
Aalto University

School of Science

Master’s Programme in ICT Innovation

Brendan Goubin

Collaborative Indoor Mapping in a Spa-
tial Data Management Context

Master’s Thesis
Espoo, July 9, 2015

Supervisors: Professor Jukka Nurminen
Advisor: Mikko Virkkilä

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80716582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in ICT Innovation

ABSTRACT OF
MASTER’S THESIS

Author: Brendan Goubin

Title:
Collaborative Indoor Mapping in a Spatial Data Management Context

Date: July 9, 2015 Pages: 51

Supervisors: Professor Jukka Nurminen

Advisor: Mikko Virkkilä

The objective of this thesis was to research on collaborative geospatial data man-
agement, how to share, store and process data between different actors, of dif-
ferent natures and different purposes. This research work will serve as base for
the implementation of a web-based collaborative map editing application for the
company Nimble Devices Oy, and to be partly published as a free licensed soft-
ware.

The geospatial data is being stored as generic geometric objects in a PostgreSQL
database. Every data processing will be represented as an “Action“ object con-
taining all the required informations to replicate the same data processing on any
other actor of the whole system. The “Action” objects are transmitted to the
database through an application programming interface on the server side, and
will be transmitted to the other web clients with the Javascript library Togeth-
erJS.

This thesis will present background research and a literature review on the topics
of geospatial data and indoor mapping. Then a specification and conception
work will be done to suggest solutions for the previous problematic. The thesis
then presents some technical validation and results of the project. And finally, a
simple conclusion including the future works, and future possibilities related to
this work.

Keywords: Spatial Databases, Data Management, Collaborative Work,
Indoor Mapping

Language: English

2

Acknowledgements

I want to thank Jukka Nurminen, for being my supervisor, and for the help
he provided me concerning the master’s thesis. I would like to express my
gratitude to Mikko Virkkilä, for offering my the opportunity to work on my
master’s thesis as an intern at Nimble Devices Oy. I also want to thank the
whole Nimble Devices Oy team: Tuomas Ilola, Sam Pullen and Ruud Visser,
for the working environment.

Espoo, July 9, 2015

Brendan Goubin

i

Abbreviations and Acronyms

OGC Open Geospatial Consortium
OpenGIS Open Geographic Information System
CAD Computer Aided Design
NDD Nimble Devices Data
DXF Drawing eXchange Format
JSON JavaScript Object Notation
HTML HyperText Markup Language
CSS Cascading Style Sheet
GPS Global Positioning System
Rest REpresentational State Transfer
API Application Programming Interface
SDMS Spatial Data Management System
BIM Building Information Modeling
GIS Geographic Information System
UUID Universally Unique IDentifier
RSSI 1M Received Signal Strength Indication : 1 meter
GPL General Public License
AGPL Affero General Public License
BSD Berkeley Software Distribution License
MIT Massachusetts Institute of Technology License
MPL Mozilla Public License

ii

Contents

Acknowledgements i

Abbreviations and Acronyms ii

1 Introduction 1
1.1 Motivation . 1
1.2 Nimble Devices . 1
1.3 Research Questions . 1
1.4 Collaborative Application . 2
1.5 Indoor Mapping and Indoor Positioning 2
1.6 Spatial Data Management . 3
1.7 Structure of Thesis . 3

2 Background and Related Work 5
2.1 Spatial Data Management . 5

2.1.1 Spatial Data Management System 5
2.1.2 Spatial Data Structures 6

2.2 Spatio-Temporal Databases 6
2.3 Computer Aided Design . 6

2.3.1 Building Information Modeling 7
2.4 Geographic Information System 8
2.5 Location Model . 8
2.6 Indoor Positioning Technologies 9
2.7 JavaScript Object Notation 9
2.8 Application Programming Interfaces 10
2.9 Collaborative features . 10
2.10 Licensing and re-use of existing technologies 11

3 Conception and Modeling 12
3.1 Overall solution . 12
3.2 Data Management . 13

iii

3.2.1 Old JSON Organization 13
3.2.2 Database Choosing Process 15
3.2.3 New Hierarchy . 16
3.2.4 Database Design . 17

3.2.4.1 Maps . 17
3.2.4.2 Levels . 18
3.2.4.3 Bounds . 18
3.2.4.4 Anchors . 19
3.2.4.5 Polygons . 19
3.2.4.6 Circles . 19
3.2.4.7 Lines . 19
3.2.4.8 Positions . 20

3.3 Software Stack . 20
3.3.1 Collaboration tool . 22

3.3.1.1 Meteor . 22
3.3.1.2 DerbyJS . 22
3.3.1.3 TogetherJS 23
3.3.1.4 Final Choice 23

4 Implementation 25
4.1 Actions . 25

4.1.1 Principle . 25
4.1.2 Tasks . 26
4.1.3 Structure . 27

4.2 Application Programming Interfaces 28
4.2.1 Operations . 28
4.2.2 Map retrieving . 28

4.3 Client side . 28
4.3.1 Initialization . 28
4.3.2 Manipulation . 28
4.3.3 Undo redo . 29

4.4 Collaborative features . 30
4.4.1 Cursor and clicks sharing 31
4.4.2 Actions sharing . 31

5 Validation 32
5.1 Description . 32
5.2 Testing System . 33
5.3 Results . 35
5.4 Conclusion . 35

iv

6 Usability Testing 36
6.1 User Interface . 37
6.2 Survey . 40
6.3 Results . 41

6.3.1 Inexperienced users . 41
6.3.2 Feedback . 41
6.3.3 Experienced user feedback 42

6.4 Analysis . 42

7 Conclusion and Future Work 44
7.1 Discussion . 44

7.1.1 Abstraction . 44
7.1.2 Collaborativity . 44
7.1.3 User Interface and User Experience 45
7.1.4 Technical Choices . 45

7.2 Future work . 45

A List of considered databases 50

v

1 Introduction

1.1 Motivation

During this thesis, we will study data management and conceive a solution to
create geospatial data, to edit it, to display it and to store it. This solution
will include collaborativity features.

To support the theoretical work, a technical experimentation will be
made, and we will implement a map editor for the company Nimble De-
vices, to be used within their indoor positioning solution, during the digital
representation of indoor environment process.

1.2 Nimble Devices

Nimble Devices is a Finnish company specialized in indoor positioning and
navigation, and more precisely in mobile indoor positioning. The company is
developing an indoor positioning solution, and then integrates it in different
mobile applications, for different clients. Thanks to the wireless technologies,
it is possible to localize a device with good accuracy in an indoor environment
and with this, Nimble Devices develops a solution that provides routing and
guiding assistance, they can also include real-time information depending on
the positioning of the user, and the solution can also trigger events when the
device of a user enters a specific room for instance.

1.3 Research Questions

During this thesis, we will consider different problems, some specific to the
map creation and the map editing, some for the geospatial data management,
and others for handling a collaborative service.

We will need to figure out how to store the data of the different maps,
how the different information, or the different objects composing the maps

1

1. INTRODUCTION 2

will need to be organized.
How to handle a map creation or edition, with as much basic data as

possible in order to expand the different use cases, and have a generic tool
that can offer more possibilities than a simple map editor.

And finally how to handle the collaborative part, how the data should
be shared between the different actors, how will it be replicated, should the
resource be locked or should a limited part of the resource be locked when
an edition occurs.

Additionally, one of the purpose of this work was to simplify a task of
the map creation process for the company Nimble Devices, as explained in
the following chapter 2, the digital representation of an indoor environment
takes time and requires training to have a full control over the used software.
Therefore, the solution will be conceived and implemented in the perspective
of offering a tool that is easy to use, easy to understand, and that will not
require as much time to be mastered.

1.4 Collaborative Application

Nowadays team work is a huge part of the working life. The developed solu-
tion will include a collaboration part in order to improve the user experience.
The first focus of this collaborative part will be to have a simple monitoring
feature. Allowing a user to actually use the software, and some other users
to monitor its work. This would be useful for pair working for instance. The
later focus will be to develop a collaborative part that would allow two users
to use and share the same data, and to work on the same project without
interfering with each other.

In a more technical focus, different tools, libraries and framework exist
for providing the different collaborative features to a JavaScript application:
from basic mouse clicks sharing to more complicated data live transfers.
Therefore, we will study and compare different solutions for collaborative
handling, and choose the most appropriate one.

1.5 Indoor Mapping and Indoor Positioning

Indoor mapping is the digital representation of indoor environments. It is
a tool relevant in many situations, and use cases. Indoor positioning is the
process of defining the position of an object in an indoor environment, it can
be done with different technologies with different accuracy using different
methods. [24] [32] [38]

1. INTRODUCTION 3

Indoor mapping and positioning can be done with different methods and
technologies, such as Bluetooth, Wifi or Global Positioning System for in-
stance. The chosen technology depends on several criteria, the same tech-
nologies cannot necessarily be used for indoor environment and outdoor en-
vironment, the accuracy requirements may not provided by every solutions.

1.6 Spatial Data Management

Spatial Data Management is the storing of spatial data in specialized databases,
most of all treating these data as specific spatial data instead of simply treat-
ing it as generic data. This involves specialized and optimized storage and
retrieving of data.

The Open Geospatial Consortium defined specifications and standards for
implementing database management systems with geospatial data treatment.

For instance, the kind of specific geospatial data management operations
can be querying data within a certain geographical area.

Query Input Output
Distance geometry,geometry number
Equals geometry,geometry boolean
Disjoint geometry,geometry boolean
Intersects geometry,geometry boolean
Touches geometry,geometry boolean
Crosses geometry,geometry boolean
Overlaps geometry,geometry boolean
Contains geometry,geometry boolean
Length geometry number
Area geometry number
Centroid geometry geometry

Table 1.1: Typical geospatial query types.

1.7 Structure of Thesis

The structure of this thesis is as follows: In the chapter 2, we discuss about
the backgrounds of the thesis, and the technical project and presenting the
related work.

1. INTRODUCTION 4

Then in the chapter 3, we explain the conception and modeling of the so-
lution, the chapter contains the organization of the solution and the technical
choices.

Chapter 4 will describe the implementation of the technical work, it will
detail the general organization of the project, how the collaborative features
are handled.

After implementation, the chapter 5 will be defining the validation process
of the project and will present some results.

In the continuity of the validation part, a chapter 6 will focus on the
usability of the implemented solution.

Finally, in the last chapter 7, we will summarize the thesis, and discuss
about the next steps relative to the topic and technical project.

2 Background and RelatedWork

In order to handle indoor data in a spatial context, different existing tech-
nologies and approaches are relevant, they can provide clues and insights for
structuring a solution.

2.1 Spatial Data Management

Spatial data is data that includes a geographical positioning context. Whether
it is a moving object or a fixed positioned item. Spatial Data Management
is a technique for organizing and retrieving information by positioning it in
a spatial framework. It is then accessed with a Spatial Data Management
System (SDMS). [19]

2.1.1 Spatial Data Management System

Different ways of handling data have been used and tried, expressing queries
in natural language, giving example of the desired results or graphically de-
scribing the retrieval process. But those approaches still require that the user
precisely specify the data that will be retrieved, which means that the solu-
tion requires to know what the database contains, and how it is organized.
[19]

Therefor, to solve this issue, Spatial Data Management Systems orga-
nizes the different information in two-dimensional geometric spaces. This
technique is more intuitive for untrained users.

Building such a system requires the resolution of two problems: [19]

• A mean that will be used to view a large data surface.

• A mechanism for creating pictorial representations of symbolic infor-
mation.

5

2. BACKGROUND AND RELATED WORK 6

2.1.2 Spatial Data Structures

Spatial data consists of spatial objects composed by points, lines, regions,
rectangles, surfaces, volumes, or possibly data of higher dimensions. A way
to handle it is to store the data and parameterize it and then obtaining a
reduction to a point in a possibly higher dimensional space. [34]

Also, the data requested needs to be retrieved with queries that are based
on not explicit spatial properties. This involves a possible high volume of
data, and a high processing cost, while computing it on the fly may be more
interesting. Even more if the data is stored in an appropriate manner. The
spatial data is represented by separating it structurally from the non spatial
data and keeping appropriate links between the two types of data. [34]

2.2 Spatio-Temporal Databases

Spatio-temporal databases are database system management that can handle
data in both space and time context, this can be used to track objects for
instance, defining the history of positions of a tracked object. In a more con-
crete perspective, those kind of database are used to keep records of history,
to understand some scientific questions, or to solve puzzles: understanding
the trajectory of bullets, determining migration patterns of animals, when
did the president meet the prime minister. [16]

Our implementation will include the geographic position of geometric
components, and in the end, the project should handle a history of each
objects, to do this, we are going to use this kind of database.

2.3 Computer Aided Design

Computer-aided design can be defined as the use of an automated system
to assist in the process of development, edition, analysis or improvement of
a design. The created images are composed of basic geometric elements, as
dots, lines, circles, etc. [35]

CAD can have the following applications:

• Stress-strain analysis of components

• Dynamic response of mechanisms

• Heat Transfer calculation

• Numerical control part programming

2. BACKGROUND AND RELATED WORK 7

CAD systems increase the productivity of the designers, the quality of its
work, the communications through documentation is also improved. [35]

The current system for creating and editing maps is handled with CAD
software, the main issue with those kind of programs is that it requires to be
trained to use them, these are complex software, that need time and practice
to be mastered. The implemented solution aims at removing this barrier,
and to make it easy for a first time user to create and to edit its own maps.

2.3.1 Building Information Modeling

The concept of Building Information Modeling (BIM) has been created in
the 1970s, it has been imagined when computer technologies were getting
more important and would start being interesting for checking processes in
the building industry, such as verifying the reliance of drawings for instance.
[14]

BIM represents the process development, and the use of a computer gen-
erated model to simulate the planning, the design, the construction and the
operation of facility. [8]

It is used to visualize what is to be built in simulated environment. Ar-
chitects, engineers and constructors will use it to identify potential problems
in the design, construction or operation process.

The model of information has the following properties is a data rich, ob-
ject oriented, intelligent and parametric digital representation of the facility.

It carries all information about the buildings, its physical and functional
characteristics, the project life cycle information too. For instance, a build-
ing information can contain geometry and geographic information, spatial
relationships, quantities and properties of building elements, cost estimates,
schedule, etc. [25]

BIM is used for different purposes:

• Visualization

• Fabrication

• Code reviews

• Forensic analysis

• Facilities management

• Cost estimating

• Construction sequencing

2. BACKGROUND AND RELATED WORK 8

• Collisions detection

The key benefit of using BIM over some other system is its accuracy
concerning the geometrical representations of the different parts of a building.
But as it is an earlier system, is has a better use of the available computational
power, and benefits from the new technologies aswell. Therefor, it has faster
and more effective processes, it generates better designs. You can control
the whole life costs and the environmental data. The production quality is
improved such as the customer service. [8]

2.4 Geographic Information System

There are different definition of what a Geographic Information System (GIS)
is, each one having a different approach.

But the most general definition developed and agreed by specialists is the
following: A system of hardware, software, data, people, organizations and
institutional arrangements for collecting, storing, analyzing and disseminat-
ing information about areas of the earth. [11]

The purpose of a GIS could involve a complex decision or a routine deci-
sion, as the policy for timber harvest, or the granting of a permit for instance.
It is a tool, that can be designed to be effective and efficient for a certain
purpose. [15]

The implemented project will need to handle most of the operations that
a GIS performs, in order to provide a functional and standard service.

2.5 Location Model

A location model, is the description of an area where we want to set up a
positioning system. This description can be either geometric, which is based
on the coordinates of the system for precisely define the position of an object.
It can be symbolic, which is a clear description of the relationships between
the objects. Finally, the modeling can also combine the two ways at the same
time, as a hybrid system, that will show the hierarchical relationship between
the objects, and allow a precise determination of their positions. [27]

In our case, location models can be used for indoor location, to handle dif-
ferent types of functions, as tracking objects or users, guiding users through
the environment, or defining the state of an entity, for instance.

2. BACKGROUND AND RELATED WORK 9

2.6 Indoor Positioning Technologies

The indoor positioning is a process mostly done with fingerprinting, but can
also be done with trilateration, triangulation or image processing:

Fingerprinting is the observation of the characteristics of the different sig-
nals received of a device. It is done in two steps, the calibration of the
environment, establishing a database of measurements of the different
received signals, in different locations. And after that, an estimation
of the current position made by comparing the current measurement
with the reference locations. [22]

Triangulation is a technique to find the location of an object by measuring
the angles between this object’s position and other references points
with a known position. The object’s position becomes the third vertex
of a triangle with known angles and a known edge size. [18]

Trilateration is a mathematical method that is used to determine the rel-
ative location of an object using the triangle geometry as for triangu-
lation, but this one uses the angles and the distances to process the
position of the object. Trilateration uses the distances between at least
two reference points. [40]

Image Processing is a technique that uses a camera to capture the view
of the user and process the position out of it. The main issue is that
this technique requires a high computation power. [33]

Two properties are needed in order to ensure that the positioning is work-
ing, the spatial variability, which is the fact that a device will receive very
different signal strengths if it moves, considerable changes should be detected
for small distances. The second requirement is the temporal consistency, it
is needed that the received signals stay the same for a given location. If a
device should receive any signal with the same strength at any time. Those
two properties ensure the functioning of the fingerprinting technique. [9] [20]
[21] [23]

2.7 JavaScript Object Notation

JavaScript Object Notation (JSON), is a text format used to store and struc-
ture data. It is derived from the JavaScript object notation. A JSON object
can include basic types values, other JSON objects, or arrays of primitive

2. BACKGROUND AND RELATED WORK 10

values, or arrays of JSON objects. The basic types are strings, booleans, or
numbers. The JSON format is easily read by machines and by humans and
it is easy to learn, because the syntax is highly simplified. [13]

As a JSON object is highly hierarchised, it is easy to represent a map
and its inner generic items as JSON objects themselves.

This kind of structure makes it easy to represent hierarchised objects, such
as maps, containing different levels, themselves containing different areas and
items.

2.8 Application Programming Interfaces

There are different reason for implementing and using programming inter-
faces:

Security As previously described by the figure 4.1.1, the database is not
directly controlled by the clients that would require the credentials.
The intermediate service is placed between the database and the clients.

Abstraction The APIs are also used for abstracting the database layer,
the clients do not have to handle their database queries. This allows
the developer to change the characteristics of the system, switching the
database management system for instance, editing only the functioning
of the APIs of the system.

Unique behavior An application might be used in different ways, web-
embedded in the current case, but could be used in a mobile or a
desktop application. Using APIs prevents the developers from writing
the same behavior several time on those different devices, or different
languages, the only behavior to implement is the calling of the APIs
for each platforms.

As the application will be developed for a web-based solution, we do not
use the APIs for the unique behavior advantage, but we are using those for
the security issues and to have an abstraction layer between the client and
the database.

2.9 Collaborative features

Nowadays, the ongoing trend is to develop real time collaborative applica-
tion, allowing several users to use the same application or to edit the same
document for instance, increases the efficiency of the team, and make it easier
to have a good coordination between the members of a group.

2. BACKGROUND AND RELATED WORK 11

2.10 Licensing and re-use of existing tech-

nologies

Some part of the work done during this thesis will be published as free li-
censed software such as Berkeley System Distribution License, or GNU Gen-
eral Public License. So in a general way, the tools we are going to use to
implement the solution will have to be free as well. As the work done might
be used later by other persons, the tools should also be standardized. It is
not a compulsory requirement, but in this way, it would be easier to use or
to edit the application.

3 Conception and Modeling

3.1 Overall solution

Figure 3.1: The planned architecture of the application.

As shown by Figure 3.1, the application includes a server that will interact
with the clients, and a database that will store the information. We can see
two main use cases:

Creation and edition of a map: The client will use a web application,
synchronized with the potential other clients, to graphically create a
map, and handle the different information and entities inside it. Those
information will be stored in a database.

Retrieving a map: Once a map is created, a client will be able to request it
to the RestAPI. The server will retrieve the data stored in the database,

12

3. CONCEPTION AND MODELING 13

and generate a JSON file out of it. This JSON file will be processed
into a NDD file that will be returned to the client.

3.2 Data Management

As the designed system will eventually replace the old one, it is important
to know how the data is stored. Currently, the .DXF file generated by CAD
software is converted into a .JSON file, before being converted into a .NDD
file.

So the first step before designing the data management, will be to un-
derstand how it is currently functioning, and how the maps information are
handled and organized.

Then, as we need to handle shared data, it needs to be well organized,
and the data sent from a client to the other one should be as restricted as
possible to avoid latency between editing and displaying. If a wall is added in
the map, it would make more sense and would be more efficient to send the
information that a set of points was added in the map, and the information
of each points, instead of sending all the map information.

Those ways of handling the data would not make a lot of difference for
small maps, but if there is a lot of data to handle, there might be latency
and other sort of issues for sending the data, but also for rendering it.

As we want to avoid unnecessary computation, we need to use a simple
database, that provides easy access to the data and easy ways of editing this
data. The database solution choosing process is discussed in the following
part 3.2.2

3.2.1 Old JSON Organization

Map As described by the Figure 3.2.1, a map is identified by a versioning
number, can include some tags, contains an object defining the general
boundaries of the environment, and finally several levels.

Bounds The bounds of a map, or of a level, basically contains the
minimum and maximum limits of it, in x and y coordinates, but
also in GPS coordinates with the longitude and the latitude.

Level Each level includes all the required data to build it, it includes
the projection data, the different zones, the walls information, the
list of beacons of this level, the keepout zones and keepout holes
and finally the list of junctions. It also includes the bounds of the
level.

3. CONCEPTION AND MODELING 14

Figure 3.2: JSON Architecture of a map.

Projection The projection data is the required information to
process the rotation between the x and y coordinates and
the GPS coordinates, it is also used to calculate the distance
matching : meter - latitude - longitude.

Zone A zone includes the x and y coordinates of its points, their
GPS coordinates as well, the type of zone, and identifier and
a name.

Keepout Theses are the zones that you can not be in, it includes
the different points of the zone, and the type of the zone. The
difference between a keepout and a zone, is that the keepouts
do not include any identifier nor any node.

Keepout hole A keepout hole is an allowed zone inside a keepout
zone, it has the same information than a keepout zone.

Beacon A beacon is the device that makes it possible to track
a user, it has a defined x and y position, it also has GPS
coordinates, the altitude and height information. Then for
the non positioning data, it includes the UUID, which is the
identifier of the beacon, the type of the object, and the RSSI,
which is the signal strength.

Wall The walls are defined by the positions of their points, the
material that constitutes them, the type of object and the
thickness.

Junction The junctions are the vertexes of the defined routes.

3. CONCEPTION AND MODELING 15

They include x and y, and GPS positioning information, flags
that are not currently used, they also contains keywords and
the related links. The junctions are currently stored in one
object called “junctions“ as direct objects of it.

Link The links are the edges of the routes, they contains in-
formation about the distance, the target and source junc-
tions, the cost of using this edge, for calculating routes.
As the junctions, the links contain flags, that are not used
either, and the coordinates of it.

3.2.2 Database Choosing Process

As detailed in the annexe A, a list of possible solutions with their main in-
formation has been selected: Is the solution a native database, or is it an ex-
tension working on top of a database, is the license proprietary or free (GPL,
AGPL, BSD, MIT, MPL or Apache license), then are the sources open, and
how is the implementation from a standardization point of view, if a solution
is openGIS compliant, it means that the Open Geospatial Consortium certi-
fies that the solution is matching the defined openGIS standards. However a
solution can be implemented in order to match the openGIS specifications,
without being validated and certified by the OGC.

The important points for choosing a database over the others will be using
an open solution, in terms of licensing, but also in terms of standardization,
as explained in the section 2.10. So the first filtering will be to remove the
proprietary licensed databases. Then we select only the databases that are
implemented in order to match the openGIS standards, and the databases
that are openGIS compliant. Then a major filtering will be done according
to the popularity and stability of solutions, in order to have a better docu-
mentation, and a better eventual support during the development of the final
solution.

The final possibilities that could be used would be MySQL , or Post-
greSQL . The advantage of PostgreSQL over MySQL would be the degree
of standardization, MySQL Spatial is designed to match the openGIS stan-
dards, but PostgreSQL is openGIS compliant, it has been validated and
certified by the OGC . [28] [31] [31]

The PostGIS extension adds new data types such as geometry shapes,
geography information or rasters for instance. It also add some functions,
operators and index improvements that enhance the use of those types. [5]

The use of a relational database will allow us to easily insert new data
in a map, without having to handle complicated queries for simple actions.
If we need to add a wall, we simply create a new tuple in the ’Line’ table

3. CONCEPTION AND MODELING 16

of the database, with the appropriate information for each points of the line
forming the wall, instead of re-creating a new map and re-inserting every
items in the database tables.

In this way, we would avoid unnecessary computation process, and we
could handle more data.

3.2.3 New Hierarchy

Figure 3.3: New Hierarchy of the Map

As described in the Figure 3.2.3, the hierarchy of the data has been mod-
ified: The different elements of a level are now a set of geometrical data,
that is an abstract data type implemented as points, lines or surfaces. A
surface might be a polygon that contains a set of coordinates, but could also
be a circle with a unique coordinate and a radius to define its size. The
anchor concept was added, which are the reference coordinates that will be
used with the projection to convert the Cartesian coordinates in GPS coor-
dinates. The map components was also modified, it includes a timestamp to
support the history possibility in the project. The bounds of a map, or of a
level, now contains four coordinates containing the minimum and maximum
coordinates, in a Cartesian and in the GPS perspectives.

This organization keeps the general composition and the logic of a map,
but sets every specific objects in an abstract generic type of data. In this
way, a Link is not a proper item itself, but is a Line with some additional
data, a Wall is also a line but with different additional data. This allows us to
store all specific types in only one table of the database instead of having one

3. CONCEPTION AND MODELING 17

table per specific type. Abstraction allows us to reduce the code to write, by
merging common parts together, it makes it easier to understand the project,
and to extend the project with new features or new objects.

3.2.4 Database Design

The handling of the database will be made by an Object Relational Mapping
tool (ORM), it is an abstraction layer between the server and the database,
which is a tool used to convert object oriented data to a relational oriented
data that can be stored in a relational database. This technique eases the
handling of the database, by automating the correspondence between the
database and the objects of the used language. [39]

The chosen tool will be detailed in the following part 3.3.
As the chosen solution is a relational database, some changes will need

to be done in order to store the maps organized as in the Figure 3.2.3. Each
geometrical data should have a history, so the abstract type Geometrical
Data will include a timestamp in order to record every location it could have
been placed.

PostgreSQL includes the basic SQL data types, and its extension PostGIS
adds support to have native basic geometrical data types. PostGIS do not
natively include round areas data types, but this kind of shape can be easily
represented as a unique point with a radius. The database will be used
mostly for storing the data, and the computations will be handled by the
server, so not having native types for each used shapes is not a problem.
But, using an ORM prevents us from using the specific PostGIS data types,
so we cannot use the Point object, therefor it will be represented as an array
of two floating point values. As a line or a polygon is an array of Points,
those types will be represented as arrays of arrays containing two floating
point values.

Generally, the GPS coordinates are not stored in the database, because
they will be processed and calculated by the server from the Cartesiancoor-
dinates, when a map is retrieved. This principle applies for every gps coor-
dinates, except for the different anchor points, that will be used to calculate
all gps coordinates and the projection values.

3.2.4.1 Maps

The maps stored in the database contain an identifier for other objects related
to each maps, it includes a version number and a timestamp to have a history
of the different states. Finally the maps can include different tags stored in
an array of text.

3. CONCEPTION AND MODELING 18

Figure 3.4: Table containing the maps

The identifier, version number and time value cannot be null.

3.2.4.2 Levels

Figure 3.5: Table containing the levels

A level is related to a map, so it includes its identifier. The level is
identified by its map identifier and the floor it represents, named level in the
table. It also contains an altitude value.

The map and level identifier cannot contain null values.

3.2.4.3 Bounds

Figure 3.6: Table containing the bounds of the maps and the levels

The bounds of a map or of a level contains the minimum and maximum
values of Cartesianand gps coordinates, and the identifier of the related map
or the related level.

A value with no level identifier is related to a map only, and bounds with
a map identifier and a level identifier is related to the level of a map. The
only field of this table that can have a null value is the level identifier.

3. CONCEPTION AND MODELING 19

3.2.4.4 Anchors

Figure 3.7: Table containing the anchors of a map

The anchors of a map is linking Cartesiancoordinates to gps coordinates.
It is related to a map. There cannot be any null value in this table.

3.2.4.5 Polygons

Figure 3.8: Table containing the polygons of a level

A polygon is related to the level of a map, those fields cannot be null. It
can include a type and a name, those fields are optional. A timestamp value
is used for the history of the polygon. Finally it includes two arrays of the
cartesian and gps points that compose the polygon. It can optionally include
additional metadata as a JSON value. The only null possible values are the
metadata, the name, and the type.

3.2.4.6 Circles

A circle is linked to the level of a map, includes a timestamp value and can
include a type, a name and metadata values. It necessarily include a central
coordinate, and a radius.

3.2.4.7 Lines

The lines of a level include the non optional fields such as the map identi-
fier, the level identifier, the timestamp value, a set of coordinates. It can
optionally include a type value, and metadata.

3. CONCEPTION AND MODELING 20

Figure 3.9: Table containing the circles of a level

Figure 3.10: Table containing the lines of a level

3.2.4.8 Positions

Figure 3.11: Table containing the single points of a level

The different points of a map include the mandatory fields of the map
and level identifiers, a timestamp value and its coordinates. It can include
the optional fields of type of position and metadata.

3.3 Software Stack

In order to provide a solution easy to use, with as few requirements as pos-
sible, we will use the different web technologies to develop the application.

3. CONCEPTION AND MODELING 21

This will allow anyone to use it without having to install other software than
a web browser, which is nowadays included in every operating systems.

The entire web service is including the server part and the client part.
The server component is the interface between the clients and the database,
when a client will save a map for instance, it will first send the data to store
to the server, then the server will organize the data in the database. When
a client will request a map, the server will read the database and return the
map to the client.

On the other side, the client is the component that handles the map
creation, and the request of an existing map. As the entire project is meant to
include collaborative work, the clients and the server will need to synchronize
with each others, so that two clients can create or edit a map at the same
moment.

NodeJS is a recent technology that builds client server Javascript ap-
plications, as a new web technology, it has been created in order to provide
highly scalable solutions. It also includes a Push capability, this will be use-
ful to have a collaborative application, every changes on the map will be
quickly made on all the clients editing the same map. For those reasons, the
web application will be implemented using the NodeJS technology, including
some frameworks, modules and libraries. [10] [37]

Twitter Bootstrap is a collection of tools that help the creation of a web
page, it includes HTML and CSS codes for adding forms, buttons, navigation
tools and other interactive elements. This framework will be useful to have
a faster development of the user interface part. [12]

GruntJS is a JavaScript task runner, it will allow us to automatize the
repetitive tasks such as minification of the code or running the tests of the
applications for instance. The plugins catalog is quite big, and can allow us
to automate a lot of different tasks quickly and effortlessly. [3]

PaperJS is a graphical library for JavaScript, it can be used to create
vector drawings. It is a free MIT licensed tool that will be used to draw
the maps on each clients using the application. It includes powerful features
such as drawing basic vector graphics, but also curves, and more complex
elements. [4]

Yeoman consists in tools and frameworks that will help the development
process, by quickly building the applications, generating templates, handling
the dependencies. The work flow comprises three general tools:

Yo A scaffolding tool that is used to generate the project basis and to gener-
ate the configuration files such as build system files, the dependencies
of the project file.

Grunt or Gulp The build system tool that is used to build, preview and

3. CONCEPTION AND MODELING 22

test the project.

Bower or npm The package manager, used to automatically retrieve de-
pendencies of the project, Bower and npm are two famous solutions,
and can be used together as well.

[7]
ExpressJS is a small web application framework that includes basic tools

to handle routes in an easier way. It can also be used to include templates
in the application. [2]

AngularJS is an open source JavaScript framework, it is extending the
HTML language, including new tags, databinding between the HTML view
and the JavaScript controller.

Sequelize is a popular Object Relational Mapping (ORM) library, it
is developed in JavaScript, and can be used in a NodeJS environment. It
allows the mapping of JavaScripts objects to the relational databases such
as MySQL , MariaDB , PostgreSQL and SQLite . This library will allow us
to avoid handling the database, and to change from PostgreSQL to another
one if it is required. The development of the whole project now exclude the
conception and designing of a database.

3.3.1 Collaboration tool

3.3.1.1 Meteor

Meteor is a complete JavaScript framework. It introduces new paradigms
concerning the client-server architecture, and allow the development of the
server and the client with the same language and the same API. This choice
make it easy to transfer a process from the server to a client, or the other
way around. Meteor makes it easier to develop collaborative applications, it
includes features used to have responsive solutions, with modern interface.
It is published as an MIT licensed software. [36]

3.3.1.2 DerbyJS

DerbyJS is a full stack framework. It is designed to help the developer
to implement real time collaboration applications, and to make it easier to
develop components for the user interface, through bindings between the
views and the models for automatic updates in the view when its attached
data changes. It is published as an MIT licensed software. [1] [26]

3. CONCEPTION AND MODELING 23

3.3.1.3 TogetherJS

TogetherJS is a JavaScript library developed by Mozilla that helps with real
time collaborative work. With this library, each users will see the cursors
and clicks of the other clients, they will see what has been edited, what is
being watched, the scroll position. The forms of a web page can be filled by
two clients. It is a customizable tool, its aspects and behavior can be edited
or extended depending on the needs. However, TogetherJS does not give real
time persistence, and it is up to the developer to implement it. TogetherJS
only synchronizes the sessions in the browser. The library is published as a
Mozilla Public Licensed v.2.0 software, which is a permissive free license. [6]

3.3.1.4 Final Choice

The criteria for choosing a solution rather than another are the following:

Free license As it is an important focus of the project, and we want to be
able to redistribute some parts of it as free and open source software,
the tool used should be easy to use and to redistribute.

Restricted solution We want to handle collaborative data, we do not want
to include unnecessary features possibly already included in the other
libraries and frameworks.

Limited features The current focus concerning collaboration in the project
is to allow one user to be monitored by one or several others, so in the
first place we do not need complicated features.

License Size Features
Meteor MIT Full stack framework Collaboration Interfaces APIs
DerbyJS MIT Full stack framework Collaboration Databinding Routing
TogetherJS MPL Small library Collaborative

Table 3.1: Comparison of popular collaborative JavaScript tools, libraries
and frameworks

Among the compared solutions, all of them are distributed as open source
software. Meteor and DerbyJS are both full stack framework which means
that both include other libraries, that might not be relevant for the project,
or even solutions for problems that are already handled by other libraries. On
the other side, TogetherJS is specialized in collaborative features. Concern-
ing the included features, TogetherJS only includes collaborative elements,
whereas Meteor and DerbyJS also include Interfaces, APIs, databinding or

3. CONCEPTION AND MODELING 24

Routing. Incidentally, those features are already handled by AngularJS,
NodeJS itself.

Considering the previous analysis, we will use the library, developed by
Mozilla, TogetherJS, to handle collaboration.

4 Implementation

In this chapter, we will describe how the technical project is working, and
how it has been organized. We will focus on some important parts of the
project, that one may consider the most relevant:

Actions The principle of the actions relative to the map data manipulation.

Application Programmer Interfaces The different use cases of the API.

Client side The client organization, and data handling.

Collaborative features The features included that makes the project col-
laborative.

4.1 Actions

This section will describe our actions paradigm, we will first explain its prin-
ciple and then we will list and describe every possible actions.

4.1.1 Principle

A perspective previously discussed was the benefit of sending as little data
as possible, whether it is between the programming interfaces and a client,
or between two collaborative clients. As it is not useful to send every exist-
ing data, it will be restricted to the minimum required and a collaborative
message will only contain the most essential part of the data.

To achieve this, we will implement a solution that approximates the Com-
mand design pattern: For each action accomplished on the map, a new “Ac-
tion“ object will be created, and represented as a .JSON object.

As described in the figure 4.1.1, the idea of our actions principle is that
when the main user is manipulating data on the map, an action object is
created, containing the required information for applying this manipulation.

25

4. IMPLEMENTATION 26

Figure 4.1: Actions concept principle scheme

This object is readable by the clients and the application programming in-
terfaces. So when something is changed in the map of the user, it is quickly
replicated in the database through the application programming interfaces
and in the maps of the monitoring users.

4.1.2 Tasks

As shown in the table 4.1, every item needs to be created or deleted. No
object requires a modification feature, because in the first place modifying
an object can be handled by creating a new object with new values, and
deleting the old object.

The first focus will be to implement the “CREATE“ and the “DELETE“
actions, and to take care of the “MODIFY“ actions later, in the first time
any edition of an object would be made by deleting it and re-creating a new
one. The modification actions will be implemented later, depending on the
needs of the application.

A special kind of action also exist to spread to the other clients the
changing of level in the map editor. The action is name “SETLEVEL“ and
simply contains the floor level of the level that has been set by a client. As
this action is entirely used by the editor itself, it is not sent to the database.

4. IMPLEMENTATION 27

CREATE MODIFY DELETE
Map 3 7 3

Anchor 3 7 3

Bounds 3 7 3

Level 3 7 3

Circle 3 7 3

Surface 3 7 3

Junction 3 7 3

Point 3 7 3

Line 3 7 3

Polygon 3 7 3

Table 4.1: Listing of all required actions per items.

4.1.3 Structure

Figure 4.2: Structure of an action

As shown by the figure 4.1.3 describing an action “CREATE“, “MOD-
IFY“ or “DELETE“, the action object contains an attribute task, containing
the value “CREATE“, “MODIFY“ or “DELETE“, the identifiers of the map
and the level of this map. It also includes the class of item that is being
processed, Bounds, Anchor, Position, Line, Polygon or Circle, and it’s sub-
class described in the attribute type. Finally it includes an attribute data,
that contains the data required to describe the item, its position, its different
points, or radius for instance.

4. IMPLEMENTATION 28

4.2 Application Programming Interfaces

4.2.1 Operations

The programming interfaces need to handle every existing actions previously
discussed, but it will also be used for retrieving data required for building
the maps in the client or to generate the .NDD files.

4.2.2 Map retrieving

The clients need to retrieve the maps in the current status, to do so, they
will use an API that retrieves all data of the selected map.

It is done when a client requests the map editor application, with a given
map identifier in the parameters, the API will retrieve every item composing
the map, transform them in a list of “CREATE“ actions to be processed by
the clients, in order to recreate the map in its current status.

4.3 Client side

The client side is the part used by the final user to create and modify its
map. It is a web based solution, usable on any browser of any platform.

4.3.1 Initialization

As described in the figure 4.3.1, when a client in initialized, it first calls the
API for getting the map data, the API retrieves the data from the database
and returns an organized JSON data representing the map. The client then
processes the JSON data and converts it into a PaperJS project, which is
displayed in the web application.

4.3.2 Manipulation

For each data manipulation in the client application, the map should be
changed. The figure 4.3.2 shows that, when a client is editing its map, it
modifies the PaperJS project, but does not change anything in the original
JSON data containing the retrieved map. Once those changes are applied
an action object is generated containing the required information to perform
the changes replication in the database and for the potential collaborative
clients.

4. IMPLEMENTATION 29

Figure 4.3: Initialization of the client

Figure 4.4: Data manipulation from the client

4.3.3 Undo redo

Any activity on a map can be represented as an Action object, and can be
spread to the other clients and databases. The current state of the project
only includes ’CREATE’ and ’DELETE’ actions, and cancelling and action
simply means that we have to apply the opposite action.

To cancel the ’CREATE’ action of an item, we just need to create a
’DELETE’ action with the similar data. And to cancel a ’DELETE’ action

4. IMPLEMENTATION 30

of an existing item, we simply have to create a ’CREATE’ action with the
same data.

In other words, the undo feature would be to copy the last processed ac-
tion, to change the action value of the object: ’CREATE’ becomes ’DELETE’,
and ’DELETE’ will become ’CREATE’.

Figure 4.5: Undo redo feature functioning

To undo actions, we need to store the processed actions, and to redo
actions, we also need to store the undone actions. Basically this would work
with two stacks: As described by the figure 4.3.3, one stack containing the
processed actions, each time an action is being processed, we store it in
this first stack. When we need to undo an action, we simply pop the first
element, we create a copy of the action, swap its ’CREATE’ or ’DELETE’
value, process it, and then we put the original unswapped value action in a
second stack containing the undone actions.

So when we need to redo a previously undone action, we simply pop the
undone actions stack, process it and finally push it back in the first stack.

4.4 Collaborative features

As discussed previously, the first focus of collaborative work will be about
monitoring a user editing a map, without handling any co-editing possibil-
ity: simply checking the different operations of the main user, mainly by
replicating its actions to the collaborative users.

4. IMPLEMENTATION 31

4.4.1 Cursor and clicks sharing

The used collaborative JavaScript library, TogetherJS, includes as a first basic
feature, the sharing of cursor positions and clicking information for all clients
connected to the same page. This allows a real-time monitoring on what
elements the main user is editing. But this does not include the interface
of the other clients, so when an edition is made, it needs to be manually
replicated through the database or through direct replication between the
clients.

4.4.2 Actions sharing

TogetherJS makes it easy to send messages between two clients using the
same web page, so whenever the main user will finish its editing, an action
object will be created, it will be send to the programming interfaces, but
also to the collaborative users, that will process it so that the edition can be
displayed in their own interfaces.

5 Validation

5.1 Description

This chapter will describe the testing system of the application implemented
in the previous chapter.

Software testing is an important component and part of software devel-
opment, and it is required to validate that a program is correctly running.
Four Different layers of testing exist:

Unit testing is the lowest layer of testing, it is a method that will inde-
pendently test different units of a program to check that they correctly
work individually. The first step of a unit test is to define the specifi-
cation, defining the predicted output of the test with a known input.
Then once the test has been run, if the predicted output is correct, we
can assume that the test has been successfully passed, and that the
test unit works as it should.

Integration testing is the step following unit testing, after the developers
have validated their work and their fixes, they regroup their modifica-
tions. The point is to define a new version based on a maintenance
or a development version. It usually includes revision control software.
Nowadays, integration testing has been replaced by continuous inte-
gration that includes unit testing and integration testing. The aim of
integration testing is to validate the functioning of bigger parts of the
program, no simply focusing the test on a single function, but verifying
that a whole feature correctly works. It can be done as Bottom Up
Testing, which means that the low level components will be tested
first, and then the highest level components, it can also be done the
other way around as Top Down Testing, where higher components
will be tested before lower level components, or it can finally be done
as a mix between the two as Sandwich Testing.

32

5. VALIDATION 33

System testing is the process that will check if the system can correctly
run the developed program or application. The tests take as input all
the integrated components that sere validated by the previous testing
methods. It is not required to know the content of the software com-
ponents, its code, or its logic to run the system testing. It includes dif-
ferent kinds of testings such as: usability, performance, compatibility,
stress, security, aptitude, maintenance, installation, smoke, scalability,
graphical user interface, load, volume testings . . .

Acceptance testing is a process that aims to verify that the developed
product matches the requirements of the initial specifications. It is the
verification that the developed product is what the customer or the end
user really needed.

[29]
As said previously, testing is a major part of development, therefore the

implemented project requires to be tested.
The web application is mostly visually tested along the development, but

as the different items can be displayed separatly between the application and
the database, it is required to test the action processing on the server side.

A specific application programming interface has been developed to ver-
ify the good functioning of the data storage, and will be described in the
following section 5.2.

5.2 Testing System

A unit testing system has been designed to verify the good functioning of
the interactions between the actions to be processed and their result on the
database. It is a simple application programming interface that takes a list
of files as an input, that are present on the server side, and will process each
one of these files one after the other.

The initial testing files are essentially designed to test basic insertion and
deletion of an item in the database, by processing an action, but as each files
are completely independent, it is easy to customize the tests and to have
more complex tests, to extensively check different use cases.

As described by the figure 5.2, the application programming interface
takes a list of files to process the tests. Each file processes one or several
actions and some interactions with the database to check if the wanted tests
have been correctly made. And finally the application programming interface
returns a list of results containing booleans to describe if each unit correctly
works.

5. VALIDATION 34

Figure 5.1: Testing system general overview

The initial test files are simply verifying the creation and deletion of
generic items in the database:

Level This test simply tries the creation of a level with a given background
and a given altitude, and tries to delete it afterward.

Anchor The script for anchor testing processes a creation and a deletion of
an anchor on the virtual level created before the starting of the tests.

Bounds The bounds testing first define the bounds of a map, verifies that it
worked, and as there can only be one bounds item defined per map, it
checks if the creation of new bounds successfully destroys the previous
bounds, and finally delete the current bounds.

Circle Line Polygon Position Those four tests simply process the cre-
ation of a new item, verifies that it has been successfully created in the
database, then processes the DELETE action of the same item, verifies
that the database doesn’t contain it anymore, and returns the result to
the user.

5. VALIDATION 35

5.3 Results

To process the tests, we will call the application programming interface with
the input containing all files that were quoted in the previous section5.2, the
successful tests are displayed with the green color, and the failed tests are
displayed with the red color:

Figure 5.2: Testing results

5.4 Conclusion

The first basic unit tests have been designed, written and successfully passed,
but eventually, more complex testing scripts will be written to test more
complex sequences, with different items that might interact and interfere
with each other.

6 Usability Testing

Concerning the implementation, an essential matter was to provide a solution
easy to use, as CAD software are complicated to understand, require training
and practice to be mastered, the developed solution had to be accessible for
anyone.

After the implementation of the minimum valuable product, the web
application has been submitted to usability testing, and experimented by
inexperienced users, to evaluate its accessibility. In this way, the feedback
will be used to improve the application, and to make it even more easy to
use.

Usability testing gives the command of the program to the future user,
it draws a picture on how the user will use the application, how it will react
[30].

The following sections will describe the user interface itself, then there
will be the content of the survey that the experimental users had to answer,
after that, the results of the survey will be presented, a feedback from CAD
software experienced users will also be given. Finally an analysis of the
previous results will be given, to understand what kind of evolution the
application needs.

36

6. USABILITY TESTING 37

6.1 User Interface

Figure 6.1: Graphical user interface

As shown in the figure 6.1, the graphical user interface is divided in three
parts, the upper left part contains the editing canvas, this is the part where
the map is displayed and edited.

The upper right part contains the controlling buttons:

Level control buttons used to create new levels, or to delete the currently
selected level.

Navigation buttons used to navigate between the different levels. The
button of the currently selected level has a darker color in order to
easily see which level is being displayed.

Tool buttons used to create the different objects of the map: bounds, an-
chors, circles, areas, lines. . . . This section also contains the editing
button used to edit the metadata of the different objects created, and
the delete button that is used to remove those objects.

Finally, the lower part of the interface contains a displaying zone, that is
used to detail the data of the selected item. Depending on the object, it will
display its core data and its metadata.

6. USABILITY TESTING 38

Depending on the tool button used, some additional information can be
required: a popup window will be displayed on top of the main interface and
the user will be able to fill the required fields.

Figure 6.2: Popup window used to set the GPS coordinates of an anchor.

The figure 6.1 shows that when an anchor is created, it is required to
define its GPS coordinates, in order to bind the GPS coordinates to the
Cartesian coordinates of the map. The popup window requires a latitude
and a longitude.

Figure 6.3: Popup window used to set the values of a level.

The figure 6.1 shows that the creation of a new level in the map requires
some data, the floor level is mandatory. It can also be useful to set an
altitude, and a background image (typically, the floor plan of the building
level that has to be digitized).

As displayed in the figure 6.1, the different existing areas (zone, keepout
or keepout hole), currently require a name.

6. USABILITY TESTING 39

Figure 6.4: Popup window used to set the metadata of an area

Figure 6.5: Popup window used to set the metadata of a beacon

As shown by the figure 6.1, in order to have functioning beacons, each
one of them requires a unique identifier, an altitude, and a Received Signal
Strength Indication value.

Figure 6.6: Popup window used to set the metadata of a junction

The popup window for junction editing, showed in figure 6.1, requires a
name and a unique identifier.

6. USABILITY TESTING 40

6.2 Survey

The survey used to grade the application usability consists in a series of steps
to process on the application, for each steps the user will grade its difficulty
from 0 to 5, 0 meaning that the task is complicated to process, 5 meaning
that the operation is easy to handle.

• Creating a level

• Moving / Zooming

• Defining the bounds of a level

• Creating areas (zones, keepouts, keepout holes)

• Creating circles

• Creating anchors

• Creating walls

• Creating beacons

• Deleting elements

• Optional comment

6. USABILITY TESTING 41

6.3 Results

6.3.1 Inexperienced users

Operation Average value

Creating a level 2,5
Defining the bounds of a level 3,5
Creating areas (zones, keepouts, keepout holes) 3
Creating circles 4,5
Creating anchors 4,5
Creating walls 4,5
Creating beacons 4,25
Editing areas (zones, keepouts, keepout holes) 2,5
Deleting elements 3,25
Moving / Zooming 4,75

Table 6.1: Existing geospatial databases

6.3.2 Feedback

“About the bounds, I didn’t get it at the first time. More explana-
tions are welcome !”

– Florian Duros

“Easy to use, but lack of intuitivity”
– Anonymous tester

“Reclick for validation. What are the anchors ? What are the
beacons ?”

– Anne Busnel

“Some features are simple to use, but some are not very intu-
itive, for instance, Delete function should allow user to select an
item first. Also creating areas was easy but a bit confusing. There
should be a visual representation of the elements used for drawing,
like in a graphical editor, there could be icons for line circle etc.;
and after completing the drawing, one should be able to mark the
figure as a certain area (Zone, Keepout etc.). These specific areas

6. USABILITY TESTING 42

could be checkboxes, not buttons as Delete or Edit. In general, func-
tions could be visually represented in separate groups, which would
improve the usability of the tool.”

– Jelena Pantovic

6.3.3 Experienced user feedback

Zooming and panning together with working with the tools was some-
thing I expected to be possible. Finishing a zone by re-selecting the
same tool was very different from other UIs I’ve used in the past.
Adding beacon meta data required a second click with edit, while
adding an anchor did not. Adding anchors was easier than adding
beacons. Deleting was very easy. It was nice that undo and redo
were supported, it gave confidence when working with the manage-
ment system.

– Mikko Virkkilä

6.4 Analysis

Concerning the Inexperienced user testing, the results show that the different
tools are quite easy to use, but there is a lack of intuitivity on how to use the
different tools, some tool buttons deactivate themselves after the creation of
an item and some have to be manually deactivated.

A standardization of the behavior of the tool buttons would help the user
not to feel lost. The creation of circles, single position items and lines have
almost unanimously been reported as easy to use and intuitive, the behaviour
of the unintuitive tools will be modified and rethought in order to approach
the using method of the intuitive ones.

A recurring problem was also the fact that the users did not know the
purpose of some kind of objects such as anchors or that the attribute called
“level” of a level represents the floor number, and therefore has to be a
numerical value.

The features of moving and zooming on the map is globally satisfying,
however improving it by combining the two operations, instead of simply
zooming on the center point, moving the center point closer to the cursor
and then zooming to this new center point.

In terms of user interface, studying the different CAD software could be
interesting as well in order to have an overview of the existing interfaces,

6. USABILITY TESTING 43

and their logic. The behavior of editing the metadata of the different objects
is not the same for every items, and appears to make it harder to use. A
standardization of this behavior could improve the usage and avoid the user
to be confused.

To conclude with the general usability of the implemented solution, the
user interface is not intuitive, the behaviors are not standardized and there-
fore confuses the users.

7 Conclusion and Future Work

7.1 Discussion

7.1.1 Abstraction

Scientific questions were discussed, reducing the required objects to its min-
imum, having generic types of objects and having a solution as much ab-
stracted as possible.

“The essence of abstractions is preserving information that is
relevant in a given context, and forgetting information that is irrel-
evant in that context.”

– John V. Guttag [17]

Using abstraction will make future changes and code extensions easier to
do.

However, looking back on some parts, the Anchor object seems to be a
useless type of object as it only includes a single point position, and could
easily be represented as a Position object, and its data (latitude and lon-
gitude values), could be stored as metadata. Same problem for the other
“specialized” items such as Bounds or Projections, having one table in the
database fully dedicated to this kind of object seems redundant and unnec-
essary, and could easily be converted as generic items as Position, Line or
Polygon.

A second deeper inspection of the project could improve the abstraction
aspect.

7.1.2 Collaborativity

The collaborative part of the application was visually tested, even if it was
one of the main feature for this research, deploying a distributed testing
solution was not an option in the given time.

44

7. CONCLUSION AND FUTURE WORK 45

Considering the functioning of the collaborative parts of the solution, the
principle of the Action objects demonstrated themselves to be a efficient way
of replicating changes on a project, it makes it easy to perform one action
on different actors of a system. However, the library used to handle the
collaboration between two clients does not seem to be a good technical choice.
The loading of the library does not work correctly all the time, it seems to
provoke some slowings on the application, and the big amount of useless
messages in the browser log file makes it harder to debug the application.

Even if the library is working correctly and was efficient enough to develop
a minimum valuable product, it would be preferable to either use another
library such as MeteorJS or DerbyJS, or maybe developing our own small
service that would handle the replication of Actions, this could be easily done
with one more application programming interface in the solution.

7.1.3 User Interface and User Experience

As seen in the chapter 6, the implemented application is easy to use for
some features, some are harder to understand and to use. However, the
application has a general lack of intuitivity and needs an improvement of
the user experience to really achieve the goal of having a software easily
accessible for untrained users, and to replace CAD software.

7.1.4 Technical Choices

Using NodeJS to develop the web application made is easy to set up a web
server. NodeJS includes a big amount of extensions, for various purposes,
so whenever we want to implement a new feature, and this feature can be
solved or handled by an existing NodeJS extension, we just need to retrieve
it thanks to Node Package Manager, and to include it in the project.

Using PostgreSQL as the database management system revealed itself a
good solution, as it was easy to use generic geometric objects such as lines,
points, or polygons and to store their values as native arrays of points for
instance. Abstracting the usage of the database with Sequelize was easy to
do, and it avoided wasting time on manually handling CRUD (Create, Read,
Update, Delete) operations on the database objects.

7.2 Future work

Some fixes of the implementation itself are required, some graphic bugs and
functioning incompatibilities discovered during the usability testings.

7. CONCLUSION AND FUTURE WORK 46

As described by the previous sections and chapters, the user interface will
need to be highly improved in order to provide a better user experience, more
intuitivity and more ease of use to the users. Some explanation on what the
user is currently doing would greatly help and avoid confusion.

The collaboration library revealed itself working but not perfectly adapted
to the solution, going for another library would be a plausible solution, but
would probably require to import a big framework in the current solution that
would not be specialized for collaborativity between several clients. The best
way to solve this, would be to develop a specific solution to handle the Action
messages between the clients, possibly with an API that would receive every
messages, and that would then regularly be called by all clients to retrieve
the different actions.

Object Generic Type

Anchors Position
Bounds Position
Projection Position

Table 7.1: Abstraction of objects

Finally, some types of objects will be removed such as Anchors, Bounds
and Projection, and will be converted as generic geometric types, in order to
spare unnecessary database tables.

Bibliography

[1] Derbyjs. http://derbyjs.com/. Accessed: 2015-02-11.

[2] Expressjs. http://expressjs.com/starter/faq.html. Accessed: 2015-
02-10.

[3] Grunt the javascript task runner. http://gruntjs.com/. Accessed: 2015-
02-09.

[4] Paper.js. http://paperjs.org/about/. Accessed: 2015-02-10.

[5] Postgis features. http://postgis.net/features. Accessed: 2015-02-12.

[6] Togetherjs technology overview. https://togetherjs.com/docs/

#technology-overview. Accessed: 2015-02-10.

[7] Yeoman. http://yeoman.io/. Accessed: 2015-02-10.

[8] Azhar, S. Building information modeling (bim): Trends, benefits,
risks, and challenges for the aec industry. Leadership and Management
in Engineering 11, 3 (2011), 241–252.

[9] Bahl, P., and Padmanabhan, V. N. Radar: An in-building rf-
based user location and tracking system. In INFOCOM 2000. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE (2000), vol. 2, Ieee, pp. 775–784.

[10] Cantelon, M., Holowaychuk, T., Rajlich, N., and Harter,
M. Node. js in Action. Manning, 2014.

[11] Chrisman, N. R., Cowen, D. J., Fisher, P. F., Goodchild,
M. F., and Mark, D. M. Geographic information systems. Geography
in America (1989), 353–375.

[12] Cochran, D. Twitter Bootstrap Web Development How-To. Packt
Publishing Ltd, 2012.

47

http://derbyjs.com/
http://expressjs.com/starter/faq.html
http://gruntjs.com/
http://paperjs.org/about/
http://postgis.net/features
https://togetherjs.com/docs/#technology-overview
https://togetherjs.com/docs/#technology-overview
http://yeoman.io/

BIBLIOGRAPHY 48

[13] Crockford, D. The application/json media type for javascript object
notation (json).

[14] Eastman, C., et al. An outline of the building description system.
In (1974), Carnegie-Mellon Univ., Pittsburgh, PA. Inst. of Physical
Planning, p. 23.

[15] Goodchild, M. F. Geographic information systems. Journal of Re-
tailing 67, 1 (1991), 3–15.

[16] Güting, R. H., and Schneider, M. Moving objects databases. El-
sevier, 2005.

[17] Guttag, J. V. Introduction to Computation and Programming Using
Python. Mit Press, 2013.

[18] Hartley, R. I., and Sturm, P. Triangulation. Computer vision and
image understanding 68, 2 (1997), 146–157.

[19] Herot, C. F., Carling, R., Friedell, M., and Kramlich, D.
A prototype spatial data management system. In ACM SIGGRAPH
Computer Graphics (1980), vol. 14, ACM, pp. 63–70.

[20] Hightower, J., and Borriello, G. Location systems for ubiquitous
computing. Computer 34, 8 (2001), 57–66.

[21] Honkavirta, V., Perala, T., Ali-Loytty, S., and Piché, R. A
comparative survey of wlan location fingerprinting methods. In Position-
ing, Navigation and Communication, 2009. WPNC 2009. 6th Workshop
on (2009), IEEE, pp. 243–251.

[22] Kaemarungsi, K., and Krishnamurthy, P. Modeling of indoor po-
sitioning systems based on location fingerprinting. In INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Com-
munications Societies (2004), vol. 2, IEEE, pp. 1012–1022.

[23] Krishnakumar, A., and Krishnan, P. The theory and practice of
signal strength-based location estimation. In Collaborative Computing:
Networking, Applications and Worksharing, 2005 International Confer-
ence on (2005), IEEE, pp. 10–pp.

[24] Krumm, J., and Horvitz, E. Locadio: Inferring motion and location
from wi-fi signal strengths. In MobiQuitous (2004), pp. 4–13.

BIBLIOGRAPHY 49

[25] Lee, G., Sacks, R., and Eastman, C. M. Specifying paramet-
ric building object behavior (bob) for a building information modeling
system. Automation in construction 15, 6 (2006), 758–776.

[26] Mardan, A. Sails. js, derbyjs, loopback, and other frameworks. In Pro
Express. js. Springer, 2014, pp. 205–214.

[27] Mirzaei, R. S. Spatio-temporal databases for indoor positioning sys-
tems. (2005).

[28] Momjian, B. PostgreSQL: introduction and concepts, vol. 192.
Addison-Wesley New York, 2001.

[29] Myers, G. J., Sandler, C., and Badgett, T. The art of software
testing. John Wiley & Sons, 2011.

[30] Nielsen, J. Usability engineering. Elsevier, 1994.

[31] Ramsey, P., et al. Postgis manual. Refractions Research (2005).

[32] Roos, T., Myllymaki, P., and Tirri, H. A statistical modeling
approach to location estimation. Mobile Computing, IEEE Transactions
on 1, 1 (2002), 59–69.

[33] Ruud, V. Augmented reality for indoor navigation.

[34] Samet, H. Applications of spatial data structures. (1990).

[35] SARCAR, M., Rao, K. M., and NARAYAN, K. L. Computer
aided design and manufacturing. PHI Learning Pvt. Ltd., 2008.

[36] Strack, I. Getting Started with Meteor JavaScript Framework. Packt
Publishing Ltd, 2012.

[37] Tom Hughes-Croucher, M. W. Node: Up and Running. O’Reilly
Media, 2012.

[38] Varshavsky, A., de Lara, E., Hightower, J., LaMarca, A.,
and Otsason, V. Gsm indoor localization. Pervasive and Mobile
Computing 3, 6 (2007), 698–720.

[39] Vasiliev, Y. Object/relational mapping. Beginning Database-Driven
Application Development in Java EE: Using GlassFish (2008), 223–252.

[40] Yang, Z., Liu, Y., and Li, M. Beyond trilateration: On the localiz-
ability of wireless ad-hoc networks. In INFOCOM 2009, IEEE (2009),
IEEE, pp. 2392–2400.

A List of considered databases

Solution Native License Standard

Boeing’s Spatial Query Server x Proprietary
AllegroGraph x Proprietary
IBM DB2 Spatial Extender IBM DB2 Proprietary
CartoDB PostgreSQL Proprietary
Microsoft SQL Server x Proprietary
SpaceBase x Proprietary
Neo4j x GPL
MongoDB x AGPL
RavenDB x AGPL
RethinkDB x AGPL
Tarantool x BSD
Geocouch CouchDB Apache
AsterixDB x Apache
Postgres-XL PostgreSQL MPL
GEODAS x Proprietary Compliant
SpatialDB x Proprietary Compliant
Teradata Geospatial Teradata Proprietary Compliant
SmallWorld x Proprietary Compliant
Ingres 10.2 x GPL Compliant
NRDB x GPL Compliant
H2GIS H2 GPL Standard
Linter SQL Server x Proprietary Standard
SpatiaLite SQLite MPL Compliant
MonetDB/GIS MonetDB MPL Compliant
GeoMesa Apache Accumulo Apache Standard
Oracle Spatial Oracle Proprietary Compliant
MySQL Spatial MySQL GPL Standard
PostGIS PostgreSQL GPL Compliant

Table A.1: Existing geospatial databases

50

51

(a) In English

Figure A.1: Aalto logo variants

	Cover page
	Acknowledgements
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Nimble Devices
	1.3 Research Questions
	1.4 Collaborative Application
	1.5 Indoor Mapping and Indoor Positioning
	1.6 Spatial Data Management
	1.7 Structure of Thesis

	2 Background and Related Work
	2.1 Spatial Data Management
	2.1.1 Spatial Data Management System
	2.1.2 Spatial Data Structures

	2.2 Spatio-Temporal Databases
	2.3 Computer Aided Design
	2.3.1 Building Information Modeling

	2.4 Geographic Information System
	2.5 Location Model
	2.6 Indoor Positioning Technologies
	2.7 JavaScript Object Notation
	2.8 Application Programming Interfaces
	2.9 Collaborative features
	2.10 Licensing and re-use of existing technologies

	3 Conception and Modeling
	3.1 Overall solution
	3.2 Data Management
	3.2.1 Old JSON Organization
	3.2.2 Database Choosing Process
	3.2.3 New Hierarchy
	3.2.4 Database Design
	3.2.4.1 Maps
	3.2.4.2 Levels
	3.2.4.3 Bounds
	3.2.4.4 Anchors
	3.2.4.5 Polygons
	3.2.4.6 Circles
	3.2.4.7 Lines
	3.2.4.8 Positions

	3.3 Software Stack
	3.3.1 Collaboration tool
	3.3.1.1 Meteor
	3.3.1.2 DerbyJS
	3.3.1.3 TogetherJS
	3.3.1.4 Final Choice

	4 Implementation
	4.1 Actions
	4.1.1 Principle
	4.1.2 Tasks
	4.1.3 Structure

	4.2 Application Programming Interfaces
	4.2.1 Operations
	4.2.2 Map retrieving

	4.3 Client side
	4.3.1 Initialization
	4.3.2 Manipulation
	4.3.3 Undo redo

	4.4 Collaborative features
	4.4.1 Cursor and clicks sharing
	4.4.2 Actions sharing

	5 Validation
	5.1 Description
	5.2 Testing System
	5.3 Results
	5.4 Conclusion

	6 Usability Testing
	6.1 User Interface
	6.2 Survey
	6.3 Results
	6.3.1 Inexperienced users
	6.3.2 Feedback
	6.3.3 Experienced user feedback

	6.4 Analysis

	7 Conclusion and Future Work
	7.1 Discussion
	7.1.1 Abstraction
	7.1.2 Collaborativity
	7.1.3 User Interface and User Experience
	7.1.4 Technical Choices

	7.2 Future work

	A List of considered databases

