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Distributed storage systems have been in place for years, and have undergone
significant changes in architecture to ensure reliable storage of data in a
cost-effective manner. With the demand for data increasing, there has been a
shift from disk-centric to memory-centric computing - the focus is on saving
data in memory rather than on the disk. The primary motivation for this is the
increased speed of data processing. This could, however, mean a change in the
approach to providing the necessary fault-tolerance - instead of data replication,
other techniques may be considered.

One example of an in-memory distributed storage system is Tachyon. Instead of
replicating data files in memory, Tachyon provides fault-tolerance by maintaining
a record of the operations needed to generate the data files. These operations
are replayed if the files are lost. This approach is termed lineage. Tachyon is
already deployed by many well-known companies.

This thesis work compares the storage performance of Tachyon with that of the
on-disk storage systems HDFS and Ceph. After studying the architectures of
well-known distributed storage systems, the major contribution of the work is to
integrate Tachyon with Ceph as an underlayer storage system, and understand
how this affects its performance, and how to tune Tachyon to extract maximum
performance out of it.
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Abbreviations and Acronyms

HTTP Hypertext Transfer Protocol
EMR Elastic Map Reduce
MPI Message Passing Interface
REST REpresentational State Transfer
NFS Network File System
SCSI Small Computer System Interface
CIFS Common Internet File System
CPU Central Processing Unit
SAN Storage Area Network
NAS Network Attached Storage
DAS Direct Attached Storage
RAID Redundant Array of Independent Disks
RADOS Reliable Autonomic Distributed Object Store
OSD Object Storage Device
CRUSH Controlled Replication Under Scalable Hashing
QEMU QUick EMulator
RBD RADOS Block Device
POSIX Portable Operating System Interface
HDFS Hadoop Distributed File System
RAM Random Access Memory
GFS Google File System
GB Gigabyte
MB Megabyte
KB Kilobyte
PB Petabyte
I/O Input/Output
API Application Programming Interface
ID Identification
WAS Windows Azure Storage
DNS Domain Name Service
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OT Object Table
DFS Distributed File System
FE Front End
LS Location Service
URL Uniform Resource Locator
IP Internet Protocol
TOR Top-of-the-rack
FD Fault Domain
UD Upgrade Domain
CRC Cyclic Redundancy Checksum
OST Object Storage Target
BSD Berkeley Software Distribution
LDLM Lustre Distributed Lock Manager
MDT Metadata Target
MGS Management Server
LNET Lustre Networking
OSS Object Storage Server
ODB Object-based disk
MGC Management Client
MDC Metadata Client
OSC Object Storage Client
LOV Logical Object Volume
VFS Virtual File System
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Chapter 1

Introduction

Storing very large data files in distributed storage systems is necessary to
provide reliability and availability. A scaling-out approach is typically used
in these systems - instead of using a single high-end computer as the stor-
age node, several computers consisting of relatively inexpensive commodity
hardware are deployed for storing the data. One major implication of using
commodity hardware is that hardware failures are common. This in turn
means two things - 1) multiple copies of the data have to be maintained in
different nodes to ensure availability of the data if one or more nodes go
down, and 2) suitable frameworks have to be in place which can perform
data-processing despite hardware failures, i.e. the system has to be fault-
tolerant. Hadoop, which uses the map-reduce programming model, is an
example of such a framework. In such an approach, the data are stored on
the disk.

As the importance of speed in data-processing has increased, there is
greater focus on storing the data in memory (i.e. RAM) rather than on the
disk. Having data in memory results in significantly reduced query response
times, which is suitable for data analytics applications, for example. Data
stored in-memory can also reduce the need for data indexing. With the
reduction in RAM costs, and the increased RAM space in 64-bit operating
systems, in-memory-data processing is becoming an increasingly feasible form
of data processing.

The shift towards in-memory data processing was highlighted by the de-
velopment of Apache Spark by UC Berkeley’s AMPLab. By use of in-memory
data structures, it can increase the speed of data processing manyfold, com-
pared to a disk-based framework like Hadoop. Another key step towards
in-memory data processing is the development of the in-memory storage sys-
tem Tachyon, at the aforementioned AMPLab. Instead of replicating multi-
ple copies of the data, it uses a technique called lineage to maintain a log of

12



CHAPTER 1. INTRODUCTION 13

the transformations needed to regenerate that data. In the event of data loss,
these transformations are replayed to regenerate the data. Apache Ignite is
yet another recent development in the field of in-memory computing. Unlike
Spark, which uses RAM only for processing, Ignite provides an in-memory
file system, as well as support for computing paradigms like MapReduce and
MPI [2]. It has been developed as the first enterprise-level In-Memory Data
Fabric by GridGain Systems. GridGain’s In-Memory Data Fabric entered
Apache Incubator (entry path into Apache Software Foundation for projects
wanting to become a part of Apache) under the name of Apache Ignite.

Tachyon operates on top of another storage system, known as the under-
lying storage system. The storage systems currently supported by Tachyon
are Hadoop Distributed File System (HDFS), Amazon S3, GlusterFS, and
the local filesystem in a computer. This way, it allows data to be written to a
filesystem while still in memory, as well as leverages the fault-tolerance of an
underlayer filesystem like HDFS. The Tachyon project currently has over 40
contributors from companies like Yahoo and Intel, and is deployed by many
companies.

1.1 Thesis objective and scope

The objectives of this thesis are:

1. Integrate Tachyon with Ceph Object Storage - to do this, the source
code of Tachyon has to be changed to allow it use Ceph as the underly-
ing file system, because this was not supported at the time of writing.

2. Write the files produced in intermediate stages of data-processing with
Tachyon to memory, rather than to the disk - this is done to speed up
data-processing. Again, this is not supported by Tachyon at the time
of writing, as usually more persistent storage is used for such files.

3. Benchmark the read-only, write-only, and read-write performances of
Tachyon, Ceph and HDFS with large datasets.

The main motivation of this work is to determine the performance of an
open-source implementation of Amazon’s Elastic MapReduce (EMR) service,
which is highly effective in big data processing. EMR uses its own Hadoop
framework to process large amounts of data across dynamically scalable Ama-
zon EC2 instances, and S3 object storage to store that data. The equivalent
open-source implementation of this would be an HPC (High-performance
computing) cluster with compute nodes using Apache Hadoop, as well as



CHAPTER 1. INTRODUCTION 14

other such frameworks, for the data processing, and storage nodes using
Ceph Object Storage for data storage. The source code of Hadoop would
have to be modified to point to the Ceph storage cluster instead of HDFS.

One use case of such an implementation would be in a bioinformatics
pipeline. This pipeline would have a number of intermediate processing
stages - of the order of ten pipeline stages. The input data may be read
from Ceph, and the output data written to Ceph. However, a large number
of temporary files can be produced in the intermediate stages. Writing these
files to disk is time-consuming, especially when one considers the replica-
tion used in storage systems like Ceph and HDFS. Replicating temporary
files which can be easily regenerated in the pipeline anyway, purely for fault-
tolerance, slows down the overall speed of processing in the pipeline and is
unnecessary. This is especially true for file writes, as reads from disk may be
sped up by caching.

In such a scenario, writing the temporary files to memory can speed up
the entire pipeline process significantly. Tachyon is the ideal choice here,
as it stores data in-memory, and uses lineage, rather than replication, for
regenerating lost data. This saves memory space, as well as time. Tachyon
is layered on top of an persistent storage system, called the underlying file
system.

For data processing, Apache Spark, instead of Hadoop, has been used
in the experiments. Spark uses in-memory data storage for very fast, itera-
tive queries. It does so by using data structures called resilient distributed
datasets (RDDs). RDDs are distributed collections of objects that can be
cached in memory across cluster nodes. They are automatically rebuilt after
failures, using the same principle of lineage explained earlier. RDDs can be
manipulated through various operations. Spark is compatible with Hadoop’s
storage APIs, which means it can read/write to Hadoop-supported systems
such as HDFS.

1.2 Structure of the thesis

The remainder of the thesis is as follows: Chapters 2-10 describe the archi-
tectures of different types of distributed storage systems. Details of the ex-
periments performed and results obtained are presented in Chapter 11. The
work concludes with the summary and scope for further work in Chapter 12.



Chapter 2

Overview of storage systems

Three main types of storage are present - file, block and object. Each has its
own advantages and specific use cases.

2.1 File storage

A file is a part of a filesystem. In a filesystem, files are organised in a
hierarchical manner so that a particular file can be referred to by its path.
Each file, along with its data, also has its own metadata. The metadata
of a filesystem typically consists of information such as when was the file
created and last modified, its size, who can access it, and so on. Filesystems
are provided on our personal computers by the operating system, and we
interact with them on a daily basis. Users with access to files can read or
write them.

To share files securely across a network, network-attached storage (NAS)
is the usually preferred option [42]. This works well in a local-area network
(LAN) and in a wide-area network (WAN). The filesystem places the data
on the NAS box, and implements file sharing by locking and unlocking files
as necessary. While managing a small number of NAS boxes is simple, doing
so with a large number of such boxes is much more difficult. The metadata
for files being shared over NAS are managed completely by the file server.
Although this enables cross-platform sharing, passing all the I/O though the
single file server makes the file server a single-point of failure. Clients will be
limited by the performance of the file server.

Filesystems are suitable for a reasonably large number of files - in the
range of thousands to a few millions. However, they are difficult to use when
having billions of files. Thus, files are suitable if they are relatively small in

15
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number, and are available locally.

2.1.1 Data striping

Although not restricted to only filesystems, it is worthwhile to consider an
important aspect of computer storage before progressing further - data strip-
ing. Striping is the process of dividing logically sequential data into segments,
and then storing the segments on different physical storage devices such as
hard disks [1]. This is useful as the storage devices can be accessed con-
currently by the processor. Multiple, independent requests can be served in
parallel by separate disks, reducing the queuing time seen by I/O requests.
Also, single requests for multiple blocks can be serviced by multiple disks in
a coordinated way. This improves the effective transfer rate seen by a single
request. Therefore, striping increases the overall throughput and hence per-
formance, compared to when having all the segments on the same physical
device.

There are two types of disk striping - single user and multi-user. Sin-
gle user disk striping results in multiple hard disks simultaneously handling
several I/O requests from one workstation. Multi-user disk striping allows
several I/O requests from multiple workstations to be handled by multiple
hard disks. Disk striping may be used with parity. When parity is used in
striping, an extra stripe containing the parity information is stored on its
hard disk and partition. When a hard disk fails, a fault tolerance driver
reads content from the other disks and uses the parity block to regenerate
the missing disk. While this is the main recovery techniques in redundant
array of independent disks (RAID) level 5, in RAID 6, two parity blocks are
used to allow for the failure of two hard disks.

2.2 Block storage

In block-level storage, raw volumes of storage are created and each block can
be controlled as an individual hard drive [4]. Each block has an address,
and an application retrieves a block by making a small computer system
interface (SCSI) request for that address [42]. SCSI itself refers to a set of
standards for physically connecting and transferring data between computers
and peripheral devices. Importantly, a block has no real metadata, and only
has the address as its identifier.

Unlike NAS for filesystems, where the filesystem determines where to
place the data and how to access it, for block storage this task performed
by the application itself. This allows the application to exercise much more
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granular control from a given storage array than in the case of files. This
property is particularly useful for performance-centric applications such as
database servers, and to allow the user to flexibly decide which filesystem to
use for which server.

Examples of block-based storage in use today are direct-attached storage
(DAS) and storage-area networks (SAN). DAS connects block-based storage
devices directly to the I/O bus of host machines, via SCSI or SATA/SAS for
example [27]. This provides high performance and security, but connectivity
can be a problem. SCSI is limited by the width of the I/O bus. This concern
for connectivity, and the desire to improve sharing of storage devices led
to the development of SAN systems. These provide a switched fabric for
enabling fast interconnection between a large number of hosts and storage
devices.

Adding distance between the application and storage adversely affects the
performance of block systems. Thus block storage is mostly used locally. The
key points about block storage are therefore good performance, local storage,
very little to no metadata, and granularity of control to the application.

2.3 Object storage

Many distributed storage systems are based on object storage, in which con-
ventional hard disks are replaced by intelligent object storage devices (OSDs),
which combine a CPU, network interface and a local cache with an underly-
ing disk. An object consists of data along with all its metadata, all packaged
together to form an object [42]. This object is given an ID that is calculated
based on its content (data and metadata). Objects usually have a flat naming
structure, unlike files in filesystems. Objects are located in a pool/bucket,
and are referred to by their IDs. The objects may be locally present or geo-
graphically dispersed, but due to their flat naming structure, are retrieved in
exactly the same way in either case. Unlike file storage, object storage does
not allow writing/modifying only a part of the file. The entire object must
be updated as a whole. Some of the commercial object storage systems are
Amazon S3, EMC Atmos and Rackspace’s Cloud Files.

Objects allow users to customise the metadata. Unlike the limited details
available in filesystem metadata, one can add a lot more details to object
storage metadata to open up greater opportunities for data analytics. For
example, the metadata could contain details such as the type of application
the object is associated with, the level of data protection desired for the
object, whether it can be geographically replicated or not, when to delete it,
and so on.
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Object storage is ideal for storing content that can grow without bounds.
Use cases include backups, archives and static web content such as images.
For storing a very large amount of data across different locations with exten-
sive metadata, object storage is ideal.

As the target is to store a very large amount of data at a low cost,
frequently object storage makes use of clusters of commodity servers. This is
ideal as scaling then becomes a question of simply adding more nodes. Data
protection is usually achieved by replicating the objects to one or more nodes
in the cluster.

Unlike a file or a block, an object can be accessed using a HTTP-based
REST application programming interface (API). Calls such as GET and
POST are sufficient. For file and block storage, SCSI, CIFS or NFS calls are
used.

In an object storage system, space for the objects is allocated by the
object store itself, and not by higher level software such as a filesystem [12].
All operations on an object, such as reading/writing at a logical location
in the object and deleting the object carry a credential. The object store
should verify that the user’s request carries a valid credential. This allows
the storage system to enforce different access rights for different parts of a
volume, thus increasing the granularity of access.
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Ceph

Ceph is a massively scalable, distributed storage system designed to provide
object, block and file storage within a single computer cluster. It scales to
the exabyte level, has no single point of failure, and is fault-tolerant enough
to run on commodity hardware. Usage of the platform is free of cost,and its
development is open-sourced to a large community. Work on Ceph began in
2006 as a part of Sage Weil’s PhD dissertation at UC Santa Cruz. Weil later
created Inktank, which is the lead development contributor and sponsor of
Ceph. In 2014, Inktank was acquired by Red Hat.

Ceph is an example of software-defined storage. An explanation of software-
defined storage is given in the next section.

3.1 Software-defined storage

Software-defined storage refers to the storage infrastructure that is managed
and automated by intelligent software, instead of by the storage hardware
itself [33]. This way, infrastructure resources in a software-defined storage
(SDS) system can be automatically and efficiently allocated to match the
application needs of an enterprise.

By separating the storage hardware from the software that manages it,
SDS enables enterprises to purchase heterogeneous storage hardware with-
out having to worry about issues such as interoperability and under/over-
utilization of specific storage resources. The software that enables a SDS
environment can provide functionality such as replication, thin provisioning
and snapshots. The key benefits of SDS over traditional storage are increased
flexibility, automated management and cost efficiency.

Typically, SDS definitions include a form of storage virtualization to sepa-
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rate the storage hardware from the software that manages the storage infras-
tructure. The characteristics of SDS may include any or all of the following
features:

1. Abstraction of logical storage devices and capabilities from the un-
derlying physical storage systems, and in some cases pooling across
multiple different implementations. Since moving data is expensive
and slow compared to computation and services, pooling approaches
suggest leaving data in place and creating a mapping layer to it that
spans arrays. In data storage, an array is a method for storing in-
formation on multiple devices. A disk array, for example, provides
increased availability, resilience and maintainability by using existing
components such as controllers, power supplies, fans etc, often upto
the point where single points of failure are eliminated from the design.
Examples of pooling include:

• Storage virtualization - External-controller based arrays include
storage virtualization to manage usage access across the drives
within their own pools.

• OpenStack and its Swift and Cinder APIs for storage interaction,
which have been applied to open-source projects as well as vendor
products.

• Parallel NFS (pNFS) - an implementation which developed within
the NFS community and has expanded to other implementations.

2. Commodity hardware with storage logic abstracted into a software
layer. This is also termed as a clustered file system for converged
storage. Converged storage refers to co-existing virtual machines and
storage on single hardware. Open-source examples of this include Glus-
terFS, Ceph, and VMWare Virtual SAN.

3. Scale-out storage architecture - add more commodity storage nodes to
increase performance and capacity than acquire a single supercomputer.
Virtually every provider says its products is scale-out, and easy-to-
manage i.e. procedure of adding a new node does not depend on the
size of the cluster.

4. Automation with policy-driven storage provisioning, and with service-
level agreements replacing technical details.
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3.2 Ceph features

Ceph provides three ways to store and access the data:

1. RADOS - the default, object storage mechanism.

2. RBD (RADOS Block Devices) - as a block device. The Linux ker-
nel RBD driver allows striping of a block device over multiple object
storage devices (OSDs).

3. CephFS - as a file, a POSIX-compliant filesystem, which allows users
to use commands such as ls and find without putting a strain in the
underlying object storage system. CephFS has not yet been fully de-
veloped, and is currently not recommended for production.

The key reason for Ceph’s scalability is the absence of a centralized in-
terface to the object store [10]. In many distributed storage systems, this
interface provides services to a client. The interface is accessible by the user,
e.g. the namenode in HDFS. This could become a bottleneck in large-scale
data storage. Ceph does not have any such single interface in its architecture.
Each OSD daemon and client (in CephFS) knows about other OSD daemons
in the cluster. This means OSD daemons can directly interact with each
other and monitors (explained later). Ceph clients can also interact directly
with the OSD daemons without having to go through the aforementioned
interface.

The different components of each storage type are described below:

3.3 Ceph object storage

Object storage is the fundamental part of any Ceph deployment. A Ceph
object storage cluster has two types of daemons - object storage devices
(OSD) and a monitor. A Ceph object storage cluster will have as its bare
minimum one Ceph monitor and two OSDs for data replication.

3.3.1 RADOS

The distributed object store of Ceph is termed Reliable Autonomic Dis-
tributed Object Store (RADOS). RADOS manages the distribution, replica-
tion and migration of objects [44]. Data objects are distributed across OSDs.
To direct requests, RADOS sends cluster maps to the client and the MDS
(present in Ceph filesystems, described later). These cluster maps contain
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information about participating OSDs, their statuses and the CRUSH map-
ping function. A cluster map is actually a collection of five different maps
- the monitor map, OSD map, placement group (PG) map, CRUSH map,
and a metadata server (MDS) map. RADOS can be accessed via different
interfaces:

1. RADOS gateway

2. librados and related C/C++ bindings

3. rbd and QEMU-RBD Linux kernel and QEMU block devices that stripe
data across multiple objects

RADOS consists of object storage devices (OSDs). Along with storage,
data replication is also managed by OSDs. OSDs actively collaborate with
each other for data replication and recovery in the case of failures. Objects
and their replicas are placed in placement groups.

Figure 3.1: Objects are placed in a placement group [30]

Placement groups form ‘pools’ of objects. The CRUSH algorithm (de-
scribed later) determines the placement group in which an object will be
placed. The objects of a placement group are placed in different OSDs. It is
important to note that, a placement group consists of several objects, while
an OSD stores objects belonging to different placement groups [30].

One of the OSDs is called primary. This primary OSD serializes all re-
quests to the placement group. When it receives a write request, the primary
OSD forwards it to all other OSDs in the group. If it has to write locally as
well, it does so only after the other OSDs have written the replicas to their
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Figure 3.2: Placement groups are mapped to OSDs [30]

memories. The client (in case of a filesystem, described later) then receives
an acknowledgement from the primary OSD. At this point, the data have
been replicated in memory in all the replica OSDs. The client still has the
data in its buffer cache. Only after the data have been committed to the disks
of all the replica OSDs does the primary OSD send a commit notification to
the client. The client can then delete the data from its buffer cache.

OSDs use btrfs as the default filesystem, although ext3 is also avail-
able. Data are asynchronously written using the copy-on-write method. This
means that once-writen data are no longer directly modified. Instead, the
data to be changed are written in newly allocated blocks, and the relevant
metadata are accordingly updated to point to the new blocks, rather than
the old ones. This ensures unsuccessful write operations can be fully rolled
back. Each OSD maintains a log of object versions for each placement group
in which it participates. If an OSD fails, the other OSDs of the placement
group can identify missing objects by comparing the logs, and thus recover
the object. Each OSD monitors the state of other OSDs in its placement
group using heartbeat messages, which are sent along with replication traf-
fic. When an OSD detects an unresponsive OSD, it notifies the monitor of
the situation and, in response, receives a new cluster map from the monitor
marking the unresponsive OSD as down. Heartbeat messages are still sent
to this unresponsive OSD and, after some time, if it still does not respond,
the monitor is accordingly alerted and it issues a new cluster map marking
that OSD as out.

An OSD daemon can compare object metadata with that of its replicas
in other OSDs, possibly in different placement groups [10]. This is known
as scrubbing. OSDs can also perform deeper scrubbing by comparing data
in objects bit-by-bit. While metadata scrubbing is performed daily, data
scrubbing is performed on a weekly basis, and can locate bad sectors in a
drive.



CHAPTER 3. CEPH 24

Figure 3.3: Ceph Object Storage components [10]

Ceph Object Storage uses the Ceph Object Gateway daemon (radosgw)
for interacting with a Ceph storage cluster [10]. It provides interfaces com-
patible with OpenStack Swift and Amazon S3. Ceph Object Gateway can
store data in the same Ceph storage cluster used to store data from the
filesystem or block device clients. The S3 and Swift APIs share a common
namespace, allowing data to be written with one API and retrieved with the
other.

3.3.2 Monitor

Management of the cluster map is performed by the Ceph monitors [28]. The
monitor maintains a master copy of the cluster map, and provides authentica-
tion and logging services. A client can determine the location of all monitors
(there can be multiple monitors in a cluster), OSD daemons and metadata
servers by connecting to one monitor and getting a cluster map. With the
current copy of the cluster map and the CRUSH algorithm, the client can
compute the location for any object. By computing the object locations, the
client can communicate directly with the OSDs, which contributes to Ceph’s
scalability.

All changes in the monitor services are written by Ceph to a single PAXOS
instance, and PAXOS writes the changes to a key-value store for strong
consistency. The monitors query the most recent version of the cluster map
during sync operations. It uses the key-value stores’s snapshots and iterators
(using leveldb) to perform store-wide synchronization. When object storage
devices fail or new devices are added, monitors detect and create a new
cluster map.
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Figure 3.4: Key-value store created by PAXOS [28]

3.3.3 CRUSH

CRUSH (Controlled Replication Under Scalable Hashing) is a pseudo-random
data distribution algorithm that efficiently distributes objects across a stor-
age cluster [47]. It maps inputs such as the identifier of a placement group
(a group of objects) to a list of OSDs in which the object and its replicas are
to be stored. Along with the placement group identifier, it takes as input a
cluster map, a set of placement rules and a replication factor. The cluster
map details the available storage resources in the cluster and the logical ele-
ments from which they are built. For example, a cluster map may describe
a large installation in terms of rows of server cabinets, cabinets filled with
disk shelves, and shelves filled with storage devices. The data distribution
policy is defined in terms of placement rules which specify how many storage
devices are chosen from the cluster for the replicas and what restrictions are
present for replica placement. An example of this would be a rule stating
that three replicas have to be placed in devices on different server cabinets
so that they do not share the same electrical circuit.

Ceph uses this to determine the location of data storage, instead of large
look-up tables, which can grow very large for a lot of data. The algorithm is
consistent in that changes in node numbers result in minimal object migration
to re-establish uniform object distribution.

Having the cluster map allows CRUSH to identify and address potential
sources of correlated device failures. Such sources could include a shared
power source or a shared network. By having information about these in
cluster maps, CRUSH can determine the object locations in such a way that
problems with these potential sources are avoided. For example, to address
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Figure 3.5: Distributed object storage [19]

the problem of device failures due to a power supply, CRUSH can place the
objects in devices attached to different power supplies.

Developing a detailed CRUSH map helps in identifying failures more
quickly. For example, if an OSD goes down, the map and CRUSH can
identify the physical data center, room, row and rack of the host with the
failed OSD in case hardware has to be replaced or onsite support is needed.

3.4 Ceph block storage

Ceph can be mounted as a thinly-provisioned block device [10]. The block
device is thin-provisioned as it is allocated on a just-enough and just-in-time
basis using virtualization technology, as opposed to the traditional way of
allocating all blocks up front. This is built on top of the object storage
system.

Figure 3.6: Ceph Block Device components [10]
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Thus, when an application writes data to Ceph using a block device,
the RADOS block device (RBD) component of Ceph automatically stripes
and replicates the data across the cluster. Ceph’s RBDs interact with OSDs
using kernel modules or the librbd library. Librados is a library which allows
applications to directly access RADOS and hence its capabilities. The Ceph
RBDs are built on top of librados, which means it can utilise RADOS features
such as taking snapshots, maintaining consistency and replication.

3.5 Ceph filesystem(CephFS)

Ceph’s filesystem is built on top of the same object storage system that is
responsible for object and block storage. Currently, it is not recommended
to be run in production. The main components of CephFS are the metadata
server and the client. The metadata server maps the directories and file
names of the filesystem to objects stored within RADOS clusters. Ceph
clients mount the CephFS filesystem as a kernel object or as a filesystem in
user space (FUSE).

Figure 3.7: CephFS architecture components [10]

The functions of these components are explained in greater details below:

3.5.1 Metadata server

The metadata server (MDS) manages the filesystem’s namespace [17]. Al-
though data and metadata are both stored in the same object storage clus-
ter, they are managed separately to support scalability. The metadata are
divided among a cluster of MDSs which actively replicate and distribute the
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namespace. The portions of the namespace managed by two MDSs can over-
lap. Periodically, the distribution of the namespace is changed by migrating
responsibility for different subtrees of the structure to different MDSs. This
is termed as dynamic subtree partioning, and allows MDS daemons to be
added or removed at any time, depending on workloads which change dy-
namically. Even during large workload changes, this redistribution takes
place in seconds. Large or heavily written directories are replicated for load
distribution and storage. Clients are notified of relevant partitions when they
communicate with the MDS.

In the Linux filesystem, basic information about a file, directory or object
is stored in a data structure called index node (inode) [25]. Metadata such
as file type (executable, block type etc), permissions, owner and file access
are stored in the inode. The inodes are embedded in directories and stored
with each directory entry, in the OSDs.

The main application of the metadata server is being an intelligent cache,
because the actual metadata is eventually stored within the object storage
cluster. Metadata to write is cached in a journal for a short time period, and
then pushed to physical storage [17]. Due to its caching property, metadata
servers can serve recent metadata back to clients. The journal is necessary
for failure recovery - if the metadata server fails, the journal is replayed to
ensure the metadata is safely stored on disk. This is useful when trying
to bring a currently inconsistent filesystem (possibly resulting from a power
failure or system crash) to its previously consistent state. For example, file
deletion in Linux consists of two steps - 1) delete the directory entry and 2)
mark the space for the file and its inode as free. If a power failure occurs
while only either of the steps has been executed, the filesystem will be left
in a corrupted state i.e. a not-yet-deleted would be marked as free, or an
inode does not have the file it refers to. In such a situation, when the power
is available again, the changes logged in the journal are replayed from the
beginning to system returns to its earlier consistent state.

3.5.2 Client

Linux presents a common interface (virtual filesystem switch). Due to this
interface, the user views Ceph as a single mount point, from which standard
file I/O can be performed. The user is not aware of the underlying metadata
servers, monitors and object storage devices that make up the system. The
user interacts with Ceph through the client. Ceph has a user-level client, as
well as a kernel-level one. The former is linked directly to the application or
used via FUSE. The latter is available in the mainline Linux kernel. In many
filesystems, the control and intelligence are implemented within the kernel’s
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filesystem source itself. For Ceph, the filesystem’s intelligence is distributed
across the nodes. This simplifies the client interface and makes the storage
system more scalable.

A standard Linux file is assigned an inode number (INO) by the metadata
server, which is the unique identifier for the file. The file is then divided into
a number of objects (depending on the file size). Using the inode number,
the object number, and information like striping strategy and replication
factor, an object identifier(OID) is created for the object. This OID is then
hashed to generate a placement group ID, whereby the object is placed in a
placement group. The placement group is a group of OSDs which stores an
object and all of its replicas. The placement groups are mapped to OSDs by
CRUSH.

For example, a client wanting to opening a /foo/bar file for reading sends
an ”open for read” message to the MDS [25]. The MDS reads directory
/foo from the appropriate object storage devices (OSDs) and returns the
capability for reading /foo/bar to the client. The capability contains the
inode number, the replication factor, and information about the striping
strategy of a file. The client uses the inode number , striping strategy, and
an offset to calculate the object identifier (OID), which is then hashed to a
placement group ID. This then is mapped to OSDs by CRUSH.

CRUSH takes as input the 1) placement group ID, 2) the replication
factor, 3) the current cluster map and 4) placement rules. As output, it
returns an ordered list of OSD IDs to the client, which then picks the first
one on the list, called the primary OSD (explained later).

By allowing Ceph clients to contact OSD daemons directly, both perfor-
mance and total system capacity are significantly improved [10].
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OpenStack Swift

OpenStack object storage, known as Swift, is an open-source implementa-
tion of a scalable, durable, distributed object storage system using clusters
of standardized servers [43]. Swift can be used in clusters ranging in size
from a couple of nodes with a few hard drives as storage to thousands of
geographically-distributed nodes capable of providing exabytes of storage.
Swift is designed to store, among others, files, videos, virtual machine snap-
shots and web content. It is already widely used in production clouds of
Rackspace, HP, IBM and many other private storage clusters. Swift runs on
Linux distributions and standard x86 server hardware.

All objects stored in Swift have a uniform resource locator (URL) [29]. As
with any other object storage system, the objects possess extensive metadata,
which can be indexed or searched. All objects are replicated and the replicas
are placed in regions as unique as possible. Applications store and retrieve
these objects via an industry-standard RESTful HTTP API. When adding
or removing hardware from the storage cluster, the data does not have to be
migrated to a new storage system. There is no downtime when the nodes
are being added or removed. Swift’s service is highly available and partition-
tolerant, whilst being eventually consistent. In eventual consistency type of
storage, modifications will be made to all the replicas and become eventually
(if not right away) visible to all clients.

4.1 Architecture of a Swift cluster

A Swift cluster is a collection of machines or nodes running server processes
and consistency services. There are four types of server processes - proxy,
account, container, object. Objects represent the actual data, and containers
and accounts are used to group the objects. The server processes can be
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referred to as layers as well, e.g. the proxy layer is used to refer to the proxy
server processes running in the cluster (likewise with account, container and
object layers) [29]. A node running only the proxy server process is called
a proxy node. Nodes running one or more of the other three processes are
called storage nodes. These nodes contain the data which the requests from
clients can affect, e.g. an object can be PUT in the storage drive of one
of these nodes. The storage nodes will also need to run some services to
maintain consistency.

Figure 4.1: Account-container-object hierarchy [3]

A node can belong to regions and zones in a cluster [29]. These are user-
defined and represent unique characteristics of a collection of nodes. These
characteristics are often geographical location and points of failure, such as
the power running to one rack of nodes. These ensure Swift places the data
in different parts of the cluster to reduce the risk.

Regions are usually indicated by physically separate parts of the cluster,
i.e. located in different geographical places. A cluster has a minimum of one
region and there are many single-region clusters. Clusters with two or more
regions are called multi-region clusters.

When a read request is made, the proxy server (explained in details later)
prefers nearby copies of the data to those in faraway regions to reduce the
latency. When a write request is made, the proxy layer, by default, writes to
all locations simultaneously. An option called ‘write affinity’ also exists which
when enabled allows the cluster to write copies locally and then transfer them
asynchronously to the other regions.

Within a region, certain zones can be configured to isolate failure bound-
aries. An availability zone is defined by a set of physical hardware whose
failures would not affect other zones in the region. For example, in a single
datacenter, the availability zones may be different racks. A cluster should
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have at least one zone, and usually there are several zones in a cluster.

Figure 4.2: Layout diagram of Swift cluster [34]

4.1.1 Ring

Along with the components mentioned above, Swift also uses an internal
data structure called the ring. The ring is a mapping between the names of
objects on disk and their physical locations [29]. There are separate rings for
accounts, containers and objects. The ring thus refers to three files that are
shared among the storage and proxy nodes - object.ring.gz, container.ring.gz
and account.ring.gz [14]. Along with storing the details of the objects’ phys-
ical locations, the rings also compute the physical devices (hard drives) in
each object, container and object in which the objects and their replicas will
be stored. Finally, in case of a storage node failure, the ring determines the
node to which a request is handed-off to (explained later).

The server process do not themselves modify the rings - this is done by
an external utility called the ring-builder. When it receives an object to
store, Swift computes an MD5 hash of the object’s full name (including the
container and account names). A part of the hash is a partition number, and
the object ring has the map which maps each partition number to a specific
physical device. The relation between storage nodes, disks and partitions is
thus this - a storage node has disks, and a partition is represented as a direc-
tory on each disk. The length of the part of the hash kept for determining
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the partition number depends on the number of partitions configured for the
Swift cluster. If n bits of the hash are kept, the number of partitions is 2n.

Partitions are the smallest unit of storage in Swift. Data are added to par-
titions, consistency processes will check partitions, partitions can be moved
to new drives etc. While the size and number of partitions in disk drives
do not change, the drives housing the partitions do. The more drives there
are in a cluster, the fewer are the partitions per drive. For example, 2 drives
with 150 partitions in total would each have 75 partitions. A new drive would
result in each drive having 50 partitions, thus keeping the total number of
partitions constant. The constant number of partitions ensures predictable
behavior of the system when it is scaled up.

4.1.2 Proxy layer

The proxy server processes represent the ‘face’ of the cluster to the clients
- the clients can communicate only with these processes. All requests and
responses to and from the proxy use HTTP verbs and response codes [29].
At least two proxy servers are needed for redundancy - should one fail, the
other takes over.

When a request is received by the proxy server, the proxy server verifies
the request and looks up the ring to determine the correct storage nodes
and partitions in which the data are stored. The request is then sent to
the storage nodes concurrently. If one of the partitions and/or nodes is
unavailable, the proxy uses the ring to identify an appropriate hand-off node
to which the request will be forwarded. The proxy server writes to a majority
of the replicas in the nodes before returning a success message to the client.

4.1.3 Account layer

The account server handles requests regarding metadata of the account or the
containers within that account [29]. The information is stored by the account
server process in SQLite databases on disk. Statistics are also tracked, just
as what containers are there in the account, and total storage space used up
in the account server.

4.1.4 Container layer

The container layer handles listings of objects. It does not where the objects
are, but only what objects are present within that container. The listings are
stored as SQLite database files (like account servers) [29]. These database
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files are replicated across the cluster in a way similar to object replication.
It stores statistics similar to the account layer as well.

4.1.5 Object layer

The object server process is responsible for storing,retrieving and deleting
objects. The objects are stored as binary files on the storage nodes with
metadata stored in the fileâs extended attributes (xattrs). For this to happen,
the underlying filesystem for object servers has to support xattrs in files. The
objects are stored on the drives using a path which consists of its associated
partition and the operation’s timestamp. The timestamp allows the object
server to store multiple versions of an object while providing only the latest
version for a typical download (GET) request.

4.2 Consistency, availability and partition tol-

erance

Before proceeding further, it is pertinent at this point to consider the features
of distributed databases, or ‘datastores’, as they are often termed. They do
not have the ACID (Acidity, Consistency, Isolation and Durability) proper-
ties of centralised, relational databases (RDBMS).They are also known as
NoSQL databases. However, this term is getting outdated as some SQL sup-
port is now present in cloud datastores. Several computers are involved in
storing data, whilst communicating over a potentially faulty network.

Three features of datastores, as described by Eric Brewer in 2000 [7] are:

1. Consistency - all nodes have a consistent view of the distributed data-
store, i.e. all database servers having the replicated copies store the
same version of the same.

2. Availability - the datastore can be updated by new transactions and
a request is received for every datastore request about whether the
request was successful or not.

3. Partition tolerance - Despite loss of network connectivity, the datastore
can be queried and updated.

Brewer stated that it was not possible for a distributed datastore to pos-
sess all three of the properties at the same time, but only two. A datastore
that is consistent and available (CA) cannot be connected over a network
(i.e. is centralised and cannot be partition-tolerant). Being consistent and
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partition-tolerant (CP) results in updates being disallowed if the network
goes down, thus losing availability. Finally, being available and partition-
tolerant (AP) means the datastore in inconsistent, i.e.different interconnected
database servers store different contents.

4.3 Consistency services in Swift

Consistency services run on nodes supporting account, container and/or ob-
ject server processes to ensure the integrity and availability of the data, even
during failures. The two main consistency services are auditors and replica-
tors [29].

Auditors run in the background of every storage node in a Swift cluster
and scan the disks continuously to ensure that the data have not been cor-
rupted in any way. There are individual account auditors, container auditors
and object auditors which support their corresponding server processes. If
an error is found, the auditor moves the corrupted object to a quarantine
area.

Replicators also run in the background of all storage nodes running ac-
count, container and object services. Each replicator examines its local node
and compares the accounts, containers and objects with those in other nodes
in the cluster. If the other nodes have old or missing copies of data, the repli-
cator sends copies of its local data to those nodes. The replicators only push
their own local data out to other nodes; they do not pull in remote copies
if their local versions are stale or missing. The replicator also manages ob-
ject and container deletions. Object deletion initially creates a zero-byte
tombstone file which is the latest version of the object.This is replicated to
other nodes and the object is deleted from the local node. A container can
be deleted only if it does not contain any objects. An empty container is
marked as deleted and the replicator pushes this version out.

4.3.1 Specialized consistency services

Alongside the auditors and replicators, certain specialized services run in
the storage nodes as well, including container and object updaters, object
expirers and account reapers [29]. The container updater service supports
accounts by updating container listings in the accounts, as well as the account
metadata (i.e. object count, container count and the bytes used). The object
updater supports containers, but as a backup service. The object server
process is the primary process to support containers, and only if it fails with
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the object updater take over and update object listings in the containers and
container metadata(object count and bytes used).

The object expirer deletes data that is marked by the replicator as ex-
pired. The account reaper service monitors accounts in a node. When it
finds an account marked as deleted, it empties that account of any contain-
ers and objects it may contain. The reaper has a configurable delay value,
that indicates the period of time for which the reaper should wait before it
starts deleting data, to prevent erroneous deletions. However, the algorithms
deployed by the consistency services are not fully described, and therefore
the fault tolerance of this part of Swift is not well understood.

4.4 Replication for fault tolerance

Like other distributed storage systems, Swift relies on replication to protect
against losing data when there is a failure. Failures are common in clusters
spanning different datacenters and geographic locations [29].

Partitions are replicated. The most common replication count is three.
When the Swift rings are initially created, every partition is replicated and
each replica is placed as uniquely as possible in the cluster. If the rings
are being rebuilt, the new positions (if at all required) of the replicated
partitions will have to be recalculated. Thus, when it is said that the proxy
server determines the storage nodes for requested data, more specifically it
seeks out the partitions which store the data and its replicas.

Partition replication also involves designation of handoff drives. These are
needed when a storage node fails. When drives in a node fail, the replica-
tor/auditor services notice and push the missing data to handoff nodes. The
chances of all replicas becoming corrupted before the consistency services
notice the failures are very small, thus giving Swift its durability.

4.4.1 Unique-as-possible algorithm

Swift assigns partitions using the unique-as-possible algorithm, to ensure that
data are distributed evenly over the defined spaces (regions, zones, nodes
and disks) [29]. The algorithm identifies the least-used space in the cluster
to place a partition. It begins by looking at the least used region. If all the
regions contain a partition then it looks for the least-used zone, followed by
server (IP:port), and finally the least-used disk and places the partition there.
This formula also attempts to place the replicas as far away from each other
as possible. Once the placements of all partitions have been determined, the
account, container and object rings are created.
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4.5 Eventual consistency type of storage

Swift favours availability and partition tolerance over consistency. Even if
multiple nodes in the cluster fail, the data will remain available to the client,
as replicas are maintained [29]. Being eventually consistent means that up-
dates will eventually be made to all the replicas, whilst still providing data
to the client should any node fail. As it is available and partition-tolerant, it
will continue to allow clients access to objects requested even as the network
is down due to some reason. However, the copy the client receives may not be
the most up-to-date one, as the copies may not have become consistent yet.
For an object storage system, however, performance and scalability are of-
ten most important, and so the available-and-partition-tolerant model works
well. Strong consistency is not the most critical factor for a highly scalable
system. While transactional data must be strongly consistent, backup files,
log files and unstructured data need not necessarily be so. The latter are
usually present in object storage systems, and hence some consistency can
be sacrificed for performance and scalability.

4.6 HTTP Requests in Swift

HTTP requests are made by clients to the Swift storage system using a
RESTful API. The request is made up of at least three parts - 1) a HTTP
verb (GET/PUT/DELETE) , 2) storage URL, 3) authentication information,
and optionally 4) any data/metadata to be written. The verb the action de-
sired on the object - such as PUTting the object in cluster, GETting account
information etc [29]. The storage URL is in the form:

https://swift.example.com/v1/account/container/object

This URL has two parts - cluster location and storage location. The
former specifies the place in the cluster where the request should be sent and
the latter where the requested action must occur in that place. In the given
URL, the cluster location would be swift.example.com/v1 and the object
storage location account/container/object.

4.7 Comparing Swift and Ceph

Openstack Swift offers only object storage, while Ceph provides object, block
and filesystem. Ceph chooses consistency and partition tolerance over avail-
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ability. Swift was designed to be eventually consistent (similar to S3) [6]. It
favours availability and partition tolerance, instead of consistency.

Being strongly consistent is the reason why Ceph is able to provide block
storage. The consistency ensures that all data to be written is written on
all the disks before sending the acknowledgement to the client. Swift, on
the other hand, does not need to be strongly consistent as it provides only
object storage. Being eventually consistent means that when hardware fails
(which is likely in a cluster), Swift will fall back to providing high availability
to the data, i.e. ensuring it can be updated via transactions. One scenario
where the objects become eventually consistent is when reading objects that
were overwritten when some hardware component had failed. This eventual
consistency allows Swift to be deployed across wide geographic areas.

As it is written in C++, Ceph is highly optimized for performances and,
due to its design, allows clients to communicate directly with object storage
devices (OSDs). Swift is written in Python and this allows it to be integrated
with different types of middleware to incorporate more specific features. It
can also be plugged in different authorization systems.

Swift is used in large-scale public clouds, including those offered by com-
panies such as Rackspace, HP and Cloudwatt. Ceph is not as powerful as
the full scale Python WSGI (Web Server Gateway Interface - an interface
between web servers and web applications developed in Python) and does
not allow modularity. The shared filesystem feature in Ceph is still cur-
rently being developed and not quite ready for production. The S3 API is
well-defined, but cannot be used with other middleware possible with Swift.

Considering the use cases of the two, Ceph is the obvious choice for block
and file storage requirements, as these are not supported by Swift. However,
for only object storage, Swift is better. Ceph does provide object storage
through its object storage gateway radosgw, which is good enough when
used with the supported S3 API or Swift API, but does not provide a fully
featured object storage system. Also, objects stored using the radosGW
gateway will not be accessible from the block storage system.
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Google File System

Google File System (GFS) is the distributed filesystem developed at Google
for storing large amounts of data from its data-intensive applications, pri-
marily the search engine. It is designed to be fault-tolerant while running on
commodity hardware (scaling out of storage) using the Linux operating sys-
tem. Despite the enormous amount of data required to be stored, it provides
high performance to a large number of clients.

There are a number of assumptions, based on which the GFS system has
been designed [15]. Firstly, as commodity hardware is being used, hardware
failures are common. Hence, the data needs to be backed-up in another place
so that if one copy is lost on account of a hardware failure, another copy can
be referred to for processing. Secondly, files are very large in number, of
the order of several millions, and data of the order of several exabytes are
being generated every year. Scalability of the storage system is thus crucial.
Thirdly, two main types of reads are performed - large streaming reads, typ-
ically of the order of hundreds of kilobytes (KBs) (or more than 1 megabyte
(MB)), and smaller random writes of a few KBs. Fourthly, sequential writes
which append data to files, rather than overwrite existing data in them,
are common. Seldom are files modified once written. Thus, random writes
within a file are virtually non-existent. Fifthly, it is important to realise that
multiple processes (possibly one per node in a cluster) concurrently append
to the same file. Hence atomicity of updates (i.e. either all of the data are
appended to the file, or none at all), along with synchronization of updates
are important. This is to prevent partial updates by conflicting processes.
Finally, high bandwidth is needed more than low latency. It is important to
be able to process a large amount of data, than look to do it within a fixed
short time limit.

In the following sections, the original architecture of GFS (from the late
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’90s), its problems, and the new architecture have been discussed.

5.1 The original architecture

A GFS cluster consists of several machines, or nodes. Each of them usu-
ally has Linux has its operating system and runs a user-level server process.
One node in the cluster is termed the master, and the others chunkservers.
Chunkserver and client processes can run on the same node, as long as ma-
chine resources permit it, and the resulting lower reliability of the application
code is acceptable [15].

A single file can contain many documents, such as Web documents. Files
are divided into chunks of size 64MB, and each chunk is assigned a unique 64
bit identifier (called a chunk handle) by the master node at chunk creation
time. Chunkservers store the chunks as Linux files on local disks [15]. They
read or write chunk data specified by the tuple of chunk handle and byte
range. For reliability, each chunk is replicated on multiple chunkservers,
with the default being three, which can be configured to be otherwise by
users.

The master maintains all the filesystem metadata in its memory. Meta-
data in this kind of a filesystem are of three types - file and chunk namespace,
file-to-chunk mapping, and the chunk and its replicas’ locations. The names-
paces and mappings are stored on a log file, termed operation log, to create
persistence. This log file is stored on the master’s local disk and the repli-
cated on other nodes. The importance of the log file is that apart from being
a persistent record of metadata, it also maintains a logical time line, in which
the times at which chunks and files are created are written. This helps to
uniquely identify different versions of files and chunks. The chunk locations
are not stored persistently. Instead, it asks other chunkservers about their
chunks during master startup and also a chunkserver when it joins the clus-
ter. This way, the master and chunkservers do not have to stay in sync as
chunkservers join or leave the cluster, restart and fail, all of which are likely
to happen in a cluster of hundreds or thousands of servers. In addition, the
master performs activities such as garbage collection of orphaned chunks,
chunk lease management, and migration of chunks between chunkservers.
Finally, it sends on a periodic basis ‘heartbeat’ messages to chunkservers to
give them instructions and collect information about their states.

For a simple read operation, the client initially translates the file name
and byte offset specified by the application to a chunk index within the file.
It then sends a request to the master containing the file name and chunk
index. The master replies with the corresponding chunk handle and replica
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Figure 5.1: GFS architecture [15]

locations. The client caches these using the file name and the chunk index
as the key. The caching is done for a limited time, and for many subsequent
operations, the client contacts the chunkserver directly, i.e. without the
master’s involvement. The client sends a request to one of the chunk replicas,
usually the closest one (to reduce network bandwidth consumption). The
request consists of the chunk handle and a byte range within the chunk.
Further reads of the same chunk require no further client-master interaction
unless the client cache has expired or the file is reopened. This way, the
master’s involvement in reads and writes is minimized.

5.1.1 Mutations and leases

An operation which changes the data or metadata of a chunk is termed a
mutation [15]. Each mutation is performed at all of the chunk’s replicas. The
master server grants permission to a chunkserver (termed the primary) for a
limited period of time for modifying the chunk. This time period is termed a
lease. During this time, no other chunkserver is allowed to modify the chunk.
The lease initially is of 60 seconds duration. However, as long as the chunk
is being mutated, the chunkserver requests and is granted lease extensions.

The write process to modify a chunk is described below:

1. The client asks the master which chunkserver holds the lease currently
for the chunk and the locations of the other replicas. If no one has a
lease, the master grants one to a replica it chooses.

2. The master replies with the identity of the primary chunkserver holding
the primary chunk, and the locations of the secondary chunkservers,
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which are the chunkservers storing the replicas. The client caches this
information for future mutations. It contacts the master again only
when the primary chunkserver does not respond or it no longer holds
the lease.

3. The client pushes the data to all the replicas. Each chunkserver having
the chunk and its replicas store the data in an internal LRU (Least
Recently Used) cache until the data is written or is aged out.

4. Once all the replicas have acknowledged receiving the data, the client
sends a write request for the data to the primary chunkserver. It can
so happen that the primary chunkserver receives requests to mutate
the same chunk from multiple clients. In that case, the chunkserver
assigns serial numbers to each request, and performs them in serial
number order. The primary chunkserver performs the write.

5. After writing it, the primary chunkserver forwards the write requests to
all the other chunkservers. These secondary servers perform the writes
in the same serial number order assigned by the primary chunkserver.

6. After completing the writes, the secondary chunkservers send acknowl-
edgements to the primary chunkserver. To preserve atomicity, the
changes made by the writes are not saved until all the chunkservers
acknowledge.

7. The primary chunkserver then replies to the client, reporting it of any
errors which could have occurred during the write. If a write fails
at the primary, the request is not assigned a serial number and is
not forwarded. Thus, if the change cannot be made to the primary
chunk, neither can it done to the replicas. If, however, the primary
chunkserver manages to write successfully, but only a subset of the
secondary chunkservers manage to do the same, the application code
retries on the failed chunkservers, before starting from the beginning
of the write all over again.The primary chunkserver thus coordinates
writes to its own chunk as well as its replicas.

5.1.2 Atomic record appends

GFS supports atomic record append operation for multiple clients to concur-
rently operate on a single file with atomicity [15]. In traditional writes, the
client suggests the offset where data is to be written. As a result when con-
current writes happen, the region may contain data fragments from different
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clients. In a GFS record append the client specifies only the data. GFS
appends the data to the file at least once atomically (i.e. as one continuous
sequence of bytes) at an offset chosen by GFS and returns that offset to the
client. If the append causes the chunk data to exceed the chunk boundary
the primary chunkserver pads the chunk to the maximum size of 64 MB and
requests the secondary chunkservers replicas to do the same to their replicas.
The primary chunkserver then replies the client to try the operation on next
chunk. If the size is not exceeded the primary chunkserver appends the data
and requests the secondary chunkservers to do the same, at the exact same
offset as itself. If any error occurs it requests the client to try again.

5.1.3 Snapshots

GFS also provides a snapshot feature [15]. The snapshot operation creates
a copy of a file or a directory tree, while minimizing any interruptions to
mutations being made to the original during the operation. This is used to
create copies of large data sets, and even copies of those copies, or to maintain
a record of the current state before experimenting with changes that can be
later committed or rolled back easily.

Copy-on-write techniques (explained earlier) are used to implement snap-
shots. When a master receives a request for creating a snapshot of a file, it
first checks if there is already a lease for any of the chunks of that file. If yes,
it revokes the lease. This means that if another client wants to write to that
chunk, it will first have to contact the master to find the lease holder. This
will give the master time to create a copy of that chunk to which the writes
will be made.

After the lease for a chunk has expired or is revoked, the master logs the
operation to disk. It then duplicates the metadata for the source file or the
directory tree. The metadata of the newly created snapshots point to the
same chunks as the source files.

After a snapshot operation, when a client wants to write to a chunk of the
file from which a snapshot was created, it sends a request to the master to
find the current lease holder. The master, upon finding that the lease being
requested is for a chunk that was snapshotted, asks each chunkserver which
has a replica of that chunk to create a new chunk. Having the new chunk on
the same chunkserver as the replicas mean that changes can be copied locally
and not over the network. The master then grants one of the chunkservers a
lease on the newly created chunk, and replies to the client, which performs
the write. It does not know that it is writing to a newly created chunk.
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5.2 Shortcomings of the original architecure

The original design of GFS has proved to be remarkably durable over a
decade, given that Internet usage in general and Google’s operations in par-
ticular have scaled more exponentially than anyone could have imagined in
the late ’90s. However, as the amount of data being accessed over the In-
ternet increases, problems with the original architecture have become all-too
apparent.

The first issue is with the single master. The master in GFS, as discussed
earlier, has to store the metadata for the chunks in its memory. Memory here
refers to main memory (RAM), used in order to provide faster responses to
client requests. With a single master, there’s only a finite number of files
which the system can accomodate, as the memory of the master cannot store
more metadata for the file chunks beyond its own capacity. This problem is
particularly apparent with small files. Having a large number of small files
creates a strain on the master as it has to store a lot of metadata for files which
eventually take up a relatively small amount of space of the chunkservers’
disks. This is due to the way GFS has been designed - metadata objects are
stored for file chunks of 64 MB size. Whether the file is large or not, the
metadata is stored for the same chunk size. For example, suppose the size
of a metadata object is 150 bytes [11]. If the input file is of size 1 GB, it is
broken into 16 64 MB chunks. The amount of metadata stored for this 1 GB
file is (150 * 16) = 2.4 KB. Now supposing there are 10,500 files, each of 10
kB size. As the file size is smaller than the chunk size, each file would occupy
1 chunk. The amount of metadata for this many files is (150 * 10500) =
1.575 MB, although the files themselves occupy a relatively smaller space on
the chunkservers’ disks. When a client makes a request for a large number
of such small files, the single master becomes a bottleneck for operations.
The situation is worse when multiple clients request the master for this large
number of small files.

As Google’s Sean Quinlan discusses in an interview with the Association
for Computer Machinery(ACM), the main reason for the single server was to
deliver applications to users within a short space of time [26]. Use of a single
master allowed applications such as the search engine to be built far quicker
than it would have with distributed masters. Some of the engineers involved
in creating GFS later went on to make BigTable, the distributed database,
and that took many years.

A related problem with one master is the presence of a single point of
failure in the architecture. If the master goes down, the whole storage system
becomes non-operational. As Quinlan explains, GFS originally lacked an
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automatic failover system if the master went down [26]. One had to manually
restore the master, meaning GFS service was absent for upto an hour. Later,
automatic failover was added, but even then, there was a noticeable service
outage. The delay was brought down from several minutes to about 10
seconds.

This delay highlights the other issue with the design. While delay of a few
seconds is acceptable for batch-oriented applications like web crawling and
indexing, it is clearly not so for user-facing applications [26] such as GMail.
It has been mentioned earlier that one of the assumptions made during GFS
development was that high bandwidth was more important than low latency.
Given the way the Internet is used now and Google’s own applications, this
is clearly not the case. It has been shown in studies that user traffic to a
webpage is inversely proportional to the page load time.

5.3 Colossus - the GFS upgrade

In 2010, Google remodeled its search mechanism to Caffeine. Caffeine moves
the back-end indexing system of Google from MapReduce (the distributed
data processing framework developed at Google) to BigTable, which the com-
pany’s distributed database platform. It uses BigTable to create a kind of
database programming model which allows search indexes (indexing of web
documents to speed up their retrieval) to be updated without building them
from scratch, as was the case with MapReduce.

Caffeine uses an upgraded version of GFS, termed Colossus. While GFS
was built for batch operations (background operations performed, whose re-
sults are moved to a live website), Colussus is built for ”realtime” services,
where processing is nearly instantaneous [8]. Earlier, Google would use GFS
and MapReduce to build a new search index every few days and later hours.
Now the index is updated with new information in real time, using Caffeine
and Colossus.

To allow quicker updates, Colossus make use of multiple masters dis-
tributed over the clusters in a datacenter. This solves the single-point-of-
failure problem. It also reduces the size of the data chunks from 64 MB
down to 1 MB. This lets the storage system store far more files across a
larger number of machines.
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Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is a sub-project of the Apache
Hadoop project. This project by the Apache Software Foundation is designed
to provide a fault-tolerant storage system capable of running on commodity
hardware. HDFS is the open-source version of GFS (described earlier) and
has been written in Java for the Hadoop framework. It is designed to store
very large data sets reliably, and to stream those data sets at high band-
widths to user applications [38]. In a Hadoop cluster, data are partitioned
and worked on by several (upto thousands) of hosts. In such a cluster, com-
putation capacity, storage capacity and I/O bandwidth are scaled simply by
adding more commodity servers. These servers both host directly attached
storage as well as execute user application tasks.

Each input file is split into blocks, each block being of size 64 MB by
default. The block size can be configured to be otherwise by the user. Since
commodity hardware is used for storage, component failures are common.
Therefore, like GFS, also here the blocks are replicated on different hosts.
By default, the number of hosts on which the blocks are replicated is three
- typically one written on the local disk of a host, another on the local disk
of another host on the same rack, and another on the disk of a host in a
different rack. Data are thus replicated to at least two racks. The replication
factor can be configured to be otherwise by the user. Files can be served to
the client if the blocks are present in at least one location.

6.1 Architecture

As with GFS and other distributed storage systems like Lustre, HDFS stores
application data and metadata separately. The metadata are stored on a
dedicated server called the namenode. Application data are stored on other
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servers called datanodes. All these servers are connected to each other and
communicate through TCP-based protocols.

6.1.1 Namenode

The HDFS namespace is a hierarchy of files and directories [38]. Files and
directories have their metadata stored in the form of inodes. Inodes store
attributes of the file/directory such as file modification and access times,
permissions and disk space quotas. The namenode maintains the names-
pace tree and the mapping of file blocks to datanodes, where the blocks are
physically stored. The usual design is to have a single namenode in each
cluster, although more recent designs make it possible to have more than one
namenode.

The inode data and the list of blocks for a file comprise the metadata of
the file called the image [38]. Each file thus has an image in the namenode.
The persistent record of the image written to the namenode’s local file system
is called fsimage, a checkpoint of the namespace and edits (explained later).
The namenode also stores the modification log of the image in the local file
system. This log is termed edits, which is a journal. Before making any
changes to the image, the changes to be made are written to the journal. As
explained earlier, this is useful in events such as power failures, which can
leave the metadata in an inconsistent state. Reading the journal then results
in replaying the changes to be made to the image, thus bringing the metadata
and data to its earlier consistent state. For redundancy, copies of the fsimage
and edits files can be stored on other servers. The locations of the blocks
change over time and are not part of the persistent fsimage content.

6.1.2 Datanode

The actual data blocks are stored in the datanodes. There can be thousands
of datanodes in a cluster. Each block is represented by two files in the local
filesystem of the datanode [38]. One file contains the data itself, and the
other has metadata for the block which consists of checksums for the data
and the block’s generation stamp. It is important to note here that the actual
length of the block on the disk is equal to the size of the file. This means
that a file of size 36 MB will require a single 64 MB block, but the actual
space occupied on the local disk is 36 MB. Extra padding of 28 MB will
not be done to bring the file up to the nominal block size. However, the
namespace metadata in the namenode will treat the file as a single block.
Files larger than 64 MB will be considered as two blocks or more in the
namespace metadata.
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During startup each datanode connects to the namenode and performs a
handshake. This is done to verify the namespace ID and software version of
the datanode. Both of these have to match that of the namenode, otherwise
the datanode will have to shut down. The namespace ID is assigned to the
file system when it is formatted. This ID is persistently stored in all nodes of
the cluster. All nodes in a cluster thus have the same namespace ID. Nodes
with different IDs cannot join the cluster, thereby preserving the integrity of
the file system. A newly initialized datanode, without any namespace ID, can
join the cluster and is assigned the ID of that cluster. The software versions
also have to be the same for all nodes in a cluster. Different, incompatible
versions may cause data corruption and loss. Different versions can result
when hosts do not shut down properly prior to the software upgrade or are not
available during the upgrade. In a cluster of thousands of hosts, it is possible
to overlook hosts with different versions. Hence performing the check during
startup is very important.

After the handshake, the datanode registers with the namenode, to re-
ceive a storage ID from the latter. This is an internal identifier of the datan-
ode and is persistently stored by the datanode. This storage ID makes it
possible for the datanode to be recognized even if it starts up with a differ-
ent IP address or port. After registering with the namenode, the storage ID
received never changes.

A datanode informs the namenode about the blocks in its possession by
sending the latter a block report. This report is specific to each individual
block and contains the block id, generation stamp and block length. The
first block report is sent by the datanode immediately after its registration.
Subsequent block reports are sent every hour. This way, the namenode is
updated on where to find what in the cluster. From time-to-time, datanodes
send periodic heartbeat messages to the namenode to inform the latter that
they are still alive, and that the blocks they host are available. The default
heartbeat interval is three seconds. If the namenode does not receive a heart-
beat signal from a datanode for ten minutes, it considers that datanode to
be down and the blocks it hosts unavailable. The namenode then schedules
creation of new replicas on other datanodes.

The diagram below is a high-level description of the architecture. Same-
coloured blocks in the datanodes indicate the replicas. In the diagram, the
number of replicas is shown as three.

Heartbeats from a datanode also contain information such total storage
capacity in a node, amount of storage in use, and the number of ongoing data
transfers [38]. This information is used by the namenode when making space
allocation and load balancing decisions. When replying to the heartbeat
messages, the namenode can include instructions for the datanodes. The
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Figure 6.1: HDFS Architecture [48]

instructions include commands to replicate blocks to other nodes, remove
local block replicas, re-register or shut down the node, and send an immediate
block report. The namenode can process thousands of heartbeats per second
without affecting other namenode operations.

6.1.3 Client

The HDFS client is a code library that exports the HDFS interface. This code
library is used by user applications to access the file system [38]. The user
references files and directories by paths provided in the namespace. HDFS
supports operations to read, write, delete files as well as create and delete
directories.

When an application reads a file, the client contacts the namenode to
identify the datanodes that are currently storing the blocks for the file. Af-
ter the namenode replies with the list of datanodes, the client contacts the
nearest datanode directly and requests transfer of the blocks.

The client which opens a file for writing is granted a lease for the file;
this means no other client can write to the file. The writing client can renew
the lease by sending heartbeat messages to the namenode. The writer’s lease
does not prevent other clients from reading the file - a file can have many
concurrent readers. When writing data, the client requests the namenode to
nominate a group of three datanodes (by default), to host the block and its
replicas. The selected datanodes form a pipeline, in such a way so that the
distance between the client and the last datanode is minimized. Bytes are
pushed by the client into the pipeline as a sequence of packets. These bytes
are first stored in a buffer at the client side. When the buffer is full (its size
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is typically 64 kB), the data are pushed to the pipeline. The first datanode
receives the data in small portions of 4 kB size. The portions are written to
its local hard disks and transfers that portion to the second datanode in the
pipeline. The second datanode repeats the process, flushing its data portion
to the third datanode and so on until the data is replicated the same number
of times as specified. After data has been written to all the datanodes, an
acknowledgement is sent to the client. When all the replicas are written,
the client moves on to the next block of the file. The datanodes confirm the
creation of the block replicas to the namenode.

As stated earlier, HDFS allows a file to be read even while it is being
written. When reading such a file, the length of the last block of the file is
unknown to the namenode.The reading client asks one of the replicas for the
latest length before starting to read the content.

HDFS provides an API that exposes the locations of the file blocks. This
allows applications like the MapReduce framework to schedule a task at the
data locations, thus reducing the consumption of valuable network bandwidth
due to transfer of large amounts of data over the network.

6.1.4 Checkpoint node

Before discussing the utility of the checkpoint node, it is instructive to study
the fsimage and edits files in more detail. It has been mentioned earlier
that a persistent record of the namespace image in the namenode written
to disk is called the fsimage file [38]. Also, a journal called ‘edits’ has been
described as a log for recording changes to be made to the file system meta-
data. These changes must be persistent. For example, creating a new file in
HDFS or changing a file’s replication factor causes the namenode to make an
entry in the journal regarding this [5]. For each client-initiated transaction,
the changes to be made are recorded in the edits journal, and the journal
is flushed and synched before committing the changes to the HDFS client
[38]. During startup the namenode initializes the namespace image from the
fsimage file, and then replays changes from the journal (written before shut-
down) until the image is up-to-date with the state of the file system before
shutdown. The new version of the namespace image then is flushed out to a
new fsimage on disk, and the old edits log truncated since all its transactions
have been applied to the persistent fsimage. This process is called a check-
point, and results in a new fsimage and empty edits file. [5] The fsimage file
is never modified by the namenode. It is completely replaced during restart,
when requested by the administrator, or by the checkpoint node.

The reason new fsimages are periodically created is that this protects the
metadata represented by the namespace image. The system can start from
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the most recent fsimage if all other persistent copies of the checkpoint and
the journal are unavailable.

Another benefit of generating new checkpoints is that it helps to keep the
size of the journal in check [38]. HDFS clusters run for long periods of time
without restarts, resulting in the edits journals becoming very long. Very
large journals may lose data or contain corrupted data. By generating a new
fsimage, the empty journal created ensures the length of the journal file is
reset, i.e. set to 0 again. It is considered good practice to create a checkpoint
on a daily basis [38].

The checkpoint node downloads the fsimage and edits files from the na-
menode, merges them locally, and uploads the new image back to the active
namenode. The checkpoint node usually runs on a different machine than the
namenode as its memory requirements are the same as that of the namenode.

6.1.5 Backup node

Along with providing the same checkpointing functionality as the checkpoint
node, the backup node maintains an in-memory (i.e. in RAM), up-to-date
copy of the file system namespace that is always synchronized with the active
namenode state [38]. It accepts the stream of file system edits specified in
the journal from the namenode and persists these logs to disk. Along with
that, it also applies these edits to its own copy of the namespace in memory,
thus creating a backup of the namespace.

Unlike the checkpoint node, the backup node does not need to download
the fsimage and edits files from the namenode to create a checkpoint, as
it already has the up-to-date state of the namespace in its own memory.
It is thus more efficient than the checkpoint node as it only needs to save
the namespace in the local fsimage file, and reset edits to create the empty
journal. Since the backup node also maintains a copy of the namespace in
its RAM, its memory requirements are the same as that of the namenode.

The namenode registers one backup node at a time. No checkpoint node
may be present if a backup node is already in use.

6.2 HDFS robustness

HDFS operations are adversely affected by namenode failures, datanode fail-
ures and network partitions [5].

The datanodes periodically send heartbeat messages to the namenode,
thereby assuring the latter that they are working properly. Loss of connec-
tivity between the datanodes and namenode can result due to network parti-



CHAPTER 6. HADOOP DISTRIBUTED FILE SYSTEM 52

tions. This connection loss results in heartbeat messages no longer reaching
the namenode. When the namenode detects a datanode that fails to send it
heartbeat messages, it marks that datanode as dead and does not forward any
I/O requests to it. Data stored in a dead datanode is not available to HDFS
any more. Due to datanode failures, the number of replicated copies of a file
may be lesser than that configured. The namenode initiates re-replication of
the blocks when it detects the disparity. Re-replication can arise due to other
reasons as well - the replication factor having been increased, or a replica may
become corrupted.

The client software performs checksum calculations on each block of the
file and stores these checksums in a separate hidden file in the same HDFS
namespace. Network faults, buggy software or problems in storage devices
can result in a block of data requested from a datanode arriving to the client
in a corrupted state. The client verifies that the checksum of the data it
received from the datanode matches the one stored in the checksum file. If
not, the client can retrieve that block from another datanode with a replica
of that block.

The importance of the checksum and journal (or fsimage and edit respec-
tively) files in storing metadata has been described earlier. Corruption of
these files can cause HDFS to become non-functional. Hence the namenode
can be configured to store multiple copies of those two files. Changes made
to either the checksum or journal file causes all their copies to get updated
synchronously. This synchronous update can reduce the rate of namespace
transactions per second that the namenode can support. However, this degra-
dation is tolerable as HDFS applications are not really metadata-intensive in
nature - they are data-intensive. When the namenode restarts, it selects the
latest consistent checksum and journal to use.
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Windows Azure Storage

Windows Azure Storage (WAS) is a massively scalable cloud storage system
that allows customers to store large amounts of data for any length of time.
The storage system can be accessed from anywhere in the world, by appli-
cations running in the cloud, on servers, desktop/laptop computers, mobiles
or tablets [9]. It has been in production in Microsoft since November 2008,
for application such as serving music, video and game content, managing
medical records etc. Several customers outside Microsoft also use WAS.

WAS stores data in three forms - blobs (user files), tables (structured
datasets), and queues (message delivery). These three are used in combina-
tion in many applications. One example of that is incoming and outgoing
data being stored as blobs, message flows during blob-processing taking place
through queues, and the intermediate and final data being stored in tables or
blobs. Customer data is stored across multiple data centers separated hun-
dreds of miles apart. This geographic replication provides protection against
natural disasters, thus facilitating disaster recovery.

To reduce storage cost, many customers are served from the same shared
storage infrastructure [9]. The workloads of different customers are combined
together so that significantly less storage needs are provisioned that than if
the workloads had their own dedicated hardware.

7.1 Global namespace in WAS

One of WAS’s key features is a global namespace which allows clients to access
all of their storage in the cloud and scale to any amount when necessary [9].
The storage namespace has three parts - an account name, a partition name
and an optional object name. Data in a storage stamp (explained later) is
accessible via an URI of the form http(s)://AccountName.{service}.core.
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windows.net/PartitionName/ObjectName.

Here, the AccountName is the account name selected by the customer
for accessing the storage system and is a part of the DNS host name. This
name is used to locate the primary storage cluster and data center where
the data is stored. The primary storage stamp (explained later) is where all
requests go to reach data for that customer account. An application can have
several such account names to store its data in different locations. While the
account name identifies the storage cluster where the data is located, the
PartitionName is needed to identify the storage node within that cluster.
This name is needed to scale out access to the data across storage nodes
based on traffic needs.

7.2 WAS architecture

The main feature of WAS is its scaling ability - it can store and provide
access to a very large amount of data (exabytes and beyond). A high-level
diagram of the architecture is given below:

Figure 7.1: Windows Azure storage stamp layout - a high-level architecture
[40]

The production system of WAS consists of the following components:

http(s)://AccountName.{service}.core.windows.net/PartitionName/ObjectName
http(s)://AccountName.{service}.core.windows.net/PartitionName/ObjectName
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7.2.1 Storage stamps

A storage stamp is a multi-rack cluster of storage nodes, where each rack has
redundant networking and power to handle faults [9]. Each cluster usually
stores 10-20 racks with 18 disk-heavy storage nodes per rack. The earliest
generation of storage stamps store approximately 2 PB (petabytes) of data
each, while later generations store upto 30 PB of storage each. Not all of this
storage is utilized, however - usually a storage stamp is around 70% utilized
in terms of capacity, transactions and bandwidth, with the limit being about
80%. 20% is kept as reserve for a) disk short stroking to gain better seek
time and higher throughput by utilizing the outer tracks of the disks, and b)
to continue providing storage capacity and availability in the event of a rack
failure within the stamp. When a storage stamp reaches 70% utilization,
the location service migrates accounts to different stamps using inter-stamp
replication.

A storage stamp consists of three layers:

1. Partition layer - The partition layer has several functions. Firstly, it
handles the high-level data structures (blobs, tables and queues) [9].
Secondly, it provides a scalable object namespace. Thirdly, it provides
transaction ordering and strong consistency for objects. Fourthly, it
stores object data on top of the distributed file system layer (explained
later). Finally, it caches object data to reduce disk I/O.

An important internal data structure provided by the partition layer
is called the object table (OT). The OT is a massive table which can
be of several petabytes in size. These are dynamically broken into
RangePartitions (also called partition ranges), based on traffic load on
the table. A RangePartition is a contiguous range of rows in an OT.
Every row in the OT is a part of a RangePartition. The rows in OTs
are non-overlapping.

There are several types of object tables used by the partition layer. The
Account Table stores metadata and configuration for each storage ac-
count assigned to the stamp [9]. The Blob Table stores all blob objects
for all accounts in the stamp. The Entity Table stores all entity rows
for all accounts in the stamp. The Message Table stores all messages
for all accounts’ queues in the stamp. The Schema Table maintains a
record of the schema of all the OTs. The Partition Map Table keeps
track of the current RangePartitions for all OTs and which RangePar-
tition is being served by which partition server. This table is used by
the front-end servers to forward requests to the appropriate partition
servers. The primary key for the Blob, Entity, and Message Tables is
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a composite of three properties - account name, partition name and
object name.

Figure 7.2: Partition layer [18]

The partition layer has three main architectural components - the par-
tition master, partition servers, and the lock service. The partition
layer has a master system for assigning RangePartitions to the parti-
tion servers and load balancing [46]. The partition master (also called
the partition manager) constantly monitors the overall load on each
partition server as well as the individual partitions, and uses this for
load balancing. The partition master keeps track of and splits the mas-
sive OTs into RangePartitions and then assigns each RangePartition
to a partition server. The partition master stores this assignment in
the Partition Map Table. It also ensures that each RangePartition is
assigned to exactly one partition server at any point of time, and that
they do not overlap. Each storage stamp has several instances of the
partition master. These instances contend with each other for a leader
lock that is stored in the Lock Service (explained later). The master
with the lease is the active master instance which controls the partition
layer.

Each partition server is assigned a set of object partitions (blobs, ta-
bles and queues). It stores all the persistent states of the partitions
into streams and maintains a memory cache of the partition state for
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efficiency. The system guarantees that no two partition servers can
serve the same RangePartition at the same time by using locks with
the lock service (explained next). This way, a partition server provides
strong consistency and ordering of concurrent transactions to objects
in the RangePartition it is serving. A partition server can concurrently
serve multiple RangePartitions from different OTs.

Figure 7.3: RangePartition data structures [18]

A partition server serves a RangePartition by maintaining a set of
in-memory data structures and a set of persistent data structures in
streams [9]. A RangePartition uses a log-structured merge tree to
maintain its persistent data. Each RangePartition consists of its own
set of streams in the DFS layer. However, the underlying extents can
be pointed to by different streams in different RangePartitions. Each
RangePartition comprises of the following streams (which are persistent
data structures) -

• Metadata Stream - This is used by the partition master to assign
a partition to a partition server. This is the root stream for a
partition server. It contains enough information for the partition
server to load a RangePartition. This information includes the
names of the commit log and data streams (explained next), as
well as the pointers (extent + offset) into those streams for where
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to start operating in those streams, e.g. where to start processing
in the commit log stream.

• Commit Log Stream - This commit log is used to store the recent
insert, update and delete operations applied to the RangePartition
since the last checkpoint was generated for this range.

• Row Data Stream - This stores the row checkpoint data and index
for the RangePartition.

• Blob Data Stream - It is used by the Blob Table to store the blob
data bits.

Each of the streams listed above is a separate stream in the DFS layer
owned by an Object Table’s RangePartition. Apart from the Blob
Table, all other OTs have RangePartitions with only one data stream.
Along with the persistent data structures, a partition server has the
following in-memory data structures [9]:

• Memory Table - This is the in-memory version of the commit log
stream for a RangePartition, containing all the recent updates
which have not yet been checkpointed to the row data stream.
During a lookup, the memory table is referenced to find recent
updates to the RangePartition.

• Index Cache - This caches the checkpoint indexes of the row data
stream.

• Row Data Cache - This is a read-only memory cache of the check-
point row data pages. When a lookup occurs, both the row data
cache and the memory table are checked, with preference given
to the memory table. The index and row caches are separate to
ensure that as much of the main index is cached in memory as
possible for a given RangePartition.

• Bloom filters - If the data is not found in the memory table or the
row data cache, the index/checkpoints in the row data stream need
to be searched. A bloom filter is kept for each checkpoint, which
indicates if the row being accessed may be in the checkpoint.

The Lock Service (LS) uses the Paxos algorithm for selecting a leader
among the project master (PM) instances.

2. Distributed file system layer - The distributed file system (DFS) (orig-
inally known as the stream) layer stores the bits on disk and is respon-
sible for distributing and replicating the data across many servers to
keep the data durable within the stamp [9].
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Figure 7.4: Stream layer [18]

The DFS layer can be thought of as a distributed file system layer
within a stamp. The data is stored in the DFS layer, but is accessi-
ble from only the partition layer. Thus, when assigning partitions to
different partition servers, no data is actually moved around on disk.
This is because the data itself is stored in the DFS layer and is accessi-
ble from any partition server. The actual data reading/writing is done
in the DFS layer by the partition layer. All writes are append-only.
The partition layer can open, close, delete, rename, read, append to,
and concatenate large files called ‘streams’.Streams in WAS are ordered
lists of pointers to storage chunks called ‘extents’. Each extent has a
set of blocks that were appended to it. A block here is the minimum
unit of data in reading and writing. Data is appended as one or more
concatenated blocks to an extent. Blocks in an extent do not all have
to be of the same size.

Clients (partition servers in the partition layer) perform the appends
in terms of blocks and controls the size of each block. A client read
specifies an offset to a stream or extent, and the stream layer responds
by reading as many blocks as needed from the offset to complete the
read.

The DFS layer handles the data at a lower level, i.e. it knows how
to store and replicate the bits in the extents, but does not understand
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higher level object constructs (i.e. blobs, queues and tables) and their
semantics. The storage system ensures that all partitions are always
served. Partition servers (daemon processes in the partition layer) and
DFS servers are co-located on each storage node in a stamp.

3. Front-end layer - The front-end (FE) layer consists of a series of state-
less servers which receive incoming requests [9]. Upon receiving a re-
quest, the FE layer looks up the AccountName, authenticates and au-
thorizes the request, an forwards the request to a partition server in
the partition layer, based on the PartitionName in the request. The
FE layer maintains a partition map which records the partition name
ranges and maps partition names to partition servers. The partition
map is cached and used to determine which partition server to for-
ward a request to. The FE servers cache frequently accessed data for
efficiency and stream large objects directly from the DFS layer.

7.2.2 Location service

The location service (LS) manages the storage stamps, and the account
namespace across the stamps [9]. The LS allocates accounts to storage
stamps and manages them across the storage stamps for disaster recovery
and load balancing. The location service itself is located in two different
geographic locations to provide redundancy. WAS has its data centers dis-
tributed in different locations all over three geographic regions - North Amer-
ica, Europe and Asia [9]. The data center in each location has several storage
stamps in one or more buildings. To scale up to provide more storage, the
LS can easily add new regions, new locations to a region, or new stamps to a
location. Practically, this means adding more storage stamps to the desired
location’s data center and adding them to the LS. The LS then allocates
new storage accounts to the new stamps and migrate (for load balancing
purposes) old, existing accounts in other storage stamps to the new ones.

The process for storing data in WAS begins with an application requesting
a new account for storing data [9]. The application specifies the desired loca-
tion from available options for storing the data, based on its needs, e.g. US
North. The LS then chooses a storage stamp within that location as the pri-
mary stamp for that account. It does this by analysing the load information
in all stamps in that location, such as network and transaction utilization,
and the amount of data in the stamp currently. The LS follows this up by
storing account metadata information in the chosen storage stamp, which
tells the stamp that it has to start taking traffic for the assigned account.
Finally, the LS updates the DNS to allow requests from the name allow re-
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quests with the URL https://AccountName.service.core.windows.net/

to the assigned storage stamp’s virtual IP.

7.3 Consistency, availability and partition tol-

erance in WAS

The CAP theorem (described earlier) states that a distributed system cannot
have all three properties of consistency, availability and partition tolerance at
the same time. WAS, however, claims to provide all three of these properties
in a storage stamp, due to the layered architecture and the overall system
design.

The append-only (in writes) data model of the DFS layer provides high
availability in the face of network partitions and other such failures. On top of
the DFS layer, the partition layer provides strong consistency. This layering
allows the decoupling of nodes responsible for producing strong consistency
from nodes ensuring high availability, i.e. those which store the actual data.

The kind of network partitioning seen in a storage stamp is when a top-of-
rack (TOR) or a node fails. When a TOR switch fails, the affected rack will
no longer be used for traffic. The DFS layer instead uses extents on available
racks to allow streams to continue writing. In addition, the partition layer
reassigns the RangePartitions to partition servers on available racks to allow
all of the data to continue to be served with high availability and strong
consistency.

However, it must be kept in mind that the strong consistency is guaran-
teed within only a particular geographic region. Across multiple such regions
the consistency guarantees are weaker.

7.4 Fault tolerance in WAS

As with other distributed storage systems, the large scale of WAS means
failures are common. To handle failures in storage, one can use replication
or erasure coding. The former involves adding more copies, and the latter
uses parity to recover the lost data. In other words, replication involves
reading the same data from another location, while erasure coding recreates
the data. Erasure coding is advantageous in that it saves space.

WAS uses two types of replication schemes:

1. Intra-stamp replication - This type of replication is used in the DFS
layer. Multiple copies of data are stored synchronously within a region
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for durability against hardware failures. The data are replicated at
the bit level. To ensure durability, the transaction is replicated syn-
chronously across three different storage nodes across different fault and
upgrade domains. A fault domain (FD) can be considered as nodes be-
longing to the same physical rack. These nodes represent a single unit
of failure. An upgrade domain (UD) is a group of nodes that will be
upgraded together during the process of service upgrade (called a roll-
out). Spreading the three replicas across the UDs and FDs means the
data is available even if hardware failure occurs in a single rack and
when nodes are upgraded during a rolling upgrade.

Updates to the storage account are synchronously replicated to three
storage nodes in the storage stamp and success returned only when
all three replicas are successfully replicated. Along with this, cyclic
redundancy checksums (CRCs) of the data are stored to ensure cor-
rectness. The CRCs are periodically read and validated to detect bit
rot - random errors occurring on the disk media over time.

2. Inter-stamp replication - Inter-stamp replication is used to provide ge-
ographical redundancy against geographical disasters such as earth-
quakes, which are rare (compared to hardware failures). It performs
asynchronous replication by replicating data across stamps, thus pro-
viding disaster recovery. This is done by the partition layer, and is con-
figured for an account by the location service. The replication is done
at the object level (blobs, queues and table data). Thus, while inter-
stamp replication is focused on replicating objects and the transactions
applied to those objects, intra-stamp replication replicates blocks of
disk storage which make up those objects. Either the whole object is
replicated or the recent changes are replicated for a given account.

The stamps across which the data are replicated are frequently located
hundreds of miles apart. In case of a disaster in the primary region, the
replicate data in the secondary regions remain durable. In intra-stamp
replication, success is returned only once all three replicas are success-
fully persisted. In inter-stamp replication, after the updates are com-
mitted to the primary stamp (three times), they are asynchronously
replicated to the secondary stamps. On the secondary stamp, the
updates are again committed to a three-replica set before returning
to the primary stamp. Having three replicas in each of the locations
means each location can recover by itself from common failures (disk/n-
ode/rack/TOR failing) without having to communicate with other lo-
cations. Usually, the customer select the primary and secondary loca-
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tions. Commonly, there is one primary and one secondary location.

It is crucial to achieve intra-stamp replication with low latency, since the
primary stamp is one which is referred to for all user requests initially (due
to closer proximity). The focus of inter-stamp replication is optimal use of
the network bandwidth between stamps with an acceptable amount of delay
[9].

The WAS stream layer is an append-only distributed file system. Streams
are very large files, which are split into units of replication called extents.
Extents are replicated before they reach their target sizes. Once they reach
their target sizes, they become immutable (become sealed) and then erasure
coding is applied in place of replication. Earlier, Reed-Solomon 6+3 was the
convention for erasure coding - a sealed extent was split into six pieces, and
these were coded into three redundant parity pieces.

WAS is robust enough to handle node failures in each of the three main
layers [46]:

1. Partition server failure - If the system determines that a partition server
is unavailable, it immediately reassigns partitions it was serving to
other partition servers, and the partition map for the front-end servers
is updated with the new changes.

2. DFS server failure - If the storage system determines that a DFS server
is unavailable, the partition layer stops using that server for reading
and writing while it is unavailable. Instead, the partition layer uses
the other DFS servers which contain the replicas of the data. If a DFS
server is down for too long, additional replicas of the data are generated
to have a healthy number of replicas for durability.

3. Front-end server failure - If a front-end server is unresponsive, the load
balancer realizes this and redirects incoming requests to other, available
front-end servers, until the failed server comes back up again.
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Lustre

Lustre is an open-source distributed parallel file system developed and
maintained by Sun Microsystems Inc. Its high scalability makes it
popular in scientific supercomputing, as well as in sectors such as oil
and gas and finance. It presents a POSIX interface to its clients with
parallel access capabilities to the shared file objects. The name ‘Lustre’
is an amalgam of the words ‘Linux’ and ‘cluster’.

The ability of a Lustre file system to scale capacity and performance
for any need reduces the need to deploy multiple file systems, such as
one for each compute cluster [21]. Storage management is simplified by
avoiding the need to copy data between compute clusters. Along with
aggregating storage capacities of many servers, the I/O throughput is
also aggregated and scales with additional servers. Throughput and/or
capacity can be easily increased by adding servers dynamically.

8.1 Features of Lustre

A Lustre installation can be scaled up or down by changing the number
of client nodes, disk storage and bandwidth [21]. Scalabilty and per-
formance are dependent on the available disk and network bandwidth,
as well as the processing power of the servers in the system.

The notable Lustre software features are:

(a) Performance-enhanced ext4 file system - Lustre uses an im-
proved version of the ext4 file system to store data and metadata.
This version, called ldiskfs, has been enhanced to improve perfor-
mance and provide additional necessary functionalities.

64
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(b) Interoperability - The Lustre file system can run on a variety of
CPU architectures and mixed-endian clusters and is interoperable
between successive major Lustre software releases.

(c) POSIX compliance - POSIX itself does not say anything about
how a file system will operate on multiple clients [13]. However,
Lustre conforms to the most reasonable interpretation of what
the single-node POSIX requirements would mean in a clustered
environment.

For example, the coherency of read and write operations are en-
forced through the Lustre distributed lock manager. Thus, if ap-
plications on different nodes try to read from or write to the same
part of a file at the same time, they would see consistent results.
In a cluster, most operations are atomic so clients never see stale
data or metadata, with two exceptions:

• atime updates - atime is the file access time in Linux systems.
This time value gets updated when a file is opened, as well for
other operations like grep, cat, head etc. It is not practical to
maintain fully coherent atime updates in a high-performance
cluster file system. Clients will refresh a file’s atime value
value whenever they read or write objects of that file from
the object storage targets (OSTs), but will do only local atime
updates for reads from cache.

• flock/lockf - POSIX and BSD flock/lock system calls will be
completely coherent across the cluster, using the Lustre lock
manager, but are not enabled by default as of now.

Lustre supports mmap file I/O as well.

(d) Object-based architecture - Clients are isolated from the on-
disk file structure enabling upgrading of the storage architecture
without affecting the client.

(e) Disaster recovery tool - Lustre provides an online distributed
file system check, called Lustre File System Check (LFSCK) that
can restore consistency between storage components in case of a
major file system error. A Lustre file system can operate even in
the presence of file system inconsistencies, and LFSCK can run
while the file system is in use. Thus LFSCK is not required to
complete before returning the file system to production.

(f) Byte-granular file and fine-grained metadata locking - Many
clients can read and modify the same file or directory concurrently.
The Lustre distributed lock manager (LDLM) ensures that files
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are coherent between all clients and servers in the file system. The
metadata target (MDT) LDLM manages locks on inode permis-
sions and pathnames. Each OST has its own LDLM for locks on
file stripes stored on itself, which scales the locking performance
as the file system grows.

8.2 Architecture

Figure 8.1: Lustre file system architecture [23]

An installation of Lustre includes a management server (MGS) and
one or more Lustre file systems interconnected with Lustre networking
(LNET) [21]. The MGS stores configuration information for all the
Lustre file systems in a cluster and provides this information to other
Lustre components. Each Lustre target contacts the MGS to provide
information, and Lustre clients contact the MGS to retrieve informa-
tion. While it is preferable that the MGS has its own storage space so
that it can be managed independently, it can also be co-located and
share storage space with a metadata server.

The components of a Lustre file system are:
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8.2.1 Metadata target

For Lustre software of version 2.3 or earlier, each file system has one
metadata target (MDT) [21]. From 2.4 onwards, each file system has at
least one MDT, and can have more as well. The MDT stores metadata
(e.g. filenames, directories, permissions, and file layout) on storage
attached to a metadata server.

8.2.2 Metadata server

The metadata server (MDS) makes metadata stored in one or more
MDTs available to Lustre clients [21]. Each MDS manages the names
and directories in the Lustre file system(s) and provides network request
handling for one or more local MDTs.

The Lustre file system has a unique inode for every regular file, direc-
tory, symbolic link and special file [24]. When a Lustre inode represents
a regular file, the metadata only holds references to the file data objects
stored on the OSTs, instead of references to the actual file data itself.
In Lustre, creating a new file causes the client to contact a MDS, which
creates an inode for the file and then contacts the OSTs to create the
file objects that will store the actual file data. This is in contrast to
other file systems, where creating a new file causes the file system to
allocate an inode and set some of its basic attributes. Once, the MDS
has directed the OSTs to create the objects for the newly created file,
subsequent I/O to the file is done directly between the client and the
OST, without the intervention of the metadata server. The metadata
server is only updated when additional namespace changes related to
the new file are required.

The MDS views each file as a collection of data objects striped on
different OSTs, as mentioned earlier [45]. A file object’s layout infor-
mation is defined in the extended attribute (EA) of the inode. The
EA, in essence, describes the mapping between file object IDs and the
corresponding OSTs. This information is also known as striping EA.

8.2.3 Object storage servers

Object storage servers (OSSs) provide file I/O service and network
request handling for one or more local object storage targets (OSTs)
[21]. An OSS usually serves between two and eight OSTs, up to 16 TB
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each. A typical configuration is an MDT on a dedicated node, two or
more OSTs on each OSS node, and a client on each of a large number
of compute nodes.

8.2.4 Object storage targets

An OSS node can have one or more object storage targets (OSTs).
OSTs handle all of the interaction between client data requests and
the underlying physical storage. Within the OST, data is read from
and written to underlying storage known as object-based disks (OBDs).
The total data capacity is the sum of all individual OST capacities [45].
Storage in the OSTs is actually not limited to disks because the inter-
action between the OST and the actual storage device is done through
a device driver. The behavior of the device driver mask the specific
identity of the underlying storage system that is being used. This en-
ables Lustre to utilise existing Linux file systems and storage devices
for its underlying storage, whilst providing the flexibility required to
integrate new technologies such as smart disks and other types of file
systems. For example, Lustre currently provides OBD device drivers
that support data storage within journaling Linux file systems such as
ext3, ReiserFS, and XFS. Using the journaling mechanisms which come
with these filesystems further increases the reliability and recoverabil-
ity of Lustre. Lustre can also be used with specialized 3rd party object
storage targets.

OSTs provide a flexible model for adding new storage to an existing
Lustre file system. New OSTs can be easily brought online and added
to a pool of OSTs that a cluster’s metadata server can use for storage.
Similary, new OBDs can be easily added to the pool of underlying
storage associated with any OST.

One of the reasons attributed to the high performance of a Lustre file
system is its ability to stripe data across multiple OSTs in a round-
robin fashion [21]. Striping causes segments or ‘chunks’ of data in a file
to be stored on different OSTs. Users can optionally configure for each
file the number of stripes, stripe size, and OSTs that are used. Striping
is useful when a single OST does not have enough free space to hold
an entire file. Striping can also be used to improve performance when
the total bandwidth to a single file exceeds the bandwidth of a single
OST.

A RAID 0 pattern is used in which data is ‘striped’ across a number
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of objects [21]. Each stripe has a definite size, called the stripe size.
The number of objects in a single file is called the stripe count. Each
object contains chunks of data from the file. When the chunk of data
being written to a particular object exceeds the stripe size value, the
next chunk of data in the file is stored on the next object.

Figure 8.2: Files striped with a stripe count of 2 and 3 with different stripe
sizes [22]

Default values for stripe count and stripe size are set for the file system
[21]. The default value for stripe count is 1 stripe for file and that of
stripe size is 1 MB. These values may be set by the user on a per-
directory or per-file basis.

Since the file system metadata and file data are stored in different lo-
cations (MDS and OST respectively), file system updates involve two
distinct operations - metadata updates on the MDS, and file data up-
dates on the OSTs [24]. File system namespace operations are per-
formed on the MDS so that they do not interfere with operations that
manipulate file data. As mentioned earlier, once the MDS has iden-
tified the storage location of a file, all subsequent file I/O operations
directly between the client and the OSTs. Metadata servers provide
significant scope for performance optimization. For example, metadata
servers can maintain a series of pre-allocated objects on various OSTs,
thereby speeding up the file creation process.

8.2.5 Clients

Lustre clients are computational, visualization or desktop nodes that
are running Lustre client software, allowing them to mount the Lus-
tre file system [21]. The client software includes a management client
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(MGC), a metadata client (MDC), and multiple object storage clients
(OSCs). A logical object volume (LOV) aggregates the OSCs to pro-
vide transparent access across all OSTs. Hence, a client sees a single,
synchronized namespace. Several clients can write to different parts
of the same file simultaneously. At the same time, other clients can
read from the same file. Being a POSIX-compliant filesystem, Lustre
presents a unified file system interface such as open() and read() to the
client. In Linux, this is achieved through Virtual File System (VFS)
layer [45].

Figure 8.3: File open and file I/O in Lustre [22]

When a client wants to read from or write to a file, it first fetches the
inode from the MDT object for the file [21]. The client then uses this
information to perform I/O on the file, directly interacting with the
OSS nodes where the objects representing the file data are stored.

The scalability of metadata operations on Lustre is enhanced through
the use of an intent-based locking scheme [24]. One way of using this
is as follows - when a client wants to create a file, it requests a lock
from the MDS to enable a lookup operation on the parent directory,
and also tags this request with the intended operation (in this case file
creation). If the lock request is granted, the MDS uses the intention
specified in the tag to modify the parent directory, creating a new file
and returning a lock on the new file instead of the directory.
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8.3 Recovery mechanism in Lustre

Lustre provides a powerful recovery mechanism which is deployed when
any communication or storage failure occurs. The client is normally
subjected to a timeout constraint when accessing data [24]. In the event
of a server or network failure, the timeout can occur without the client
having accessed what it was looking for. It can then query a Lightweight
Directory Access Protocol (LDAP) server to obtain information about a
replacement server and, upon obtaining a reply detailing the identity of
the replacement server, immediately directs queries to that server. An
‘epoch’ number on every storage controller, an incarnation number on
the metadata server/cluster, and a generation number between clients
and other systems are the main components of the recovery system in
Lustre. These numbers enable clients and servers to detect restarts and
select appropriate servers.

The ability of Lustre to allow data storage in various Linux file sys-
tems such as ext3 allows utilisation of these file systems’ journaling
mechanisms, as mentioned earlier. This serves to increase further the
recoverability of Lustre [24].

The overall file system availability is improved by having a single backup
MDS, and by using distributed OSTs [24]. This helps eliminate any
one MDS or OST as a single point of failure. If widespread hardware or
network outages occur, the transactional nature of the metadata stored
in the MDSs significantly reduces the time needed to restore file sys-
tem consistency. This is because this type of metadata minimizes the
chance of losing control information such as object storage locations
and actual object attribute information.

8.4 Possible use cases of Lustre

While the features of Lustre make it suitable for many applications, it is
not the best choice in all cases [21]. It is ideally suited for cases in which
the capacity of a single server is exceeded. There are certain scenarios,
however, in which Lustre can perform better with a single server than
other file systems due to its strong locking and data coherency.

Lustre is not well-suited for ‘peer-to-peer’ usage models where clients
and servers are running on the same node, each sharing a small amount
of storage [21]. This is due to the lack of data replication at the Lustre
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software level. In such cases, if one client/server fails, the data stored
on that node will not be accessible until the node is restarted.



Chapter 9

Spark and Tachyon

This chapter reviews two in-memory technologies, Apache Spark and
Tachyon. A recent development in the field of in-memory computing
is Apache Ignite, which processes data in-memory, and has its own
in-memory file system. It was created as In-Memory Data Fabric by
GridGain Systems, and found its way into the Apache Software Foun-
dation through Incubator, the entry point of open-source projects to
be part of Apache [2].

9.1 Apache Spark

Apache Spark is an open-source cluster computing framework originally
developed at UC Berkeley’s AMPLab. Spark was designed to support
applications which reuse a working set of data across multiple parallel
operations [49]. While MapReduce and its variants have been highly
successful in processing large amounts of data on commodity clusters,
they are mainly suitable for acyclic (or non-cyclical) data flow models.
Use cases where they are not suitable include:

• Iterative jobs - Many machine learning algorithms apply a function
repeatedly to the same dataset to optimize a parameter. With
MapReduce, each iteration would represent a separate job, and
in each job the data would be loaded from the disk, lowering the
performance significantly.

• Interactive analytics - Hadoop is often used for ad-hoc exploratory
queries on large datasets, through SQL interfaces like Hive and
Pig. Ideally, the dataset should be loaded into memory across

73
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a number of machines once, and then queried repeatedly. With
Hadoop, each query incurs significant latency as it is a separate
MapReduce job, and has to read data from the disk each time.

Spark overcomes these limitations by using an abstraction called a re-
silient distributed dataset (RDD), which is a collection of objects par-
titioned across the nodes of the cluster [49]. The collection of objects
is read-only that can be rebuilt if a partition is lost. Users can explic-
itly cache the RDDs in memory and reuse them in parallel operations.
RDDs achieve fault-tolerance through the concept of lineage - if one
partition of an RDD is lost, the RDD has enough information about
how it was derived from other RDDs to rebuild just that partition.
Thus, the partitions do not have to be replicated; the transformations
which generated them are stored, and replayed to regenerate a partition
if it is lost.

Spark is implemented in Scala. Spark can also be used interactively
through the interpreter, which allows users to define RDDs, functions,
variable and classes and use them in parallel operations in a cluster. In
iterative machine learning jobs, Spark can outperform Hadoop by ten
times, and can interactively query a 39 GB dataset with sub-second
response time.

Figure 9.1: Spark cluster components [39]

Spark applications run as independent sets of processes on a cluster,
coordinated by the SparkContext object in the main program (also
known as the driver program) [39]. The SparkContext object can con-
nect to different types of cluster managers (such as YARN, or Spark’s
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own standalone cluster manager), which allocate resources across ap-
plications. Once connected, Spark acquires executors on the cluster
nodes. Executors are processes that run computations and store the
data for the application. The SparkContext object then sends the ap-
plication code to the executors, and finally send tasks for the executors
to run.

9.1.1 Resilient distributed datasets

A resilient distributed dataset (RDD) is a read-only collection of objects
partitioned across a set of machines which can be rebuilt if a partition
is lost [49]. In Spark, each RDD is represented by a Scala object.
Programmers can construct RDDs in four ways:

• From a file in a shared file system, like HDFS.

• By parallelizing a Scala collection like an array in the program -
the collection is divided into a number of slices that are sent to
multiple nodes.

• By transforming an existing RDD - using an operation called
flatMap, a dataset with elements of one type can be converted
to a dataset of another type.

• By changing the persistence of an existing RDD. By default, RDDs
are lazy and ephemeral, i.e. partitions of an RDD are materialized
on demand when they are used in a parallel operation and are
removed from memory after use. The user can, however, alter the
persistence of an RDD through two actions - 1) the cache action
makes the dataset lazy, but indicates that it should be kept in
memory after the first time it is computed, because it will be
reused, and 2) the save action evaluates the dataset and writes it
to a distributed storage system like HDFS. This saved version is
used in future operations on it.

9.1.2 Parallel operations

The parallel operations supported on Spark RDDs include [49]:

• reduce - It uses an associative function to combine dataset ele-
ments to generate a result.
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• collect - It sends all elements of the RDD to the program. For
example, on eway to update an array is to parallelize, map and
collect the array.

• foreach - This passes all elements of the RDD through a user-
provided function.

9.1.3 Shared variables

Operations like map, reduce and filter are invoked by passing functions
(called closures) to Spark. These closures refer to variables in the scope
in which the closures are created [49]. When Spark runs a closure
on a worker node, the variables are copied to the worker. However,
Spark does allow programmers to create two restricted types of shared
variables to support two usage patterns:

• Broadcast variables - If a large read-only piece of data is used
in multiple parallel operations, it is better to distribute it to the
workers only once instead of packaging it with every closure. The
broadcast variable is copied to each worker only once.

• Accumulators - Workers can only ‘add’ to these variables using an
associative operation, and only the driver program can read the
values. These could be used to implement counters. Accumulators
can be defined for any type that has an add operation and a ‘zero’
value. Due to their ‘add-only’ semantics, they can be made fault-
tolerant easily.

9.2 Tachyon

Tachyon is an open-source, distributed storage system which stores data
in-memory, (i.e. in RAM) while providing fault-tolerance. It enables
file sharing at memory speeds across cluster frameworks like Spark and
MapReduce [41]. Tachyon was developed in UC Berkeley’s AMPLab
and currently has over 60 contributors from more than 20 institutions
like Intel and Yahoo. It is a part of the Fedora distribution and the
storage layer of the Berkeley Data Analytics Stack (BDAS).

While caching can significantly improve the speed of reads, writes are
slowed down by replication on disk, making them either network or
disk-bound [20]. Like Spark, instead of replication, Tachyon provides
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fault-tolerance by leveraging the concept of lineage, in which lost output
is recovered by re-executing the operations that generated the output.

The main challenge in making a long-running lineage-based storage sys-
tem is timely data recovery (or recomputation) in case of failures [20].
For a single computing job using MapReduce or Spark, the recompu-
tation cost (i.e. time) is bounded by the job’s execution time. Being
a storage system, however, Tachyon runs indefinitely, which means the
recomputation time can become unbounded. Tachyon bounds the data
recomputation cost by asynchronously checkpointing the files in the
background. It uses the Edge algoritm to select which files to check-
point and when.

Another challenge is allocating resources for recomputations. For ex-
ample, if jobs have priorities, Tachyon has to make sure that recompu-
tation tasks have adequate resources (even if the cluster is fully utilized)
and also ensure that recomputation tasks do not severely impact the
performance of currently running jobs with higher priorities [20]. To
address this challenge, Tachyon uses resource allocation schemes which
respect job priorities under two common cluster allocation models -
strict priority and weighted fair sharing. For example, in a cluster using
a strict priority scheduler, if missing input is requested by a low-priority
job, the recomputation minimizes its impact on high-priority jobs. If
this same input is later requested by a high-priority job, Tachyon auto-
matically increases the amount of resources allocated for recomputation
to avoid priority inversion.

A job P which reads file set A and writes file set B would typically be
executed by Tachyon thus - before the job produces the output B, it
must submit the lineage information L to Tachyon. This information
describes how to run P, i.e. command line arguments, configuration
parameters etc. Tachyon records L reliably using a persistent stor-
age layer (described later). L guarantees that if the output B is lost,
Tachyon can recompute it.

Like HDFS, Tachyon is an append-only filesystem, that supports stan-
dard file operations, such as create, write, read, close etc [20]. It
also provides an API to capture the lineage across different jobs and
frameworks. While the lineage API adds complexity to Tachyon over
replication-based file systems such as HDFS, only framework program-
mers need to understand the API. As long as a framework like Spark
integrates with Tachyon, applications on top of the framework take ad-
dvantage of lineage-based fault tolerance transparently. A user can also
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choose to use Tachyon as a traditional file system if he/she does not
wish to use the lineage API. In that case, the application will not have
the benefit of memory writes, but the performance will be no worse
than that of a replicated file system.

9.2.1 Architecture

Figure 9.2: Tachyon architecture [20]

Tachyon consists of two layers - lineage and persistence [20]. The lin-
eage layer provides high I/O throughput and tracks the sequence of
jobs that created the output. The persistence layer persists data onto
an underlying storage system without the lineage concept. This is done
for the asynchronous checkpointing. Currently, the underlying storage
systems supported are HDFS, S3, GlusterFS and the local filesystem.

Tachyon uses a master-slave architecture similar to HDFS. The mas-
ter manages the metadata, and contains a workflow manager. This
manager tracks lineage information, computes checkpoint order, and
interacts with the cluster resource manager to allocate resources for re-
computation. Each worker runs a daemon that manages local resources,
and periodically reports the status to the master. Each worker uses a
RAMdisk for storing memory-mapped files. A user application can
bypass the daemon and interact directly with the RAMdisk, thereby
increasing the speed of data access.

As seen in Figure 9.2, Tachyon uses a ‘passive standby’ approach to
achieve fault-tolerance of the master. Every operation is logged syn-
chronously to the underlying file system by the master. If the master
fails, a new master is selected from the standby nodes [20]. The new
master recovers the state by reading the logs. As the metadata size is
significantly smaller than the output data, the overhead of storing and
replicating is negligible.
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9.2.2 Checkpointing

Tachyon uses asynchronous checkpointing to limit the amount of time
needed to retrieve a distributed file lost to failures [20]. This file may be
produced from a MapReduce/Spark job. The checkpointing is termed
asynchronous because it happens in the background without stalling
writes, which happen at memory speeds. It is a low priority process to
avoid interference with existing jobs. A checkpointing algorithm would
ideally have the following properties:

• Bounded recomputation time - In a long-running file system like
Tachyon, lineage chains can grow very long. The algorithm has to
limit the time needed to recompute the data in case of failures.

• Checkpointing hot files - More popular files, which are being used
in jobs, should be checkpointed.

• Avoid checkpointing temporary files

Files are asynchronously checkpointed in the order in which they are
created [20]. For example, consider a lineage chain, where file A1 is used
to generate A2, which in turn generates A3 and so on. By the time A6

is generated, maybe only A1 and A2 would have been saved to persis-
tent storage in the underlying file system. If a failure occurs, only A3

through A6 would be recomputed. The longer the lineage chain, greater
is the recomputation time. Spreading the checkpoints throughout the
chain would reduce the number of files to be recomputed, and thereby
reduce the recomputation time.

The developers of Tachyon have designed an algorithm, called Edge, for
the checkpointing. Firstly, the algorithm is called so because it check-
points the edges (or leaves) of the lineage graph. Secondly, prioritizes
files, favoring high-priority files over low-priority ones when it comes to
checkpointing. Lastly, the algorithm caches only those datasets which
can fit in memory to avoid synchronous checkpointing, which would
slow down writes to disk speed.

The algorithm checkpoints leaves of the lineage graph by modeling the
relationship of files with a directed acyclic graph (DAG) - a directed
graph with no directed cycles [20]. Vertices of the graph are files, and
there is an edge from A to B if B was generated by a job that read
A. When there are two jobs in the cluster which generate files A1 and
B1, the algorithm checkpoints both of them. After they have been
checkpointed, files A3, B4, B5, B6 become leaves. After checkpointing
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these, files A6 and B9 become leaves. Thus, in a pipeline consisting
of files A1 to A6 in which the first three are checkpointed, if a failure
occurs when A6 is being checkpointed, only A4 through A6 have to be
recomputed by Tachyon to get the final result. The edges, rather than
the earliest files, are checkpointed to reduce the recomputation time.

Figure 9.3: Edge checkpoint example [20]



Chapter 10

Sheepdog

Sheepdog is a distributed object storage system in user space for QEMU,
iSCSI and RESTful services [36]. It provides block level storage vol-
umes which can be attached to QEMU-based virtual machines. These
volumes can be attached to non QEMU-based virtual machines or oper-
ating systems running directly on the host hardware (called baremetal,
due to absence of a host OS) if they support the iSCSI protocol. It also
supports storage for Openstack Cinder, Glance and Nova.

Sheepdog scales to several hundreds of nodes, and supports advanced
volume management operations such as snapshots, cloning and thin
provisioning. Volumes, snapshots, ISO images etc can be stored in
the Sheepdog cluster. The capacity and power (IOPS + throughput)
are aggregated, and hardware failures suitably hidden. The number of
nodes can be dynamically increased or reduced.

10.1 Background information on QEMU

and iSCSI

QEMU (full name is Quick EMUlator) is a free and open-source hy-
pervisor (i.e. creates and runs virtual machines) [32]. It emulates CPU
architectures by using binary translation create one instruction set of
a computer architecture from another, thereby allowing it to run guest
operating systems, like VirtualBox or VMWare.

iSCSI is an acronym for Internet Small Computer System Interface [16].
It is an IP-based networking standard for linking data storage facilities.

81
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Executing SCSI commands over IP networks allows data transfer over
local area networks (LANs) and wide area networks (WANs), as well
enables data storage in different independent locations. The protocol
allows clients (called initiators) to send SCSI commands to SCSI stor-
age devices (called targets) on remote servers. iSCSI is a storage-area
network, as it provides access to block level data storage.

10.2 Sheepdog features

Some attractive features of Sheepdog include:

(a) It is minimally dependent on the underlying kernel and file system.
It requires a Linux kernel version which is equal to or greater than
2.6.32, and can work with any type of file systems which support
extended attribute (xattr).

(b) It has plenty of features. Some of them include the ability to
create snapshots, clones, cluster-wide snapshots etc. It supports
user-defined replication/erasure code scheme on VDI(Virtual Disk
Image) basis. It also has auto disk/node management features.

(c) It is easy to set up the cluster with thousands of nodes. A single
daemon can manage an unlimited number of disks in one node as
efficient as RAID0. There can be as many as 6000+ nodes in a
single cluster. It is linearly scalable in performance and capacity.

(d) It is small in size. It is fast and has a very small memory usage
(less than 50 MB even when busy). The code is easy to modify
and maintain, with around 35000 lines of code in C as of now.

(e) Object storage via an HTTP interface is supported. It has an ac-
count/container/object style interface like Amazon S3 and Open-
Stack Swift. This makes it suitable for storing static blob contents
such as photos and videos.

(f) The Sheepdog design is such that there is no single point of failure.
Even if a machine fails, the data is still accessible through other
machines.

(g) It is easy to administer. When administrators launch the Sheep-
dog daemon at a newly added machine, Sheepdog automatically
detects the added machine and begins to configure it as a member
of the storage system.
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10.3 Sheepdog architecture

Sheepdog has a symmetric, scale-out architecture - it has no special
nodes e.g. metadata server, and the difficulty of adding a new node
does not depend on the number of existing nodes in the cluster. Virtual
disks in Sheepdog are stored as objects [35]. The disks are divided into
fixed-size objects. The objects are written to the sheepdog cluster and
replicated onto multiple nodes.

Figure 10.1: Sheepdog architecture [37]

The main components of the Sheepdog architecture are [35]:

(a) Object storage - An object in Sheepdog is flexible-sized data and
has a globally unique identifier. Read/write/create/delete oper-
ations to objects may be performed by specifying this identifier.
Sheepdog is not a general file system. The Sheepdog daemons cre-
ate a distributed object storage system for QEMU. Object storage
in Sheepdog comprises of a gateway and an object manager.

(b) Gateway - The gateway receives I/O requests (consisting of the
object ID, offset, length and operation type) from the QEMU
block driver, calculates the target nodes based on the consistent
hashing algorithm, and forwards I/O requests to the target nodes.
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(c) Object manager - The object manager receives the forwarded I/O
requests from the gateway, and executes read/write operations to
its local disk.

(d) Cluster manager - The cluster manager manages node membership
(detection of failed/added nodes and notification of node member-
ship changes) and some operations which requires consensus be-
tween all nodes (VDI creation, snapshots of VDI etc). Currently,
corosync cluster engine is used as the cluster manager.

(e) QEMU block driver - The QEMU block driver divides a virtual
machine (VM) image into fixed-size objects (4 MB by default) and
stores them in the object storage system via the gateway.

10.3.1 Object storage

Each object has a globally unique 64-bit integer as its identifier, and is
replicated to multiple nodes [35]. The object storage system is respon-
sible for managing where to store the objects. Objects in Sheepdog are
of 4 types:

• data object - This contains the actual data of virtual disk images.
The virtual disk images are divided into fixed-size data objects.
Clients access these objects.

• VDI object - This contains the metadata of virtual disk images,
such as image name, disk size, creation time, data object IDs
belonging to the VDIs etc.

• vmstate object - This stores the VM state of a running virtual
machine, which is used when the administrator takes a live snap-
shot.

• VDI attr object - Attributes for each VDI can be stored in this
type of an object. The attribute is key-value style.

In terms of how they are accessed, Sheepdog objects can be categorized
into 2 groups -

• writable - One VM can read and write the objects but other VMs
cannot.

• read-only object - No VM can write the object but any VM can
read it, e.g. data objects of a snapshot VDI.
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This means that virtual machines cannot share the same volume at
the same time. This restriction avoids write conflicts and significantly
simplifies the implementation of the storage system.

Sheepdog object storage accepts copy-on-write requests - when a client
sends a create and write request, they can also specify the base object
(the source of the copy-on-write request). This is used for snapshot
and clone requests.

In the 64-bit identifier, the first 32 bits (0-31) is the object-type-specific
space. Bits 32-55 are used as the VDI identifier, bits 56-59 are reserved,
and the most significant 4 bits (60-63) represent the object type iden-
tifier.

10.3.2 Gateway

The node in which an object will be stored is determined by consistent
hashing. Consistent hashing is a way to distribute the contents of a
hash table over a distributed hash table (DHT). If a hash table contains
K keys distributed over n servers, adding or removing a server will
require the relocation of O(K/n) keys. For example, let the key space
be 128 bits. Each compute node selects a random unique node identifier
ni between 0 and 2128 - 1.All compute nodes are ordered clockwise in
a virtual ring of servers in increasing node identifier order. To store a
data item with key kj, the node with the smallest node i with node ID
ni such that kj ≤ ni is selected as the server to host it. If a new node
k needs to join the virtual ring with ID nk, it will be allocated all data
items kl for which nk is the smallest identifier such that kl ≤ nk.

Objects in a Sheepdog cluster may be encoded to data stripes and par-
ity stripes, as well as be replicated. The advantage of erasure coding is
that write performance and space efficiency are improved without de-
grading durability. While read performance may be improved in some
cases, in others it may be degraded, although this can be covered by
caching. Another disadvantage of erasure coding is that encoding and
decoding of stripes is a CPU-intensive process. Coexistence of replica-
tion schemes, i.e. replication and erasure coding, is also allowed.

Write I/O flow - It is assumed that there is only one writer, so write
collisions cannot happen. Clients send write requests to all the target
nodes [35]. The write request is successful only when all the replicas
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can be successfully updated. It is because if one of the replicated ob-
jects is not updated, the gateway would read the old data from the
not-updated object the next time.

Read I/O flow - The gateway calculates the target nodes with con-
sistent hashing, and sends a read request to one of the target nodes.
However, the consistency of the replication could be broken if a node
breaks down while forwarding write I/O requests. Hence the gateway
tries to fix the consistency when it reads the object for the first time -
read object data from one of the target nodes and overwrite all replicas
with it.

Sheepdog stores all node membership histories. The version number
of the node membership is termed epoch. When the gateway forwards
I/O requests to the target node and the latest epoch number does not
match between the gateway and the target node, the I/O requests fail
and the gateway tries the requests until the epoch numbers match. This
is done to keep a strong consistency of replicated objects. I/O retry
can also happen when the target nodes are down and fail to complete
I/O operations.

10.3.3 Object manager

The object manager stores objects to the local disk [35]. Currently, it
stores one object as one file. Objects are stored in a path having the
following format:

/store dir/obj/[epoch number][object ID]

All object files also have an extended attribute sheepdog.copies, which
specifies the number of redundant objects.

write journaling - When the sheepdog daemon fails during write oper-
ations, objects could be partially updated. This is not a problem if the
VM does not receive the success signal, there is no guarantee about the
content of the written sectors. However, with regards to VDI objects,
the update must happen atomically (i.e. all-or-nothing way). This is
because if the VDI objects are updated partially, their metadata could
be broken. To avoid this problem, the write-journaling operation is
used for VDI objects. The stages of this operation are:
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(a) create a journal file ”/store dir/journal/[epoch]/[vdi object id]”

(b) write data to the journal file first

(c) write data to the VDI object

(d) remove the journal file.

10.3.4 Cluster manager

In most cases, Sheepdog clients can access their images independently
since they are not allowed to access the same images at the same
time [35]. However, some VDI operations, such as cloning and cre-
ating VDIs, must be done exclusively because the operations update
global information. To implement this without central servers, earlier
Corosync cluster engine was used. However, Corosync is not recom-
mended for production use as the method used for synchronization is
susceptible to packet loss under reload. Nowadays, for reliable opera-
tions, Zookeeper is highly recommended.

10.3.5 QEMU block driver

Sheepdog volumes are divided into 4 MB data objects [35]. The objects
of newly created volumes are not allocated at all. Only written objects
are allocated. The operations performed by the QEMU block driver
are explained below:

Figure 10.2: Block driver operations [35]
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(a) open - The QEMU block driver reads a VDI object from the object
storage system through the gateway in brdv open().

(b) read/write - The block driver calculates the data object ID from
the requested sector offset and size, and sends requests to the
gateway. When the block driver sends write requests to the data
object which does not belong to the current VDI, the block driver
sends a copy-on-write request to allocate a new object.

(c) write to snapshot VDI - A snapshot VDI can be attached to the
QEMU. When the block driver sends the write request to the
snapshot VDI for the first time, the block driver creates a new
writable VDI as a child of the snapshot, and sends requests against
the new VDI.



Chapter 11

Experiments

The motivation of this work is to create an open-source implementa-
tion of Amazon’s Elastic Map Reduce (EMR) service, and determine
its performance. For big-data processing, EMR uses its own imple-
mentation of the Hadoop framework on EC2 instances, in conjunction
with S3 object storage. The open-source equivalent of this is running
Apache Hadoop on virtual instances in a cloud, and saving the data
to Ceph object storage. Such a cluster will consist of both storage
and compute nodes. The storage nodes will have several hard disks,
while one hard disk would be sufficient for the compute nodes. The
compute nodes should be used for running jobs with different types of
frameworks, such as Hadoop and MPI, depending on requirements.

Jobs processing large datasets frequently have many intermediate stages
which produce a lot of files. Writing these files to disk in storage sys-
tems which rely on replication for fault tolerance is undesirable due
to two reasons - 1) writing the files to disk reduces to overall data-
processing speed to disk speed, and 2) frequently such files can be easily
regenerated, so replicating them can become unnecessary. Therefore, to
optimize the intermediate stages of jobs, an in-memory storage system
which does not use replication is ideal. Tachyon fits this description.

To determine the performance of the aforementioned open-source im-
plementation, the read-write performances of Ceph, HDFS and Tachyon
have been benchmarked.

The experiments were performed using the virtual machines available in
Pouta, a production infrastructure-as-a-service (IaaS) cloud service of-
fered by CSC - IT Center for Science Ltd. CSC is a Finnish state-owned
company which provides IT infrastructure for information, education
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and research management. Pouta allows CSC customers to run virtual
machines connected to the Internet. It runs the Grizzly version of the
OpenStack cloud software [31].

Storage in Pouta is of two types :

• Ephemeral storage - In addition to the root disk space of 10
GB, most virtual machine types (or flavors) have an additional
ephemeral storage. The stored data persists as long as the instance
is running. It is ephemeral because the data does not persist if
the instance is shut down. The stored data is also not saved when
creating a snapshot of the image.

• Persistent volumes - As the name suggests, data in persistent vol-
umes are retained even when the instances are removed. They can
be attached or detached from the instances while the instances are
running.

Different flavors of virtual machines/images are available in Pouta -
namely tiny, tiny-noephemeral, mini, small, medium, large and fulln-
ode. They differ in features such as the available RAM, size of ephemeral
disk space, and the number of virtual CPUs (vCPU).

For the experiments, the softwares used, along with the versions are
listed below:

(a) Hadoop 2.2.0,

(b) Spark 1.1.0,

(c) Tachyon 0.5.0,

(d) Ceph 0.94.1, and

(e) Simple build tool(SBT) 0.13.8

11.1 Experiment set-up

For all three types of experiments (read-only, write-only, and read-
write), two separate clusters were used - one on which Tachyon and
Hadoop were installed, and another on which Ceph was installed. Both
clusters had three nodes each. Ubuntu 14.04 was the operating system
on all the nodes.

The Tachyon-Hadoop cluster was created using three ‘fullnodes’. A
fullnode in Pouta has 60 GB RAM, 900 GB ephemeral disk, and 16
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vCPUs. As Tachyon stores files in memory (RAM) instead of disk,
a large amount of the available RAM in each fullnode (40 GB) was
allocated to the storage system. 15 GB of memory was assigned to
each Spark executor. The total available RAM for Tachyon was thus
120 GB (40*3).

Ceph was installed on a separate three-node cluster. For Ceph, nodes
of the ‘mini’ flavor were used. A mini node in Pouta has 3.5 GB RAM,
110 GB ephemeral disk space and uses 1 vCPU. Each node functioned
as an object storage device (OSD). One node, along with being an
OSD, also functioned as the metadata server and admin nodes.

The Ceph nodes were added to an ‘anti-affinity’ server-group. A server-
group with anti-affinity setting in OpenStack has each virtual machine
in the group installed on a different physical host. That way, it was
ensured that the VMs in the same server group were not competing for
the same ephemeral disk I/O. To ensure that there were no variations
in the installation process, the installations of Hadoop, Tachyon and
Ceph were automated by the use of scripts. The creation of a bucket
- named ‘test’ - in the Ceph cluster was also automated by running a
script. The relevant scripts for installing Hadoop, Tachyon and Ceph
will be found in the following Github link:

https://github.com/Alapan/Thesis-files

Spark, instead of Hadoop, was used for the data-processing in the ex-
periments, for the greater speed it offers. The root partition of all
virtual machines in Pouta have 10 GB space, out of which 3-4 GB is
used by the existing softwares. Since the remaining 6 GB (approxi-
mately) was not sufficient for storing the files produced by the workers
during processing, they were saved to the ephemeral space instead, of
size 900 GB in fullnodes. The SPARK WORKER DIR configuration
option in the nodes was set to /mnt/work, /mnt being the location
where the ephemeral storage was mounted.

For HDFS, the data was written to the ephemeral storage space as
well, due to the large amount of space available. For each slave node,
the datanode location was /mnt/datanode, while for the master node,
the namenode location was /mnt/namenode. One node in the 3-node
cluster functioned as both the master and slave.

https://github.com/Alapan/Thesis-files
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11.2 Tachyon modifications

Tachyon 0.5.0 was used for benchmarking. To provide fault-tolerance, it
checkpoints in-memory data (i.e. stores intermediate files produced in a
pipeline) to an underlayer file system. This file system is configurable,
and currently HDFS, S3, GlusterFS, and local filesystems in single
nodes are supported.

For the experiments, Ceph was configured to be the underlayer file
system. To do this, the Simple Storage Service (S3) interface of Hadoop
was modified to point to the Ceph cluster set up. More specifically, the
jets3t library used by Hadoop to access S3 storage was modified by
setting the endpoint to the admin node of the Ceph cluster used in the
experiments.

The source code of Tachyon was also altered to make it accept S3N
URLs. The format of an S3N URL is given below:

s3n://bucket name/folder name

For the 0.5.0 version of Tachyon, the existing code does not recognise
the bucket name, and instead regards it as a server name, i.e. similar
to HDFS. Thus, the code had to be altered slightly to accomodate the
bucket name in the URL.

To reduce the task completion times, the checkpointed files were instead
saved to the RAM of the nodes in the Hadoop-Tachyon cluster itself.
This effectively rendered the underlayer file system in the experiments,
Ceph, redundant. The configurations made to Tachyon for saving the
checkpointed files to RAM are given below:

• tachyon.data.folder - /mnt/ramdisk/data
(default - $TACHYON UNDERFS ADDRESS/tmp/tachyon/data)

• tachyon.workers.folder - /mnt/ramdisk/workers
(default - $TACHYON UNDERFS ADDRESS/tmp/tachyon/workers)

Here, too, the source code of Tachyon was changed to allow the meta-
data to be saved to RAM instead of the configured underlayer file sys-
tem.
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11.3 Raw disk write and network speeds

In addition to the benchmarks, the raw disk write speeds in both the
Ceph and Tachyon-HDFS clusters were measured, along with the net-
work speed within each cluster individually, and between the two clus-
ters. This was done to identify any bottlenecks in writes due to the
disks and/or the network.

The commands used to determine the raw disk write speed were:

cd /mnt

sudo dd if=/dev/zero of=here bs=32M count=30 oflag=direct

/mnt was the directory in which the ephemeral storage was mounted,
i.e. location of the datanodes and OSDs. The command indicates the
writing of 30 files, each of 32 MB size. For network speeds, the following
commands were used:

Server: iperf -s

Client: iperf -c 192.168.50.107 -i1 -t 10 -s

The client and server were two separate nodes in a cluster when the
speed within a cluster was being determined. For the network speed
between two different clusters, one node from each cluster was used.

11.4 RADOS benchmarking

Writes with RADOS were also benchmarked using the internal bench-
marker of RADOS. The commands used, in the admin node of the
Ceph cluster were:

rados mkpool my pool

rados bench -p my pool 300 write

The command indicates writing to a pool ‘my pool’ of placement groups
for 300 seconds. Parallel writes are performed by 16 threads, which is
the default number. The data is written in objects of size 4 MB.
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11.5 Read-only benchmarks

The read-only benchmark involved reading a file on the storage system
being benchmarked, and performing some tasks on the data contained
in the file to generate an output, without creating any output files.
This would ensure no writing was done.

The first part of the experiment involved generating the input data. To
do this, the teragen program was run to create an input folder of size
24.90 GB. The input parameters to the program were the number of
partitions to be created and the range of numbers to be generated. The
teragen source code was altered slightly, to produce readable text files
as output, instead of the compressed (bzip2) format used in the terasort
benchmark. This is because compression reduces the overall read/write
performance from CPU to disk speed. The modified teragen program
was used for the write-only and read-write benchmarks as well.

The task involved counting the total number of numeric values in the
input partitions/files, and displaying the calculated value on the out-
put console. Thus no output files were created. The experiment was
repeated 10 times for each storage system - Tachyon, Ceph and HDFS
- and the average read throughput calculated. A piece of sample Scala
code, for HDFS is given below:

va l f i l e = sc . t e x tF i l e (” hdfs : // master− f u l l :54310/ tera−output ”)
va l s p l i t s = f i l e .map(word => word . toLong )
p r i n t l n ( s p l i t s . count ( ) )

The numbers in the output from the teragen code (named tera-output

in the code) were in string format. They were converted to long, to
make the read process easier. The read-only benchmark thus used a
separate script to process the teragen output.

For HDFS, the experiment had two variants - one in which caching of
the input files was enabled, and another in which it was disabled. As
the input files in HDFS were written on disk, the files were being stored
in the Linux buffer cache by default, to speed up the reading process.
For the experiment where caching was disabled, the cache was cleared
after every run, to ensure the file was read fully from the disk. This
was not necessary in the case of Tachyon as the input file was already
on RAM. Ceph is similar to HDFS, in that the input file is stored on
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disk as well. However, the caching could not be completely eliminated
for Ceph, due to an extra layer of virtualization present for the external
cluster.

11.6 Write-only benchmarks

The write-only experiment involved generating data files and writing
them directly to the output storage system. Thus, no input files were
present. The teragen program was run and the time taken to write the
files to the output storage systems measured. As with the read-only
benchmark, the input folder was of size 24.90 GB. For each storage sys-
tem, the experiment was run five times, and the average write through-
put calculated. No other scripts were necessary for this experiments,
other than the existing teragen code.

11.7 Read-write benchmarks

Both input and output files were created for the read-write benchmark.
To benchmark the read-write performance of each storage system, the
input and output files were read from and written to the same storage
system.

The input files were generated using the aforementioned teragen pro-
gram. The task itself was copying the numbers in the input files/par-
titions to the files in the output folder. This meant that the input and
output folders produced would be of equal size. The size of the input
folder would therefore have to be such that both the input and the
output data would fit in the available space. The limiting factor here,
then, was Tachyon. The 120 GB RAM allocation for the Tachyon clus-
ter meant that, theoretically at least, a maximum input folder of size
60 GB could be accomodated (60*2=120). For the experiments, the
input file size was the same as in the other experiments - 24.90 GB.A
sample of the relevant source code, for HDFS, is given below:

va l f i l e = sc . t e x tF i l e (” hdfs : // master− f u l l :54310/ tera−output ”)
va l s p l i t s = f i l e .map(word => word . toLong )
s p l i t s .map ( row => ( Nul lWritable . get ( ) , new LongWritable ( row ) ) )
. saveAsNewAPIHadoopFile (” hdfs : // master− f u l l :54310/ output /” ,
c l a s sO f [ Nul lWritable ] , c l a s sO f [ LongWritable ] ,
c l a s sO f [ TextOutputFormat [ Nul lWritable , LongWritable ] ] )
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11.8 Results

The results obtained are presented below:

11.8.1 Disk/network speeds

The raw disk write speeds were similar for nodes in the Ceph and
Tachyon-HDFS cluster. The optimal speed was close to 90 MB/s, and
the slowest writes were in the 50-60 MB/s range. The network speeds
(within Ceph cluster, within Tachyon-HDFS cluster, and between the
two clusters) are tabulated below:

Interval (sec) Transfer (MB/s) Bandwidth (GBits/sec)

0.0-1.0 766 6.42

1.0-2.0 893 7.49

2.0-3.0 893 7.49

3.0-4.0 890 7.47

4.0-5.0 893 7.49

5.0-6.0 890 7.47

6.0-7.0 900 7.55

7.0-8.0 902 7.56

8.0-9.0 898 7.53

9.0-10.0 896 7.52

Table 11.1: Network connection speed within Ceph cluster

Total data transferred in 10s in Ceph cluster - 8.61 GB

Bandwidth - 7.40 Gbits/sec

Interval (sec) Transfer (MB/s) Bandwidth (GBits/sec)

0.0-1.0 694 5.82

1.0-2.0 843 7.07

2.0-3.0 851 7.14

3.0-4.0 971 8.14

4.0-5.0 959 8.05

5.0-6.0 965 8.10

6.0-7.0 965 8.10

7.0-8.0 810 6.79

8.0-9.0 803 6.74

Table 11.2: Network connection speed within Tachyon-HDFS cluster

Total data transferred in 10s in Tachyon-HDFS cluster - 8.43 GB
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Bandwidth - 7.24 Gbits/sec

Interval (sec) Transfer (MB/s) Bandwidth (GBits/sec)

0.0-1.0 773 6.36

1.0-2.0 842 7.02

2.0-3.0 836 6.96

3.0-4.0 825 6.27

4.0-5.0 826 7.13

5.0-6.0 844 7.82

6.0-7.0 926 7.32

7.0-8.0 891 6.87

8.0-9.0 855 6.82

9.0-10.0 851 6.38

Table 11.3: Network connection speed between Ceph and Tachyon-HDFS
clusters

Total data transferred in 10s between Ceph and Tachyon-HDFS clusters-
8.27 GB

Bandwidth - 7.10 Gbits/sec

11.8.2 RADOS benchmarks

The results of the RADOS write benchmark are given below:

Total time run: 302.543860

Total writes made: 1348

Write size: 4194304

Bandwidth (MB/sec): 17.822

Stddev Bandwidth: 13.7206

Max bandwidth (MB/sec): 60

Min bandwidth (MB/sec): 0

Average Latency: 3.5878

Stddev Latency: 1.09165

Max latency: 6.89335

Min latency: 0.56164
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11.8.3 Tables and graphs

Job type Average time (seconds)
Throughput(MB/s)[(24.90
GB * 1000)/average time]

Number count with Spark -
Input files on Tachyon

28.54 872.46

Number count with Spark -
Input files on HDFS (with
caching)

32.07 776.43

Number count with Spark -
Input files on HDFS (with-
out caching)

157.27 158.33

Number count with Spark -
Input files on Ceph

189.21 131.60

Table 11.4: Read-only benchmarks

Job type Average time (seconds)
Throughput(MB/s)[(24.90
GB * 1000)/average time]

Teragen on Spark - Output
files on Tachyon

37.33 667

Teragen on Spark - Output
files on HDFS

555.68 44.81

Teragen on Spark - Output
files on Ceph

1665.55 14.95

Table 11.5: Write-only benchmarks

Job type Average time (seconds)
Throughput(MB/s)[(24.90
GB * 1000)/average time]

Number copy with Spark -
Output files on Tachyon

226.10 110.13

Number copy with Spark -
Output files on HDFS

1542.75 16.14

Number copy with Spark -
Output files on Ceph

4353.15 5.72

Table 11.6: Read-write benchmarks

The tabulated data are represented in the following bar graphs:
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Figure 11.1: Read-only performance of storage system

Figure 11.2: Write-only performance of storage system
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Figure 11.3: Read-write performance of storage system

11.8.4 Discussion

In general, being an in-memory storage system, Tachyon’s performance,
especially in writes, was far superior to that of HDFS and Ceph. Of the
three, Ceph showed the least performance. The raw disk-write (∼55
MB/s in the worst case) and network (700-1000 MB/s) speeds are too
high to be responsible for the low Ceph speeds. The Ceph write speed
(∼15 MB/s) is closer to the RADOS write benchmark (17.8 MB/s),
indicating that the Ceph speeds are determined by RADOS, and not
the network as originally thought.

The write speed to a single disk (55-90 MB/s) is considerably more
than writes through the RADOS gateway (17.8 MB/s). This could
be explained by RADOS’s replication strategy - the data is written
first to log files and then the local storage. On top of that, three-
way replication among the OSDs is being performed, which means 6*
input/output operations per second (IOPS) as a single write is taking
place. This could slow down the write bandwidth of RADOS.

The virtual instances of Pouta run on the physical machines of the
Taito supercluster provided by CSC. A variety of jobs run on this su-



CHAPTER 11. EXPERIMENTS 101

percluster, and depending on the number of jobs hitting the disks at
any time, the read/write speed for the disks can be affected. This could
explain the variation in the raw disk-write speeds. Consecutive runs of
the raw disk-speed test would yield significantly differing write speeds,
from 90 MB/s to 55 MB/s for example.

Another factor to consider is the anti-affinity setting for the server
group to which the instances are being added. While the setting is
used to assign each virtual machine to a different physical host (so that
the machines do not compete for the same ephemeral storage), creating
a virtual machine takes time and if the commands are applied very fast
to create the instances (e.g. through a script), the setting may not work.
That could result in the instances being created on the same physical
host, regardless of the anti-affinity setting. For the experiments, the
commands for creating the instances were applied manually.

11.8.4.1 Read-only and write-only performance

Tachyon’s read performance was only slightly better than HDFS when
the latter had caching enabled. It was, however, significantly faster
than HDFS when caching was disabled in the latter. This was expected
as the input files in HDFS were then being read from the disk each time.
When caching was disabled, the read speed of HDFS was nearly the
same as Ceph.

The write speed of Tachyon was about 15X that of HDFS and 48X
that of Ceph. This is in keeping with the RADOS write bandwidth
determined earlier.

11.8.4.2 Read-write performance

Initially, the read-write experiment for Ceph was performed using a
single bucket, i.e. the same bucket was to store the input and output
files. With this, however, the job was starting, but not progressing
beyond some initial reads. The job ran successfully when 2 buckets
were created - one for the input files, and the other for the output.

While performing the read-write experiment, it was seen that with a
larger input file, say 40 GB or more, tasks were failing in the Spark ex-
ecutors. This was not happening with HDFS or Ceph. For a total RAM
size of 120 GB for the Tachyon cluster, theoretically the maximum in-
put file that could be stored is 60 GB (60*2 = 120, 60 GB for the input
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and output data sets). To fail with files of size 50 GB or thereabouts
was not expected. This is a potential problem in a pipeline - if 50
GB of input data are being read from the disk, and an equal amount of
output data being written to disk, then, the intermediate stages (where
Tachyon is ideal) should also work with 50 GB data. Thus, although
Tachyon showed very high read, write and read-write speeds compared
to the other two storage systems, its read-write performance with large
datasets (in relation to the total amount of RAMdisk assigned to the
Tachyon cluster) is a potential area for further study.
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Summary

The main contribution of this work has been the integration of Ceph
as an underlying storage system with Tachyon, and the subsequent
benchmarking. With its in-memory storage system, Tachyon speeds
up read-only, write-only, and read-write processes considerably. It is
thus ideal for optimising the intermediate stages of a pipeline process,
by having the generated files stored to memory, rather than the disk.
To these ends, the work has been successful. The benchmarking process
also revealed an important point about Ceph - the RADOS gateway to
the object storage cluster is a main factor in determining the cluster’s
performance.

However, there were difficulties faced during the work. These included
the following:

(a) It took a fairly long time to set up Tachyon with Ceph as the
underlying storage system. The version of Tachyon used for the
experiments, 0.5.0, had a code defect in the way S3N URLs were
handled. For S3N, the name following the ‘s3n://’ part of the
URL (e.g. ‘test’ in ‘s3n://test/tera-output’) refers to the
bucket in which the files are to be stored, not the server. However,
in version 0.5.0 of Tachyon, the code regarded the name to be that
of the server. The code was appropriately modified.

(b) Tachyon does not support saving of checkpointed files to memory.
They are meant to be written to more persistent storage systems.
For our experiments, saving these files to memory was necessary
to save time and space. Hence, the source of Tachyon had to be
changed to allow in-memory storage of checkpointed files.
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(c) Being an in-memory storage system, Tachyon gave high perfor-
mances for read-only, write-only and read-write tasks. However,
it was difficult to run read-write jobs on Tachyon with larger in-
put data sets, as tasks assigned to Spark executors were being lost
with even 40 GB input data.

(d) When installing Ceph, there were errors using the ephemeral stor-
age space, instead of the root partition, for the object storage
devices (OSDs). Again, using ephemeral storage was necessary as
the root partition had only 10 GB of space. Thus, changes had to
be made in the Ceph installation process.

(e) It was difficult to use a Ceph cluster for a long time. After some
experiments, a few placement groups in the cluster would become
inconsistent, due to scrubbing (comparing objects and their repli-
cas in placement groups to ensure that there are no missing or
mismatched objects) problems. Despite running repair operations
of the placement groups, after a few more experiments, the place-
ment groups would become inactive/stale. The cluster would have
to be set up again.

(f) For read-write tasks using a single bucket in Ceph, the job was
starting, but not progressing beyond a few reads. The problem was
rectified was using separate buckets for the input and output file
sets. This solution may not scale well, i.e. having separate input
and output buckets for every user may create data management
problems.

Keeping these points in mind, the following represent areas for further
study:

(a) In the experiments performed, one node doubled as the admin
node and an object storage device (OSD). It could be worthwhile
to separate the two of them, i.e. have one node as the admin only
and others as OSDs.

(b) Read-write jobs with Tachyon could be run on clusters of varying
RAMdisk sizes, and varying instance configurations.

The long-term goal of this work is to set up an HPC (high-performance
computing) cluster with both storage nodes providing Ceph storage,
and compute nodes providing support for a wide range of frameworks
such as Hadoop and MPI (Message Passing Interface) for users to run
their jobs. In particular, the compute nodes could be used elastically,
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i.e. users can run various kinds of jobs with different frameworks when
needed. This would allow the nodes to be used optimally. This repre-
sents an open-source alternative to Amazon’s EMR (Elastic Map Re-
duce) service, which uses its own Hadoop framework with S3 object
storage.

Along with the HPC cluster, it would be ideal to run jobs involving
bioinformatics pipelines with a large number of intermediate stages, if
an in-memory storage system like Tachyon would be present in the com-
pute nodes to store the intermediate files. In-memory data processing
has gathered a lot of interest in recent times, due to the significantly
increased job speeds. This increased speed can be used to optimise the
intermediate stages of the aforementioned pipeline. Lower RAM costs,
coupled with the larger RAM space in current 64-bit systems, make
in-memory processing an attractive option.

This work identified two major issues in the relevant technologies which
could serve as roadblocks for the scenario described earlier - 1) the need
to create separate Ceph buckets for input and output file sets for each
user, and 2) the problems with Tachyon in running read-write jobs with
large files when the reads and writes are of equal/comparable amounts.
Along with these, there are smaller, but important, issues with Ceph
and Tachyon (described earlier) which need to be resolved before they
can be deployed in production.
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