
Aalto University
School of Electrical Engineering
Department of Electrical Engineering and Automation

Ian L. Tuomi

Aggregating OPC UA Server for Flexible
Manufacturing Systems

Master’s Thesis
Espoo, July 7, 2015

Supervisor: Ilkka Seilonen, D.Sc. (Tech.)
Advisor: Ilkka Seilonen, D.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80716585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Electrical Engineering
Department of Electrical Engineering and Automation

ABSTRACT OF
MASTER’S THESIS

Author: Ian L. Tuomi
Title:
Aggregating OPC UA Server for Flexible Manufacturing Systems
Date: July 7, 2015 Pages: viii + 53
Major: Information and Computer Systems in Au-

tomation
Code: AS-116

Supervisor: Ilkka Seilonen, D.Sc. (Tech.)
Advisor: Ilkka Seilonen, D.Sc. (Tech.)
Flexible manufacturing systems are becoming increasingly sophisticated as their effi-
ciency is increased with additional software features. More of the information gener-
ated by the flexible manufacturing system is being gathered and stored, and increas-
ingly utilized by higher-level systems in new ways to increase cost-effectiveness. The
efficient flow of information from a flexible manufacturing system to higher-level infor-
mation systems has therefore gained importance. Additionally, integrating the devices
in the flexible manufacturing system is challenging due to the many communication
protocols in use. A communication protocol named opc ua and an aggregating server
architecture are a possible way to modernize flexible manufacturing systems and solve
integration problems they face. The goal of this thesis was to clarify the requirements
and design of an aggregating opc ua server as part of a fms.

In this work, the requirements definition, design, and implementation of an aggregating
server for flexible manufacturing systems were created, and the functionality demon-
strated. The requirements of an aggregating opc ua server for fms were formed based
on previous work. A software design fulfilling the requirements was detailed. A proto-
type based on the design was implemented and experimented on by developing example
applications using it, complying with selected use cases.

External client access to devices, historization of data, alarms with user-defined alarm
conditions, and mapping node values to custom functionality were identified as relevant
requirements of an opc ua aggregating server for fms. The implementation of an
aggregating server with these features using opc ua was found to be practical. This
thesis found no objections to the use of opc ua in a fms setting. The benefits of
using opc ua increase greatly when compatible equipment is available and does not
need to be specifically integrated. However, the extent to which opc ua is useful in
communications between separate information systems is not yet known.
Keywords: FMS, OPC Unified Architecture, aggregating server
Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Automaation ja systeemitekniikan laitos

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Ian L. Tuomi
Työn nimi:
Aggregoiva OPC UA-palvelin joustavia tuotantojärjestelmiä varten
Päiväys: 7. heinäkuuta 2015 Sivumäärä: viii + 53
Pääaine: Automaation tietotekniikka Koodi: AS-116
Valvoja: TkT Ilkka Seilonen
Ohjaaja: TkT Ilkka Seilonen
Joustavista tuotantojärjestelmistä tulee monimutkaisempia samalla kuin niiden tehok-
kuutta lisätään kehittämällä ominaisuuksia niitä ohjaaviin ohjelmistoihin. Joustavien
tuotantojärjestelmien tuottamaa tietoa kerätään enenevissä määrin, ja korkeamman
tason järjestelmät käyttävät sitä jatkuvasti uusilla tavoilla. Tämän tuloksena sujuva
tiedonkulku eritasoisten tietojärjestelmien välillä on muodostunut tärkeämmäksi kuin
aiemmin. Lisäksi joustavan tuotantojärjestelmän laitteiden integrointi on haastaavaa
käytössä olevien protokollien määrän vuoksi. Tiedonsiirtoprotokolla nimeltä opc ua ja
aggregoiva palvelinarkkitehtuuri ovat yksi mahdollinen menetelmä joustavien tuotan-
tojärjestelmien viestintästandardien modernisoimiseksi ja integraatio-ongelmien ratkai-
semiseksi. Tämän diplomityön tavoite on selvittää joustavaan tuotantojärjestelmään
liittyvän aggregoivan opc ua-palvelimen vaatimukset ja suunnittelu.

Tässä työssä laadittiin joustaviin tuotantojärjestelmiin tarkoitetun aggregoivan opc
ua-palvelimen vaatimusmäärittely, suunnitelma ja toteutus, sekä demonstroitiin sen
toimivuus. Vaatimukset määriteltiin perustuen aiempaan kirjallisuuteen. Nämä vaati-
mukset täyttävä aggregoiva opc ua-palvelin suunniteltiin ja toteutettiin prototyyppinä.
Prototyypin toiminnallisuuden osoittamiseksi sillä kehitettiin tiettyjä käyttötapauksia
vastaavia sovelluksia.

Ulkoisen asiakkaan pääsy laitteiden tietoihin, tiedon historiointi, vapaasti määriteltävät
hälytykset, ja noodiarvojen yhdistäminen haluttuun toiminnallisuuteen havaittiin oleel-
lisiksi vaatimuksiksi. Aggregoivan palvelimen toteutus opc ua-standardia hyödyntäen
todettiin käytännönläheiseksi. Tässä työssä ei löydetty esteitä opc ua-standardin käyt-
tökelpoisuudelle joustavissa tuotantojärjestelmissä. Lisäksi opc ua-standardin hyödyt
kasvavat, kun yhteensopivia laitteita, joita ei tarvitse erikseen integroida on saatavilla.
Vielä ei kuitenkaan ole selvää, kuinka laajasti opc ua-standardia kannattaa käyttää
eri tietojärjestelmien välisessä kommunikoinnissa.

Asiasanat: FMS, OPC Unified Architecture, aggregoiva palvelin
Kieli: Englanti

iii

Preface

I am in great gratitude to my advisor Ilkka Seilonen for his expertise, guid-
ance, and great patience during the writing of this thesis – thank you.

Thanks also go to the good people at Fastems for providing context
for this work, and for the thought that went into the use cases used for
experimentation.

Many people made it possible for me to write this thesis, but the most
important ones are my parents. Thank you Mom and Dad, for your love,
help, and support throughout my studies and life, and for the sacrifices you
have made for me.

I also want to thank all my friends who made the time I spent writing this
thesis better. I specifically want to thank Joona for the good company and
discussions we had during lunch, Peter and Teemu for being great company
at the gym, and Ilmi for being the greatest roommate one could possibly
hope for.

Last but not least, a huge thank you goes to all the people of Bratislawa
Youghurt for the incalculably positive effect they have made to my time in
Otaniemi.

Helsinki, July 7th, 2015

Ian L. Tuomi

iv

Abbreviations and Acronyms

bom Bill of Materials
b2mml Business to Manufacturing Markup Language
cam Computer-aided Manufacturing
cad Computer-aided Design
cmm Coordinate Measurement Machine
com Component Object Model
cnc Computer Numerical Control
dcom Distributed Component Object Model
dcs Distributed Control System
dnc Distributed/Direct Numerical Control
erp Enterprise Resource Planning
fmc Flexible Manufacturing Cell
fms Flexible Manufacturing System
hmi Human Machine Interface
guid Global Unique Identifier
idef0 Icam Definition for Function Modeling
jit Just in Time
kpi Key Performance Indicator
lims Laboratory Information Management System
mes Manufacturing Execution Systems
mesa Manufacturing Enterprise Solutions Association
mom Manufacturing Operations Management
nc Numerical Control
oee Overall Equipment Efficiency
ole Object Linking and Embedding
oop Object-oriented-programming
opc Open Platform Communications
opc ua Opc Unified Architecture
pc Personal Computer

v

pcs Process Control System
pdm Product Definition Management
plc Programmable Logic Controller
rest Representational State Transfer
scada Supervisory Control and Data Acquisition
soa Service Oriented Architecture
soap Simple Object Access Protocol
sql Structured Query Language
tps Toyota Production System
uml Unified Modeling Language
uri Uniform Resource Identifier
wms Warehouse Management System

vi

Contents

Abbreviations and Acronyms v

1 Introduction 1
1.1 Background . 1
1.2 Research Objectives . 2
1.3 Research Methods . 2
1.4 Thesis Outline . 3

2 Flexible Manufacturing Systems 4
2.1 Flexibility . 4
2.2 Devices . 6
2.3 FMS Control Systems . 7

3 OPC Unified Architecture 9
3.1 Overview . 9
3.2 Used Technologies . 10
3.3 Address Space . 11
3.4 Companion Specifications . 15

3.4.1 OPC UA for Devices 15
3.4.2 OPC UA Information Model for IEC 61131-3 16
3.4.3 OPC UA for ISA-95 Common Object Model 16

3.5 Aggregating Server Architecture 17
3.5.1 Overview . 17
3.5.2 Information Models for Aggregating Servers 18
3.5.3 Existing Aggregating Servers 19

4 Requirements 20
4.1 System Definition . 20
4.2 Functional Requirements . 21
4.3 Data Requirements . 23

vii

5 Design 26
5.1 System Architecture . 26
5.2 Modules . 28

5.2.1 Server and Clients . 28
5.2.2 Address Space . 28
5.2.3 Mapping Application 29
5.2.4 Database Interface . 31

5.3 Functions . 33
5.3.1 Configuration Time Functionality 33
5.3.2 Runtime Functionality 35

6 Implementation and Experimentation 38
6.1 Application Development Platform 38

6.1.1 Overview . 38
6.1.2 Application Development API 40
6.1.3 Platform Behavior . 41

6.2 Applications . 41
6.2.1 Tool Information Representation 41
6.2.2 Power Consumption Monitoring 43
6.2.3 Detection of Inconsistent Data 43
6.2.4 Resulting Address Space Structure 45

7 Conclusions 47

References 50

viii

Chapter 1

Introduction

1.1 Background
Flexible manufacturing systems (fms) are a means of production able to
produce varying products in small runs while remaining cost-effective. A
key difference when comparing fms to more traditional forms of production,
such as transfer lines, is the ability to react to changes. Reacting to expected
and unexpected changes requires making real-time decisions concerning man-
ufacture in the fms itself, and delivering these instructions to each device
taking part in the process. Information across devices needs to be combined
in order to gain a view of the fms as a whole, and to orchestrate, schedule
and analyze the system efficiently. This requires implementing interfaces to
each device, which is considerably less expensive when there are fewer com-
munication standards in use. Additionally, the relevance of the availability
and free flow of this information to higher-level systems has increased in the
past decades. A single interface to the fms simplifies this vertical integra-
tion for external clients. Reducing the number of used protocols, as well as
implementing some centralization on the fms cell level is therefore desirable.

Opc ua is a protocol for connecting, configuring, and integrating sys-
tems. Its specifications have been developed over many years with the in-
tention of being a full-featured solution for a wide variety of industry use
cases [12]. Opc ua is gaining popularity as a communication standard in
devices that can be used in fms. This is also indicated by previous work
on interface integration challenges in fms [13]. If this is the case, adopting
opc ua would reduce the number of supported communication standards.
The concept of an aggregating server architecture is included in the opc ua
standard [17, sec. 6.3.6].

1

CHAPTER 1. INTRODUCTION 2

This thesis is part of the Leanmes project in the manu research program
of fimecc Ltd. (Finnish Metals and Engineering Competence Cluster). The
main partner was Fastems Ltd.

1.2 Research Objectives
The overall research objective of this thesis to is define and design an aggre-
gating opc ua server specifically for use in fms. The exact requirements
of such an aggregating opc ua server in this application domain are not
known, and there are no existing designs for aggregating opc ua servers for
fms.

Therefore the sub-objectives to this overall research objective are:

• A requirements definition for an aggregating opc ua server for fms
based on the needs of the application domain learned from a literature
review.

• A design complying with the requirements. This includes the design
of each required feature, as well as the design for the general software
architecture combining the functionality.

• A demonstration of the possible benefits of opc ua aggregating servers
for fms control applications. To achieve this end, a prototype based
on the design is implemented and experimented with by developing a
few example applications using it complying with selected use cases.

1.3 Research Methods
The framework which this thesis follows is design science as defined by von
Alan et al. [37], a research framework for identifying problems, solving them
with artifacts and evaluating the artifacts themselves. According to Peffers
et al. [27], the design science process includes six steps: problem identifica-
tion and motivation, definition of the objectives for a solution, design and
development, demonstration, evaluation, and communication.

Four artifacts will be created as the result of this work – the requirements,
the design, the implementation and the evaluation of the aggregating opc
ua server for fms. The problem identification and motivation leading to
the requirements will be conducted as a literature review of the application
domain, fms, and the used technology, opc ua. Determination of which
parts of the opc ua specifications are relevant to the research problem, and

CHAPTER 1. INTRODUCTION 3

a description of these parts is in order. Additionally, literature relating to
opc ua aggregating servers is reviewed, in order to learn from approaches
to the subject taken in previous work. The results of this review will be the
basis for forming the requirements of an aggregating opc ua server for fms.
Based on the requirements, a design is created to fulfill them. The design is
implemented as a proof-of-concept prototype which is subsequently demon-
strated. The evaluation consists of a demonstration that the prototype is
configurable to adhere to selected use cases, and that it does so by providing
functionality stated in the requirements.

1.4 Thesis Outline
Chapter 2 contains a literature review on the application domain concern-
ing this thesis, flexible manufacturing systems. It begins with a brief history,
and explains the meaning of flexibility and the devices and software used to
achieve it. The relation of fms to other business processes in a manufactur-
ing company are also explained.

Chapter 3 continues the literature review on the topic of opcua. The
basic concepts and design of opc ua will be explained, and the relevant fea-
tures will be described. The chapter concludes with an overview of previous
work concerning the topic of opc ua aggregating servers.

Chapter 4 will define a requirements definition for the aggregating opc
ua server for fms in relation to other systems. The chapter starts with an
overview of the kinds of functions the system will accomplish, and its role
as part of the fms.

Chapter 5 contains a detailed explanation of the architecture, modules,
and functionality that is part of a software design that has been made to
satisfy the requirements in Chapter 4.

Chapter 6 describes the tools and environment related to an implemen-
tation of a prototype based on the design in Chapter 5, and demonstrates
the functionality of it by using it to develop applications according to three
use cases.

Chapter 7 concludes this thesis with a summary, conclusions, and sug-
gestions for further work.

Chapter 2

Flexible Manufacturing Systems

The origin of Flexible Manufacturing Systems (fms) can be traced to the
1980s, when demand for efficient, automated small-scale production was
matched with the increasing sophistication of computer systems. Up to
that point, only mass production was fully automated, whereas small-scale
production relied on expensive machine-assisted human labor. For many end
products, it is not desirable to scale production up to drive costs down – the
demand for them is too low. Need for a specific part can be intermittent,
in some cases even a rare occurrence. The flexible manufacturing system
bridges the gap between high- and low-volume production, combining the
flexibility of prototyping shops with the efficiency of production lines. The
fms was created to be a mode of production which is inherently flexible, and
is designed to achieve cost-effective production under varying demands. This
is achieved with a set of computer-controlled, integrated devices capable of
storing, transporting and processing the required material. Ultimately, the
objective of flexible manufacturing is to increase utilization, throughput and
quality, decrease lead times and storage quantities, and improve due date
reliability [31].

2.1 Flexibility
There is no universally accepted definition for what differentiates a flexible
manufacturing system from a non-flexible one [9]. There are, however several
means in which a fms can be flexible. Browne classifies them as production,
product, process, machine, operation, expansion, routing, and volume flexi-
bility [3]. Flexibility is defined to mean that the system is capable of all or
some of these kinds of flexibility. Production flexibility refers to the entirety

4

CHAPTER 2. FLEXIBLE MANUFACTURING SYSTEMS 5

Figure 2.1: In terms of cost-effective variety and volume in manufacturing,
fms occupy the area in between transfer lines and standalone machines[31].

of parts that can be produced – it is dependent on the other types of flexibil-
ity. Product flexibility is the ease of configuring the system to economically
produce new products using the same tools. Process flexibility refers to the
variety of jobs a given fms can process. Machine flexibility refers to the
ease of making physical changes to the system required by production, such
as changing tools or replacing worn-out parts. The order of operations in a
fms is not necessarily fixed – operation flexibility is the extent to which the
order is changeable. Routing flexibility refers to ability of the processed ma-
terial to take different routes in the fms during manufacturing, for example
when a certain route has broken down. Volume flexibility is the ability to
profitably change production output quantity. Expansion flexibility is the
ease building and expanding the fms by adding components.

Flexibility has costs and can be in conflict with cost-efficiency as a
goal [5]. If a high volume of a single product is desired continuously, transfer
lines designed for high throughput are typically more economical. Similarly,
if product variety is very high, as in prototyping, standalone nc machines
may present a more optimal solution. As illustrated in Figure 2.1, fms
occupy an area in between those extremes [31].

Machine utilization is increased by eliminating machine setup, manual

CHAPTER 2. FLEXIBLE MANUFACTURING SYSTEMS 6

intervention and slow transfer times. Part inventory is reduced, and machine
throughput increased by intelligent scheduling. Gradual evolution towards
increased flexibility and customizability in all kinds of systems is an ongoing
trend visible in larger scale manufacturing as well, and many industrial
systems not considered fms can be described as flexible.

2.2 Devices
A fms can be described as a set of computer controlled machines and storage
which are interconnected together with a transport system [31]. Machines
able to independently manufacture custom designs, such as cnc machines
are utilized as components of fms, along with automated material handling.
This combination significantly reduces the human effort required to man-
ufacture each part and leads to lower reaction times. It further enables a
production system to react to changing demands without extensive loss in
profit, even when a specific part is rarely needed. The range of components
is large, and there are many ways to organize the layout.

Loading Stations

A fms must have inputs and outputs for materials and finished products.
Loading stations are used to load raw or unfinished parts to pallets, and to
extract completed products from the system. Stations can also be used for
inspecting, washing and assembling parts [31].

Transport

The transport mechanism handles material transport between work stations,
storage and machining within the fms. Cranes are a common transport
method for moving materials and manufactured parts between stations and
machine tools. Other types of transport devices include robots and conveyor
belts [31].

Storage

Fms flexibility is increased by including a storage buffer for raw material
and finished products. Otherwise materials need to be loaded and extracted
constantly. This is done in the form of an integrated storage warehouse
accessible by the transport mechanism of the fms. Typically storage is done
on shelves.

CHAPTER 2. FLEXIBLE MANUFACTURING SYSTEMS 7

Tool Handling

Automated tool handling adds capability to a machine tool by increasing
its machine flexibility. It stores and delivers a variety of tools that may
be needed during manufacture. In addition, the tool management system
holds details about tool abilities, tracks their state and detects their mal-
function. Advanced tool management systems can even replace broken tools
automatically. This helps the fms in achieving process flexibility.

Machine Tools

Machine tools are the devices actually operating the tools to physically alter
the raw material. They are typically Computer Numeric Control (cnc)
machines. A cnc machine receives precisely encoded program sequences it
executes to create desired products with the raw material and tools provided
by the fms. Cnc machines can operate by several principles. In cnc mills,
the tool rotates and works on the material – in cnc lathes the material,
typically cylindrical in form, is rotated.

2.3 FMS Control Systems
A fms controller observes the devices in the fms and issues real time com-
mands to them. Communication from the fms controller to devices consists
of numeric control (nc) programs and individual control data downstream,
and capacity and quality control data upstream. The fms controller orches-
trates the production process of orders originating from higher-level systems,
such as enterprise resource planning (erp) systems. The fms controller also
holds an inventory of material resources and schedules and tracks device
availability. It may record production data enabling traceability or gather
process information from the shop floor into reports, concentrating individ-
ual sensor-level data into a form that is easier to use in decision-making. The
responsibilities of an fms controller overlap with those of manufacturing exe-
cution systems, or mes. Mes is a concept of computer software which tracks
and controls the transformation of raw materials into finished products. A
fms controller can be interfaced or act in parallel to another control system
providing mes functionality, or incorporate part or all of these features and
act as the sole control system of the fms.

As the range of device components increases, so do integration issues.
This is an important concern for fms, where variation in equipment and

CHAPTER 2. FLEXIBLE MANUFACTURING SYSTEMS 8

communication protocols are high and fms controllers typically need to con-
nect to several types of interfaces. A considerable part of developing fms
controller software consists of the integration challenges due to this. Though
internal system integration in a fms is challenging and expensive due to the
amount of equipment involved, it is achievable. The challenges are more
prominent when considering integration with external systems. Interfaces
in the field are often implemented in non-standard ways, requiring external
entities to implement several client-side interfaces in order to connect to
each part of the fms. This drives up costs, takes time, and leads to data
that would otherwise be valuable not being exchanged. As configuring ex-
ternal clients to connect to the fms should simple, it makes sense to provide
a standard interface to the fms, even when a fms control system is not
internally adhering to such a standard.

An industrial communication standard, called opc ua, detailed in the
next subsection, was adopted by this work as a potential solution to these
integration issues.

Chapter 3

OPC Unified Architecture

3.1 Overview
Opc1 Unified Architecture, or as it is commonly known, opc ua, is a de-
velopment of older opc standards, collectively referred to as opc Classic.
Focusing on essential features and restricting apis to use the Microsoft Com-
ponent Object Model (com) and Distributed com (dcom) enabled opc Clas-
sic to cut complexity and gain traction quickly. It contains the opc Data
Access[15], opc Alarms & Events[14], and opc Historical Data Access[16]
standards. The limitations of remote access capabilities of com/dcom, the
platform restriction to Microsoft Windows, as well as a limited feature set
prompted the creation of a new standard, opc ua, which is the topic of
this chapter. It was required to incorporate all the previous features of opc
Classic, and ease communication and communication security in distributed
systems. opc Classic was conceived as something akin to a software driver,
like a pc printer driver. In the development of the concept of opc ua, this
vision was expanded with increased data modeling capabilities in the form
of object-orientation, a type system, complex data, and ability to represent
meta-data [12].

Opc ua is grounded in few, but powerful principles. One is the graph
data structure, consisting of nodes and vertices. Graphs can be used to
represent a wide variety of structured information. Useful parts of object
oriented programming, such as type hierarchies and inheritance are also

1Opc originally stood for Ole for Process Control, where ole stands for Object Linking
and Embedding. The acronym has since become convoluted, as opc ua does not use ole. In
2011, the opc Foundation officially renamed opc to mean Open Platform Communications,
but this has not caught on. Open Productivity & Connectivity is also sometimes used. In
practice opc is simply opc.

9

CHAPTER 3. OPC UNIFIED ARCHITECTURE 10OPC Unified Architecture, Part 1 14 Release 1.02

OPC UA Server

OPC UA Server Application

OPC UA Server API

OPC UA
Communication
Stack

 Real
Objects

OPC UA AddressSpace

Node

Node

Node

Node

Node

Node
Node

Node

Node

To
 OPC UA

client

View

From
OPC UA

client

To
 OPC UA

client

Req Msg Rsp Msg Publ Msg Notif Msg

From
OPC UA

client

Subscription Subscription Subscription

 Monitored
Item

Figure 5 – OPC UA Server Architecture

6.3.1 Real objects

Real objects are physical or software objects that are accessible by the OPC UA Server application
or that it maintains internally. Examples include physical devices and diagnostics counters.

6.3.2 OPC UA Server application

The OPC UA Server application is the code that implements the function of the Server. It uses the
OPC UA Server API to send and receive OPC UA Messages from OPC UA Clients. Note that the
“OPC UA Server API” is an internal interface that isolates the Server application code from an OPC
UA Communication Stack.

6.3.3 OPC UA AddressSpace

6.3.3.1 AddressSpace Nodes

The AddressSpace is modelled as a set of Nodes accessible by Clients using OPC UA Services
(interfaces and methods). Nodes in the AddressSpace are used to represent real objects, their
definitions and their References to each other.

6.3.3.2 AddressSpace organization

Part 3 contains the details of the meta model “building blocks” used to create an AddressSpace out
of interconnected Nodes in a consistent manner. Servers are free to organize their Nodes within the
AddressSpace as they choose. The use of References between Nodes permits Servers to organize
the AddressSpace into hierarchies, a full mesh network of Nodes, or any possible mix.

Figure 3.1: Overview of opc ua concepts [17, p. 14]
.

incorporated into opc ua. This allows opc ua clients to handle instances
of the same type similarly and avoid specialized data and functions. This is
done by relying on rules and conventions the type is governed by. Types can
be shared between applications, and can even be used to generate functional
source code [10][26]. It is a way of defining the hierarchy, relations, attributes
and behavior of the entire automation system. Data transfer using the opc
ua protocol involves at least a client and a server. A server contains the
information model, and the client accesses that information model using
services [17].

3.2 Used Technologies
The opc ua standard is defined in an abstract manner, in order for the
technology used for implementation to be independent of it. This enables
the standard to remain relevant, even if technologies widely in use change.
The tasks required to be accomplished by the technologies chosen are data

CHAPTER 3. OPC UNIFIED ARCHITECTURE 11

encoding, data security, and data transport. A set of technology that imple-
ments this set of tasks is called a stack. The opc foundation provides stacks
for several languages. Data Encoding is done in opc ua Binary or xml.
The standard stack implements network communication over tcp. Soap
over http, is also supported, but in practice it is rarely used [22]. Several
companies also produce Software Development Kits (sdks), which include
the stack, and more importantly, implementations of the features in opc
ua. This enables developers to develop applications with ease. In practice
purchasing a sdk is essential for utilizing the full extent of opc ua, as
implementing these features independently is a major task. Software Devel-
opment Kits are available in many major programming language platforms,
including ansi C [32], C++ [33], .net [35], and Java [29] [34]. All support
the most important features, but feature coverage is often not full.

3.3 Address Space
The address space of an opc ua server is the totality of the data it exposes.
It is a graph consisting of nodes and edges. Nodes are identified by their
NodeId and are divided into NodeClasses. A node contains its edges, which
are called References in opc ua. They connect a node with others. There
are six different kinds of NodeClasses: Objects, Variables, or Methods, which
are instances of the types ObjectTypes, VariableTypes, and MethodTypes.
The exact address space structure is specific to the entity developing the
aggregating opc ua server. Excepting certain nodes that must be present
on every opc ua server, there is no predefined way to arrange the opc
ua address space. This enables each implementor of an opc ua server to
arrange the address space according to their own needs.

NodeIds and Namespaces

Each Node is identified with a unique NodeId. These identifiers can be of
three types, Numeric, String or guid. They are unique numbers, unique
strings, and unique 64-bit numbers, respectively. Identifying numbers and
strings need to be chosen in a way that does not cause a conflict. A guid
is generated randomly, yet its uniqueness is in practice statistically ensured
as it is such a large number. Each NodeId has a Namespace string, which
further differentiates it from other NodeIds. The same Node Identifier can
be used in different NodeIds on the condition they are separated by Names-
pace. In order to avoid redundant use of memory during runtime, nodes

CHAPTER 3. OPC UNIFIED ARCHITECTURE 12

do not contain the Namespace string itself, but rather a NameSpaceIndex,
referring to the Namespace. The NameSpaceIndex can be converted to the
Namespace via a Namespace table.

Attributes

Each Node contains a set of Attributes. The exact attributes a node depend
on its NodeClass, but some attributes are common to all nodes. An At-
tribute consists of its name and value in a certain DataType. The DataType
signifies how the value should be interpreted. Strings, Integers, and Date-
Times are some common DataValues. Binary data can also be saved under
the DataType ByteString – this enables arbitrary, and even large data to
be contained in the address space [17]. Some Attributes are obligatory for
all Nodes: NodeId, NodeClass, BrowseName, and DisplayName. These are
used to identify, categorize, and name the Node. All the values related
directly to the node itself are encoded as Attributes.

References and ReferenceTypes

An opc ua address space is effectively a graph, and references are its edges.
References form the structure and relations of the address space. As with
graph edges, references can be directed or undirected. In the case of di-
rected references it is not required for a server to add inverse references
to nodes being referred to, but it is strongly recommended, and a practice
typically observed [17]. Each Reference has a ReferenceType, represented
as a Node in the address space. In practice, the most important distinction
between different ReferenceTypes is that some are hierarchical, and some
are not. References that have a hierarchical ReferenceType may not contain
cycles, whereas references with a non-hierarchical ReferenceType can form
any graph. Several networks can be formed in the same address space by
using different ReferenceTypes to differentiate between them.

Objects and ObjectTypes

An Object is a Node that is used primarily to organize the Address Space in
whichever way desired. It does not contain data, other than to describe the
Object itself. A common ObjectType is Folder, used to group nodes hier-
archically. ObjectTypes are used as metadata for external applications, as
well as to restrict the configuration of an Object through ModelingRules [17].

CHAPTER 3. OPC UNIFIED ARCHITECTURE 13

Variables

Variable Nodes are used to contain values. Each value has a DataType,
depending on the Variable. A simple variable consists of a single node, the
Value Attribute of which contains the current value of the node. Complex
variables can contain child variables, and they can subsequently reference
child variables down to an arbitrary complexity [17].

Events

Events are occurrences at a specific point of time, which are received via
subscriptions. Events can be, for example, notifications of occurrences in
the underlying system, errors, or address space configuration changes [20].
Events are generated by a node specified as an EventNotifier, which in turn
propagates events according to HasEventNotifier references. Events have
an EventType, which can be used to categorize and filter them. One impor-
tant use of events is notifications and alarm events generated by Alarms &
Conditions, which are discussed in more depth below.

Browse

The address space of every opc ua server is required to contain certain
nodes, such as the Server object, and the Objects folder. These, among oth-
ers, provide an entry point into the address space. In order to discover the
address space parented by these entry points, the references they contain
need to be followed. Provided a node, Browse will return the references it
holds. They can then further be Browsed to reveal the rest of the address
space [21]. A noteworthy service related to node discovery is Query, which
returns nodes across the entire Address Space according to user-defined crite-
ria. However, it is not always supported by opc ua server implementations,
and Browse must sometimes be used instead.

Read and Write

Once a node in the address space has been as been identified by NodeId,
its Attributes can be accessed using the Read and Write services. These
services are always used when accessing node Attributes, and their names
are self-explanatory. Read and Write will trigger value change notifications
for Nodes with Subscriptions[21].

CHAPTER 3. OPC UNIFIED ARCHITECTURE 14

Subscribe

Clients can Subscribe to three different types of data changes on an opc
ua server: variables, events, and aggregated values. Each data source is
represented by a MonitoredItem. Monitored items check values for changes
according to a predefined sample interval. They also hold a data or event
queue, which has a configurable size. By default, only one data change is
queued. For events, the default behavior is to queue as much event data
as possible according to server limits [21]. One or more monitored items
are combined into a single subscription item. The subscription keeps track
of the monitored items and delivers information on data changes with the
Publish service according to a publish interval. A filter can be introduced for
each type of monitored item. In the case of variable data, the filter can be a
deadband, meaning the rate of change effects whether a notification message
is triggered or not. It can also be conditioned on the type of change, for
example when the status of the value changes. Event filtering can be even
more complex. Aggregate data filtering (not to be confused with server
aggregation) is a method of sampling time series for averages and the like
for set segments of time.

Historical Data

Historical data refers to a time series of changes in the Attribute value of a
certain Variable. Variables contain the Historizing attribute, which indicates
whether historical data is currently being saved. The HistoryRead service
provides access to the time series. Historical data is typically implemented
outside of the sdk. Historical data can also be aggregated, meaning an
average or other time series analysis can be performed on it by the server [18].

Alarms & Conditions

The opc ua specification part 9, Alarms & Conditions, was released in
2012 [23]. It introduces several new concepts that can be used for system
monitoring. Conditions represent the state of a part of the system and can
be triggered to create an alarm. They are instances of ConditionTypes, and
are necessarily not exposed in the address space. They maintain an inter-
nal state, a state machine that can be simple or arbitrarily complex. The
complexity of a condition is typically identified by its ConditionType. The
Base Condition State Model has two states which refer to its own activity:
Enabled and Disabled. When a condition changes to Enabled, that action

CHAPTER 3. OPC UNIFIED ARCHITECTURE 15

as well as subsequent actions generate event notifications. States can be
Acknowledged, meaning the operator can indicate that the alarm event has
been recognized.

Alarms extend acknowledgeable conditions by adding additional states.
An alarm can be active, shelved and suppressed. An active alarm signifies
that the condition it represents is happening. A shelved and a suppressed
alarm act in the same way, the difference is that an alarm is shelved by the
operator, and suppressed by the underlying server. Shelved or suppressed
alarms are still fully functional, unlike disabled alarms. Their utility is that
they can easily be filtered out by the operator when faced by multiple alarms
at once. In this way the operator can concentrate on the important alarms.

3.4 Companion Specifications
The opc foundation has described how data can be described and trans-
mitted from one system to another. Other organizations can further define
companion specifications for specific types of information. Several of these
specifications, based on the standard opc ua specifications, have been de-
veloped [28] [25]. Models representing hardware should typically be based
on opc ua for Devices [24]. Expansions of existing information models
can be general, or they can have a very specific use case. These provide a
common substructure for related opc ua servers and provide guidelines for
their development. Provisional information models, based on the standard
specifications, can be expanded even further by end users. A shared informa-
tion model enables vendors and implementors to share application code that
is able to utilize the metadata present in information models. Companion
specifications are often not utilized in their entirety. Implementors typically
use only parts that best apply to their specific case.

3.4.1 OPC UA for Devices

Opc ua for Devices[24], released in 2009, describes a standard way to orga-
nize and typify information related to physical equipment, such as sensors,
actuators and communication devices. The specification can be used to
model the features, settings and the hierarchy between them. The Topol-
ogyElementType represents a system containing configurable parameters (a
ParameterSet). A DeviceType represents an actual device. It can also consist
of other instances of DeviceType, or instances of BlockType.

Devices instantiated according to opc ua for Devices are organized by an

CHAPTER 3. OPC UNIFIED ARCHITECTURE 16

Object called DeviceSet. All devices are not necessarily immediate children
of DeviceSet. They can be further organized into sub-devices. DeviceSet
acts as an entry point for clients connecting to the device address space.
The specification includes a device communication model, which adds infor-
mation on the network the devices are connected to, as well as information
on the connections.

3.4.2 OPC UA Information Model for IEC 61131-3

One of the areas where opc ua is gaining traction is plc interfaces. The
industry standard for defining programs is iec 61131-3, which defines several
programming languages suited for this task, Structured Text (st) and Se-
quential Function Charts (sfc), among others [7]. The plcopen organization
has developed a specification with the opc Foundation [28]. The objective
of the information model is to be able to describe any iec 61131-3 compliant
configuration. However, the constraints of iec 61131-3 are not taken into
account. Therefore, although each valid iec 61131-3 program can be mapped
to a valid opc ua information model, the opposite is not true [28]. Openplc
interfaces can be implemented directly into the plc device [2]. In this case,
the opc ua information model is created according to annotations to the
plc code used to program the device. This is useful in the sense that little
additional coding needs to be done in order to create the opc ua server.
This requires the opc ua address space to adhere to the structure of the
code.

3.4.3 OPC UA for ISA-95 Common Object Model

The isa-95 standard provides a common and flexible vocabulary for modeling
information related to enterprise and control systems in industry [8]. It
has been specified primarily in order to ease integration between the mes
and erp levels. The goals include reducing incompatibilities and cost and
subsequent risk in implementing interfaces. In practice, it aims to bridge
manufacturing with business. A partial functional isa-95 specification in
opc ua has been made by the opc foundation [25]. The parts of isa-
95 that were deemed most important by the work group and subsequently
implemented are Personnel Information, Role Based equipment information,
Physical Asset information, and Material Information.

The material model is deemed important for this work. It is used to
classify what kinds of materials are handled, and to describe what materials

CHAPTER 3. OPC UNIFIED ARCHITECTURE 17

Figure 3.2: Vertical integration using opc ua[17, p. 16].

OPC Unified Architecture, Part 1 16 Release 1.02

f) exchange information with each other on a peer-to-peer basis, this could include redundancy or
remote Servers that are used for maintaining system wide type definitions (see Figure 6),

g) are chained in a layered architecture of Servers to provide:
1) aggregation of data from lower-layer Servers,
2) higher-layer data constructs to Clients, and
3) concentrator interfaces to Clients for single points of access to multiple underlying Servers.

Figure 6 illustrates interactions between Servers.

Netw ork

Interactions
between servers

OPC Server

client
interface

server
interface

OPC Server

server
interface

client
interface

Figure 6 – Peer-to-peer interactions between Servers

Figure 7 extends the previous example and illustrates the chaining of OPC UA Servers together for
vertical access to data in an enterprise.

 OPC
Client

OPC
Client

Enterprise
Semantic

Layer

Enterprise Network

OPC
Client

OPC
Server

OPC
Client Process

Semantic
Layer

Operations Network

OPC
Server

OPC
Server

OPC
Client

OPC
Server

OPC
Client Device

Semantic
Layer

Plant Floor Network

OPC
Server

Figure 7 – Chained Server Example

are actually being handled. Material classes classify materials on the high-
est level, and material definitions can be used to sub-classify them further.
Each material class and material definition can be amended with properties
describing properties of the classification. The inventory of raw, finished and
intermediate materials are represented as lots, which can be further divided
into sublots if needed. Material lots often have properties associated with
them, such as their location, or results of quality control tests [25].

3.5 Aggregating Server Architecture

3.5.1 Overview

The opc ua specification includes the concept of a layered architecture of
servers, illustrated in Figure 3.5.1. The network is divided into semantic
layers, for example enterprise, process, and device layers. A combined opc
ua server and client provides access from higher layers to lower layers – data
from lower-layer servers is gathered and aggregated into higher-layer data
constructs. The information is concentrated into an interface providing a
single access point for higher-level clients [17, sect. 6.3.6]. This architecture
is the basis for what has later been named aggregating server architecture. A
client accessing the aggregated machines only needs to connect to one server

CHAPTER 3. OPC UNIFIED ARCHITECTURE 18

in order to gain access to the functionality it requires. When no values are
derived, and the address space is simply passed through as is, the server
is referred to as a chaining server [17]. Aggregated servers can further be
aggregated, for example in a production facility containing several fms [11].

The interface clients connect to in order to access the functionality of the
aggregating server is the aggregating address space. Nodes in the address
space of the aggregating server can directly refer to nodes on underlying
servers. They can also contain a value derived from several sources. The
aggregated address space can also contain alarms monitoring part of the ag-
gregated devices address space, and depend on values from several different
devices. The nodes in the aggregating address space can be connected to
underlying devices with a mapping. The mapping is configured according to
a configuration which specifies the aggregated servers and how their address
spaces are mapped into the aggregating address space [4].

Aggregating or chaining servers often include an implementation of opc
ua historical data access. Such a server is often called a historian. A histo-
rian collects and logs a specific part of the information generated by servers,
and enables it to be retrieved later. The historization of data on a chaining
opc ua server has been the topic of work by Asikainen [1]. The design was
found to be applicable to historizing data on an aggregating server. With
historization, the aggregating server can deliver persistent data, as well as
the results of analysis on that data, to higher-level systems. Aggregate data
based on current and historical values is processed on the aggregating server
to the extent possible. The amount of network traffic transmitted can be
significantly reduced when the transmitted data has already been processed,
especially when processing large time series data [6]. Each external system
can access the same information directly, not having to calculate the data
independently. Centralizing data processing also ensures that key values
consumed by each client are calculated in the same way.

3.5.2 Information Models for Aggregating Servers

It is not compulsory to extend the opc ua information model in order to
implement server aggregation. However, encoding configuration information
directly in the address space is compelling, especially if an aggregation infor-
mation model can be standardized. This has been attempted by Großmann
et al., who define two information models, one for aggregation servers, and
one for aggregated servers [4]. The aggregation server information model
contains the servers available for aggregation, which can be populated either

CHAPTER 3. OPC UNIFIED ARCHITECTURE 19

manually or by the Discovery service in runtime. Each aggregable server Ob-
ject contains a Method, which launches the aggregation of the server. The
aggregated server information model in turn contains rules to aggregate the
Types and Instances it contains. The way the rules are encoded and used is
an interesting research problem, but Großmann et al. do not specify their
solution in much detail [4].

3.5.3 Existing Aggregating Servers

There are a few commercial opc ua servers on the market which can be said
to be aggregating. However, none of them implement an aggregating server
in the meaning of the word used in the title of this thesis.

• The Prosys opc ua Historian [30] connects to several servers and stores
values and event data from them using opc ua hda. It collects the
values and event data from all the servers it connects to, and stores it
into a sql database for later use. It advertises support for unlimited
data sources.

• Unified Automation UaGateway is a wrapper & proxy which can be
used to migrate existing com/dcom-based opc applications to opc
ua [36]. It is aggregating in the sense that it can connect to several
servers and provide a single point of access, but its main use case is
migration from classic opc to using opc ua, rather than functioning
as an aggregating server in the sense pictured above.

Chapter 4

Requirements

In this chapter, requirements for the aggregating opc ua server for fms
are identified, and the systems it interacts with are defined. Requirements
are based on work on opc ua aggregating servers in general, and work on
aggregating servers in fms. The specific requirements of fms will also be
considered in themselves. Section 4.1 defines the systems the aggregating
server interacts with, and the role of the aggregating server with respect
to external systems. Section 4.2 defines what functionality is required from
the server during its lifecycle, and Section 4.3 defines what information the
aggregating server is required to contain and process.

4.1 System Definition
The basic system architecture is based on aggregating architecture as de-
scribed in the opc ua specifications [17] and by Mahnke [12]. An opc
ua aggregating server connects to devices on the factory floor and allows
external clients to connect to it. This is illustrated in Figure 4.1. The ag-
gregating server connects to devices in the local fms network, which are
assumed to contain an opc ua server. If a device does not contain an opc
ua server, it can be amended with an adapting gateway server implementing
the device interface and providing access to it by opc ua clients. Any opc
ua client can connect to the aggregating server, provided it is authorized.
These may include an operator of the system, a system provider, an external
service company, or some internal service. Alternate interfaces can also be
provided to further improve accessibility to the server, for example using a
rest interface.

20

CHAPTER 4. REQUIREMENTS 21

OPC UA
Aggregating

Server for FMS

Aggregated
Devices

Clients

Database

 Remote
Client

Local
Client

FMS
Controller

OPC UANC
Machine

OPC UA

OPC UA

OPC UA

OPC UA

OPC UA
PLC

Device

Figure 4.1: The opc ua aggregating server for fms connects to fms devices
and allows external clients to connect to it.

The role of the aggregating opc ua server as defined here is to be sup-
plementary to an existing fms controller. It primary function is to observe
the process in the fms. It hardly is reasonable for a fms provider devel-
oping an existing fms controller to change all of its interfaces to opc ua
immediately, when there is no immediate value [13, sect. 4.1.1]. Therefore
opc ua is likely to be adopted incrementally, in new and parallel interfaces
to existing ones. The aggregating opc ua server interfaces with an existing
fms controller via a relational database that the fms controller utilizes.

4.2 Functional Requirements
Configuring the aggregating opc ua server requires identifying devices in
the fms in order to connect to their address spaces via opc ua. In addition,
relevant nodes in devices’ address spaces must be identified for access with
opc ua services. The configuration-time requirements for identifying nodes
do not differ between devices due to each opc ua server functioning in a
standardized manner, according to opc ua. However, the opc ua address
spaces structures of devices vary – the aggregating server needs to identify
relevant nodes, regardless of address space structure. The information re-

CHAPTER 4. REQUIREMENTS 22

quired to do this must be included in a configuration that can be modified
to suit each fms and use case involving them. Custom functionality for ob-
serving and transforming specific parts of the aggregating server’s address
space also needs to be configurable.

The NodeIds of nodes are unique to the address space containing them.
When representing nodes from several opc ua address spaces in one ag-
gregating address space, the possibility of a NodeId conflict arises. The
aggregating opc ua server needs to be able to distinguish nodes with the
same NodeId, but different address spaces.

In addition to opc ua devices, the aggregating opc ua server connects
to typically one database, containing information related to the functioning
of the fms, for example material information. Information in different fms
databases is arranged differently. Therefore the configuration describing
the mapping between the aggregating server’s address space and database
schema must be custom-made. Typically, tables are organized into a hier-
archy, with rows connected by foreign key values. Some amount of func-
tionality assisting configuration in basic cases should be provided, though
it cannot be guaranteed to apply to every fms database schema describing
information.

Functionality during operational time is provided with opc ua commu-
nication, using services. Clients read values with the Read service, which
the aggregating opc ua server interprets according to which node the client
accesses in its address space. Reading the value of a node can, depending
on context, trigger one or more further opc ua calls to devices. The result
can be passed through or processed by the server, according to the context
of the call. Using the opc ua service Write similarly initiates a correspond-
ing Write call to a device or database, if applicable. Subscriptions can be
made to any part of the opc ua aggregating server’s address space, and the
aggregating server handles value changes on aggregated devices as expected,
with opc ua event notifications to subscribed clients. In addition to node
value changes, alarm events can also be subscribed to.

Fms providers or support personnel need to occasionally remotely trou-
bleshoot problems at the customer site, or perform other maintenance. The
security features of opc ua enable an opc ua server to be practically ac-
cessed directly outside a local network, even through firewalls [19]. This
feature of opc ua is a significant benefit compared to other communication
protocols – it provides value when a fms provider needs to connect to a
fms it has installed on a customers premises [13]. The aggregating server

CHAPTER 4. REQUIREMENTS 23

implements these security features.

4.3 Data Requirements
In addition to information sourced from a database, essentially all infor-
mation generated by the aggregating opc ua server is dependent on data
contained by devices. The aggregated devices each contain an opc ua server
containing an address space. The address space structure of devices is in
practice static – new nodes or references are not created during runtime.
Therefore the aggregating server needs to browse through the structure only
once. Changing values are, with the exception of timestamps and other time-
dependent metadata, contained by the value attributes of Variable nodes.
Variable nodes describe the data type of the value it contains. Variables
that are of interest are typically integers, booleans, or floating point num-
bers. The rate of change for Variable values depends on its function in the
device. Values such as sensor readings may change very frequently, others
may not change at all.

A relational database is another source of information for the aggregat-
ing server. The data contained in a relational database is arranged into
tables according to a schema. As the aggregating server is being developed
for an existing database attached to a fms controller, the schema is not
known beforehand from the perspective of the aggregating opc ua server.
Therefore the aggregating server does not assume any schema, and can be
fitted to a wide variety of relational databases.

Observing the fms often requires more information than the current
state. Time series information is needed, sometimes spanning a considerable
period of time. For this reason the aggregating opc ua server is able to
represent, retrieve and persist time series data. In order to save and persist
values as per opc ua Historical Data Access, nodes are assigned identifiers
sufficient to consistently identify them between sessions. Their time-series
data stored in a database is accessed according to these identifiers.

The opc ua aggregating server acts as an interface to external clients
accessing the fms. The aggregating opc ua server should allow access
to the address spaces of aggregated devices directly, passing their address
space through as is. This enables clients to the aggregating opc ua server to
perform all operations in the fms that would otherwise require connecting
to devices directly. It is cost-effective, as it comes at practically no effort –
if only passing values through meets the requirements of the stakeholders,

CHAPTER 4. REQUIREMENTS 24

no further configuration is required. It is also practical, as the totality of
servers and nodes across a fms can be assumed to be small.

Clients connecting to the aggregating opc ua server often need to com-
bine several values, sometimes across devices. This functionality is best
provided by the opc ua aggregating server for the fms. In this way, the cal-
culation of key values has a centralized implementation, saving each client
from implementing the same functionality. The aggregating server is able to
derive combined values based on multiple values in the aggregated address
spaces.

Operators of the fms diagnose future and present system failures by in-
tuition gained through prior experience. Translating these intuitions into
concrete rules that can be executed in an aggregating server frees the op-
erators from redundant work in diagnosing these problems. Diagnostics
involving multiple devices can enable the system to keep working even when
a single measurement in itself implicates a possible malfunction. Predicting
problems based on anomalous events or values can enable an operator to
be alerted before a potential equipment failure. This may decrease system
downtime resulting from unscheduled maintenance breaks. When a poten-
tial problem which cannot be taken into account automatically is detected,
it is important to notify users. This is best facilitated in an aggregating
opc ua server by using opc ua Alarms. Since alarm logic can be complex,
it is recommended that defining alarm conditions is as flexible as possible.
Alarm severity, description, and other details are configurable in order for
alarm event information to be as useful as possible, and to make event filter-
ing useful. The alarms are to be conveniently grouped in the address space
so that only alarms relevant to each client can be conveniently subscribed
to. Alarm conditions depend on values on the aggregated servers or the
connected database. If the values are polled constantly, the system load is
increased. Therefore alarm evaluation is event-based when possible.

Most companies using a fms also have higher-level systems consuming
information generated by the fms. Having direct access to fms-level data
via an aggregating server could aid the business to discover opportunities to
increase productivity and to see potential points of failure. Subsequently,
the fms itself can be operated more efficiently. Therefore integration with
higher-level systems is a priority for the opc ua aggregating server for fms.
Melander suggests that standardized opc ua companion specifications be
used to organize data in the fms opc ua address space to the extent pos-
sible in order to facilitate and ease integration [13, Sect. 4.2.1]. Therefore

CHAPTER 4. REQUIREMENTS 25

the aggregating server incorporates opc uacompanion specifications in the
aggregating server when deemed useful.

In the future, an aggregating server may also provide a platform for
gathering usage information. When a fms is supplied by a company con-
centrating its efforts on making fms, it makes sense to gather information
on how users are actually using the system. The supplier can analyze the
information in order to understand how the customers are using the product.
This enables the supplier to know which aspects of product development are
actually important. Understanding how customers misunderstand intended
ways of using the product can also be beneficial. This knowledge can be used
to improve product usability to help proper usage of the fms. It can also
prompt improvements to documentation and training. As there are likely
to be many clients, there will be a significant amount information generated
in this way. All improvements made based on this information will directly
benefit all users.

Chapter 5

Design

This chapter proposes a design of an aggregating server complying with the
requirements presented in Chapter 4.

5.1 System Architecture
The aggregating opc ua server for fms is an application run as part of
the fms as illustrated in Figure 5.1. Connected devices in the fms acting
as information sources are called aggregated, in contrast to the aggregating
server. The aggregating server contains opc ua clients able to connect to
the opc ua server of each aggregated device and access their address space.
It also contains one opc ua server that external opc ua clients can connect
to in order to access the address space of the aggregating server itself. In
between the clients and server there is a mechanism connecting them, called
a mapping. The mapping describes how the data underlying each node can
be retrieved, connecting nodes in the aggregating address space to a vari-
ety of sources, including nodes in the address spaces of aggregated servers,
database queries, and functions combining values from different parts of
the aggregating address space. The aggregated address space and the map-
ping are generated according to a configuration. The configuration specifies
what servers are to be aggregated and identifies relevant nodes on the ag-
gregated servers. It further describes the transformations and combinations
performed on them and the nodes that are generated in the aggregating
address space to provide an interface to this functionality. The aggregating
opc ua server also interfaces with typically one database used by the fms
controller to map a part of its contents into the aggregating address space.
A database used to store and retrieve historical data is also interfaced with.

26

CHAPTER 5. DESIGN 27

Aggregating OPC UA
Server for FMS

Aggregated
Devices

Clients

C
li

en
t

S
er

ve
r

Mapping

Database

Aggregating
Address
SpaceS

er
ve

r
S

er
ve

r

Address
Space

C
li

en
t

C
li

en
t

Database
Interface

S
er

ve
r

Authorized
External

Client

Authorized
External

Client

FMS
Controller

Aggregated

Address
Space

Aggregated

Address
Space

Aggregated

Figure 5.1: The architecture of the system design. All clients and servers
are opc ua clients and servers.

CHAPTER 5. DESIGN 28

The functionality required from the database – procedures and schema – are
part of this design. In Figure 5.1, the same database fills both use cases.

5.2 Modules

5.2.1 Server and Clients

The aggregating opc ua server contains several clients connecting to aggre-
gated devices, and one server providing access to the aggregating address
space. Both clients and server are standard opc ua software components.
One client is created for each aggregated device and is used to scan the ad-
dress space on the aggregated device. The client is also used to access the
device during operation.

5.2.2 Address Space

The address space of the aggregating opc ua server is the interface external
clients connect to. Its structure and contents are illustrated in Figure 5.2.
For lack of a need for a more complicated structure, a simple structure was
created. As applications of aggregating servers become more specific, more
complex address space structures can be created at will. However, com-
plexity in the address space is not desirable, and there has to be benefits
to creating a deeply nested address space structure. Certain parts of the
address space are static, such as folders directly under the Objects folder,
used for organizing the aggregating address space. Others are specific to
each instance of the aggregating server and are generated based on the con-
figuration and the contents of aggregated devices.

DeviceSet contains object nodes representing each aggregated device,
as per opc ua for Devices. Each of these nodes organizes a duplicate of the
address space of each aggregated device, starting from the Objects folder.
This is achieved with minimal configuration. Information is not processed
– opc ua calls are simply passed through the aggregating server and back.
The exception to this is the namespace indexes. Each aggregated server con-
tains a namespace table, which follows its own namespace indexing. There-
fore in order to avoid conflicts in the aggregating namespace, namespace in-
dex attributes read from devices’ address spaces are changed to comply with
the aggregating server’s namespace table. The duplicated address spaces on
the aggregating server provide direct access to the address spaces of un-
derlying devices. Explicitly configured nodes outside DeviceSet amend this

CHAPTER 5. DESIGN 29

baseline configuration.
The Database folder contains information sourced from a database used

by the fms controller. It can contain individual nodes accessing single values
resulting from queries or procedures, or hierarchies of nodes corresponding
to structured data in the database. Material information contained in the
database can form such a hierarchy. In case such a hierarchy is represented
on the aggregating opc ua server, it is contained in the Materials subfolder
of the Database folder. The node types and hierarchy in it correspond with
the opc ua for isa-95 standard object model [25]. Materials are divided
into MaterialClasses, which are represented as object nodes of the isa-95

type MaterialClass directly under the Materials folder. These nodes con-
tain information on what kinds of materials can be found in the address
space, and they can further contain references organizing MaterialDefini-
tions, which are sub-categories of MaterialClasses. Both MaterialClasses
and MaterialDefinitions contain isa-95 properties represented as variable
nodes they reference. Actual instances of materials are represented as nodes
of the type MaterialLot, and they are organized under the MaterialDefini-
tion node defining them. MaterialLots also contain the properties describing
them, represented as variable nodes they reference.

The Alarms folder contains the alarms as standard opc ua alarm nodes
as per opc ua alarms and conditions. Alarms can be subscribed to indi-
vidually, or the entire organizing alarms folder can be subscribed to by an
opc ua client wishing to be notified of all alarms. The alarms may also
be divided into subfolders allowing users to subscribe to events according
to that arrangement. The Aggregates folder contains nodes mapped to
functions providing combined values.

5.2.3 Mapping Application

The mapping defines the connection between a node in the aggregating ad-
dress space and its sources. It is created according to a configuration and
used during runtime to retrieve and compute requested values. The map-
ping itself is a data structure enabling efficient addition and lookup of the
source of a given node. Since services are used frequently, the performance
of searching for a NodeId in a mapping is an important consideration. Hash
maps were selected as the data structure for their constant-time performance
on lookup and insertion operations. Each hash map maps a NodeId in the
aggregating server’s local address space into a data source. A node can be
mapped to many kinds of sources, part of which are illustrated in Figure

CHAPTER 5. DESIGN 30

DeviceSet

Alarms

Database

Aggregates

Device 1

Procedure 1
Procedure 2

Device 2

Objects

Root

Materials

Alarm 1

Alarm 2

Aggregate 1
Aggregate 2

Address space
on Device 1

Address space
on Device 2

MaterialClass

MaterialDefinition 1

MaterialDefinition 2

MaterialLot

MaterialLot

 ...

 ...

 ...

 ...

Figure 5.2: The address space of the aggregating server. Bold nodes are
present on every opc ua server. Normal-weight nodes are present in every
aggregating opc ua server for fms adhering to this design. Italic nodes are
specific to each instance of the aggregating server.

CHAPTER 5. DESIGN 31

Object

Variable

Reference

Mapping

b

c

a

a

Figure 5.3: A simplified illustration of possible variable mappings. Variables
marked with a are mapped to external variables. The variable b is mapped
to a combined value of the variables marked with a. The variable marked
with c is mapped to a database query.

5.3. The source can be a single data point in a system external to the ag-
gregating opc ua server, such as a node on an aggregated device, or the
result of a database query. Nodes mapped in this way could be referred to
as proxy nodes, as their aim is to simply represent the external value in the
aggregating address space. In this design, all external data sources are first
mapped as proxy nodes, and only then further processed inside the aggre-
gating server. When combining values, the mapping contains the method
used to combine them as well as their sources, in a function, created during
configuration. This function, returning an opc ua datavalue, queries differ-
ent parts of the address space, computes the result and returns it. Functions
aggregating data can also return a boolean value, and be evaluated during
runtime as conditions for activating an alarm.

5.2.4 Database Interface

The database interface enables the mapping to connect nodes in the ag-
gregating server’s address space to a database. Mappings can be made to
database queries, which can refer to single cell values in certain tables, or
be the result of a more complex operation. The database interface is also

CHAPTER 5. DESIGN 32

Uni edNameSpace
Id
NameSpaceURI
ServerEndPointURI

Nodes
Id
UnifiedNameSpaceId
NodeIdType
NodeIdValue

DataValues
Node
SourceTimeStamp
ServerTimeStamp
ValueType
Value
StatusCode

Figure 5.4: Database schema for historical data access.

utilized to map material information contained by the database into the
aggregating server’s address space according to isa-95. It is also used to
implement opc ua hda.

The requirements specify the aggregating server is able to consistently
identify nodes, save, persist and retrieve their values, and to present them
in the aggregating address space according to opc ua Historical Data Ac-
cess [18]. The design follows previous work done by Asikainen [1], with some
minor changes. The schema is amended with information on NodeId types
and DataTypes to aid node identification and deserialization of stored val-
ues into their proper opc ua DataTypes on the aggregating server. Tables
implementing hda, illustrated in figure 5.4, contain the information required
to identify nodes on opc ua servers, as well as to store and retrieve values.

Nodes are identified in the database by their NodeId and the Serveruri
of the server containing them – the same values used to identify nodes in
configuration. The NodeId consists of an identifier, an identifier type, and
a namespace. Each time a node is historized, the serveruri of the server
containing it, and its namespace are searched for in the UnifiedNameSpace
table. Each encountered unique combination of namespace uri and server
uri are assigned a unique identifying value in the UnifiedNameSpace table
(Figure 5.4). This unified namespace identifier defines a certain namespace
on a certain server. It is used to unequivocally connect a NodeId identifier
and type to a unique node identifier in the Nodes table (Figure 5.4). The
NodeId type has to be included because the interpretation of a serialized
NodeId identifier depends on it. The NodeId corresponds to the NodeId
where the canonical representation of that information resides, whether on
an external server or on the local machine – not to a proxy node. Once the
unique node identifier has been found, it can be used to insert and select
historical values from the DataValues table (Figure 5.4). The DataValues

CHAPTER 5. DESIGN 33

table holds the actual time series data – values, timestamps, and status codes
of the Variables which are being historized. The DataType of the Variable
is also included, in order to deserialize the saved value on the aggregating
server.

The database internal node identifier for each historized NodeId is found
during the initialization of the aggregating server – this identifier is used to
map hda functionality to the database. Insertion of historical data to the
DataValues table happens on value change indicated by a subscription made
on the historized node. The data change event handler of the subscription
is set to be a function containing a query inserting the changed data to the
DataValues table. Aggregating server historical data access is overloaded
to retrieve information from the DataValues table, also using a query that
is constructed based on the node identifier used internally by the database.
The resulting database operations are direct, and don’t require reidentify-
ing nodes during runtime. Users can access hda on the aggregating server
according to standards, and the behaviour of the feature is as expected.

5.3 Functions

5.3.1 Configuration Time Functionality

The aggregating server contains a configuration, describing the opc ua
servers the aggregating server expects to connect to. Servers are identified
by their Serveruri, which identifies them globally [22, sect. 5.4.2.1]. Thus
the information required to establish connections is a list of Serveruris of
the servers that are to be aggregated. On reading the configuration, a client
is created for each server and a connection is established. The clients are
used to scan the address spaces of each aggregated server, starting from
their Objects folder, and their address spaces are duplicated into the ad-
dress space structure detailed in Section 5.2.2. As the nodes are created
in the aggregating address space, each are added to a mapping specifying
which Serveruri and remote NodeId the proxy node is connected to. This
enables service calls to those nodes to be routed to underlying devices later
on. Additionally, the configuration specifies database procedures used for
mappings. Upon reading the configuration, proxy nodes are created in the
Database folder and a mapping is created to a function connecting to a
database, ultimately retrieving the value.

Once proxy nodes have been created, configuration moves on to create

CHAPTER 5. DESIGN 34

mappings for aggregate nodes and alarms. In order to create these map-
pings, individual nodes are identified by their NodeId in conjunction with
the Serveruri of the server they are mapped to. A NodeId is enough to un-
ambiguously recognize a Node as each NodeId on a given server is unique [20,
sect. 5.2.2]. The configuration for an aggregate mapping identifies the nodes
to be mapped to, and a function which takes their values as input and out-
puts a single value. In the case of node mappings, that value is a DataValue.
For mappings to alarm conditions, that function returns a boolean value.

When a node is configured to be historized, its NodeId, address space
and originating server are sent to a database procedure, which determines
the identifier for the node used internally by the database. The identifier
is created on the database server if the node has not been historized before.
After the historized node is identified in the database, the aggregating server
makes a subscription to it with an internal opc ua client. This subscription
is used during runtime to identify value changes, which in turn trigger saving
the value into the database. A mapping specific to retrieving historized
values is made, which can be called on to retrieve time series data from the
database.

The requirements specify using the opc ua implementation of isa-95 to
present database material data in the address space of the aggregated server.
Each fms controller saves material data in its own way, and assigning isa-95

types to an unknown database structure automatically is a hard problem.
Therefore the mapping to isa-95 must be custom-made each time. How-
ever, the isa-95 specification contains hierarchies of types, and relational
databases often contain comparable hierarchies as well. When a relational
database contains a structure where tables form a hierarchy where rows are
connected by foreign keys, a relation can be found to the isa-95 hierarchy
of types. In this case, each row of a table is mapped into an opc ua ob-
ject node, which is assigned the desired isa-95 type. The nodes are named
according to a column chosen to be most descriptive. Other attributes on
the node’s row are mapped to the address space as variable nodes and as-
signed the proper isa-95 property type. The function these variable nodes
are mapped to is a database query fetching the cell value from the table
according to the corresponding row id and column name The column name
related to the cell specifies the variable’s name, and the value of the cell is
mapped to the variable’s value. If the mapped rows contain a foreign key
specifying a relevant hierarchy, the referred table can also be mapped in the
previous manner, using the isa-95 subtype of the type previously used.

CHAPTER 5. DESIGN 35

The requirements specify the aggregating server implements configurable
alarms. Users configure alarms by writing their logic directly in application
code. The condition triggering the alarm is a function returning a boolean
value. It typically reads node values and calculates the outcome based on
them. The responsibility of the alarm manager is to evaluate alarm condi-
tions and trigger alarms as needed. Since alarm conditions may be expensive
to evaluate, nodes the alarm condition depends on are also passed to the
alarm manager. These nodes are subscribed to, in order for alarm conditions
to be evaluated only when values they depend on change. The source for the
issued alarm events are the alarm objects themselves, which are contained
in the Alarms folder. The alarm objects contain references to the Alarms
folder containing them, that according to opc ua, propagate the events to
the Alarms folder. Thus subscriptors to either alarms themselves or the
alarms folder are notified by alarm events.

5.3.2 Runtime Functionality

When the aggregating server is running, it responds to opc ua communica-
tion to its address space by executing mappings. Additionally, it monitors
event notifications, saves values for historized nodes, and evaluates condi-
tions for alarms. Each time the Read service is invoked on a node on the
aggregated server, the remote mapping is checked to see if there is a map-
ping for this local node. If so, the mapping yields a client connected to
the mapped server and the remote NodeId of the source node. The read
service is run on the client connected to the remote server hosting the ad-
dress space, containing the namespace with the source node. The NodeId of
the source node, contained in the mapping, is passed as a parameter. The
returned result is passed on to the client invoking the read service on the
proxy node. Runtime performance can be increased by mapping only the
Value attribute, and caching all other values, not likely to change, directly
into the aggregating address space.

Nodes may also be mapped to functions returning a valid value, in other
words an opc ua DataValue. If so, an arbitrary function, provided during
configuration is executed and its result returned. The function can combine
values from other nodes in the address space or fetch values from custom
interfaces. The sequence diagram of a Read call to a Node on the aggregating
server which returns a combination of values on separate devices is illustrated
in Figure 5.5.

Mapping to database queries is a special case of mapping to functions.

CHAPTER 5. DESIGN 36

Client Device 1Aggregating
Server

Device 2

Read

Read/Response

Read/Response

Aggregate value calculated

Response

Mapping read

Figure 5.5: A Read call to a node combining values on several devices.

CHAPTER 5. DESIGN 37

The mapped function initiates a database query, and returns the value from
the server. The query can be constructed to refer to a certain unique value
in a certain table, or it can be the result of a stored procedure on the sql
server. If a stored procedure is referenced, that procedure has to be created
on the sql server beforehand.

During runtime, changes to historized nodes are detected via data change
notifications sent by a subscription made during configuration. When a
historized value changes, that value is immediately added to a database
containing the historizing values. Similarly, when the history of a historized
node is read, the database is queried. Reading the history is mapped to a
database query selecting the value series from the database.

Alarm conditions, provided during configuration, are tracked and evalu-
ated by an alarm manager. Alarm conditions depend on one or more values
on aggregated devices. The alarm manager subscribes to each value alarms
depend on and evaluates an alarm condition when one of the values the
alarm depends on has changed. When alarm conditions are met, the alarm
manager issues an opc ua alarm event which subscribed clients receive.

Chapter 6

Implementation and Experimentation

The implementation of an experimental prototype complying with the design
presented in Chapter 5 is presented in this chapter.

6.1 Application Development Platform

6.1.1 Overview

The development environment, running in its entirety on a pc, is illustrated
in Figure 6.1. Aggregated devices are represented by opc ua servers run in
the Beckhoff TwinCat plc development application [2]. TwinCat is capable
of running a local opc ua server which is functionally identical to opc
ua servers on Beckhoff plc devices. Plc code containing data structure
and variable definitions was loaded into TwinCat. Based on this code, an
opc ua address space was generated automatically. A database, Microsoft
sql Server 2008 R2, providing historical data access functionality, was also
installed and run on the pc. Procedures and tables were added to the
database to implement the opc ua hda functionality. The same database
was used to represent a fms controller database with material information.
Tables duplicating the schema of a real-world fms controller were created in
the database and populated with test data. UAExpert was used as a client
interfacing with the aggregating opc ua server. UAExpert, developed by
Unified Automation, is capable of discovering, connecting to, and interfacing
with opc ua servers.

The language C♯ was used for creating the prototype aggregating opc
ua server itself. This lead to the use of the Unified Automation sdk [35].
Standard components of the sdk, such as opc ua clients and servers, were
extended to provide the mapping functionality. Most functionality is im-

38

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTATION 39

C
li

en
t

C#
Mapping

& API

SQL Server
2008 R2

C
li

en
t

SQL Client

S
er

ve
r

UAExpert
Client

Beckhoff
UA Server

Beckhoff
UA Server

Address
Space

Figure 6.1: The development environment of the prototype. All components
are run on a single pc used for development.

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTATION 40

plemented by overriding opc ua service implementations in the sdk class
NodeManager to alter the default behaviour. The overridden functions are
supported by utility classes providing database connectivity, data structures
for mappings, and run-time monitoring.

6.1.2 Application Development API

The configuration was mainly written in code utilizing an api, and compiled
as part of the binary executable. However, configuration of aggregated de-
vice uri in the prototype is done interactively during startup. Since the
aggregated opc ua servers were running locally, the full uri is not required.
Only port numbers are entered into the text-based interface. For any im-
plementation involving external opc ua devices, configuration might take
place with the Discovery service, or by listing the uri in their entirety in
the configuration.

Other configuration of the aggregating server is done by calling config-
uration functions. Remote nodes are mapped by default, so they are not
mapped by the user.

• The function mapNodeValue is called to map nodes to custom functions.
The parameters are the NodeId of the node, and a function returning
a DataValue.

• The function mapHDA selects a node to be historized according to hda.
Its only parameter is the NodeId of the node to be historized.

• The function addSQLNode creates a node in the database folder and
maps it immediately to a specific procedure in a specific database. The
name of the node, the procedure name and the database connection
string are provided as parameters to the function.

• The function createAlarm creates an opc ua Alarm. It takes as
parameters its name, source node, and an alarm condition function
returning a boolean value indicating whether the alarm condition is
fulfilled.

Material information can be configured fairly easily when the database
schema is arranged into a clear hierarchy where each isa-95 type and its
properties are arranged into a table in rows and columns, respectively. This
is done using the createISA95MaterialHierarchy function. However, it

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTATION 41

has a many parameters, which need to be carefully chosen. A detailed
example of choosing the correct parameters is provided in Section 6.2.1.

6.1.3 Platform Behavior

The node manager begins the mapping process by reading the uri of devices
from the configuration and creating clients to connect to them. Folders
are created on the aggregating server to contain and separate nodes from
different devices. Clients, each created to access a device, access the objects
folder of the device it has connected to, and begin to follow references in the
address spaces starting from the Objects folder. The scan is a depth-first
search, using the Browse service to find references between nodes. Since an
opc ua address space can contain cycles, visited nodes are added to a hash
set, which is consulted to detect and avoid cycles during the scan. Each
node and its references are duplicated into the aggregating address space
as a proxy node. As the contents of the aggregated servers are duplicated,
the client connecting to the aggregated server, as well as the remote NodeId,
are added to the remote node mapping. A list of NodeIds to be historized
is read, and hda mappings are made to them. Historized nodes’ database
identifiers are requested from the database, and calls for historical data for
that node are mapped to a database call with that identifier. A subscription
is placed on historized nodes, and changed values are set to be added to the
database with the same identifier. After the address spaces are duplicated,
other parts of the configuration, alarms and mappings to a database, are
executed.

6.2 Applications
To demonstrate the operation of the implementation detailed in Section
6.1, the application was configured to execute use cases, suggested by the
main partner in the project. The use cases were selected to demonstrate
applications of opc ua aggregating servers that would be of use in real-
world fms.

6.2.1 Tool Information Representation

The aggregating server was configured to represent tool information in a
database according to isa-95 for opc ua[25]. The represented information
was added to the database used in the development environment. Tables in a

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTATION 42

ToolBaseData
Id
CatalogNumber
ToolSystemName
TypeName
Description
...

ToolInstance
Id
ToolBaseDataId
NodeIdType
NodeIdValue
TypeName
Description
...

Figure 6.2: The part of the fms controller database schema containing
mapped material information.

Figure 6.3: UAExpert view of Mapping Tool information from the database
as ISA-95 Material information. Arrows show connections between the
database and the opc ua address space.

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTATION 43

relational database used by a real-world fms were duplicated and populated
with test data generated by a development tool used by the fms developer.
The part of the schema containing tool information, illustrated in Figure 6.2,
was found to contain a suitable hierarchy to be mapped to the isa-95 spec-
ification. The aggregating opc ua server was configured to map the tables
into its address space according to isa-95 Material Information. An object
node of the isa-95 type MaterialClass called Tools was created to represent
and organize all tool material information. The configuration parameters
specify the table ToolBaseData as the source of Material Definitions, and
ToolInstance as the source of Material Lots. Additionally, the field used for
opc ua node names (“CatalogNumber” and “ChipId”), the fields contain-
ing primary keys for the tables (“Id”), and the field containing the foreign
key for the table containing material lots (“ToolBaseDataId”) were given as
parameters. This configuration is enough to execute the mapping.

As the database data is guaranteed to comply with a certain schema,
so there were no complications in mapping the contents of the database
into the address space. The resulting address space structure presented the
database material information correctly. Writing values to the database via
the address space mapping also worked without complications. The result
of mapping the database tables, as well as a view of the database tables
themselves in Microsoft sql Management Studio are shown in Figure 6.3.

6.2.2 Power Consumption Monitoring

Changes in the power consumption of moving equipment can indicate a
need for maintenance. In this use case, the aggregating server is configured
to measure power consumption when lifting a test weight. However, the
aggregated opc ua servers were created for testing purposes, and do not
simulate actual devices in any way. Measurement of power consumption
was illustrated by creating and historizing an opc ua node and changing
its value manually in order for the time series to be saved in database. The
added values were

The view of reading the historized values afterwards from the database
can be seen in Figure 6.4.

6.2.3 Detection of Inconsistent Data

A photocell sensor, accessible via plc, provides sensor data indicating whether
a pallet is in the loading bay. Simultaneously, a fms controller database in-

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTATION 44

Figure 6.4: UAExpert view of reading historical data. Values in the table
on the right are displayed in a graph on the left.

Figure 6.5: UAExpert view of activated alarms which indicate a data incon-
sistency.

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTATION 45

dicates whether a planned schedule indicates a pallet is in the bay. When
these values do not agree it can be concluded that there is an error or incon-
sitency in the fms. Possible causes are that the sensor is broken or dirty,
the pallet is too reflective, the user has manually loaded the pallet, or that
there is some other unknown reason. Such an observation typically requires
production to be stopped in order to avoid further problems. An alarm was
created that checks the consistency of the value in the two values in question.
When the values do not agree, the alarm activates and sends an alarm event.
Figure 6.5 shows the nodes read to execute the alarm condition, and the
alarm event recieved by the subscribed UAExpert client. The aggregated
servers and database created for experimentation do not simulate the func-
tioning of a fms. Therefore although alarms checked actual database and
plc values, their values were modified manually during experimentation for
the alarm condition to be fulfilled, causing the alarm event to be raised.

6.2.4 Resulting Address Space Structure

The address space resulting from the configuration is visible in Figure 6.6.
The Database folder contains a node mapped to the PalletteInLocation pro-
cedure in the database. The variables test1 and test2 are mapped to database
procedures simply returning a constant value, and the variables AVG and
SUM are mapped to an aggregating function combining both test variables
into their average, and sum, respectively.

The object nodes under DeviceSet, PLC_851, PLC_852 and PLC_853
are address spaces of aggregated devices. The folder MAIN, and the nodes
it organizes are generated according to data structures declared in plc code.

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTATION 46

Figure 6.6: View of resulting address space instance in UAExpert.

Chapter 7

Conclusions

The goal of this thesis was to define and demonstrate aggregating opc ua
servers as part of a fms. The requirements of an aggregating opc ua server
for fms were defined based on previous work on aggregating servers, as
well as work on the specific needs of fms. A software design fulfilling the
requirements was detailed and partially implemented. The resulting imple-
mentation was used to develop applications to comply with certain scenarios
to demonstrate its functionality.

The requirements were defined in Chapter 4. The minimum require-
ments of an aggregating server architecture include identifying and connect-
ing to devices and providing clients access to them. Observation of the
fms requires notifying operators in user-defined circumstances. Therefore
user-configurable alarms are required. Historical data has many important
uses for fms, including time-series analysis and improving the traceability
of production, and support for it was found to be an important requirement
for the aggregating server. As fms differ, the application logic required
to effectively operate them also vary. Therefore the possibility of creating
connections between the address space and custom functionality for varying
use cases is required. Mapping database contents to the address space was
found to be a specific requirement in the context of this work.

The software design for an aggregating server for fms fulfilling the re-
quirements was described in Chapter 5. Connectivity is done with a standard
opc ua server and clients as part of the aggregating server. The address
space is organized with folders dividing the address space according to node
usage. Nodes on the aggregating server are connected to devices’ address
spaces with mappings pairing the aggregating server nodes to the informa-
tion needed to access their data source. Parts of device address space con-

47

CHAPTER 7. CONCLUSIONS 48

tents were scanned, duplicated into the aggregating server’s address space,
and mapped back to the devices. It was not evident that more complicated
transformations than directly duplicating the devices’ address space to the
aggregating server would be useful, since further transformations can be
done within the aggregating server. Simple one-to-one mapping also has the
benefits of simplicity and transparency. Some nodes were also mapped to
database procedures. Database tables and procedures were mapped to opc
ua hda functionality, enabling saving and persisting node values. Alarms
are managed by an alarm manager subscribing to values alarm states de-
pend on, and executing alarm conditions when subscribed values change.
This enables alarm conditions to be calculated only when needed.

The implementation of the designed aggregating server and experimen-
tation on it was undertaken in Chapter 6. In practice the implementation is
an application development platform featuring basic functionality with min-
imal configuration, with the ability to be extended freely by programming
it. Configuration of the application platform to the selected use cases was
straight-forward, and required little programming. In general, the imple-
mentation of the an aggregating server was found to be practical, and the
end result fulfilled the requirements. It seems likely that the aggregating
opc ua server as designed can be configured to facilitate many use cases
in fms. Although the experimentation was conducted in a controlled envi-
ronment, there are no obvious reasons that would invalidate the design for
comparable applications in real-world use.

This thesis finds no objections to the use of opc ua as a communication
protocol for fms. In the scope of this work, opc ua was found to be a
practical option, at least for communication to and from devices, provided
they feature opc ua support. The benefits of using opc ua increase greatly
when compatible equipment is available and does not need to be specifi-
cally integrated. However, the extent to which it is beneficial to use opc
ua as a communication protocol is unclear when considering it for use in
communications between different systems within a company.

Additional work needs to be done to make the aggregating opc ua server
ready for production use. Configuration should be possible to at least some
extent without recompiling the entire application, preferably through text-
based configuration. Subscription to database values should be possible in
a way that the database itself informs the aggregating server of changed
values. In the scope of work done in this thesis, namespace conflicts were
not an issue. However, they are likely to become an issue in a production

CHAPTER 7. CONCLUSIONS 49

environment. A robust solution should be developed to avoid namespace
conflicts.

Whether or not specialized opc ua types for aggregating servers as sug-
gested by Großmann et al. [4] would be useful is a possible topic for further
research. Also formalizing mapping rules, and codifying them into the opc
ua address space, as per Großmann [4], might be an interesting direction,
but not an absolute necessity. These directions needs to be carefully consid-
ered, as user-defined opc ua type definitions do not provide direct benefit
in themselves, but must be specifically utilized by clients according to some
pre-existing agreement or convention. No immediately obvious applications
for clients utilizing these types are known at the time of writing this thesis,
but they may exist.

References

[1] Asikainen, J. OPC UA Java History Gateway with Inherent Database
Integration. Master’s thesis, Department of Automation and Systems
Technology, Aalto University School of Electrical Engineering, Espoo,
Finland, 2010.

[2] Beckhoff Automation. TwinCAT OPC UA Server. http://www.
beckhoff.fi/english.asp?twincat/twincat_opc_ua_server.html. [On-
line; accessed 2015, April 8.].

[3] Browne, J., Dubois, D., Rathmill, K., Sethi, S. P., and Stecke,
K. E. Classification of flexible manufacturing systems. The FMS mag-
azine 2, 2 (1984), 114–117.

[4] Großmann, D., Bregulla, M., Banerjee, S., Schulz, D., and
Braun, R. OPC UA server aggregation—The foundation for an in-
ternet of portals. In Emerging Technology and Factory Automation
(ETFA), 2014 IEEE (2014), IEEE, pp. 1–6.

[5] Gupta, Y. P., and Goyal, S. Flexibility of manufacturing systems:
concepts and measurements. European journal of operational research
43, 2 (1989), 119–135.

[6] Hastbacka, D., Barna, L., Karaila, M., Liang, Y., Tuominen,
P., and Kuikka, S. Device status information service architecture
for condition monitoring using OPC UA. In Emerging Technology and
Factory Automation (ETFA), 2014 IEEE (2014), IEEE, pp. 1–7.

[7] International Electrotechnical Commission. IEC 61131-3. Pro-
grammable Controllers - Part 3 (1993).

[8] International Society of Automation. ANSI/ISA-95.00.01-2010
(IEC 62264-1 Mod) Enterprise-Control System Integration.

50

http://www.beckhoff.fi/english.asp?twincat/twincat_opc_ua_server.html
http://www.beckhoff.fi/english.asp?twincat/twincat_opc_ua_server.html

REFERENCES 51

[9] Kuisma, V. M., et al. Joustavan konepaja-automaation käyttöönoton
onnistumisen edellytykset. VTT Technical Research Centre of Finland,
2007.

[10] Laukkanen, E. Java source code generation from OPC UA informa-
tion models. Master’s thesis, Department of Automation and Systems
Technology, Aalto University School of Electrical Engineering, Espoo,
Finland, 2013.

[11] Leitner, S.-H., and Mahnke, W. OPC UA–service-oriented archi-
tecture for industrial applications. ABB Corporate Research Center
(2006).

[12] Mahnke, W., Leitner, S.-H., and Damm, M. OPC Unified Archi-
tecture, 1st ed. Springer Publishing Company, Incorporated, 2009.

[13] Melander, L. Interface Integration Challenges in Future Flexible
Manufacturing Systems. Master’s thesis, Faculty of Engineering Sci-
ences, Tampere University Of Technology, 2015.

[14] OPC Foundation. OPC Alarms & Events (OPC AE).

[15] OPC Foundation. OPC Data Access (OPC DA).

[16] OPC Foundation. OPC Historical Data Access (OPC HDA).

[17] OPC Foundation. OPC Unified Architecture Specification Part 1:
Overview and Concepts, 2012.

[18] OPC Foundation. OPC Unified Architecture Specification Part 11:
Historical Access, 2012.

[19] OPC Foundation. OPC Unified Architecture Specification Part 2:
Security Model, 2012.

[20] OPC Foundation. OPC Unified Architecture Specification Part 3:
Address Space Model, 2012.

[21] OPC Foundation. OPC Unified Architecture Specification Part 4:
Services, 2012.

[22] OPC Foundation. OPC Unified Architecture Specification Part 6:
Mappings, 2012.

REFERENCES 52

[23] OPC Foundation. OPC Unified Architecture Specification Part 9:
Alarms & Conditions, 2012.

[24] OPC Foundation. OPC Unified Architecture For Devices, 2013.

[25] OPC Foundation. OPC Unified Architecture For ISA-95 Common
Object Model, 2013.

[26] Palonen, O. Object-oriented implementation of OPC UA information
models in java. Master’s thesis, Information and Computer Systems in
Automation, Aalto University School of Science and Technology, Espoo,
Finland, 2010.

[27] Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. A design science research methodology for information
systems research. Journal of management information systems 24, 3
(2007), 45–77.

[28] PLCOpen and OPC Foundation. OPC Unified Architecture Infor-
mation Model for IEC 61131-3, 2010.

[29] Prosys. OPC UA Java SDK. https://www.prosysopc.com/products/
opc-ua-java-sdk/. Accessed: 2015-04-05.

[30] Prosys PMS Ltd. OPC UA Historian. http://www.prosysopc.com/
products/opc-ua-historian/. [Online; accessed 2015, May 11.].

[31] Shivanand, H. K. Flexible Manufacturing System. New Age Interna-
tional, 2006.

[32] Unified Automation. C Based OPC UA Server SDK.
https://www.unified-automation.com/products/server-sdk/
ansi-c-ua-server-sdk.html. Accessed: 2015-04-05.

[33] Unified Automation. C++ Based OPC UA Server SDK.
https://www.unified-automation.com/products/server-sdk/
c-ua-server-sdk.html. Accessed: 2015-04-05.

[34] Unified Automation. Java Based OPC UA Server SDK.
https://www.unified-automation.com/products/server-sdk/
java-ua-server-sdk.html. Accessed: 2015-04-05.

https://www.prosysopc.com/products/opc-ua-java-sdk/
https://www.prosysopc.com/products/opc-ua-java-sdk/
http://www.prosysopc.com/products/opc-ua-historian/
http://www.prosysopc.com/products/opc-ua-historian/
https://www.unified-automation.com/products/server-sdk/ansi-c-ua-server-sdk.html
https://www.unified-automation.com/products/server-sdk/ansi-c-ua-server-sdk.html
https://www.unified-automation.com/products/server-sdk/c-ua-server-sdk.html
https://www.unified-automation.com/products/server-sdk/c-ua-server-sdk.html
https://www.unified-automation.com/products/server-sdk/java-ua-server-sdk.html
https://www.unified-automation.com/products/server-sdk/java-ua-server-sdk.html

REFERENCES 53

[35] Unified Automation. .NET Based OPC UA Client & Server SDK
(Bundle). https://www.unified-automation.com/products/server-sdk/
net-ua-server-sdk.html. Accessed: 2015-04-05.

[36] Unified Automation GmbH. UaGateway. https://www.
unified-automation.com/products/wrapper-and-proxy/uagateway.
html. [Online; accessed 2015, May 11.].

[37] von Alan, R. H., March, S. T., Park, J., and Ram, S. Design
science in information systems research. MIS quarterly 28, 1 (2004),
75–105.

https://www.unified-automation.com/products/server-sdk/net-ua-server-sdk.html
https://www.unified-automation.com/products/server-sdk/net-ua-server-sdk.html
https://www.unified-automation.com/products/wrapper-and-proxy/uagateway.html
https://www.unified-automation.com/products/wrapper-and-proxy/uagateway.html
https://www.unified-automation.com/products/wrapper-and-proxy/uagateway.html

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Background
	1.2 Research Objectives
	1.3 Research Methods
	1.4 Thesis Outline

	2 Flexible Manufacturing Systems
	2.1 Flexibility
	2.2 Devices
	2.3 FMS Control Systems

	3 OPC Unified Architecture
	3.1 Overview
	3.2 Used Technologies
	3.3 Address Space
	3.4 Companion Specifications
	3.4.1 OPC UA for Devices
	3.4.2 OPC UA Information Model for IEC 61131-3
	3.4.3 OPC UA for ISA-95 Common Object Model

	3.5 Aggregating Server Architecture
	3.5.1 Overview
	3.5.2 Information Models for Aggregating Servers
	3.5.3 Existing Aggregating Servers

	4 Requirements
	4.1 System Definition
	4.2 Functional Requirements
	4.3 Data Requirements

	5 Design
	5.1 System Architecture
	5.2 Modules
	5.2.1 Server and Clients
	5.2.2 Address Space
	5.2.3 Mapping Application
	5.2.4 Database Interface

	5.3 Functions
	5.3.1 Configuration Time Functionality
	5.3.2 Runtime Functionality

	6 Implementation and Experimentation
	6.1 Application Development Platform
	6.1.1 Overview
	6.1.2 Application Development API
	6.1.3 Platform Behavior

	6.2 Applications
	6.2.1 Tool Information Representation
	6.2.2 Power Consumption Monitoring
	6.2.3 Detection of Inconsistent Data
	6.2.4 Resulting Address Space Structure

	7 Conclusions
	References

