling between these elements. For example,
the MME can be grouped with a front end for the HSS, thereby reducing net-
work interactions. To build resilience and scalability into telecommunication
systems, [51] proposes an architecture wherein a replica of each processing
node is created and stored on other servers. This architecture allows for
dynamic resource control and high availability. [48] discusses the feasibility
of dynamic scaling in telco clouds. The authors describe a new architecture
and protocols to migrate user sessions between stateful nodes in the IMS.

SDN is a complementary technology to NFV. Together, NFV and SDN,

CHAPTER 2. BACKGROUND 35

are seen as key enablers for the telco cloud. SDN decouples the control
and data plane and uses a centralised controller to make forwarding deci-
sions. [38] presents a testbed architecture combining both NFV and SDN
to demonstrate their applicability for future 5G networks. SDN can simplify
the transport layer in mobile core architectures [38] and allow for flexibly
controlling the network through software [64].

2.7 Summary

This chapter has introduced the background concepts to understand the work
presented on the implementation of a virtualised distributed MME in EPC
networks. We have therefore introduced three broad topics.

First, we have discussed the EPC, which forms the core of LTE networks.
We have reviewed the EPC architecture and discussed the functionality of
each network element to provide mobile data services to end users. We have
then discussed in detail the control plane responsibilities of the MME. We
have described two important interfaces; the S1-MME between the MME and
the eNodeB, and the S11 between the MME and the SGW. We have also dis-
cussed the state information maintained by the MME on its local storage.
Furthermore, two EPC procedures, the initial attach and UE-initiated de-
tach, have been explained as these have been used to evaluate the behaviour
of the distributed MME.

Secondly, we have introduced NFV, which is the virtualisation paradigm
enabling network functions to be deployed on the cloud. While NFV leads to
significant cost savings and allows network operators to harness the benefits
of cloud computing, it also presents challenges in ensuring availability and
performance.

Lastly, we have reviewed the architecture choices for virtualised elements
in the EPC in order to address some of the challenges of NFV. We have
identified the 1:N mapping or three-tier architecture to be most beneficial
for the MME. This architecture enables the MME to scale efficiently as well
as to be resilient to the failure of stateless workers. Furthermore, we have
reviewed existing literature and identified similar examples of distributed
architectures for IMS and MME. In addition to demonstrating the benefits
of the new architecture, we aim to compare the distributed design to that of
the original MME through an evaluation of latency during attach and detach
procedures.

Chapter 3 describes our implementation of the three-tier architecture for
the MME.

36

Chapter 3

Implementation

This thesis modifies and extends the MME software developed by Vicent
Ferrer as part of his Master’s thesis [45]. The original software corresponds
to a 1:1 mapping or standalone architecture, wherein the entire MME func-
tionality is implemented on a single VM. This design has disadvantages when
deployed on the cloud, which are discussed in Section 2.5.1. We re-design
the original MME software to correspond to a three-tier architecture or 1:N
mapping described in Section 2.5.2. This new distributed architecture allows
the MME to harness the benefits of cloud computing in terms of scalability
and elasticity.

This chapter discusses the implementation details of the new architecture
for the MME. Section 3.1 first provides an overview of the system design.
Sections 3.2, 3.3 and 3.4 describe the functionality and implementation of the
three tiers. In each of these sections, we also discuss the trade-offs between
design choices made and considerations for further improvement.

3.1 Overview of system

Figure 3.1 depicts the overall system including the new design for the MME.
The MME consists of three main components – a front end (FE), one or
more workers and a state database. The FE behaves as an intelligent proxy
and maintains interfaces to other elements in the EPC network. The workers
are responsible for the actual functional processing in handling user mobility
and sessions. The UE context for each user is stored in the state database,
thereby making the workers stateless. Thus, the workers can be easily scaled
out or scaled in depending on network load. This also makes the MME
resilient to the failure of workers as user state information is saved on the
state database. Any worker with access to the UE context can take over the

37

CHAPTER 3. IMPLEMENTATION 38

State database

Worker Worker Worker

Front end

MME

Collocated

SGW and PGW
Internet

OpenStack

load balancer
eNodeB

UE

S1-MME

S1-U

S11

Figure 3.1: Architecture of system

processing in case of failures.
A combination of the three tiers represents a single MME to external ele-

ments such as the eNodeBs and SGW/PGW. The workers and state database
are transparent to other EPS entities, as all interfaces to external elements
terminate at the FE. In addition to the EPS elements (eNodeB, MME, SGW,
PGW), the system includes an OpenStack load balancer developed as part of
[23]. This component is responsible for creating and deleting worker VMs on
OpenStack. The functionality of the load balancer corresponds to the roles
of the VNF Manager and NFV Infrastructure Manager [43].

3.2 Design of front end (FE)

The main functions of the FE are to:

1. Maintain 3GPP standardised interfaces towards other EPC network
elements – In our system, the FE maintains an S1-MME interface to-
wards eNodeBs and an S11 interface towards SGWs.

2. Balance requests between worker nodes – Our FE design employs a sim-
ple round-robin balancing scheme to distribute new requests to worker
nodes.

3. Inform the OpenStack load balancer when new workers are required to
be created or deleted

In order to realise the first two functions, the FE needs to correctly for-
ward S1AP messages between workers and eNodeBs, and GTP messages

CHAPTER 3. IMPLEMENTATION 39

between workers and SGWs. To identify the MME worker, eNodeB and
SGW responsible for handling a particular user session, the FE maintains
a mapping which associates the UE with each of these elements. The FE
determines the UE identity based on Information Elements (IEs) present in
the message to be forwarded. Sections 3.2.1 and 3.2.2 describe this mapping
in further detail. Section 3.2.3 discusses the interface between the FE and
OpenStack load balancer.

3.2.1 Forwarding S1AP messages

In our design, the IEs used to identify a UE over the S1-MME interface
are the MME UE S1AP ID and eNodeB UE S1AP ID in S1AP messages,
and the IMSI in NAS messages. The MME UE S1AP ID and eNodeB UE
S1AP ID are unique identifiers for a UE assigned by the MME and eNodeB
respectively. When a UE first attaches to the LTE network, it identifies itself
with its IMSI in the “Attach Request” message. This message also contains
the eNodeB UE S1AP ID. The FE chooses an appropriate worker to forward
the request to and maps the UE to the selected worker, as well as to the
eNodeB from which the request was received. Once the worker assigns an
MME UE S1AP ID, all further S1AP messages to and from the UE contain
this IE. Subsequently the FE can appropriately forward messages between
the eNodeB and worker node based on the the S1AP IDs.

3.2.2 Forwarding GTP messages

All control plane messages between the MME and SGW related to a specific
UE are sent over a unique GTP tunnel. Each endpoint maintains a Tunnel
Endpoint ID (TEID), an IP address and UDP port number to identify the
tunnel. During establishment of PDN connectivity, the MME worker first
sends a “Create Session Request” which includes the UE’s IMSI and a TEID
generated by the worker. We refer to this TEID as the MME TEID. On
receiving this message, the FE saves the mapping between the UE and MME
TEID. It then chooses an SGW and forwards the message to it. In the
corresponding “Create Session Response”, the SGW includes its own TEID
(referred to as the SGW TEID) and sets the receiver TEID as the MME
TEID. Upon receiving this message, the FE forwards it to the worker based on
the mapped MME TEID. It also saves the SGW TEID to the UE’s mapping
structure. The FE now uses the GTP TEIDs present in all subsequent GTP
messages to identify the appropriate SGW and worker.

[15] requires that GTP sequence numbers are maintained per sending
queue, i.e. for each triplet of local IP address, local UDP port and remote

CHAPTER 3. IMPLEMENTATION 40

peer’s IP address. Thus, the FE appropriately updates the sequence number
in each outgoing GTP message. To summarise, Table 3.1 lists the messages
in the implemented call flow procedures and the corresponding S1AP and
GTP IEs used to identify the UE.

3.2.3 Communicating with the OpenStack load bal-
ancer

The FE maintains a long-lived TCP connection to the HTTP server of the
OpenStack load balancer. When the number of incoming attach requests
per worker goes above or below a certain threshold, the FE sends an HTTP
request to the load balancer requesting either the creation or deletion of
a worker. Creating a new worker corresponds to a scaling out operation.
Once a new VM is created and the worker is active, it initiates an SCTP
association to the FE. The FE then adds the newly created worker to its
list of available workers and forwards new requests to it. The scaling in
operation, i.e. deleting workers, requires more careful consideration, so as
not to effect any on-going procedures. When the incoming call rate goes
below a certain threshold, the FE first marks a worker for deletion and stops
forwarding any new procedure requests to this node. However, messages from
ongoing procedures are still forwarded to and from this worker so as not to
disrupt the user session. The FE then waits for a configurable time period to
allow ongoing call flows to complete and the state information for the UEs
to be written to the state database. After this time period has elapsed, the
FE sends an HTTP delete request to the load balancer with the IP address
of the worker marked for deletion.

3.2.4 Design considerations

The performance of the overall MME is dependent on the processing capa-
bilities of the FE. The FE could become a potential bottleneck and single
point of failure in the system. In a similar design for a virtualised IMS, [48]
proposes deploying multiple Client Elasticity Gateways (CEGs) close to the
client. The CEGs are similar in functionality to the FE and such a solution
can be used for the FE as well. Additionally, the FE is a stateful entity as
it maintains a mapping structure to forward messages between the worker
and UE/SGW. To avoid maintaining this information, [58] proposes creating
groupings of IMSIs based on hash value and assigning a worker instance to
a group of UEs. However, this limits the scalability of the worker nodes,
as there should always be atleast one worker available to serve each group
of UEs. An alternative solution could be to have the FE query the state

CHAPTER 3. IMPLEMENTATION 41

Message Protocol Information Elements (IEs)
present to identify UE

Attach procedure

Attach Request
S1AP eNodeB (eNB) UE S1AP ID
NAS IMSI

Authentication
Request

S1AP eNB UE S1AP ID, MME UE S1AP ID

Authentication
Response

S1AP eNB UE S1AP ID, MME UE S1AP ID

Create Session
Request

GTP TEID to send to = 0 (SGW TEID un-
known),
IMSI,
MME TEID

Create Session
Response

GTP TEID to send to = MME TEID,
SGW TEID

Attach Accept
S1AP eNB UE S1AP ID, MME UE S1AP ID
NAS GUTI

Initial Context
Setup Response

S1AP eNB UE S1AP ID, MME UE S1AP ID

Attach Com-
plete

S1AP eNB UE S1AP ID, MME UE S1AP ID

Modify Bearer
Request

GTP TEID to send to = SGW TEID

Modify Bearer
Response

GTP TEID to send to = MME TEID

Detach procedure

Detach Request
S1AP eNB UE S1AP ID, MME UE S1AP ID
NAS IMSI or GUTI

Delete Bearer
Request

GTP TEID to send to = SGW TEID

Delete Bearer
Response

GTP TEID to send to = MME TEID

UE Context Re-
lease Command

S1AP eNB UE S1AP ID, MME UE S1AP ID

UE Context Re-
lease Complete

S1AP eNB UE S1AP ID, MME UE S1AP ID

Table 3.1: Important IEs present in messages exchanged during attach and
detach procedures

CHAPTER 3. IMPLEMENTATION 42

database to identify the worker currently processing a particular UE. This
requires more careful design so as to minimise any increase in latency due
to database queries. Also, in our current prototype, the MME does not per-
form NAS ciphering and integrity protection. This requires further logic to
be implemented on the FE.

3.3 Design of worker

The design of the worker follows the same principles of the original MME
software and is described in [45]. The worker represents the actual func-
tionality of the MME and handles the processing of call flows. Each worker
maintains two separate interfaces towards the FE, one for S1AP messaging
and the other for GTP messaging. The HSS is implemented as a MySQL
database and is co-located with the worker. Thus, the S6a interface is not
realised. The open-source C client library hiredis1 is used by the worker to
interface to the Redis server.

3.3.1 Attach procedure

This section describes the implementation of the attach procedure on the
worker. The procedure is similar to that described in Section 2.3.1. In
order to make the workers stateless, we introduce additional messages to
store the UE context on the state database. Figure 3.2 shows the attach call
flow implemented in this thesis and can be compared to that in Figure 2.6.
For simplicity, the FE is not depicted in Figure 3.2 as it simply forwards
messages between the eNodeB and worker. To minimize processing time, the
state information is not stored at each step of the call flow but only towards
the end of the procedure. The worker stores the UE context at step 8, on
receiving a successful “Create Session Response” from the SGW. At this
point, the user is considered to be in the registered state and successfully
attached to the LTE network.

3.3.2 Detach procedure

Once the UE context has been stored in the state database, any worker can
handle further procedures for the registered UE after retrieving the context
information from the database. For example, in the detach procedure de-
picted in Figure 3.3, the worker first queries the state database to retrieve

1https://github.com/redis/hiredis

https://github.com/redis/hiredis

CHAPTER 3. IMPLEMENTATION 43

UE eNodeB MME worker SGW PGW State DB

1. Attach Request

2. Attach Request

3. Authentication and Security

4. Create Session

Request

5. Create Session

Request

6. Create Session

Response

7. Create Session

Response

9. Initial Context

Setup Request /

Attach Accept

10. Attach Accept

11. Radio

reconfiguration

12. Initial Context

Setup Response

13. Attach Complete

14. Modify Bearer

Request

15. Modify Bearer

 Response

8. Store UE context

Figure 3.2: Attach call flow implemented on worker

the UE context. Based on the state information, the worker can now handle
the processing of the user session and detach the subscriber.

3.3.3 Design considerations

Storing the UE context at each step in the call flow can help to increase
the resilience of the MME. In our current implementation, if a worker fails
during the processing of a call flow, the procedure has to be re-initiated.
However, storing the context at each step leads to increased CPU utilisation
and network overhead with external database queries. By choosing to store
UE context only after a call flow is complete, there is a trade-off between low
latency with fewer database queries and decreased resilience. [58] provides

CHAPTER 3. IMPLEMENTATION 44

UE eNodeB MME worker SGW

1. Detach Request

3. Delete Session

Request

4. Delete Session

Response

5. Detach Accept

PGW

6. UE Context Release

Command

7. UE Context Release

Complete

Connection release

State DB

Deletion of EPS bearer

2. Retrieve UE context

Figure 3.3: Detach call flow implemented on worker

an analysis of the impact of losing state information during a call flow. For
example, if state information is lost during an attach procedure, the pro-
cedure has to be re-executed by the UE. Similar analysis is carried out for
other 3GPP procedures. In [51], the authors propose synchronisation of ses-
sion states for a distributed IMS only at certain stages, so as not to degrade
performance while maintaining an acceptable level of call dropping proba-
bility. In a three-tier architecture for a virtualised IMS, [68] proposes using
a cache on the client (equivalent to the worker, in our case) on which the
application stores serialized data. The state information is eventually stored
in the state database. Read operations first attempt to retrieve data from
the cache before querying the state database. With this caching mechanism,
some of the negative effects of moving long-term state information out of the
worker can be reduced.

3.4 Design of state database

The state database is the third tier in the MME architecture and stores
state information for each UE attached to the MME. This state information
is referred to as the UE context and is described in Section 2.2.2. Three
options for implementing the state database are [8]:

• Centralised database – A centralised database can be used to serve a
single data center where virtual MME instances are deployed.

CHAPTER 3. IMPLEMENTATION 45

• Distributed database – A distributed database or data store can be
deployed independent of the virtual instances.

• Distributed filesystem – A distributed file system such as Ceph2 can
be used to store subscriber information. [9] provides details of the
implementation and evaluation of its suitability for storing shared state
information for virtualised EPC elements.

A distributed design for the state database is possible because the state
information for each user is small (in the order of a few kilobytes) and high
bandwidth links are available in mobile backhaul networks [26]. We choose a
NoSQL data store due to its simplicity of use, high availability and scalable
nature [35]. The UE context can be stored in a NoSQL data store as a
key-value pair, with the key being a unique identifier. Additionally, only
one client (the worker in our case) will access the state information for a
particular UE at a time. This further allows for the use of a distributed data
store without the need for exclusive access control [68]. There are several
distributed data stores available for use, including Apache Cassandra3, Riak4

and memcached5.

3.4.1 Redis cluster

We choose Redis to implement the state database. Redis is an open source,
in-memory key-value data store6. The in-memory feature ensures that it
operates with very low latency. The Redis cluster feature (introduced since
Redis 3.0 [5]) allows for sharding data across multiple nodes. Furthermore,
its simplicity of use and availability of a client library in C [4] make it an
ideal choice.

Communication between the MME worker (Redis client) and Redis server
takes place over a TCP connection and uses Redis Serialization Protocol
(RESP) [7]. The communication follows a Request/Response pattern. A
Redis cluster uses asynchronous replication, which means that the cluster
responds to a write operation before it is replicated on a slave. Although
there is a small window during which a Redis cluster may lose writes [5]
and thereby user state information, this loss can be handled by existing
procedures in 3GPP standards. For instance, 3GPP standards are designed
to allow for recovery of UE context information or re-initiation of procedures

2http://ceph.com
3http://cassandra.apache.org
4http://basho.com/riak
5http://memcached.org/about
6http://redis.io

http://ceph.com
http://cassandra.apache.org
http://basho.com/riak
http://memcached.org/about
http://redis.io

CHAPTER 3. IMPLEMENTATION 46

in case of inconsistencies or loss of information (for example, in cases of
discontinuous network coverage) [26]. The Redis cluster used in our system
consists of three master nodes. The UE context is stored in binary format
on the cluster with the associated key MME UE S1AP ID. The UE context
contains the elements listed in Table 2.1.

3.4.2 Redis persistence policies

Redis persistence policies7 enable the data stored on a Redis server to be
logged or saved on local disk storage. This makes it is possible to recover
data in case a Redis server fails. There are two persistence policies available
– RDB snapshotting and Append Only File (AOF). We use both policies in
our implementation of the Redis cluster. With RDB persistence, a snapshot
of the dataset is taken at regular configurable time intervals.

The AOF feature allows for durable operation of the database by logging
every modification to the dataset in an “append only” file stored on local
storage. However, this feature increases latency during write operations to
the database. Modifications to the file are flushed to the disk using write()
and fsync() operations on the server [6]. Once the write() call is executed,
data is committed to the kernel buffers and can be recovered in the case of
process failures [6]. With the fsync() operation, data is committed to the
disk and it is possible to recover data even in the case of a complete server
failure, for example, due to a power outage [6]. However, the fsync() call
is a blocking operation and can delay write operations to the data store.
Thus, Redis provides three configuration options for AOF feature in order
to control fsync() and write() operations. These configurations are as listed
below.

1. fsync always – For every write to the Redis server, data is written to
the file and flushed to the disk before acknowledging the client. This
provides the best durability and also results in highest latency for write
operations.

2. fsync every second – Data is both written to the file and flushed to the
disk every second.

3. fsync no – In this case, the Redis server acknowledges the client after
the change is transferred to the append only file using write(). Data is
transferred to storage with an fsync() call when decided by the Oper-
ating System (OS).

7http://redis.io/topics/persistence

http://redis.io/topics/persistence

CHAPTER 3. IMPLEMENTATION 47

In our implementation, we choose the fsync every second configuration to
provide reasonable durability without significantly affecting latency.

3.4.3 Design considerations

An alternative choice for the key (in the key-value pair) is the GUTI, which
is a unique identifier for the UE regardless of its current state in the net-
work. When further call flow procedures are implemented on the MME, this
identifier may be required to identify the worker handling the user session.

Additionally, a vector clock can be used to track modifications to the UE
context stored in the data store. A vector clock is a timestamping mech-
anism used to determine the order in which events occur in a distributed
application [28, 55]. The vector clock consists of a pair of values, the worker
ID and a monotonically increasing counter for any modification made. This
can be used by the worker to resolve any inconsistencies in the data retrieved
from the data store.

[35] provides a systematic evaluation of NoSQL data stores and its suit-
ability for telecommunication applications. The authors conclude that the
average latencies for read/write operations are within the requirements of
a telecommunications system, but exhibit an unacceptable number of out-
liers where latencies can be as high as 200ms. Based on their observations,
they develop a system called Flurry, which relies on the first response from a
replica, rather than waiting for a response from a minimum number (quorum)
of replicas.

3.5 Summary

This chapter has presented the design and implementation of a three-tier
architecture for a distributed MME. The three tiers are the FE, workers and
external state database.

The FE behaves as an intelligent proxy and maintains interfaces to other
elements in the EPC network. We have described the message fields used by
the FE to correctly forward messages between external network elements and
the workers. We have discussed how the FE decides when scaling operations
for the workers are required. We have also presented some drawbacks of
using a FE and methods to mitigate these.

The workers are the components that handle the actual call flow process-
ing. We have described how the call flows are implemented on the worker and
when the UE state information is stored on the external Redis data store.
We have decided to store the state information only towards the end of a

CHAPTER 3. IMPLEMENTATION 48

call flow procedure in order to minimise the number of messages sent over
the network. This results in an acceptable level of resilience to the failure of
workers during call flows.

Finally, we have discussed the Redis data store used to implement the
state database. In particular, we have highlighted the persistence policies
used on Redis to achieve durability of the data. These policies increase the
latency of write operations. We further test these policies to evaluate their
effects on latency of EPC procedures.

The next chapter presents the experimental testbed and describes the
experiments carried out to evaluate the behaviour of the distributed MME.

Chapter 4

Experimental setup and plan

We deploy and test the distributed MME on two independent OpenStack
installations. The OpenStack testbed is set up within Aalto University as
part of joint research efforts between the Department of Computer Science
and Engineering and Department of Communications and Networking.

This chapter describes the testbed and experiments performed to evaluate
the MME. Section 4.1 describes the OpenStack installation and the under-
lying physical hardware. Section 4.2 presents the overall architecture of the
testbed and software components deployed as VMs on the OpenStack clouds.
Finally, Section 4.3 presents the experimental plan.

4.1 OpenStack

OpenStack is an open source cloud operating system that manages pools of
compute, storage and networking resources in a data center1. These resources
can be managed through a dashboard on the web or through OpenStack
APIs. The testbed used in this thesis was originally set up as part of a
Master’s thesis at Aalto University [65]. The original testbed consisted of
one OpenStack cloud, running Icehouse release 2014.1.32. The testbed has
since been expanded to include a second OpenStack installation with the
same Icehouse version. A detailed description of the OpenStack services and
configuration can be found in [65] and [23].

Each OpenStack installation consists of four identical blade servers. All
the blade servers run Ubuntu 14.04 and their hardware properties are listed
in Table 4.1. The servers are used as follows:

1http://www.openstack.org/software
2https://wiki.openstack.org/wiki/Releases

49

http://www.openstack.org/software
https://wiki.openstack.org/wiki/Releases

CHAPTER 4. EXPERIMENTAL SETUP AND PLAN 50

CPU 2 x Intel Xeon E5-2665 (2.4 GHz, 64-bit, 8 cores,
Hyper-Threading enabled)

RAM 128 GB DDR3 1600 MHz
Hard disk space 150 GB
Networking 10GbE interconnect

Table 4.1: Hardware properties of blade servers (HP ProLiant BL460c Gen8)

• We configure two blade servers as compute hosts on which VMs are
run. The compute hosts use a Kernel-based Virtual Machine (KVM)3

hypervisor.

• The OpenStack controller runs on a third blade server. The controller
provides a dashboard to manage project properties and to launch, ter-
minate and manage VMs.

• We deploy networking services on the fourth blade server. This pro-
vides network connectivity between VMs using an Open vSwitch4 vir-
tual switch and allows for mapping the physical networks to the vir-
tual networks. OVS is configured with a hybrid setup to allow both
Generic Routing Encapsulation (GRE) tunnels and Virtual Local Area
Networks (VLANs).

Our test environment consists of VLAN-based virtual networks which
allows us to separate traffic within the VMs deployed in the testbed. Three
VLAN networks are configured on both installations (with the same VLAN
tags), namely openstack, ltemgnt and lteuser. The openstack network is used
for S1AP messages and communication to the Redis nodes. The ltemgnt
network is used for GTP messaging, and the lteuser network is used for user
data traffic. Additionally, a GRE network ue net is configured to provide
Internet connectivity to route traffic between the SGW and public networks
as well as to support UE addressing. The ue net network is not used in the
experiments performed in this thesis.

4.2 Software components and VMs

Figure 4.1 shows an overview of the testbed with the VMs deployed on the
two OpenStack installations. The following VMs are deployed:

3http://www.linux-kvm.org/page/Main_Page
4http://openvswitch.org

http://www.linux-kvm.org/page/Main_Page
http://openvswitch.org

CHAPTER 4. EXPERIMENTAL SETUP AND PLAN 51

VMs

OpenStack shared services

MME FE
MME

worker

State DB

(x3)

SGW+

PGW
eNodeB

OpenStack shared services

MME

worker

MME

worker

. . . MME

worker

OpenStack load balancer

VMs

Standard hardware Standard hardware

Figure 4.1: Overview of testbed comprising of VMs deployed on two Open-
Stack clouds

• FE – The FE of the distributed MME is deployed on one VM and
contains EPC-specific configurations for the MME.

• Worker – Each MME worker is deployed on a separate VM and con-
figured to connect to the FE. One OpenStack cloud is dedicated to
running MME workers, although workers can be deployed on either
OpenStack installation.

• State database – The state database consists of three Redis servers,
each on a different VM and configured as a cluster of three master
nodes. Redis 3.0.1 is used on all three VMs.

• eNodeB – The eNodeB is a simple C program developed to test the
MME application as part of [45]. It sequentially sends messages re-
quired to test attach and detach procedures.

• SGW and PGW – An open source implementation of the gateways [1]
is used to run a collocated SGW and PGW on a VM.

• Standalone MME – The MME developed in [45] represents the orig-
inal standalone MME and is deployed on a VM (not shown in figure).

All components except the state database are run on VMs with m1.small
flavor. The Redis servers are run on VMs with m1.medium flavor as recom-
mended in [3]. Additionally we modify the kernel settings for the Redis VMs
as suggested in [3]. All VMs run Ubuntu 14.04 and the characteristics of the
flavors used in our testbed are listed in Table 4.2.

CHAPTER 4. EXPERIMENTAL SETUP AND PLAN 52

Flavor vCPU(s) RAM Disk
space

m1.small 1 2048 MB 10 GB
m1.medium 2 4096 MB 20 GB

Table 4.2: Characteristics of small and medium flavor

4.3 Experiments

We evaluate the behaviour of the distributed architecture for the MME with
the experiments described below. Experiments 1 to 4 measure latency, ex-
periment 5 demonstrates the scalability of our architecture and experiment
6 demonstrates the resilience of the architecture to failures.

1. Measure attach latency for distributed MME and standalone MME –
We measure attach latency on the eNodeB as the time elapsed between
the eNodeB sending an Attach Request and receiving an Attach Accept.
We capture packets on the eNodeB VM using tcpdump and calculate
attach latency using a Lua script. We run this experiment for both the
distributed and standalone MME to compare their average latency.

2. Measure attach latency for different placement configurations of FE
and worker – We measure attach latency (as described in previous
experiment) for the distributed MME with the following placement
configurations:

(a) Worker and FE on different OpenStack installations

(b) Worker and FE on same compute host in same OpenStack instal-
lation

(c) Worker and FE on different compute hosts in same OpenStack
installation

3. Measure time taken to retrieve UE context from the state database –
The aim of this experiment is to compare the time taken to retrieve
UE context in the distributed MME to that taken by the standalone
MME. For the distributed MME, we measure the retrieval time on the
worker. The measured value includes the time taken to send a request
over the network, execute a query on the Redis server and receive a
response from the Redis server. On the standalone MME, UE context
is stored in memory as a C structure in a uthash5 hash table. The time
measured is simply the retrieval time from the hash table.

5https://troydhanson.github.io/uthash

https://troydhanson.github.io/uthash

CHAPTER 4. EXPERIMENTAL SETUP AND PLAN 53

4. Measure attach latency for different persistence settings on the state
database – Section 3.4 describes the configuration of persistence feature
on the Redis server. To evaluate the effect of the AOF feature on attach
latency, we measure the time taken for write operations on the Redis
server with the following settings:

(a) AOF disabled – The AOF feature is disabled and an append only
log file is not maintained.

(b) fsync no – The Redis server acknowledges the client immediately
after the change is written to the append only file. The OS on the
Redis server decides when to flush the data to disk.

(c) fsync every second – Data is written to the log file and flushed to
the disk once every second.

(d) fsync always – Every modification to the dataset is first logged
in the AOF file and flushed to the disk storage before the server
acknowledges the client.

5. Demonstrate autonomous scaling out and scaling in of workers based
on incoming call rate – We test autonomous scaling by varying the rate
at which attach requests are sent from the eNodeB. When the incoming
rate of attach requests is above a certain threshold, the FE requests
the creation of a new worker. When the incoming call rate is lowered,
a worker is deleted. We capture logs on the FE and worker to monitor
the times at which attach requests are received and HTTP requests are
sent to create or delete workers.

6. Demonstrate resilience – In order to demonstrate resilience, we attach
a user to the distributed MME with two active workers and then man-
ually shut down the worker handling the user session. We then proceed
to initiate a detach procedure for the UE. We capture logs on the FE
and the active worker to verify that the detach procedure completes
successfully.

4.4 Summary

This chapter has presented details of the testbed and the experiments per-
formed to evaluate the distributed MME.

We have used OpenStack as our cloud computing platform and have set
up two OpenStack clouds. Each cloud consists of two physical compute hosts
on which VMs are deployed. Furthermore, we have described the placement

CHAPTER 4. EXPERIMENTAL SETUP AND PLAN 54

of the FE, worker and state database VMs on the two clouds. Apart from
the EPC components, the testbed contains a load balancer which creates and
deletes worker VMs on the two OpenStack clouds.

We have also presented our experimental plan consisting of six experi-
ments. With a distributed architecture, latency is expected to be the main
bottleneck. Experiment 1 compares the attach latency of the distributed
MME to that of a standalone MME. Experiment 2 further examines attach
latency of the distributed MME with different placement configurations of
the FE and workers. Experiment 3 measures the time taken to retrieve UE
context from the state database. Experiment 4 measures the attach latency
with the different Redis persistence policies. Experiment 5 demonstrates au-
tonomous scaling of workers and lastly, experiment 6 demonstrates resilience
of the architecture to worker VM failures.

Chapter 5 now presents the results of the experiments.

Chapter 5

Evaluation

This chapter presents the results of our experiments. The six experiments
performed are listed in Section 4.3.

5.1 Attach latency compared to original MME

Table 5.1 presents the average latency of attach procedure on both the stan-
dalone and distributed MME. Each experiment consists of attaching 50 UEs
sequentially at a call rate of 1 call per second. The latency for the distributed
MME is the average of results obtained from running five sets of experiments
for each of the following placement configurations:

(a) Worker and FE on different OpenStack installations

(b) Worker and FE on same compute host in same OpenStack installation

(c) Worker and FE on different compute hosts in same OpenStack instal-
lation

The latency for the original MME is calculated as average of the results
obtained from running ten sets of experiments.

Type of MME Average latency Average latency with
95% confidence interval

Standalone 8.399 ms 7.836 ms to 8.962 ms
Distributed 12.782 ms 12.574 ms to 12.990 ms

Table 5.1: Average of measured attach latency for distributed and original
standalone MME

55

CHAPTER 5. EVALUATION 56

The increase in attach latency for the distributed MME is on average 4.4
milliseconds. This increase in latency can be attributed to the exchange of
messages between the FE and worker. Each message exchanged between the
worker and an external network element has to be forwarded through the
FE. Thus, the network latency between the components of the distributed
MME significantly affects measured attach latency.

5.2 Attach latency depending on placement

of FE and worker

As network performance greatly affects the attach latency for a distributed
MME, we further compare attach latency for different placements of FE and
workers. These placement configuration, labelled (a), (b) and (c), are listed in
Section 5.1. Figure 5.1 presents the cumulative distribution function (CDF)
of measured attach latency and Table 5.2 presents the average attach latency
for the three different placement configurations.

The measured latency for case (b) wherein the FE and worker are on the
same compute host shows the lowest average value of 12.368 milliseconds.
In this configuration the lowest time measured is 6.394 milliseconds and the
measured maximum value shows a ten-fold increase to 65.553 milliseconds.
The reason for this high outlier is not fully understood, but is seen more
often in this placement configuration than in other cases. The fluctuation
in attach latency is represented by the high standard deviation, as listed in
Table 5.2. The distributions of attach latency for cases (a) and (c), wherein
the FE and worker are on different physical compute hosts, are quite similar.
The maximum measured attach latency does not exceed 25 milliseconds in
both these cases.

Configuration Average
latency

Average latency with
95% confidence interval

Standard
deviation

(a) 12.914 ms 12.691 ms to 13.136 ms 1.779
(b) 12.368 ms 11.863 ms to 12.872 ms 4.041
(c) 13.065 ms 12.777 ms to 13.353 ms 2.307

Table 5.2: Attach latency for placement configurations of FE and worker on
(a) different OpenStack installations; (b) same compute host, same Open-
Stack installation; (c) different compute hosts, same OpenStack installation

CHAPTER 5. EVALUATION 57

Attach latency (ms)

0 10 20 30 40 50 60 70

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) On different OpenStack

(b) On same OpenStack, same compute host

(c) On same OpenStack, different compute hosts

Figure 5.1: CDF of attach latency measured for three different placement
configurations of FE and worker

5.3 UE context retrieval time

We measure the time taken to retrieve UE context for both the distributed
and standalone MME. Table 5.3 presents the average value of 250 retrievals.
For the distributed MME, the main contributor to the measured time is the
network latency between the worker and Redis server. The time taken for
execution of commands on the Redis server (monitored using redis slowlog1)
is in the order of a few microseconds.

Type of MME Average time Average time with 95% con-
fidence interval

Standalone 20.7 µs 20.025 µs to 21.375 µs
Distributed 1256.724 µs 1238.695 µs to 1274.752 µs

Table 5.3: Average retrieval time for UE context on distributed and original
MME

1http://redis.io/commands/slowlog

CHAPTER 5. EVALUATION 58

5.4 Effect of Redis persistence policy on at-

tach latency

We measure the time taken to write UE context to the Redis server with
each of the four different persistence policies listed in Section 4.3. The mea-
sured value includes the time to send a request from the worker to the Redis
server, execute the write operation on the Redis server and receive an ac-
knowledgement from the Redis server. Figure 5.2 presents the average time
to write to the Redis data store for these persistence policies. Each value
is an average of 250 write operations. In the case of fsync always policy,
the average write time is the highest as the worker (Redis client) receives a
response only after the modification is flushed to local storage. The lowest
average time for a write operation is seen in the case where the append only
policy is disabled. For persistence policies fsync no and fsync everysec, the
average time to write to the data store is similar.

Redis persistence policy

AOF disabled fsync no fsync everysec fsync always

W
ri
te

 t
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

0

2000

4000

6000

8000

10000

12000

Figure 5.2: Average time for write operations on Redis server (±95% confi-
dence interval) for four different Redis persistence policies

As the fsync always policy results in an unacceptable latency, we do not
further test this policy. To investigate the behaviour with higher loads on
the Redis servers, we repeat the experiments with all three Redis servers
of the cluster on the same VM. The experiments are repeated with AOF
disabled, with policy fsync everysec applied and fsync no applied. Figure
5.3 presents the scatter plot of measured write times and Table 5.4 presents
the average write time and standard deviation for these experiments. As

CHAPTER 5. EVALUATION 59

Redis Con-
figuration

Average
time

Average time with 95%
confidence interval

Standard
deviation

AOF disabled 1434.472 µs 1413.010 µs to 1455.934 µs 171.954
fsync everysec 1611.320 µs 1576.418 µs to 1646.222 µs 279.634
fsync no 1754.936 µs 1646.133 µs to 1863.738 µs 869.946

Table 5.4: Average time for write operations on Redis server (when all Redis
servers are on same VM) for three different persistence policies

expected, the average write time is lowest for the case where the AOF feature
is disabled. As seen in Figure 5.3(a), there are only three points where the
write time exceeds 2000 microseconds. This figure can be considered as a
baseline to understand the effect of using AOF policies. With policy “fsync
everysec”, the average latency is higher. There are more occurrences of
latency exceeding 2000 microseconds in Figure 5.3(b) as compared to Figure
5.3(a). With policy “fsync no” applied, the average latency increases by 143
microseconds as compared to “fsync everysec”. However, Figure 5.3(c) shows
a higher frequency and magnitude of outliers exceeding 2000 microseconds.

5.5 Demonstration of autonomous scaling on

distributed MME

Figure 5.4 presents the autonomous scaling of workers depending on the rate
of incoming attach requests. We start the experiment with only one worker.
When the rate of incoming attach requests is one call per second, the FE
sends an HTTP request to the load balancer to create a new worker VM at
time 07:34:01. Once the VM boots up and the worker is started, the worker
initiates an SCTP association to the FE. This occurs at time 07:34:28 when
the worker endpoint is added to the FE. From this point, attach requests
are forwarded to the new worker based on a round-robin balancing scheme
between the two workers. As can be seen from the figure, in our testbed it
takes at least 25 seconds for the VM to be started and worker to be running.

When the rate of incoming attach requests reduce, the second worker is
marked for deletion at time 07:35:15. At this point the FE stops forwarding
any new attach requests to the worker marked for deletion. All further attach
requests are forwarded to the first worker. After five seconds have elapsed (a
duration configured in the FE code), the FE sends an HTTP request to the
load balancer to delete the VM. The first worker continues to process any
incoming procedures.

CHAPTER 5. EVALUATION 60

5.6 Demonstration of resilience

In this experiment, the distributed MME is started with two active workers.
After the UE attaches to one worker, we manually stop the worker to which
the UE is attached. We then initiate a detach procedure for the UE. The
detach request is forwarded to the available active worker. From the logs on
the worker, we verify the UE context is retrieved from the state database
and the callflow proceeds successfully. The log file is not presented in this
thesis.

5.7 Summary

This chapter has presented the results of the experiments listed in Section 4.3.
We have successfully demonstrated a working prototype of the distributed
MME and have compared its behaviour to a standalone MME.

In a distributed MME, the additional messaging between the FE and
workers contributes to an increase in latency during attach procedures. We
find that the increase in attach latency for the distributed MME is on average
4.4 milliseconds. Furthermore, we have identified variations in attach latency
when the FE and workers of the distributed MME are deployed on the same
physical compute host or different compute hosts. The measured latency is
the least when the worker and the FE reside on the same compute host but
the standard deviation of the measured values is also higher. With the FE
and workers on different compute hosts, the latency increases marginally as
compared to the same physical host. However, the latency measured is more
predictable, with a smaller standard deviation in measurements.

The time taken to retrieve the UE context increases in the distributed
MME as compared to the standalone MME. This increase in latency is mainly
attributed to the request and response between the worker and Redis server.

We have also investigated the effect of Redis persistence policies on the
time taken for write operations to the database. From the results, we have
identified that the fsync always policy leads to unacceptable latency, while
the fysnc no and fsync everysec policy provide a reasonable level of durability
and an acceptable response time. On further comparing the fysnc no and
fynsc everysec policy, we notice that fysnc everysec is a better choice as it
leads to a more predictable write time.

We have also demonstrated the autonomous scaling of MME workers.
Our implementation uses the rate of incoming attach requests to determine
when an MME worker has to be created or deleted. We notice that it takes
at least 25 seconds for a new worker to start handling calls. Furthermore,

CHAPTER 5. EVALUATION 61

we identify that there should be a delay before an existing worker is deleted
in order to allow on-going procedures to complete and the UE context to be
stored on the state database.

Lastly, we have demonstrated the resilience of workers in a distributed
architecture. Even if the worker responsible for a specific UE goes down,
another worker is able to retrieve the UE context from the state database
and process the call flow. Hence, the UE does not need to re-attach to the
EPC network.

Chapter 6 now interprets the results presented in this chapter and also
discusses methods to mitigate the negative effects of a distributed architec-
ture.

CHAPTER 5. EVALUATION 62

Iteration number

0 50 100 150 200 250

W
ri
te

 t
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Redis write time without appendonly persistence

(a) AOF disabled

Iteration number

0 50 100 150 200 250

W
ri
te

 t
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Redis write time with fsync everysec

(b) fsync everysec

Iteration number

0 50 100 150 200 250

W
ri
te

 t
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Redis write time with fsync no

(c) fsync no

Figure 5.3: Scatter plots of time taken to write UE context to Redis server
(all master servers on one VM) with different persistence policies

CHAPTER 5. EVALUATION 63

Time (hh:mm:ss)

07:33:30 07:34:00 07:34:30 07:35:00 07:35:30 07:36:00

N
u
m

b
e
r

o
f
U

E
s
 a

tt
a
c
h
e
d

0

10

20

30

40

50

60

70

MME Worker 1

MME Worker 2

New worker

endpoint

added to FE

Time taken for worker

to start and be ready to

accept calls

Request to

create new

worker sent

Worker 2 marked

for deletion

Request to delete

worker 2 sent

Figure 5.4: Number of attach requests sent to each worker against the time
during which the experiment is run. Each point represents an attach request
forwarded to a worker.

64

Chapter 6

Discussion

This chapter discusses some key aspects of virtualising elements in the EPC
taking into consideration results presented in Chapter 5. Section 6.1 com-
pares our MME with those presented in Section 2.6 and highlights methods
for reducing the negative effects of a distributed design. Section 6.2 briefly
describes the suitability of OpenStack for deploying VNFs that meet carrier-
grade requirements. Finally, Section 6.3 discusses limitations of our testing
and identifies improvements of the testing framework.

6.1 Evaluation of distributed design for MME

The MME presented in [58] is similar to our three-tier architecture. However,
the authors have focused on scaling operations alone. Our results additionally
provide a comparison with a non-distributed design for the MME and a
demonstration of resilience. The distributed MME in [25, 26] consists of
stateless message processors organised in a DHT with an external user state
storage system. In this case, migration to another MME is possible only
when the UE is in idle state. When the UE is in active state and attached
to one MME, if a network event for that UE reaches another MME instance,
the request has to be forwarded to the correct MME. In our design, the
FE forwards the request to the correct MME and further redirections are
not required. We believe additional redirections towards the correct MME
instance can increase latency of EPC procedures.

The results presented in Section 5.2 indicate that the latency for proce-
dures executed on the MME varies based on placement of the components of
a distributed MME. When the components are on the same physical host, the
average measured latency is lowest. This can be attributed to the network-
ing setup on OpenStack, wherein communication between VMs co-located on

65

CHAPTER 6. DISCUSSION 66

the same physical host occur locally and need not be sent to the networking
host [37]. However, these local communications can increase CPU and mem-
ory overhead making the runtime effects hard to predict and possibly leading
to performance degradation [37]. For VMs on different physical hosts, the
latency increases with a more predictable value. However, in our implemen-
tation, all physical hosts reside on the same rack server. Hence it will be
valuable to test the behaviour of the distributed MME with geographically
distributed data centers.

With an intelligent orchestrator and placement algorithm, it is possible
to deploy the components of a distributed MME taking into account dif-
ferent considerations such as latency, resilience, networking bandwidth and
CPU interference. [36] proposes a new metric, link gradient, which measures
the impact of changes in link latencies on end-to-end response times in dis-
tributed multi-tier architectures. This metric can be used to appropriately
place components of the MME in order to achieve high availability while
maintaining an acceptable response time. [52] highlights the importance
of placement of VMs for performance-critical distributed applications. The
authors describe an implementation of placement functions on OpenStack
to optimise performance and maintain resilience for VNFs. [30] presents a
model for the placement of VNFs in mobile core networks for optimised mo-
bile core network topologies. The authors claim the same model can be used
for decomposed network functions and more complex network service chains,
which suits our requirement of optimised placement for a distributed MME.
[29] analyses possible placements of VNFs in multiple data centers and pro-
poses a placement model for virtualised SGWs and PGWs that minimises
network load within a certain threshold for data plane latency.

Results from Section 5.4 provide an example of how configuration of the
state database can effect attach latency. For a distributed design, the in-
creased complexity means more careful design choices are required so as to
meet performance requirements and reduce latency of operation. We have
discussed alternate design options for each of the three tiers of the MME in
Chapter 3.

In Section 5.5, the worker VM takes a long time to start and be ready
to accept new procedures. Container-based virtualisation has been identified
as a possible alternative to VMs with lower start times and better perfor-
mance [44, 56]. While a VM runs a complete operating system, containers
make modifications to the existing operating system to ensure isolation [44].
Thus containers are a lightweight alternative to VMs.

CHAPTER 6. DISCUSSION 67

6.2 Suitability of OpenStack for telecommu-

nication applications

OpenStack is a flexible and modular cloud platform which supports the de-
ployment of NFV. The modular architecture of OpenStack enables service
providers to choose the appropriate backend module depending on the type
of service being deployed [12]. However, the suitability of OpenStack for
telecommunication applications needs to be further investigated. [12] high-
lights a few extensions required by OpenStack before network services that
meet carrier-grade performance requirements can be deployed over it. The
identified extensions include assigning a dedicated number of CPU cores to a
VNF (known as vCPU pinning) and guaranteed memory allocation [12, 44]
so as to ensure a deterministic environment in which VMs are run. These
features have been accepted for the Juno release of OpenStack, but have not
been implemented yet1. OpenStack also supports baremetal machines using
PXE boot2. These baremetal machines can provide better performance for
applications which require high packet processing rates, deterministic per-
formance and low latencies [12]. The complex network architecture of Open-
Stack may also result in performance variations or degradations. [33] investi-
gates the performance of virtual networking under critical traffic conditions
and identifies bottlenecks in the networking architecture of OpenStack.

6.3 Testing framework

Our testing of the MME is limited by the lack of an eNodeB emulator. With
a suitable testing solution, the behaviour of the MME under load should
be evaluated along with further testing for robustness and resilience in the
case of VM failures. Despite these limitations, we were able to meet our
aim of presenting a working solution of a three-tier architecture for a stateful
network element.

Robust testing solutions are required to characterise the performance of
VNFs and ensure carrier-grade performance. [66] proposes the use of an em-
bedded instrumentation framework, which can collect and present data on
real-time processing in virtualisation platforms. The authors highlight the
importance of the framework to investigate performance of complex network
services deployed within or across data centers. The data obtained from the

1http://specs.openstack.org/openstack/nova-specs/specs/juno/
index.html

2https://wiki.openstack.org/wiki/Ironic

http://specs.openstack.org/openstack/nova-specs/specs/juno/index.html
http://specs.openstack.org/openstack/nova-specs/specs/juno/index.html
https://wiki.openstack.org/wiki/Ironic

CHAPTER 6. DISCUSSION 68

framework can help in optimising performance and diagnosis of VNFs. This
data can also help identify the cause of outliers in latency obtained in Sec-
tion 5.2. [39] presents a project for evaluating reliability of the infrastructure
over which VNFs are deployed. This includes testing by injecting faults on
the VMs as well as on the OpenStack platform. A comprehensive analysis of
fault resilience in OpenStack is provided in [49]. Such a testing framework
can be used to enhance the results presented in Section 5.6.

Chapter 7

Conclusion

This chapter first provides a summary of the work presented in this thesis.
We then describe directions for future work in Section 7.2.

7.1 Conclusion

This thesis has described the application of NFV to mobile core networks.
We have provided an overview of the benefits and challenges of virtualising
the EPC and reviewed software architecture choices for developing VNFs.
We chose the MME as a representative case to analyse the benefits of imple-
menting a three-tier architecture for a control plane element in the EPC.

We have developed a working proof-of-concept implementation of a three-
tier architecture for the MME. This new architecture enables us to decompose
the MME into stateless workers with the UE state information saved in
an external Redis data store. We use an intelligent front end to balance
requests between the workers and to maintain interfaces to other network
elements. This architecture allows the MME to scale easily based on incoming
requests and also makes it resilient to worker VM failures. The workers being
stateless can be independently started or stopped, thus enabling their scaling
operations based on load in the network. Additionally, the workers require
only a single configuration file, thereby simplifying the management of the
MME. Once the UE context is stored on a Redis server, any worker can
handle the processing of procedures for this UE after retrieving its context
from the database. Thus, the failure of a worker will not affect end users if
their context information can be retrieved. From the results presented in this
thesis, we believe that the benefits of scalability and resilience outweigh the
marginal increase in latency due to the distributed architecture. However,
increased complexity of the architecture demands careful software design and

69

CHAPTER 7. CONCLUSION 70

intelligent placement of the components so as not to degrade performance of
the overall system.

As mobile network operators look to utilise distributed data centers to im-
plement NFV for the core network, management and orchestration functions
will play an important role. Distributed architectures and decomposition of
network functions means that VM placement algorithms need to take into
account end-to-end latency, reliability and performance requirements. Fur-
thermore, the dynamic instantiation and removal of VMs results in changes
in the network and management systems need to be able to handle these
changes seamlessly. We have briefly discussed the suitability of OpenStack
for the deployment of telecommunication applications. Further extensions to
OpenStack are required before it is able to meet the performance require-
ments for telecommunication applications.

7.2 Future work

Our current implementation only supports a subset of the MME function-
ality. To further evaluate the effects of a distributed design, the addition
of further features to the MME is required. For example, S1 handover and
tracking area update procedures need to be implemented to analyse how
the FE handles forwarding of messages in these procedures. Also, the HSS
implementation needs to be changed from the existing co-located MySQL
database. The behaviour of the MME under load has also not been verified.
To achieve this, the eNodeB program needs to be modified to generate higher
load on the MME. Additionally, the testing framework needs to be improved
to include collection of network metrics and compute host load during the
experiments. Lastly, the virtualisation platform could make use of Linux
Containers instead of hypervisors. This may lead to improvements in boot
times and performance of worker VMs.

Bibliography

[1] nwEPC - EPC SAE Gateway . http://sourceforge.net/projects/

nwepc/. Online; Accessed on 02.06.2015.

[2] Project Clearwater. http://www.projectclearwater.org/. Online; Ac-
cessed on 02.07.2015.

[3] Redis Administration. http://redis.io/topics/admin. Online; Ac-
cessed on 18.06.2015.

[4] Redis Clients. http://redis.io/clients#C. Online; Accessed on
19.05.2015.

[5] Redis Cluster specification. http://redis.io/topics/cluster-spec.
Online; Accessed on 19.05.2015.

[6] Redis persistence demystified. http://oldblog.antirez.com/post/

redis-persistence-demystified.html. Online; Accessed on 19.06.2015.

[7] Redis Protocol specification. http://redis.io/topics/protocol. On-
line; Accessed on 15.05.2015.

[8] MCN D4.1, Mobile Network Cloud Component Design, European Com-
mission, EU FP7 Mobile Cloud Networking public deliverable, Novem-
ber 2013.

[9] MCN D4.2, First Mobile Network Cloud Software Components, Euro-
pean Commission, EU FP7 Mobile Cloud Networking public deliverable,
May 2014.

[10] Virtualizing network services - the telecom cloud. Tech. rep., Erics-
son Review, March 2014. http://www.ericsson.com/res/thecompany/

docs/publications/ericsson_review/2014/er-telecom-cloud.pdf On-
line; Accessed on 02.07.2015.

71

http://sourceforge.net/projects/nwepc/
http://sourceforge.net/projects/nwepc/
http://www.projectclearwater.org/
http://redis.io/topics/admin
http://redis.io/clients#C
http://redis.io/topics/cluster-spec
http://oldblog.antirez.com/post/redis-persistence-demystified.html
http://oldblog.antirez.com/post/redis-persistence-demystified.html
http://redis.io/topics/protocol
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2014/er-telecom-cloud.pdf
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2014/er-telecom-cloud.pdf

BIBLIOGRAPHY 72

[11] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2014-2019. White paper, Cisco, February 2015. http:

//www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white_paper_c11-520862.pdf.

[12] OpenStack as the API framework for NFV: the benefits, and
the extensions needed. Tech. rep., Ericsson Review, April
2015. http://www.ericsson.com/res/thecompany/docs/publications/

ericsson_review/2015/er-openstack-api-nfv.pdf Online; Accessed on
02.07.2015.

[13] 3GPP. LTE. www.3gpp.org/technologies/keywords-acronyms/98-lte.
Online; Accessed on 13.04.2015.

[14] 3GPP. The Evolved Packet Core. http://www.3gpp.org/technologies/
keywords-acronyms/100-the-evolved-packet-core. Online; Accessed
on 13.04.2015.

[15] 3GPP. 3GPP Evolved Packet System (EPS); Evolved General Packet
Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-
C); Stage 3 (Release 12). TS 29.274, 3rd Generation Partnership Project
(3GPP), June 2014.

[16] 3GPP. Evolved Universal Terrestrial Radio Access Network (E-
UTRAN); S1 Application Protocol (S1AP) (Release 12). TS 36.413,
3rd Generation Partnership Project (3GPP), December 2014.

[17] 3GPP. General Packet Radio Service (GPRS) enhancements for
Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access
(Release 12). TS 23.401, 3rd Generation Partnership Project (3GPP),
December 2014.

[18] 3GPP. Network Architecture (Release 13). TS 23.002, 3rd Generation
Partnership Project (3GPP), December 2014.

[19] 3GPP. Non-Access-Stratum (NAS) protocol for Evolved Packet System
(EPS); Stage 3 (Release 13). TS 24.301, 3rd Generation Partnership
Project (3GPP), December 2014.

[20] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Over-
all description; Stage 2 (Release 12). TS 36.300, 3rd Generation Part-
nership Project (3GPP), March 2015.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2015/er-openstack-api-nfv.pdf
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2015/er-openstack-api-nfv.pdf
www.3gpp.org/technologies/keywords-acronyms/98-lte
http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core
http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core

BIBLIOGRAPHY 73

[21] 3GPP. IP Multimedia Subsystem (IMS); Stage 2 (Release 13). TS
23.228, 3rd Generation Partnership Project (3GPP), 2015.

[22] Agyapong, P., Iwamura, M., Staehle, D., Kiess, W., and Ben-
jebbour, A. Design considerations for a 5G network architecture.
Communications Magazine, IEEE 52, 11 (2014), 65–75.

[23] Ahokas, K. Load balancing in LTE core network with OpenStack
clouds: Design and implementation. Master’s thesis, Aalto University
School of Science, 2015. To be published.

[24] Amokrane, A., Ksentini, A., Hadjadj-Aoul, Y., and Taleb,
T. Congestion control for machine type communications. In Communi-
cations (ICC), 2012 IEEE International Conference on (2012), IEEE,
pp. 778–782.

[25] An, X., Pianese, F., Widjaja, I., and Acer, U. G. dMME:
Virtualizing LTE mobility management. In Local Computer Networks
(LCN), 2011 IEEE 36th Conference on (2011), IEEE, pp. 528–536.

[26] An, X., Pianese, F., Widjaja, I., and Günay Acer, U. DMME:
a distributed LTE mobility management entity. Bell Labs Technical
Journal 17, 2 (2012), 97–120.

[27] Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano,
A., Soong, A. C., and Zhang, J. C. What will 5G be? Selected
Areas in Communications, IEEE Journal on 32, 6 (2014), 1065–1082.

[28] Baldoni, R., and Raynal, M. Fundamentals of distributed comput-
ing: A practical tour of vector clock systems. IEEE Distributed Systems
Online 3, 2 (2002), 12.

[29] Basta, A., Kellerer, W., Hoffmann, M., Morper, H. J., and
Hoffmann, K. Applying NFV and SDN to LTE mobile core gateways,
the functions placement problem. In Proceedings of the 4th workshop on
All things cellular: operations, applications, & challenges (2014), ACM,
pp. 33–38.

[30] Baumgartner, A., Reddy, V. S., and Bauschert, T. Mobile core
network virtualization: A model for combined virtual core network func-
tion placement and topology optimization. In Network Softwarization
(NetSoft), 2015 1st IEEE Conference on (2015), IEEE, pp. 1–9.

BIBLIOGRAPHY 74

[31] Bosch, P., Duminuco, A., Pianese, F., and Wood, T. L. Telco
clouds and virtual telco: Consolidation, convergence, and beyond. In
Integrated Network Management (IM), 2011 IFIP/IEEE International
Symposium on (2011), IEEE, pp. 982–988.

[32] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and
Arkko, J. Diameter Base Protocol. RFC 3588, RFC Editor, September
2003. http://www.rfc-editor.org/rfc/rfc3588.txt.

[33] Callegati, F., Cerroni, W., Contoli, C., and Santandrea,
G. Performance of Network Virtualization in cloud computing infras-
tructures: The OpenStack case. In Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on (2014), IEEE, pp. 132–137.

[34] Carella, G., Corici, M., Crosta, P., Comi, P., Bohnert,
T. M., Corici, A. A., Vingarzan, D., and Magedanz, T. Cloud-
ified IP Multimedia Subsystem (IMS) for Network Function Virtual-
ization (NFV)-based architectures. In Computers and Communication
(ISCC), 2014 IEEE Symposium on (2014), IEEE, pp. 1–6.

[35] Chang, F., Fales, P. S., Steiner, M., Viswanathan, R.,
Williams, T. J., and Wood, T. L. Mitigating High Latency Out-
liers for Cloud-Based Telecommunication Services. Bell Labs Technical
Journal 17, 2 (2012), 121–142.

[36] Chen, S., Joshi, K. R., Hiltunen, M. A., Schlichting, R. D.,
and Sanders, W. H. Using link gradients to predict the impact of
network latency on multitier applications. IEEE/ACM Transactions on
Networking (TON) 19, 3 (2011), 855–868.

[37] Corradi, A., Fanelli, M., and Foschini, L. Vm consolidation:
A real case based on openstack cloud. Future Generation Computer
Systems 32 (2014), 118–127.

[38] Costa-Requena, J., Santos, J., Guasch, V., Ahokas, K.,
Premsankar, G., and Luukkainen, S. SDN and NFV Integration
in Generalized Mobile Network Architecture. In European Conference
on Networks and Communications (EuCNC) (2015). To appear.

[39] Cotroneo, D., De Simone, L., Iannillo, A., Lanzaro, A.,
Natella, R., Fan, J., and Ping, W. Network function virtual-
ization: Challenges and directions for reliability assurance. In Software
Reliability Engineering Workshops (ISSREW), 2014 IEEE International
Symposium on (2014), IEEE, pp. 37–42.

http://www.rfc-editor.org/rfc/rfc3588.txt

BIBLIOGRAPHY 75

[40] Dodig-Crnkovic, G. Scientific methods in computer science. In
Proceedings of the Conference for the Promotion of Research in IT at
New Universities and at University Colleges in Sweden, Skövde, Suecia
(2002), pp. 126–130.

[41] ETSI. Network Functions Virtualisation - An Introduction, Benefits,
Enablers, Challenges, Call for Action. Introductory white paper, ETSI,
October 2012. http://portal.etsi.org/NFV/NFV_White_Paper.pdf.

[42] ETSI. Network Functions Virtualisation (NFV); Use Cases V1.1.1. GS
NFV 001, ETSI, 2013.

[43] ETSI. Network Functions Virtualisation (NFV); Architectural Frame-
work V1.2.1. GS NFV 002, ETSI, 2014.

[44] Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. An up-
dated performance comparison of virtual machines and linux containers.
technology 28 (2014), 32.

[45] Guasch, V. F. LTE network Virtualisation. Master’s thesis, Aalto
University School of Electrical Engineering, October 2013.

[46] Han, B., Gopalakrishnan, V., Ji, L., and Lee, S. Network func-
tion virtualization: Challenges and opportunities for innovations. Com-
munications Magazine, IEEE 53, 2 (2015), 90–97.

[47] Hawilo, H., Shami, A., Mirahmadi, M., and Asal, R. NFV: state
of the art, challenges, and implementation in next generation mobile
networks (vEPC). Network, IEEE 28, 6 (2014), 18–26.

[48] Janssens, N., An, X., Daenen, K., and Forlivesi, C. Dynamic
scaling of call-stateful SIP services in the cloud. In NETWORKING
2012. Springer, 2012, pp. 175–189.

[49] Ju, X., Soares, L., Shin, K. G., Ryu, K. D., and Da Silva,
D. On fault resilience of openstack. In Proceedings of the 4th annual
Symposium on Cloud Computing (2013), ACM, p. 2.

[50] Matuszewski, M., and Garcia-Martin, M. A. A distributed IP
multimedia subsystem (IMS). In World of Wireless, Mobile and Mul-
timedia Networks, 2007. WoWMoM 2007. IEEE International Sympo-
sium on a (2007), IEEE, pp. 1–8.

http://portal.etsi.org/NFV/NFV_White_Paper.pdf

BIBLIOGRAPHY 76

[51] Nishimura, H., Iwasa, E., Irie, M., Kondoh, S., Kaneko, M.,
Fukumoto, T., Iio, M., and Ueda, K. Applying flexibility in scale-
out-based web cloud to future telecommunication session control sys-
tems. In Intelligence in Next Generation Networks (ICIN), 2012 16th
International Conference on (2012), IEEE, pp. 1–7.

[52] Oechsner, S., and Ripke, A. Flexible support of VNF placement
functions in OpenStack. In Network Softwarization (NetSoft), 2015 1st
IEEE Conference on (2015), IEEE, pp. 1–6.

[53] Penttinen, J. T. The Telecommunications Handbook: Engineering
Guidelines for Fixed, Mobile and Satellite Systems. John Wiley & Sons,
2015.

[54] Postel, J. User Datagram Protocol. STD 6, RFC Editor, August
1980. http://www.rfc-editor.org/rfc/rfc768.txt.

[55] Raynal, M., and Singhal, M. Logical time: Capturing causality in
distributed systems. Computer 29, 2 (1996), 49–56.

[56] Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., and Pe-
terson, L. Container-based operating system virtualization: a scal-
able, high-performance alternative to hypervisors. In ACM SIGOPS
Operating Systems Review (2007), vol. 41, ACM, pp. 275–287.

[57] Stewart, R. Stream Control Transmission Protocol. RFC 4960, RFC
Editor, September 2007. http://www.rfc-editor.org/rfc/rfc4960.txt.

[58] Takano, Y., Khan, A., Tamura, M., Iwashina, S., and Shimizu,
T. Virtualization-Based Scaling Methods for Stateful Cellular Network
Nodes using Elastic Core Architecture. In Cloud Computing Technology
and Science (CloudCom), 2014 IEEE 6th International Conference on
(2014), IEEE, pp. 204–209.

[59] Taleb, T. Toward carrier cloud: Potential, challenges, and solutions.
Wireless Communications, IEEE 21, 3 (2014), 80–91.

[60] Taleb, T., Corici, M., Parada, C., Jamakovic, A., Ruffino,
S., Karagiannis, G., and Magedanz, T. EASE: EPC as a service
to ease mobile core network deployment over cloud. Network, IEEE 29,
2 (2015), 78–88.

[61] Taleb, T., Ksentini, A., and Kobbane, A. Lightweight mobile
core networks for machine type communications. Access, IEEE 2 (2014),
1128–1137.

http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc4960.txt

BIBLIOGRAPHY 77

[62] Taleb, T., and Kunz, A. Machine type communications in 3gpp net-
works: potential, challenges, and solutions. Communications Magazine,
IEEE 50, 3 (2012), 178–184.

[63] Taleb, T., and Samdanis, K. Ensuring service resilience in the EPS:
MME failure restoration case. In Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE (2011), IEEE, pp. 1–5.

[64] Tamura, M., Nakamura, T., Yamazaki, T., and Moritani, Y. A
study to achieve high reliability and availability on core networks with
network virtualization. Technical journal, NTT Docomo, July 2013.
Online; Accessed on 02.07.2015.

[65] Tolonen, A. Dynamic virtualized network functions on an openstack
cloud. Master’s thesis, Aalto University School of Science, September
2014.

[66] Veitch, P., McGrath, M. J., and Bayon, V. An instrumenta-
tion and analytics framework for optimal and robust nfv deployment.
Communications Magazine, IEEE 53, 2 (2015), 126–133.

[67] Wilder, B. Cloud Architecture Patterns. O’Reilly Media, Inc., 2012.

[68] Yamasaki, T., Khan, A., Tamura, M., Shimizu, T., and
Iwashina, S. A database access scheme for elastic-core architecture.
In Wireless and Mobile, 2014 IEEE Asia Pacific Conference on (2014),
IEEE, pp. 138–143.

[69] Zhiqun, X., Duan, C., Zhiyuan, H., and Qunying, S. Emerging
of telco cloud. Communications, China 10, 6 (2013), 79–85.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Research statement
	1.3 Contribution
	1.4 Research methodology
	1.5 Structure of thesis

	2 Background
	2.1 Evolved Packet Core (EPC)
	2.1.1 Architectural elements of EPC

	2.2 Mobility Management Entity (MME)
	2.2.1 Interfaces and protocol stacks
	2.2.2 State information maintained by MME

	2.3 EPS procedures
	2.3.1 E-UTRAN initial attach procedure
	2.3.2 Detach procedure

	2.4 Network Functions Virtualisation (NFV)
	2.4.1 Benefits
	2.4.2 Challenges

	2.5 Architecture of virtualised EPC network elements
	2.5.1 1:1 mapping
	2.5.2 1:N mapping
	2.5.3 N:1 mapping
	2.5.4 N:2 mapping

	2.6 Related work
	2.6.1 Distributed design for network elements
	2.6.2 Moving telecommunication systems to the cloud

	2.7 Summary

	3 Implementation
	3.1 Overview of system
	3.2 Design of front end (FE)
	3.2.1 Forwarding S1AP messages
	3.2.2 Forwarding GTP messages
	3.2.3 Communicating with the OpenStack load balancer
	3.2.4 Design considerations

	3.3 Design of worker
	3.3.1 Attach procedure
	3.3.2 Detach procedure
	3.3.3 Design considerations

	3.4 Design of state database
	3.4.1 Redis cluster
	3.4.2 Redis persistence policies
	3.4.3 Design considerations

	3.5 Summary

	4 Experimental setup and plan
	4.1 OpenStack
	4.2 Software components and VMs
	4.3 Experiments
	4.4 Summary

	5 Evaluation
	5.1 Attach latency compared to original MME
	5.2 Attach latency depending on placement of FE and worker
	5.3 UE context retrieval time
	5.4 Effect of Redis persistence policy on attach latency
	5.5 Demonstration of autonomous scaling on distributed MME
	5.6 Demonstration of resilience
	5.7 Summary

	6 Discussion
	6.1 Evaluation of distributed design for MME
	6.2 Suitability of OpenStack for telecommunication applications
	6.3 Testing framework

	7 Conclusion
	7.1 Conclusion
	7.2 Future work

