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1 Introduction 
With the recent increase in affordable computational power, and the quicker dissemination of 

data across a number of different devices and sensors, we are seeing rapid development in 

data storage and analysis techniques. To deal with this development, companies are coming 

up with new ways to support their decisions and processes with data. This master’s thesis 

describes the design of a data-driven sales process for the acquisition of new corporate 

customers for Aktia, a medium-sized Finnish bank. The purpose of this redesign is to move 

from an ad hoc, relationship-based method of customer acquisition to a more systematic one, 

where data is utilized throughout the process, from the initial stages of customer selection and 

sales resource allocation to the later stages of evaluating the retention of contacted firms. 

1.1 The underlying business problem 
In the current environment of persistently low interest rates, the profit margins from retail 

lending are slim. In comparison, corporate lending offers higher loan margins at the expense of 

higher risk. At the same time, some of the larger Finnish lenders seem to be focusing their 

corporate banking efforts on larger firms, and seem to be willing to let go of some of the small- 

and medium-sized firms (SME) in their portfolio. These SMEs fit well into Aktia’s offering to 

corporate customers, and they are the types of firms that Aktia is looking to attract in the 

future. 

The key challenge in expanding Aktia’s corporate customer portfolio is the current lack of a 

data-based process for the acquisition of new customers. As of now, new corporate customers 

are mostly acquired through marketing efforts, through the existing networks of sellers or by 

offering corporate banking services to existing retail customers of the bank. A relatively small 

sales force is also a limiting factor in further developing the corporate portfolio of the bank, as 

most of the time of the personnel of the corporate bank is spent on managing the existing 

customer base instead of acquiring new customers. This further enhances the need for a data-

driven approach to sharpen the focus of customer acquisition activities. 

1.2 Research questions 
To deal with the business problem, this thesis proposes a data-driven approach to customer 

selection, sales resource allocation and the continuous monitoring of sales performance. This 

leads to a natural division of the research problem into three research questions: 

1. How can Aktia use data to select the corporate customers with the highest profit potential? 
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2. How should Aktia allocate its sales resources to match the selections proposed by the 

customer selection model? 

3. How can Aktia transform the data-driven customer selection routine into an iterative, 

continuously monitored sales process?  

Of the three research questions, the first defines the empirical focus of the thesis. The main 

deliverable of the project is a statistical customer selection model, and a significant proportion 

of the thesis is dedicated to discussing the development and validation of this model. The 

second and third research questions focus on how the theoretical modelling efforts should 

best be utilized in a business context. Concretely, the second research question investigates 

the practical implementation and deployment of the customer selection proposed by the 

constructed model. The third research question moves beyond customer selection to the more 

ambitious objective of a comprehensive data-driven sales process. Such a process requires 

efforts to monitor the success of sales activities, and to continuously update the customer 

selection model and sales methods accordingly. 

1.3 Structure of the thesis 
The thesis is structured into three main parts. First, a description of the underlying business 

problem establishes the background of the thesis (section 1), a general overview of Aktia and 

its operating environment (section 2), and a review of the relevant academic literature (section 

3). The second part of the thesis covers the empirical parts of the work, through a discussion of 

the development, validation and interpretation of the customer scoring model. The empirical 

section begins with a discussion of the methods used (section 4) and ends with an inspection 

of results (section 5). The final part of the thesis discusses the implementation of the analytics-

driven sales process, and evaluates the findings of the thesis work (sections 6 and 7). 

In terms of the three research questions presented in 1.2, the first, i.e. the customer selection 

problem, is mainly discussed in sections 4 and 5. Based on the proposed model for customer 

selection, the deployment of the proposed sales process is discussed in section 6.2. The final 

research question, which pertains to the continuous use of a full-fledged analytics-based sales 

process, is discussed in section 6.3. 
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2 Aktia’s operating environment 
In this section, we present a general overview of Aktia’s operating environment. First, we look 

at the general composition of the Finnish banking sector. Then, we investigate the state of 

corporate banking and financing in Finland. Finally, we present an overview of Aktia’s 

background, its activities and its competitive position in the market. 

2.1 Banking in Finland - a general overview 
In the following table, the market shares of the largest Finnish banks are presented. 

Table 1: Market shares of Finnish banks as of 31.12.2014 

Institution Loans, market share (%) Deposits, market share (%) 

OP 34.2 36.4 

Nordea 28.8 28.7 

Danske Bank 9.8 11.9 

Handelsbanken 5.8 3.4 

Aktia 3.1 3.1 

Säästöpankkiryhmä 2.7 4.4 

POP 1.8 3.1 

Ålandsbanken 1.1 1.1 

Hypo 0.6 0.3 

Others 12.0 7.7 

Source: Finanssialan Keskusliitto (2014) 

As can be seen in Table 1, the Finnish banking industry is an oligopoly, with OP and Nordea 

being the two clearly largest banks. In third and fourth place are the Nordic financial 

conglomerates Danske Bank and Handelsbanken. The remaining banks are smaller, local 

players, with Aktia being the largest of the small banks by loan market share.  

A recent newcomer to the Finnish banking sector is S-Pankki, which offers banking services at 

the supermarkets of the Finnish retailing co-operative S-Ryhmä. In Table 1, S-Pankki is covered 

under the “Others” category, but exact estimates of S-Pankki’s market share are difficult to 

find. As all S-Ryhmä loyalty customers automatically become customers of S-Pankki, the bank 

has several million customers. Of these, an estimated 1.3 million are active customers, and 200 

000 have directed their monthly salary to an S-Pankki account. Recently, S-Pankki has also 

acquired the banking arm of the Finnish insurance company Lähi-Tapiola and the entirety of 
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the investment firm FIM. (Niemeläinen, 2014) All in all, these observations suggest that S-

Pankki’s market share should be somewhere between those of Aktia and Danske Bank. 

After examining the firms in the Finnish banking sector, we can investigate the distribution of 

the customers of Finnish banks. In the following chart, the composition of the loan portfolio of 

Finnish lending institutions is depicted. 

 

Source: Finanssialan Keskusliitto (2015a) 

Figure 1: Distribution of the loans of Finnish financial institutions, as of 31.10.2013 

As can be seen in Figure 1, households are the most significant lending segment and account 

for 56% of all lending. Corporations hold 32% of loans and other financial and public 

institutions stand for the remaining 12% of lending. 

On an international level, the Finnish banking sector performs quite well, particularly in terms 

of solvency. The Tier 1 solvency of Finnish banks in 2013 was among the best in the Eurozone, 

at roughly 15%. This was almost at the same level as Germany (15.5%), and clearly above 

Austria (13.5%), the Netherlands (12.5%), Italy (11%) and Spain (10.8%). The share of non-

performing assets in the Finnish loan portfolio has also remained at close to 0% throughout 

the post-millennial period, which is a sign of healthy balance sheets. (Finanssialan Keskusliitto, 

2015b) Additionally, all of the three Finnish banks (Nordea, OP and Danske) included in ECB’s 

stress test passed the test comfortably (Turtola, 2014). In terms of profitability, Finnish banks 

also perform quite well by European standards. In 2013, the Return on Equity of Finnish banks 

was among the highest in Europe. At 10%, the RoE exceeded that of both France (8%) and 
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Germany (7.5%). Still, Swedish banks clearly outperformed Finnish banks with a RoE of roughly 

16%. (Finanssialan Keskusliitto, 2015b) 

2.2 Corporate banking and financing in Finland 
There are two main sources of debt-based financing for corporations: bank loans and bonds. In 

Finland, and in Europe in general, the emphasis on bank loans has been relatively significant. 

In 2005, the split between loans and bonds for the Eurozone was 89%-11% (the Finnish split 

was 86%-14%). This contrasts with the United States, where the split was much more even, at 

61%-39%. (Mattila, 2013) In general, capital markets are much more developed in the United 

States than in Europe. According to a report by the European Commission (2015), medium-

sized U.S. firms get five times more capital markets financing than EU firms(European 

Commission, 2015).  

For a glimpse into the distribution of Finnish loans, the following chart displays the industry 

composition of Finnish corporate bank loans. 

 

Source: Finanssialan Keskusliitto (2015c) 

Figure 2: Finnish corporate loans by industry sector (as of 30.9.2012) 

As can be seen in Figure 2, real estate is the single most important sector of industry for 

corporate lending, with 37% of all loans. Loans to industrial firms and to wholesale and retail 

firms also exceed 10% of the total loan portfolio. For other sectors, the share is less than 10%. 
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As previously mentioned, a defining trait of both Finnish and European corporate financing is 

the relatively strong emphasis on bank loans. Recently, this has begun to change. After the 

global financial crisis of 2008, a stricter regulatory environment and a more challenging 

financing environment has hurt the availability of bank loans. To adjust to this change, 

corporate financing through bonds has increased at the expense of bank loans. In the first 

quarter of 2013, the number of newly issued bonds in Europe exceeded the number of new 

bank loans, and Finland’s financing mix is also shifting in this direction. For SMEs, bank loans 

remain the only realistic source of new financing, as issuing bonds is rarely an option for these 

firms. As larger firms exceedingly move towards bond-based financing, banks can commit 

more of their balance sheets to funding SMEs (Pylkkönen and Savolainen, 2013). (Mattila, 

2013) 

While the focus of corporate debt financing has moved towards bonds, the growth in Finnish 

corporate loans has been strong throughout the last decade. The yearly growth in Finnish 

corporate loans peaked at roughly 10% halfway through 2011, but has remained clearly 

positive since then. This contrasts with other European nations, where corporate loan growth 

has generally been stagnant or negative. In terms of loan margins, Finland is on the lower end 

of the spectrum for Eurozone nations. In January 2015, the average interest rate on corporate 

loan contracts in the Eurozone was 2.41%. For Finland, the interest rate was 2.05%. Of other 

Eurozone countries, Germany, Netherlands, Austria and France had lower interest rates 

(2.03%, 1.87%, 1.83% and 1.79%, respectively). (Finanssialan Keskusliitto, 2015b) 

2.3 Aktia Bank plc 
Aktia Bank plc is a Finnish financial services company that offers a wide variety of services in 

banking, asset management, insurance and real estate. In its current form, the company was 

formed in 1993, when Helsingfors Sparbank and several other savings banks on the Finnish 

coast merged to form Aktia Sparbank. Today, Aktia Group serves some 350 000 customers 

through 50 local branches, as well as by phone and through digital channels. Aktia’s key 

operating areas are the Finnish coastal regions from Loviisa to Oulu and the mainland growth 

centers of Helsinki, Tampere and Turku. Aktia’s vision is to be the best financial adviser for 

families and their companies. (Aktia, 2015a)  

In our general overview of the Finnish banking sector, we saw that Aktia is the fifth-largest 

bank by loan market share. In the following table, we have gathered some other key 

performance ratios of the largest Finnish banks to further investigate the competitive 

landscape. 
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Table 2: Key performance ratios of Finnish banks for 2014 

Bank RoE Cost/profit-index Tier 1 solvency 

Nordea 9.40% 48.00% 14.20% 

OP 8.10% 57.00% 15.50% 

Danske 6.90% 62.00% 14.50% 

Aktia 8.30% 71.00% 14.60% 

Säästöpankki 5.80% 64.00% 16.90% 

POP Pankki n/a 72.00% n/a 

Ålandsbanken 8.70% 80.00% 10.90% 

S-Pankki 4.20% 87.00% 14.30% 

Hypo 6.70% 56.00% n/a 

Evli 15.20% 80.00% n/a 

Source: Finanssialan Keskusliitto (2015d) 

As Table 2 shows, Aktia performs quite well in terms of profitability, as Aktia has the fourth-

highest RoE after Nordea, Ålandsbanken and Evli. In terms of operative efficiency, Aktia 

doesn’t perform quite as well, falling in  the lower half of firms in terms of the cost/profit-

index, with an index that is more than 20 percentage points higher than that of the strongest 

performer Nordea. In terms of solvency, Aktia’s performance was average according to 2014 

figures. In early 2015, the Finnish Financial Supervisory Authority granted Aktia and its 

subsidiaries permission to use the IRBA-method for computing capital requirements. With this 

method, Aktia’s Tier 1 capital solvency ratio increases from 14.6% to 22.7%, which moves Aktia 

to the very top of Finnish banks in terms of solvency(Aktia, 2015b). One key factor that has 

made Aktia an attractive investment is the strong and stable dividend that the company has 

paid in recent years. In an investigation of stocks with high dividend yields, Jaakko Tyrväinen 

from Evli found Nordea and Aktia to be the two stocks on the Finnish stock exchange with the 

highest dividend yields (Tyrväinen, 2015). 

For a more operations-oriented perspective into the competitive landscape of Finnish banks, 

the following chart displays the composition of profits of Finnish banks.  
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Source: Finanssialan Keskusliitto (2015a) 

Figure 3: Distribution of profits of Finnish banks, as of 31.12.2014 

As can be seen in Figure 3, Aktia’s profit distribution is comparable to some of the similar 

smaller banks (e.g. Säästöpankki, Ålandsbanken), and also quite similar to the profit 

distribution of Nordea. The vast majority of Aktia’s income comes from net interest income 

and fees, while sales and trading only accounts for 3% of the firm’s income. 

In terms of strategic aspirations, Aktia is currently looking to transition from a cost-cutting 

phase to a growth phase. After restructurings in 2012 and 2013, and a soon-to-be-finished 

revamp of its core banking IT infrastructure, the bank will aim for higher growth in the coming 

years, as well as lowered IT costs from its new core banking system. With the significant 

increase in Aktia’s solvency ratio after the new IRBA capital requirements, Aktia can use more 

of its balance sheet to finance these growth efforts. A significant part of the growth needs to 

come from new customer acquisition, in both retail and corporate sectors.  
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3 Literature 
In this overview, the literature pertaining to each of the three research questions is treated 

separately. For the first question, regarding customer selection, the overview is further divided 

into a quantitative and qualitative part. In the quantitative part, we discuss the academic 

literature that relates to quantitative credit scoring methods. In the second part, the 

relationship between banks and their customer firms is considered from a qualitative 

perspective through concepts such as relationship banking and bank switching. For the second 

research question, the literature overview covers research conducted in the field of analytics-

based resource allocation. For the third research question, the literature overview first 

presents some key findings on how businesses can use data to improve their processes. After 

this, the review inspects the literature related to the development of data-supported sales 

processes and the emergence of new types of sales organizations. 

3.1 Customer selection in corporate banking 

3.1.1 Quantitative approaches 

The act of quantitatively evaluating the quality of a bank customer, i.e. credit scoring, is a 

process where a financial institution tries to classify customers into ‘good’ and ‘bad’ borrowers 

on the basis of some data and some type of decision model. Commonly, the resulting credit 

score is a probability of the borrower in question defaulting on the loan. While the origins of 

formal credit scoring can be traced back to the early 1940s (Durand, 1941; Finlay, 2010, p. 

528), the adoption of formalized credit scoring processes did not increase dramatically until 

the mid-1990s when consumer credit started growing dramatically (Hand and Henley, 1997). 

Recently, the development of credit scoring techniques has been further bolstered by the 

advance of statistical classification techniques and the increased availability of consumer data. 

Various statistical methods have been used to score consumer credit. In earlier credit scoring 

models, linear models, such as logistic regression and linear discriminant analysis (LDA), were 

primarily used. More recently, non-linear models such as neural networks (NN), decision trees 

and support vector machines (SVM) have been investigated as potential replacements for 

linear models. In a comprehensive benchmarking of classification algorithms, Baesens et al 

(2003) compared the predictive performance of a wide variety of methods. They found that 

the non-linear SVM and NN models performed very well. Importantly, however, the previously 

favored LDA and logistic regression models also performed well, which suggests that the 

tested credit scoring data sets were only weakly non-linear (Baesens et al., 2003). 
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While linear models have been shown to be competitive with non-linear models in some 

experiments, the credit scoring research is increasingly shifting towards more advanced and 

complex non-linear models. As even incremental improvements in default prediction accuracy 

can lead to noteworthy monetary gains, slight improvements in accuracy from complex and 

advanced credit scoring models quickly become significant (Huang et al., 2007). The main 

drawback of complex, non-linear models is the lack of comprehensibility. For linear models, 

the coefficients of the predictor variables allow for the model to be easily understood, but for 

non-linear models, such as support vector machines and neural networks, there are no such 

comprehensible decision rules. In the financial industry, where regulations often tend to 

require transparency in credit decisions, the opaqueness of non-linear models is problematic. 

In the U.S., for example, the Equal Credit Opportunity Act requires a financial institution to 

provide specific reasons why a loan application was rejected (Martens et al., 2007, p. 2). To 

improve on the transparency without sacrificing the increased accuracy of advanced models, 

work has been done to derive explicit decision rules from non-linear models (Martens et al., 

2007). 

Compared to the scoring of consumer credit, research on credit scoring in the corporate sector 

is a bit more limited due to the lack of publicly available data, for privately owned firms in 

particular(Fernandes, 2005, p. 2).  Nonetheless, significant work has been done in the field of 

corporate bankruptcy prediction. The earliest methods for bankruptcy prediction were 

univariate methods, where selected financial ratios were used as predictors of business failure 

(Beaver, 1966). Unsatisfied with using just a single financial ratio in bankruptcy modelling, 

Edward Altman introduced his own multiple discriminant analysis model, the Z-Score Model, in 

which the Z-Score is computed as a weighted sum of five different financial ratios (Altman, 

1968). The original Z-Score model has, since its adoption, been updated several times, e.g. for 

the UK market (Taffler, 1984), and for private manufacturing and non-manufacturing firms 

(Altman, 1983). Additionally, simpler models with the same core idea as the Z-Score Model, 

such as Laitinen’s Z-Score, have emerged after Altman’s original model (Balance Consulting, 

n.d.). While there has been vast research on failure prediction, the Z-Score Model, in its 

original form or as one of the updated variants, remains the most widely used bankruptcy 

prediction model today. (Altman et al., 2014) 

While the Z-Score model remains popular, some more complex bankruptcy prediction models 

have also been developed. Similar to methods for the scoring of consumer credit, logistic 

regression and neural networks have had some success in corporate bankruptcy prediction. In 

addition to accounting-based models (such as the Z-Score models), market-based models that 
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utilize option pricing theory have seen some popularity. In a comparison of the predictive 

accuracy of market-based models and accounting-based models, there was, however, little 

difference between the two model categories (Agarwal and Taffler, 2008). Most recently, 

hazard models, which utilize both accounting and market information, were found to be 

slightly superior to comparable models utilizing only accounting or market information (Bauer 

and Agarwal, 2014). (Altman et al., 2014) 

The academic approaches to credit scoring are quite varied, but on the industry side, the FICO 

score has emerged as the most widely used credit score in lending decisions, with around 95% 

of the largest U.S. financial institutions being FICO clients, and a total of 100 Billion FICO scores 

having been sold since FICO’s inception in 1956 (FICO, 2015a). The exact model behind the 

score is a trade secret, but according to FICO, the score is a combination of five, weighted, 

importance factors: Payment history (35%), amounts owed (30%), length of credit history 

(15%), new credit (10%) and types of credit used (10%). The resulting score ranges between 

300 and 850, with a higher number indicating a higher level of creditworthiness, and a score of 

roughly 700 being a ‘good’ score. (myFICO, 2011) 

It is noteworthy that a majority of the credit scoring approaches covered above treat the 

output as a binary variable where all evaluated cases are classified into either good or bad 

payers. As a result, any two instances that exceed a given threshold of distress will be treated 

as equally unwanted loan takers by the classification model. Consequently, the typical credit 

scoring approaches have not taken profitability into account. This is unfortunate, as the lender 

would optimally not only provide loans to reliable individuals and firms, but to profitable ones 

as well. A key challenge has been the difficulty of accessing profitability figures on the level of 

individual accounts and loans (Finlay, 2008, p. 922). To alleviate this, Finlay has introduced 

models which attempt to introduce profitability considerations into the loss function in a 

continuous fashion (Finlay, 2010, 2009, 2008). Recently,  similar profit-based classification 

measures have been developed by Verbraken et al. (2014). 

3.1.2 Qualitative considerations 

Traditionally, one of the fundamental tasks of banks has been to mitigate informational 

asymmetries. Banks develop close relationships with borrowers, which over time allows them 

to monitor the business of the borrower, and helps in eliminating the informational 

asymmetry that originally existed between the bank and the borrower. In this process, the task 

of collecting information about the creditworthiness of potential borrowers is delegated from 

private investors to banks (Farinha and Santos, 2002, p. 1). This aspect of banking, where the 

primary purpose of a bank is to establish and cultivate relationships with its customers, is 
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commonly referred to as relationship banking. This contrasts with transaction-oriented 

banking, or trading, where the focus is on executing transactions rather than on forming 

information-intensive relationships with customers (Boot, 2000, p. 10).   

For relationship banking to be useful for borrowers, they need to exhibit a certain level of 

informational opaqueness. Otherwise, if their creditworthiness was apparent to all market 

participants, they could gather the necessary funding through transactional lending, or other 

sources, such as bond issuance, or private equity funding (Berger and Udell, 2002). Hence, 

relationship banking largely revolves around lending to small businesses.  

While small businesses benefit from relationship banking through the ‘soft’ information that 

banks gain in the relationship, prolonged relationship lending may eventually incur unwanted 

costs. If the relationship lender is small, it may not be able to meet the increasing credit needs 

of a growing company. Additionally, a relationship lender may ‘informationally capture’ the 

borrower and charge a higher interest rate (Gopalan et al., 2007, p. 1). These restrictions are 

the basis for the graduation hypotheses, which is a common research topic in the literature on 

bank switching behavior. According to this hypothesis, firms tend to ‘graduate’ from smaller 

banks to larger ones as their business grows. 

In a study of roughly 30 000 U.S. commercial bank loans during 1990-2005, Gopalan et al. 

(2007) found fairly strong support for the graduation hypothesis. It was found that 

informationally opaque firms were less likely to switch banks. Surprisingly, the most 

transparent firms were also less likely to switch banks. For the firms that switched banks, the 

switch was directed from smaller banks to larger banks and from smaller bank markets to 

larger bank markets. It was also found that switching banks allowed for firms to obtain higher 

loan amounts, undertake higher capital expenditures, and increase their leverage after the 

switch. (Gopalan et al., 2007).  

Ioannidou and Ongena (2010) came to a similar conclusion on the consequences of bank 

switching in their investigation of Bolivian loans during 1999-2003. It was found that firms 

were able to substantially lower their loan rate by switching. About a year and a half into the 

switch, however, banks started increasing the loan rate, to the point where the rate reached 

parity with the loan rates at the previous firm, about four years after the switch. (Ioannidou 

and Ongena, 2010)  

In another study, Howorth et al. (2003) investigated factors associated with bank switching in 

the U.K. small firm sector. The main drivers in bank switching were found to be dissatisfaction 

with the provided service, and difficulties in obtaining finance, the latter of which supports the 
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graduation hypothesis. As a motivation for their study, Howorth et al. note the paradoxically 

large number of firms that have indicated a willingness to switch banks, compared to the small 

number of banks that actually end up making the switch, quoting a 1998 study by the 

Federation of Small Businesses which found that 4% of small businesses had switched banks 

while as many as 34% had considered switching (FSB, 1998).(Howorth et al., 2003) 

In addition to bank switching, there are also firms that graduate from single- to multiple-bank 

lending relationships. In a study on Portuguese lending relationships during 1980-1996, 

Farinha and Santos (2002) found that firms with more growth opportunities, more bank debt 

and less liquidity were more likely to switch from a single bank to multiple banks (Farinha and 

Santos, 2002, p. 18). On the other hand, they also found that firms with low profitability and 

challenges in paying bank loans on time were more likely to switch to multiple-bank 

relationships. Consequences of the move to a multiple-bank relationship were an increase in 

the firm’s reliance on trade credit and a reduction in the importance of the incumbent bank as 

a funding provider, but no significant improvements in firm performance were observed 

(Farinha and Santos, 2002, p. 18). Importantly, Farinha and Santos (2002) found the original 

relationship between the firm and the incumbent bank to be valuable. For one, well-

performing firms were found to have longer exclusive relationships with their incumbent 

banks before switching compared to poorly performing firms. Even in the case of poorly 

performing firms, the initial exclusive relationship was found to be valuable, as borrowing from 

the incumbent bank usually continued even after the switch to multiple banks. Farinha and 

Santos (2002) concluded that the substitutability and value of bank-firm relationships depends 

on the duration of the relationship. (Farinha and Santos, 2002) 

With the increased focus on quantitative, scoring-based approaches to lending (such as FICO 

scores), there is a worry that relationship lending to small businesses will get crowded out. As 

loan officers get replaced by credit scoring algorithms, the risk is that loans will mostly be 

provided to firms that are already successful and financially secure. For small businesses, 

credit scores may not be good enough, or difficult to calculate due to lacking publicly available 

information, which may leave small businesses largely without loan funding. (Smith, 2014) To 

measure the value of loan officers and their relationship lending, Wang (2014) performed a 

study based on Chinese lending data. He found that the added value from the soft information 

provided by loan officers clearly exceeded the average pay of the loan officers, and hence 

argued that loan officers are a valuable addition to the hard information provided by credit 

scoring algorithms (Wang, 2014). 
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3.2 Allocation of sales resources 
In their investigation of the sales analytics process, Kawas et al. (2013) divided the process into 

two sub-problems: the predictive problem of evaluating potential selling opportunities, and 

the prescriptive problem of assigning sellers to selling opportunities (Kawas et al., 2013, p. 2). 

The previous section on customer selection and credit scoring methods covered the predictive 

problem; this section focuses on the prescriptive problem related to resource allocation. 

Given a set of profit estimates for a selection of potential customers, the corresponding 

resource allocation problem can be expressed as an optimization problem where the objective 

function is the profit, and the constraints are determined by the practical limitations of the 

business. This optimization problem is usually solved through some method of mathematical 

programming, and has been a fairly active area of research in management science.  

Zoltners and Sinha (1980) reviewed some of the proposed solution methods for the sales 

resource allocation problem. They formulated the mathematical problem around three 

concepts: sales resources, sales entities, and sales response functions. Sales resources are the 

decision variables that are being allocated, for example sales representatives, sales time, sales 

effort or sales budget shares. Sales entities are the groups to which the sales resources are 

assigned, such as sales districts, products or markets. The sales response function represents 

the tradeoffs that follow from different choices of resource allocations. A wide variety of 

different sales response functions have been suggested in the literature, including linear, S-

shaped, logit, exponential, piece-wise and discrete functions. Additionally, a wide variety of 

solution approaches have been proposed, such as control theoretical approaches, probabilistic 

methods, dynamic programming and even heuristic methods.  As their own contribution to the 

existing body of work, Zoltners and Sinha proposed several integer programming-based 

models with a discrete revenue response function. (Zoltners and Sinha, 1980) In a recent, 

practically deployed solution to the sales resource allocation problem, Kawas et al. (2013) used 

a linear programming approach where teams of sellers were assigned to sales opportunities. 

The constraints of the linear program included a cost constraint and a constraint on the extent 

of headcount variation (Kawas et al., 2013). 

In addition to the problem of sales resource allocation, approaches have been proposed for 

optimizing the entirety of the sales deployment process.  Drexl and Haase (1999) suggested a 

mixed integer programming approach for simultaneously solving four, interrelated sales force 

deployment problems: sales force sizing, salesman location, sales territory alignment and sales 

resource allocation. They also developed a fast approximate solution method, which they 
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showed to be no further than 3% from the actual optimum (Drexl and Haase, 1999). Skiera and 

Albers (2008) suggested another, equally holistic approach to the sales force decision problem 

by estimating a core sales response function that allows managers to detect where there is 

most room for profitability improvements. The sales response function estimates the sales 

potential on both the individual level and the organizational level, and allows for managers to 

evaluate where the organization is lagging behind its potential. This then allows the 

organization to adapt by adjusting the sales force size or by providing more motivating 

compensation schemes for individual sellers. (Skiera and Albers, 2008) 

3.3 A data-driven sales process 

3.3.1 The state of the art of business analytics 

There is considerable evidence that analytics is becoming an increasingly important function of 

modern businesses. In an international, cross-industry survey of 3000 executives, managers 

and analysts conducted by  MIT Sloan and the IBM Institute for Business Value, it was found 

that half of the respondents agreed that the ‘improvement of information and analytics’ was a 

top priority in their organization. More than one fifth of respondents also said that they were 

under significant pressure to ’adopt advanced information and analytics approaches’. 

Moreover, top-performing organizations had a much higher tendency to use analytics than 

intuition compared to low-performing organizations. (LaValle et al., 2011, p. 22) In another 

study conducted by Bloomberg Businessweek in 2011, it was found that 97% of companies 

with revenues exceeding $100 million used some form of business analytics, compared to a 

figure of 90% from two years earlier (Businessweek, 2011). As a third data point, a study 

performed by SAS Institute and MIT Sloan, which covered around 2500 respondents from 

roughly 25 industries, found that 67% of respondents felt that they are gaining a competitive 

edge from their use of analytics (Kiron et al., 2013, p. 2). 

While the potential benefits of business analytics are generally accepted, there exists a large 

gap between strong and weak performers in the utilization of analytics. Kiron et al. (2013) 

found that 11% of surveyed firms could be classified as exceptional performers in analytics 

(coined analytical innovators), 60% could be classified as moderately strong performers 

(analytical practitioners), while 29% of surveyed firms were still struggling to utilize data 

beyond basic reporting and marketing applications (Kiron et al., 2013, p. 7). LaValle et al. 

(2011) performed a similar classification of surveyed firms into three ‘levels of capabilities’ 

(Aspirational, Experienced and Transformed users of analytics), and found that Transformed 
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organizations were three times more likely to substantially outperform their industry peers 

than Aspirational firms (LaValle et al., 2011, p. 23). 

Much work has been done to understand what differentiates exceptional analytics performers 

from average and poor ones. One characteristic that is frequently mentioned as a 

distinguishing feature of strong analytics performers is the ability and willingness to utilize 

real-time data in everyday decisions. Good practitioners use data to evaluate previous 

decisions, to automate operations and to report on performance, but excellent practitioners 

use real-time data to drive their day-to-day decision making and even their innovation 

activities. As Kiron et al. (2013, p.7) put it, exceptional performers view “data as a core asset” 

and for these companies “analytical insights are part of the culture of the organization and are 

utilized in strategic decisions, both large and small”. (Kiron et al., 2013; LaValle et al., 2011) 

Exceptional analytics performers are also able to extract more insights from their data. While 

regular performers monitor past performance through monitoring realized KPIs, excellent 

performers use predictive statistical techniques to forecast future performance (Kiron et al., 

2013, p. 16). In addition to predictive techniques, exceptional analytics performers gain 

mileage from their data by using data visualization techniques (such as interactive 

dashboards), as well as simulations and scenario development (LaValle et al., 2011, pp. 26–27). 

Importantly, exceptional analytics performers also tend to identify the business challenges 

that can lead to the most significant gains for the company and focus on those challenges. 

Additionally, exceptional performers start the analytics process from questions, and then 

figure out what data and processing to use to answer those questions. Here, weaker 

performers do worse due to a lack of focus in choosing analysis tasks and a bottom-up 

tendency to build their analytics processes to fit their data without having clear business 

objectives in mind (LaValle et al., 2011, p. 25). 

Decisions related to the organization of analytics activities are another important 

differentiator between exceptional and average performers. LaValle et al. (2011) found that a 

centralized analytics unit offers superior performance by allowing advanced skills to come 

together and by allowing companywide standards and best practices to form (LaValle et al., 

2011, p. 28). Kiron et al. (2013) also found that a fragmented analytics ecosystem was a key 

factor in holding average analytics practitioners back from greatness. Despite problems with 

fragmentation, Kiron et al. (2013) urged companies to bring access to analytics to all levels of 

the business, but they emphasized the importance of an integrated approach over a 

fragmented one (Kiron et al., 2013, p. 15). 
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As a final differentiating factor between average and exceptional analytics performers, Kiron et 

al. (2013) mention the importance of revision and innovation in maintaining a competitive 

edge. After a brief period of success from an innovative analytics approach, other competitors 

will observe the success and start developing competing approaches. As their approaches 

improve, the company’s competitive edge will diminish. As an example, Kiron et al. (2013) 

presents the story of the Oakland Athletics baseball team. In 2002, the team’s manager Billy 

Beane was able to build a playoff-caliber team using advanced analytics despite facing the 

most significant salary constraints in the league. After this, other teams adopted similar data-

driven approaches and eliminated the team’s competitive edge. Only in 2012, after the 

Athletics managers invented new and effective analytics metrics, were the Athletics able to 

return to the playoffs (Kiron et al., 2013, p. 6).  

While the success factors of strong analytics performers are fairly well established, there are 

several roadblocks which prevent average performers from becoming great. According to a 

930-firm study conducted by Businessweek (2011), the number one analytics challenge for 

companies is the ability to collect and store reliable and timely data. Data accuracy, data 

consistency and even data access still challenge many companies (Businessweek, 2011, p. 2). 

Many firms are stuck with batch processing of sales information, and moving to real-time 

processing would require sweeping changes to existing systems. These changes would require 

significant costs in terms of money, time and potential disturbances to ongoing operations 

(Ferguson, 2013). In addition to data collection and storage, a significant challenge was found 

to be a lack of analytics talent. Without proper talent, companies struggle to process their data 

into results. (Businessweek, 2011, p. 2). 

Perhaps the most crucial challenge for aspiring users of business analytics lies in the company 

culture. Intuition is still valued highly in the decision processes of many firms and data-driven 

approaches may struggle to catch on (Businessweek, 2011, p. 2). For older firms, it is difficult 

to compete with firms that have engrained analytics into their business from their very 

inception, such as most modern web companies. Still, there are encouraging examples of 

older, non-digital firms that have transformed into strong analytics performers. Kiron et al. 

(2013) present the case of Oberweis Dairy, which has its background in door-to-door-delivery 

of milk bottles to customers. By adding analytics talent from outside, the company was able to 

develop a competitive edge through data-based customer segmentation and targeting. (Kiron 

et al., 2013, pp. 4–5). 
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3.3.2 Towards a data-driven sales process 

Cespedes (2014) identifies three factors that drive the productivity of a sales model: customer 

call capacity, close rate, and profit per sale (Cespedes, 2014, p. 2). Data has been used to 

improve all three of these factors with varying degrees of success. Of the three factors, the 

first is seemingly the most problematic source for productivity gains, as immediate 

improvements will require overworking the current sales force or hiring new personnel. 

Regardless, one of the proposed benefits of salesforce automation systems has been to 

increase call capacity by automating administrative activities. However, in a study on the 

impact of salesforce automation systems in the pharmaceutical industry, Eggert and 

Serdaroglu (2011) found that the cost-cutting qualities of salesforce automation systems do 

not have a direct effect on performance. The administrative qualities only improved efficiency 

when sellers were able to use the time gains for relationship-buildings tasks, which was not 

always the case. Instead, the main performance gains of salesforce automation systems came 

from an improved customer understanding. (Eggert and Serdaroglu, 2011, p. 182) 

An approach that can benefit all three productivity factors is customer selection. As a 

motivation for studying the customer selection approach, Cespedes et al (2013) mention the 

observation that profitable sales are generally attributable to relatively few customers 

(Cespedes et al., 2013, p. 54). They also found that the growth of entrepreneurial firms, in 

particular, is held back by an overreliance on “heroic” efforts by individual sellers and a lack of 

customer selection criteria. As an example of the implementation of a customer selection 

process, Cespedes et al present the case of BusinessProcessingCo. (actual name disguised), a 

growth company that provides web-based payroll services to small and medium-sized 

businesses. Through investigating its internal data on profitability, selling cycles and lifetime 

values, BusinessProcessingCo was able to identify the ideal customer group to target: 

professional services firms with more than 15 employees. These companies were small enough 

to not have internal IT staff and thereby required the types of outsourced services that 

BusinessProcessingCo offered, while being big enough to offer a stable revenue stream. Within 

a year of the completed implementation of the customer targeting, BusinessProcessingCo was 

able to increase its bookings by 25% with fewer sales representatives. Additionally, the 

selected customers churned at half the previous rate, which further supported profitability 

and revenues. In this case, customer selection directly improved the close rate (increased 

bookings) and the profit per sale (less churn), but it also improved the first productivity factor 

(the sales capacity), as salespeople could focus on sales tasks with a higher impact. (Cespedes 

et al., 2013) 
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Another way of improving the third productivity factor (the profit per sale) is to sell more to 

each customer. To this end, real-time recommendation systems have been proposed. As an 

example, a desk lamp could be recommended to a purchaser of economical bed sheets in 

August because he may be buying supplies for his college dorm room (Cameron and Brunette, 

2006, p. 14). For digitally distributed services such as Netflix and Amazon, such systems have 

been in place for a fairly long time due to the availability of real-time data, and the 

unobtrusive nature of the recommendations. For other types of services, implementing such 

systems is quite challenging. Most firms have batch processing of data, which is not conducive 

to real-time recommendation systems. These companies would have to undergo significant 

and costly changes to establish real-time data pipelines. On top of that, building real-time 

decision systems is another technically challenging initiative. Additionally, there are 

distribution systems which do not fit well with real-time recommendation systems. For 

example call center interactions are rarely suitable for product recommendations, as 

customers do not want to be ‘interrogated’, which severely limits the interactivity of the 

process. (Cameron and Brunette, 2006)  

While individual components of a larger sales process have been developed in many variations 

and contexts, there are few cases in the literature that describe an implementation of data-

driven sales process that would cover all the aspects, such as customer selection, resource 

allocation, sales monitoring and the interactions between them. Van der Linden and Jain 

(2012) offer a possible explanation in their presentation of Accenture’s seven principles of 

sales analytics. They acknowledge that analytics as a part of the sales division is still in its 

infancy, and in one of their seven principles they urge practitioners to start slowly by only 

introducing analytics into one or two functions (Van der Linden and Jain, 2012). Efforts to 

develop analytics-based sales processes seem to be mainly driven by the largest business 

software providers. To this end, IBM has published several papers of process implementations 

which cover multiple stages of the sales process. Lawrence et al (2007) developed two 

analytics-based models to support sales: a probabilistic model that identifies new sales 

opportunities in existing client accounts and non-customer companies (coined OnTarget), and 

another model to drive the sales allocation process on the basis of analytical estimates of 

future revenue opportunities (coined the Market Alignment Program) (Lawrence et al., 2007). 

In a similar vein, Baier et al (2012) present a sales methodology implemented through three 

analytical models, a Growth and Performance program (GAP), a Territory Optimization 

Program (TOP), and a Coverage Optimization with Profitability (COP) program. Of the three 

models, GAP optimizes sales capacity and profitable sales growth, TOP optimizes the 

assignment of customers to sellers and sales channels and COP provides recommendations on 
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adjustments to the sales coverage on the basis of customer profit estimates (Baier et al., 2012, 

p. 1). 

As a contrasting view to the perspectives presented up to this point, Adamson et al. (2013) 

question the effectiveness of a rigid sales process. As customer buying behavior has changed, 

sales performance has grown erratic with lower conversion rates and less reliable forecasts. 

Customers are increasingly knowledgeable about available options and successful sales now 

require unexpected insights and solutions from sellers. Adamson et al. argue that the 

traditional and formulaic sales process will no longer thrive in this new environment and 

suggest a new type of selling, coined insight selling, which relies on the insight and judgment 

of the sales representatives. (Adamson et al., 2013) 
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4 Research setting & methods 
In this section, we present the approach and methodology used to solve the business problem 

at hand. The first subsection describes the general research philosophy of the thesis. The 

second section presents the source data, and the software used for the data analysis. After 

this, we move on to the concrete methodology used to solve the business problem. Here, the 

focus is on the first research question (i.e. the customer selection problem), as it forms the 

main empirical part of this thesis. For the second and third research questions, the presented 

solutions are more qualitative in nature and will be discussed in sections 6.2 and 6.3.  

4.1 Research setting 
The focus of this thesis is on solving a given business problem and describing the solution 

process.  Academic research of this type falls under the term design science, and focuses on 

“tackling ill-structured problems in a systematic manner” (Holmström et al., 2009, p. 67). 

Throughout the solution process, we encounter decisions where solutions are not directly 

available in the academic literature. In these cases, we attempt to explain the alternatives and 

reasons for choosing a particular direction. Still, the customer selection solution is heavily 

anchored in quantitative methods through the use of statistical data processing techniques. 

Our benchmarking of different statistical models in the customer selection section can also be 

seen as an addition to the literature on statistical customer scoring models. 

As the intended end product of this thesis is a new sales process, our ambition is to create a 

process innovation. To get a theoretical framework to guide this innovation, we borrow the 

concept of “lean innovation” from the startup world. A lean startup abandons detailed 

business plans and fully functional prototypes and instead focuses on developing a ”minimum 

viable product”, which focuses on presenting the main business idea with the bare minimum 

of features and functionalities. This product is then iteratively improved based on customer 

feedback. In this thesis, the customer selection model and accompanying sales process is a 

somewhat rough first attempt at establishing an analytics-driven sales process in corporate 

banking. To get the most out of this proposed sales process, it needs to be iteratively improved 

and adjusted in collaboration with the relevant stakeholders, such as the sellers and regional 

managers. (Blank, 2013) 
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4.2 Data 

4.2.1 External data 

The primary data source for the customer scoring model is the Voitto+ application developed 

by Suomen Asiakastieto. The application contains financial information on some 90 000 Finnish 

firms, reported at regular time intervals. The following financial ratios are included in the 

application in precomputed form: 

• Revenue 

• Revenue per employee 

• Revenue change-% 

• Gross profit 

• Gross profit per employee 

• Gross profit change-% 

• Earnings before interest, taxes, depreciation, and amortization-% (EBITDA-%) 

• Profit-%  

• Return on Investment-% 

• Current ratio 

• Quick ratio 

• Equity ratio 

• Return on Assets-% 

• Gearing 

• Relative indebtedness-% 

• Working capital-% 

• Inventories per revenue-% 

• Turnover of receivables in days 

• Turnover of payables in days 

In addition to these precomputed financial ratios, the application also includes complete 

financial statements for all the reported companies. Hence, we can also compute other 

financial ratios, if necessary. (Suomen Asiakastieto, n.d.)  

The Voitto + application also contains the official industry classification code for all reported 

firms, as defined by Statistics Finland. For our analyses, we use the highest level of 

classification, which covers the following categories: 

• Agriculture, forestry and fishing 
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• Mining and quarrying 

• Manufacturing 

• Electricity, gas, steam and air conditioning supply 

• Water supply; sewerage, waste management and remediation activities 

• Construction 

• Wholesale and retail trade; repair of motor vehicles and motorcycles 

• Transportation and storage 

• Accommodation and food service activities 

• Information and communication 

• Financial and insurance activities 

• Real estate activities 

• Professional, scientific and technical activities 

• Administrative and support service activities 

• Public administration and defence; compulsory social security 

• Education 

• Human health and social work activities 

• Arts, entertainment and recreation 

• Other service activities 

• Activities of households as employers; undifferentiated goods- and services-producing 

activities of households for own use 

• Activities of extraterritorial organisations and bodies (Statistics Finland, n.d.) 

Prior to starting this project, the Voitto + data for selected companies had been uploaded to 

Aktia’s data warehouse for years 2009-2012 Hence, the financial data used in this thesis is 

limited to those years. There were some observations for other years as well, but these 

observations were too few to perform a successful imputation of missing values for the 

dataset (see section 4.4.3.2). Hence, we decided to limit the predictor variable dataset to years 

2009-2012. 

Conveniently, the uploaded dataset also contains information on the location of the 

companies. The classification has been made according to Aktia’s operative regions into the 

following (anonymized) regions: 

• Region 1 

• Region 2 

• Region 3 
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• Region 4 

• Region 5 

• Region 6 

To summarize, the external data contains the following information: 

• Financial ratios and financial statements for years 2009-2012 

• The industrial classification of the firm 

• The geographical region of the firm 

4.2.2 Internal data 

In addition to the external data available from the Voitto + application, Aktia’s own data 

warehouse provides a wide selection of data that can be used in the scoring. Most 

importantly, Aktia’s database contains rolling profitability measures and forecasts for all of 

Aktia’s corporate customers on a monthly basis. Additionally, the database contains other 

information that can be used to evaluate the quality of a customer for Aktia, such as the 

extent of the firm’s customer relationship with Aktia. 

4.3 Software 
All of the internal data used in this thesis was stored in Aktia’s Oracle databases. To process 

and query this data we used an Oracle client and the PL/SQL query language (Oracle, 2015). 

For the modelling work and for plotting, we used R, which is a programming language and 

environment for statistical computing(The R Project, 2015). The R language can be extended 

via packages which add new functionalities to the environment. In the following, we list the 

most important packages that were used for this thesis project, and briefly describe how they 

were used. 

• For connecting to the Oracle database, we used the ROracle package (Mukhin and 

Luciani, 2014). 

o ROracle offers functions for querying and updating existing tables, and for 

writing new tables to an Oracle database. 

• For our statistical modelling experiments, we used the mlr-package (Bischl et al., 2015) 

o The mlr-package provides a standardized interface to a variety of popular 

machine learning algorithms along with other supporting features that allow 

for the benchmarking, cross-validation and tuning of different models. The 

library allows for machine learning experiments to be performed in a modular 

fashion without too much extra coding. 
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• For plotting, we used the ggplot2-package (Wickham and Chang, 2015) 

o The ggplot2-library is an implementation of the grammar of graphics in R. It 

allows for a wide variety of plots to be constructed in a step by step fashion. 

• For filling in missing values in our data, we used the mice-package (Buuren et al., 2014) 

o The mice-package allows for missing data to be imputed using a variety of 

academically well founded imputation algorithms. 

• For selecting statistically significant predictors, we used the Boruta package (Kursa and 

Rudnicki, 2014) 

o The Boruta package implements the Boruta feature selection procedure which 

determines important predictors by adding completely random “shadow” 

variables to the data and comparing the cross-validated feature importance of 

each of these shadow variables to the feature importance of each of the 

predictors. Predictors that have a significantly higher impact on the response 

variable than the shadow variables are labeled as “confirmed”, statistically 

significant predictors. 

The main deliverable of this thesis is a first version of an analytics pipeline for developing a 

customer selection model and using this model for scoring new, non-Aktia customers. The 

technical composition of this pipeline is described in detail in Appendix 7. 

4.4 Customer selection model 
The aim of the customer selection process is to define a model that finds the most fitting non-

Aktia customers to approach for new customer acquisition. In a more formal sense, we are 

looking for a function 𝑓𝑓(𝑥𝑥) = 𝑦𝑦 that most optimally maps a selection of predictor variables 𝑥𝑥 

to a response variable 𝑦𝑦. Here, the predictor variables function as a “footprint” of a company 

and its activities, while the response variable functions as a quantified measure of the fit of the 

firm for Aktia. 

Concretely, the customer selection approach combines external data on the financial quality of 

companies from the Voitto + database and internal data on Aktia’s existing corporate 

customers. The goal is to determine the response variable based on Aktia’s internal data, and 

to use the external data as predictor variables. With this approach, the model is fit to Aktia’s 

internal data (i.e. for companies for which the response variable is known) and predictions are 

made for external data (i.e. non-Aktia companies in the commercial database). This allows for 

external, non-customer companies to be scored. 

In the following examination, the modelling problem is divided into three components: 
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• Determining the predictor variables 𝑥𝑥 

• Determining the response variable 𝑦𝑦 

• Constructing a model that maps 𝑥𝑥 to 𝑦𝑦 

Each component of the model is discussed in its own subsection. 

4.4.1 Predictor variables 

The predictor variables are the variables that form the input to our customer selection model. 

Importantly, the predictor variables need to be chosen so that they can be determined for 

both non-Aktia customers and Aktia customers. Without this property, the model cannot be 

generalized to the population of non-Aktia customers. Fortunately, the Voitto + database 

offers this property and can be used as the main data source for the predictor variables. 

To further bolster the financial information found in the Voitto + dataset, Laitinen’s and 

Altman’s Z-scores were computed and included in the selection of predictor variables. As 

mentioned in the literature review, these scores are accounting-based measures of the 

financial health of a company. The definitions of the two types of Z-scores can be found in 

Appendix 1. The inclusion of the Z-scores in the predictor variables is intended to strengthen 

the explanatory power of the statistical scoring model by adding some academically well 

founded measures of financial health to the dataset. Additionally, the Z-scores can function as 

baselines that other scoring models can be compared to. 

To summarize, the dataset of predictor variables contains the following information: 

• Yearly financial ratios for each company including Laitinen’s and Altman’s Z-scores for 

years 2009-2012 (ratios listed in 4.2.1). 

• Laitinen’s and Altman’s Z-scores for years 2009-2012, including the following 

component financial ratios required to compute the Z-scores: 

o Altman’s component ratios 𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4 and 𝑇𝑇5 

o Current assets 

o Current liabilities 

o Book value of equity  

• The geographical region of the company’s operations (see 4.2.1). Companies from 

outside Aktia’s operative regions were excluded from the dataset. 

• The industry class of the company (see 4.2.1). 

With four years of data, this selection of variables leads to roughly 150 variables in total. With 

a dataset of approximately 2000 scored customers, there are only about a dozen of 
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observations for each variable. Hence, this selection of predictor variables was deemed 

sufficient and no other variables were computed from the available financial statements. 

A key question in the modeling process is how to deal with the existence of several yearly data 

points of accounting information for each company.  As will be described in the following 

subsection, we decided to formulate the response variable in such a way that the information 

on the profitability and quality of each company was aggregated into one single response 

variable. Hence, we also needed to aggregate the yearly predictor data of each company into 

one data point. There are several ways of performing this aggregation. One option would be to 

take the mean of all the yearly predictor variable measures and use this as an aggregated 

predictor variable. Another option is to weigh the predictor variables using some type of 

heuristic, e.g. by placing a higher emphasis on more recent predictor variables. In the end, we 

decided against these types of aggregation methods. Instead, we included all the available 

variables by giving every yearly financial ratio its own column in the matrix of predictor 

variables. We then used a statistical feature selection procedure to extract the significant 

features from the predictor variable matrix. This feature selection is discussed in sections 

4.4.3.2 and 5.1. 

4.4.2 Response variable 

Another central decision in the modelling process is defining the response variable. In the 

academic literature, the most common choice of a response variable in corporate scoring is a 

binary variable indicating defaulters and non-defaulters. For our case, using this type of binary 

variable is not quite optimal due to the fairly low number of Aktia customers firms that have 

defaulted, and challenges relating to choosing a suitable default horizon. Hence, we chose an 

approach which aims to model customer profitability and quality in a more general sense. This 

is a somewhat rarer approach than the typical classification of customers into good and bad 

payers, but is more in line with actual business objectives than a binary classification approach. 

Additionally, Aktia maintains rolling measures of realized and predicted profits for all its 

customers, which means that profitability information is readily available.  

Initially, the idea was to simply use the income generated by the firm as the response variable, 

but this was found to be excessively noisy. Corporate customers with very similar financial 

performance were found to have large differences in generated incomes e.g. due to different 

lending terms. Additionally, it was not entirely clear as to which year’s profitability data to use; 

should we only focus on the latest profitability number or take into account the trend or 

stability of profitability measures? To circumvent these problems, we chose a more holistic 

approach to quantifying the customer value of Aktia’s corporate customers by using a 
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“balanced scorecard”-type of evaluation system. A deciding factor in pursuing this type of 

approach was the fact that the international market leader FICO seems to use scorecards in 

forming its credit scoring models (FICO, 2015b). Additionally, balanced scorecards are 

frequently used in the management literature when dealing with decision problems with 

multiple criteria (Kaplan and Norton, 1995). 

After discussions with my thesis supervisor at Aktia, the decision criteria found in Table 3 were 

included in the scorecard. 

Table 3: Decision criteria for customer scoring 

Criterion Measure 

Profitability I - Latest profitability Customer generated income for the year 

2014 (rolling 12 months measure) 

Profitability II - Stability of profitability The average customer generated income 

for years 2012-2014 

Profitability III - Profitability trend The average yearly absolute change in 

customer generated income for years 2013 

and 2014 

Strength of customer relation I – Primary bank 

status 

A variable indicating whether the firm 

regularly handles its payments through 

Aktia 

Strength of customer relation II – Cross selling The number of different product categories 

that the firm has purchased from Aktia 

Importantly, Aktia’s profitability measure also includes expected losses and capital costs. 

Hence, the profitability measure also contains default information, and we do not need to add 

a separate criterion for loan defaults. 

For a first attempt at a scorecard, we used a very simple binning approach, where the decision 

criteria are divided into bins, and then companies are distributed into bins and scored 

accordingly. This approach was a bit challenging, as it led to a somewhat narrow distribution of 

scores and a high number of ties between firms. A few scores were much more common than 

others, with e.g. roughly 5%-10% of firms each having a score of 5, 10 or 13.  

To counteract this, another scoring approach was tested. Instead of binning profitability 

measures, we took the logarithm of the profitability measures. This resolved the majority of 

ties and made for a much less narrow distribution of scores. Still, this approach was not quite 

satisfactory, as the logging produced a very steep increase in scores around the lower end of 
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the profitability spectrum. At the higher end of the spectrum, an increase in the generated 

profit led to only a small increase in score. E.g. an increase in generated profit from 3000€ to 

3500€ increased the score only by log(3500) − log(3000) ≈ 0.067. We would like to reward 

corporations for increases in generated profits more evenly throughout the entire range of 

profits. 

As the simpler approaches did not quite work out, we performed a more thorough process of 

determining a suitable scoring system for Aktia’s corporate customers. 

4.4.2.1 Utility function for customer profitability 

As a theoretical foundation for our scoring process, we used utility theory. In utility theory, a 

common task is to map different outcomes 𝑥𝑥 to achieved utilities with a utility function 𝑈𝑈(𝑥𝑥). 

The utility function encodes preferences so that larger utility values correspond to more 

favorable outcomes. Using utility functions of different shapes allows for different types of 

preferences to be encoded. A concave utility function corresponds to risk-averse preferences, 

a convex utility function corresponds to risk-seeking preferences, and a linear utility function 

corresponds to risk-neutral preferences.(Garvey, 2008, p. 65) 

The first significant hurdle in determining suitable utility functions for our profitability 

measures is the somewhat skewed distribution of profitability measures. While more than 95% 

of profitability observations fall within an interval of roughly [−𝑥𝑥€,𝑥𝑥€] (profitability measures 

omitted), the remaining outlier observations deviate significantly from this central mass. If we 

fit utility functions to all of the observations (including the outliers), our utility function ends 

up dominated by the outliers, and the differences in utilities for measurements in the central 

mass of the distribution will be miniscule. Still, we would rather not remove the outliers 

altogether, as e.g. the firms with highly negative profitability values tell us which firms to 

avoid, and can add significant explanatory power to our model. After some consideration, we 

decided to solve the outlier problem by “cutting off” the utility functions at certain fixed 

thresholds. If the profitability reaches a certain threshold, we no longer care for further 

profitability shifts in that direction. An interval of -y€ to z€ was found to be suitable, as it 

contains more than 96% of all observations for all three of our profitability measures. If the 

profitability of a company is less than -y€, the firm will be given the minimum utility score. At 

the other end of the spectrum, companies with a profitability of more than z€ will be given a 

full utility score. 

After dealing with the problem of outliers, we moved on to determining the utility function for 

the central mass of the profitability distribution. We approached the problem by plotting a few 
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of the most common shapes of utility function and then asking Aktia to choose the function 

that most accurately resembles its profitability preferences. The plot of utility functions is 

displayed in Figure 4. 

 

Figure 4: Alternative utility functions for profitability scoring 

In Figure 4, we have displayed four types of utility functions: 

• A linear utility function for risk-neutral preferences (labeled lin in the graph) 

• A quadratic utility function for risk-averse preferences (quad) 

• An exponential utility function for risk-seeking preferences (exp) 

• A logarithmic utility function for highly risk-averse preferences (log) 

The functions were fit in a fairly approximate fashion by defining a handful of points with risk 

averse preferences and utility values between 0 (our intended minimum utility score) and 10 

(our intended maximum utility score), and then fitting curves to these points. Due to the small 
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number of points, the curves are not exactly bounded between 0 and 10, but the general 

shapes are more important for the utility function choice than the exact values. 

Of the four different types of utility functions, the linear utility function was found to be the 

most suitable, as Aktia had neither particularly risk averse nor risk loving preferences. 

Additionally, the linear utility function is robust, understandable and easy to interpret.  

4.4.2.2 Final score weights 

To filter out firms that have recently experienced significant losses, we added a slight 

adjustment to the scoring procedure. If the latest profitability measure of a firm is less than -y€ 

(i.e. the minimum cut-off for criterion one) and its average profitability for the last three years 

is less than -y€ (i.e. the minimum cut-off for criterion two), all the other three scoring criteria 

will also be scored as zeroes. This was mainly done to exclude firms that have made significant 

losses throughout the last three years, but have recovered significantly in the preceeding year. 

Without the adjustment, the third decision criterion would inflate the scores of these types of 

firms significantly.  

For scoring the two non-profitability measures, we use a binning approach. A customer with a 

primary bank relationship gets extra points. For the cross-selling index, we encoded 

preferences in a non-linear fashion.  

Using this scoring philosophy, we get the following weights for the different criteria: 

 

Figure 5: Component weights in corporate score 

Latest profitability 
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As can be seen in Figure 5, the different profitability measures stand for roughly two thirds of 

the total customer score. The criteria related to the strength of the customer relation compose 

the remaining third of the score. The score weights were estimated by computing the average 

contribution of each component criterion to the total firm score for all the scored companies. 

4.4.3 Scoring model 

In this sub-section, we describe the procedure of building and comparing our firm scoring 

models. Each part of the procedure is discussed in turn, starting with the problem formulation 

and pre-processing and then moving on the model fitting and evaluation. 

4.4.3.1 Problem formulation 

The first question in building the scoring model pertains to the formulation of the modelling 

problem. Perhaps the most obvious problem representation is to treat the scoring problem as 

a regression problem, where we use the predictor variables 𝑥𝑥 to predict the customer score as 

a continuous variable 𝑦𝑦. This problem formulation is quite easily interpretable, with higher 

scores implying a higher level of customer quality. 

As the ultimate objective of the scoring process is to find a way of selecting the best firms from 

the dataset, we can also approach the problem from a classification perspective. In this 

formulation, the response variable 𝑦𝑦 is a categorical variable with two states, good and bad 

firms. For our modelling, we decided to include the 30% of firms with the highest scores in the 

category of good firms, and the rest of the firms in the bad category. This binary formulation is 

quite similar to the typical loan default classification problem. The hope is that separating 

good firms from bad firms may be an easier problem than directly quantifying the quality of a 

firm as a continuous numeric measure. 

For the two different problem formulations (regression & classification), we compare models 

both within the formulation class and across the two formulations. The objective is two-fold: 

to find well-performing scoring models and to compare the performances of the two problem 

formulations. 

4.4.3.2 Pre-processing 

The first pre-processing challenge addresses missing data. Companies can have data gaps for 

several reasons. In some cases, the company has only existed for a few years, which means 

that it is missing some data points for earlier years. In the case of some small firms, it is also 

possible that the financial statements are not complete enough to compute all financial ratios. 

To fill in missing data, we used R’s mice-package for missing value imputation. We tried out 

two methods: predictive mean matching (the library’s suggested default method) and a 
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method utilizing Bayesian linear regression. (Buuren et al., 2014) The imputation methods 

were evaluated by comparing the distributions of the imputed predictor variables to the 

distributions of the non-missing predictor variables using histograms and quartiles. Based on 

this inspection, the predictive mean matching-method was found to lead to more similar 

distributions for the imputed and non-missing datasets, and was chosen as the selected 

imputation method. 

Our second pre-processing decision relates to the categorical variables in our dataset (the 

geographical region and the industry classification). The R programming language offers 

support for categorical variables through factors (Spector, 2007), but not all statistical models 

offer support for the factor data type. Hence, we decided to handle categorical variables by 

encoding them into binary dummy variables. With this approach, a categorical variable is split 

into as many binary dummy variables as there are unique categories, with each binary dummy 

variable taking a value of one only when an observation belongs to the corresponding 

category. This type of approach is frequently used in the literature to encode categorical 

variables (Hardy and Reynolds, 2004). 

Another challenge relates to the large number of features in the dataset. Without pre-

processing, there are 142 predictors and roughly 1700 customers for the dataset for which we 

have response variable information. To alleviate this, we performed an initial feature selection 

using R’s Boruta package. The Boruta procedure finds relevant features by comparing the 

importance achievable by the predictor variables to the importance achievable at random. The 

underlying statistical model used by Boruta to determine the feature importance of each is a 

random forest. Using the random forest base learners, the predictor variables are then 

classified into confirmed, tentative and rejected predictors. This feature selection was 

performed separately for both the classification and regression formulations of the problem. 

(Kursa and Rudnicki, 2014) 

As the final step in pre-processing, we performed feature scaling. Some of the statistical 

models we used are distance-based, and most commonly used distance measures (such as the 

Euclidean distance) assign a greater weight to features with wider ranges than features with 

narrow ranges (Aksoy and Haralick, 2001). The financial ratios we use as predictor variables 

have very different ranges: some ratios vary between 0 and 1 while others have ranges that 

span thousands. Hence, we need to scale the features to have similar ranges. We chose to 

scale our features to have zero mean and unit variance, which is a fairly common scaling 

strategy (Aksoy and Haralick, 2001; Geladi and Kowalski, 1986). For performing this scaling, we 

used the scale-function of R’s base library. 
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4.4.3.3 Statistical models 

Due to our decision to use R’s mlr-package for our statistical experiments, we limited our 

investigation of different statistical models to models supported by the library. Fortunately, 

the selection of available models is sufficiently comprehensive, and all of the most common 

types of machine learning models (linear models, decision trees and ensembles of decision 

trees, support vector machines, nearest neighbors-methods, neural networks) are 

represented. Importantly, the package seems to support the implementation of all the model 

types encountered in the literature review of credit scoring models. Brief descriptions of all the 

models included in our experiments can be found in Appendix 2. 

4.4.3.4 Model performance 

A key issue in the modelling process is evaluating the quality of a particular statistical model. 

The theory of comparing different classification and regression models is quite well 

established, but  comparing models across two model formulations is somewhat more 

unconventional. In this section, we discuss each of these three model evaluation categories 

separately. 

4.4.3.4.1 Regression metrics 

In an overview of model performance metrics for air quality models, Wilmott (1982) divides 

regression metrics into two categories: correlation measures and difference measures. 

Correlation measures, such as Pearson’s correlation coefficient and its square (i.e. the 

coefficient of determination), are based on computing a correlation index between the 

observed and predicted values. Difference measures, such as the mean squared error and the 

mean absolute error, are based on computing the difference between the predicted and 

observed values. Both types of metrics have their advantages and disadvantages. On one 

hand, the coefficient of determination (a correlation measure) seems to be slightly more 

popular in the literature as a measure of model performance; on the other hand, difference 

measures are easier to understand and explain. In the end, we chose to use two difference 

measures (the root mean squared error and the mean absolute error) to compare our 

regression models. Of the two metrics, the root mean squared error penalizes highly 

inaccurate predictions more harshly than the mean absolute error. The mean absolute error is 

slightly easier to interpret, as it tells us how far our prediction is from the actual target on 

average. (Willmott, 1982) 

4.4.3.4.2 Classification metrics 

For classification models, a very widely used and interpretable metric is classification accuracy. 

Given a validation set, the accuracy is the proportion of items in the validation set that are 
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properly classified (Alpaydin, 2014). In cases where labels are distributed unevenly, the 

accuracy can be a problematic metric. For example in cases where the proportion of positive 

samples in the dataset is low, a trivial classifier that predicts all cases as negatives will perform 

very well in terms of accuracy.  

A more robust measure of classification performance is the F1-score, which is computed as the 

harmonic mean of the precision and the recall. The recall is equal to the true positive rate (i.e. 

the number of correctly predicted positives divided by the total number of positives in the 

sample), where the precision is the number of true positives divided by the number of all 

predicted positives (including possible false positives). The F1-metric puts a stronger emphasis 

on returning the actual true positives than the accuracy metric. (Forman, 2003) 

The aforementioned metrics evaluate the quality of a classification or grouping of a 

classification model, but there are also metrics that evaluate the quality of the predicted 

probabilities of a model. For the binary classification problem, one popular metric of this type 

is the receiver operating characteristic (ROC). In a ROC curve, the true positive rate of a binary 

classifier (the number of true positives divided by the total number of positives in the sample) 

is plotted against its false positive rate (the number of false positives divided by the total 

number of negatives in the sample) for various prediction thresholds. Here, the prediction 

threshold refers to the cutoff in predicted probabilities above which an observation is 

predicted to be positive. The information provided by the ROC curve can be conveniently 

summarized in one metric, the area under the ROC curve (sometimes referred to as the AUC), 

which allows for models to be compared. A perfect classifier has an AUC of 1, and a completely 

random classifier has an AUC of 0.5. (Alpaydin, 2014) 

For our comparisons of classification models, we decided to use the F1-score and the AUC. Of 

the two metrics, the AUC is of particular interest, as it directly evaluates the quality of the 

predicted probabilities. The F1-score is affected by the choice of the prediction threshold, as it 

evaluates the quality of a classification (with a threshold of 0.5 being a commonly used default 

value). In the final business application of the scoring model, the intention is to rank firms in a 

continuous fashion, which means that there is no need to limit model diagnostics to only 

comparing class predictions. 

4.4.3.4.3 General metrics 

Comparing the scoring performance of a regression model with that of a classification model is 

a somewhat rare occurrence, and is not really covered in the academic literature. Hence, we 

need to approach the question from the perspective of this particular business problem. The 
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final application case of the scoring model is to use the predicted customer score to select a 

subset of high quality firms to contact for new customer acquisition. Hence, the order of the 

scores is more important than the absolute scores. This is quite useful, as we don’t have to 

worry about the fact that the predicted regression scores take on different values than the 

classification probabilities. 

In addition to ordering firms, the model will also be used for the classification of firms into 

good and bad classes. This classification will, however, be preceded by a decision on the 

number of firms to select from the population of scored firms. In this sense, the scoring 

classification task differs from the standard classification task, where the classification model is 

expected to also accurately predict the correct number of positive samples in the prediction 

set. 

To help solve these two decision problems, we decided to use two general metrics: Kendall’s 

Tau and the true positive rate (i.e. the recall). Kendall’s Tau is a rank correlation measure that 

can be used to assess the quality of a ranking. In essence, Kendall’s Tau divides the two 

compared sets of objects into pairs, and counts whether each pair is discordant or concordant. 

The Tau metric is then computed as 

𝜏𝜏 =
𝑐𝑐 − 𝑑𝑑
𝑐𝑐 + 𝑑𝑑

 

where c is the number of concordant pairs, and d is the number of discordant pairs (Nelsen, 

2011). In the case of ties, a normal approximation adjustment is added to the formula (Kendall, 

1948). We use R’s Kendall package for computing the Tau, and the package implements the 

adjustment for ties (McLeod, 2011). 

The Tau coefficient has a fairly intuitive interpretation. If we take any pair of objects from our 

comparison sets, the Tau is equal to the probability of the objects being in the same order in 

both sets minus the probability of the objects being in different order in the two sets. A 

perfect ranking has a Tau value of exactly one, while a reversed ranking has a Tau of minus 

one. For two independent rankings, the Tau value is around zero. (Abdi, 2007) We chose 

Kendall’s Tau as our measure of ranking performance for three reasons. Firstly, it seemed to 

be the most interpretable of the encountered rank correlation coefficients. Secondly, it is quite 

robust to different types of inputs, as it only depends on the relative ordering of the inputs and 

not their absolute values. Thirdly, it can also handle ties, which are likely to occur in our 

experiments, as some of the simpler statistical models will learn very simple decision rules 

with only a few distinct prediction outcomes. 
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To evaluate the quality of a classification proposed by a scoring model, we used the true 

positive rate, i.e. the number of true positives divided by the total number of positives in the 

sample. This metric fits well with the business objective: we want our selection of good firms 

to contain as many truly good firms as possible. To allow for the classification and regression 

approaches to be compared fairly, we needed to introduce a common classification rule. The 

classification predictions, the regression predictions and the true firm scores were sorted in 

descending order with the best firms coming first and the worst firms coming last. For the 

classification approach, this meant sorting predictions in descending order of predicted 

probabilities; for the regression approach, this meant sorting predictions in descending order 

of predicted scores; and for the ground truth values, the observations were sorted in 

descending order of company scores. In the case of ties, the tied elements were shuffled 

randomly. For both types of predictions and for the ground truth observations, the top-30% 

observations were classified as positives and the rest as negatives. With these classifications, 

we can compute the true positive rates for the two approaches by comparing their proposed 

classifications to the ground truth. 

4.4.3.4.4 Validation 

The final point in assessing model performance is to define a cross-validation method for 

evaluating the models. As is fairly well acknowledged, statistical models should not be tested 

on the same dataset that they are trained on. This type of behavior leads to overfitting and 

overestimation of the model’s generalization performance. Instead, different sets should be 

used for model fitting and testing. For our model comparisons, we used the popular K-Fold 

cross-validation method. In this method, the dataset is split into K different folds, and each 

one of the K folds is in turn used as the test set while the rest of the folds are used as training 

data. To get the final cross-validated metrics, we take the mean of the metrics of the different 

folds. For the case of the classification problem (and for the general investigation across 

problem formulations), we used a stratified version of K-Fold cross-validation, where the data 

is divided into folds so that all folds should contain roughly equal proportions of positive and 

negative samples. (Alpaydin, 2014) We chose to set the number of cross-validation folds at K = 

6. 

4.4.4 Combining statistical models 

In the discussions so far, we have only considered single statistical models. According to 

machine learning theory, it is possible to improve model performance by combining multiple 

base learners into an ensemble of models. This approach corrects for the errors made by 

different statistical models on different observations by utilizing other models to classify some 
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of the more difficult observations. Assembling a successful ensemble of models requires 

establishing a  diverse base of learners that complement each other. This diversity can be 

reached in many ways, by using different algorithms, by training the same algorithm with 

different hyperparameters, by using different input features or by using different subsamples 

of the same training set. The individual base learners need to be diverse and should be 

reasonably accurate, but need not be very accurate individually.(Alpaydin, 2014) 

Just as there are many ways of choosing suitable base learners, there are also many ways of 

combining base learners. The simplest method of model combination is voting, which entails 

taking a linear combination of base learners. Other model combination methods include 

bagging, where base learners are evaluated on different parts of the training set, and boosting, 

where base learners are trained sequentially on samples that were misclassified by other base 

learners. In terms of more advanced approaches, there is stacked generalization, where the 

voting weights are not linear but learned by another classifier, and cascaded classifiers, where 

the misclassified or uncertain training samples are passed from one classifier to the next. 

(Alpaydin, 2014) 

For our machine learning experiments, we used a fairly simple ensembling strategy. For base 

learners, we choose a handful of the best performing models for the two problem 

formulations, according to Kendall’s Tau and the true positive rate. For model ensembling, we 

use a voting approach. Every predicted score (regression) or predicted probability 

(classification) is mapped to a vote so that the smallest prediction gets one vote, the second 

smallest prediction gets two votes, and the largest prediction gets as many votes as there are 

observations in the validation set. In the case of equal predictions, each tied element is given 

points according to the maximum sorted index of the tied predictions. For example, if both our 

second-smallest and third-smallest predictions have a prediction value of 0.2, both of the 

predictions will be given three points. The final ensemble prediction is then achieved by 

computing the mean of the vote totals of the individual base learners. To determine the 

suitability of ensembling for our modelling problem, we try out different combinations of base 

learners to see if the ensembling improves model performance. 

4.4.5 Summary of modelling procedure 

The chart in Figure 6 summarizes the different stages of the scoring procedure, starting from 

data preparation, then moving on to model benchmarking and finally to model interpretation.  
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Figure 6: Summary of modelling procedure 

 

Generate predictor variables x 

Define company scores y 

Regression formulation 
Predictors: x 

Response variable: y 

Classification formulation 
Predictors: x 

Response variable: 
• Positive class: best 30% of scores 
• Negative class: remaining 70% 

Preprocessing 
Missing value imputation 

Encoding of categorical variables 
Feature selection 

Feature scaling 

Regression model benchmarking 
Performance metrics: RMSE, MAE 

Classification model benchmarking 
Performance metrics: F1-score, AUC 

General model benchmarking 
Performance metrics: Kendall’s Tau, True positive rate 

Model ensemble benchmarking 
Performance metrics: Kendall’s Tau, True positive rate 

Choice of final model 

Model interpretation 

1. Data preparation 

2. Model evaluation 

3. Model interpretation 
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5 Results 
In this section, we go through the results of the initial customer scoring process. The 

discussion proceeds in roughly the same order as the presentation of the scoring model in 

section 4. First, we go through the results of the feature selection procedure. After this, the 

results of the modelling experiments are presented, with the regression results coming first, 

followed by the classification results and finally the general comparison of the two types of 

models. Based on the general comparison, we choose the models with the strongest 

performance and evaluate how an ensemble of models performs on this dataset. After 

performing the model comparisons, we choose a final model (or ensemble of models) to use 

for the customer selection. In the final part of the results section, we interpret the proposed 

decision models of a few well-performing scoring models. 

5.1 Feature selection 
As described in section four, the Boruta procedure divides features into three categories: 

accepted, rejected and tentative features. By increasing the number of iterations, the tentative 

features are resolved into either accepted or rejected features. We chose to run the procedure 

for 200 iterations to minimize the number of tentative variables. For the regression 

formulation of the problem, 200 iterations of the Boruta procedure led to 144 rejected 

predictors, 5 tentative predictors and 16 confirmed predictors. For the classification 

formulation, the procedure also confirmed 16 predictors, rejected 145 and left 4 as tentative. 

In Figure 7, the confirmed predictors and the importance of their random forest features are 

displayed for both the regression and classification formulations of the problem, with the 

regression results on top and the classification results on the bottom. 
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Figure 7: Confirmed, statistically significant predictors for the regression and classification problems 

As can be seen in Figure 7, the two formulations lead to roughly the same confirmed features. 

For both formulations, the gross profit and relative indebtedness-measures emerge as 

significant. Both formulations also consider the dummy variable representing one of the 
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geographical regions to be important (Region X), which is somewhat unexpected. The 

regression formulation seems to have a slightly higher focus on measures of financial health, 

e.g. when it comes to the high importance of the relative indebtedness-measures, and the 

inclusion of the equity ratio-predictors for the years 2011 and 2012. The classification 

formulation seems to place an increased focus on profitability measures through the inclusion 

of as many as seven different ROI or ROA measures and the high importance assigned to the 

gross profit measures for years 2010 and 2011. Of the engineered variables (i.e. Altman’s and 

Laitinen’s Z-scores and their component variables), only the T1 and T5 component variables 

emerge as significant. The T5 variable is the Sales/Total assets-ratio and the T1 expresses the 

working capital divided by the total assets. None of the predictors relating to the industry 

classification of firms emerged as significant. 

5.2 Regression models 
Using the feature selections proposed by the Boruta procedure, we generated the training 

dataset by keeping only the confirmed predictors in the dataset. Using this dataset, we 

benchmarked all of the available and functioning regression models supported by the mlr-

library.  The benchmarking results are reported in Appendix 3. In the table of Appendix 3, the 

model evaluation metrics for the regression models are displayed. The table reports the model 

name, the cross-validated root mean squared error (RMSE) and the cross-validated mean 

absolute error (MAE) in descending order of RMSE values. 

The best models reach a mean absolute error of roughly 8.7 and a root mean squared error of 

about 10.5. Of the different model classes, decision tree models clearly have the strongest 

performance. The bartMachine, cforest and extraTrees models, as well as the random forests 

are all collections of decision trees. The models consisting of single decision trees (ctree and 

rpart) also have above average performance. The non-decision tree models with the strongest 

performance are the earth and mars models, which are both implementations of the 

multivariate adaptive regression splines-algorithm (MARS).  Of the other model classes, 

support vector machines perform well in terms of the MAE, but not in terms of the RMSE. For 

example the svm model has the lowest MAE of all compared models while having only average 

performance in terms of the RMSE. The linear models (glmnet, lm, and the lasso and ridge-

models) all have almost identical performance with RMSE and MAE values of roughly 10.70507 

and 9.017976, respectively. Neural networks (brnn and nnet) have somewhat average 

performance while nearest neighbors methods (fnn, kknn) perform poorly. 
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Here, it should be noted that the hyperparameters of the models were not tuned to this case, 

and instead we used the defaults proposed by the mlr-package (except for the xgboost-model, 

for which the number of trees in the ensemble was increased from the default value of 1 to 

100). This can make the results somewhat skewed in favor of the decision tree ensembles, 

which are known to work well without much tuning. Additionally, the base learner used in the 

Boruta procedure is a random forest, which can further skew the results in favor of the 

decision tree models(Kursa and Rudnicki, 2014). For support vector machines and, in 

particular, for neural networks, a more careful tuning of model parameters could lead to some 

improvements. Additionally, the dataset used is quite small, which can be problematic e.g. for 

neural networks, which tend to excel in problems with larger amounts of data. 

5.3 Classification models 
In Appendix 4, the comparison of classification models is displayed. For each model, the area 

under the ROC curve (AUC) and the F1 score (F1) are reported. The table is sorted in 

descending order of the AUC. 

A completely random classification corresponds to an AUC value of 0.5. It is encouraging to see 

that most of the tested models clearly beat the trivial random benchmark. The exception to 

this is the single decision tree model rpart, which failed to find anything and has an AUC of 0.5 

and an F1 score of 0. Still, even the highest AUC values are only around 0.64, and about half of 

the models have an AUC of less than 0.6, which is quite weak. 

In terms of the relative strength of the models, decision tree models, again, have the strongest 

performance, as the top four models according to AUC are decision tree models (bartMachine, 

cforest, ada and gbm). Linear models also performed reasonably, as glmboost, lqa and glmnet 

all performed well. In general, boosted models seem to perform slightly better for the 

classification formulation than the regression formulation, as shown by the success of the 

glmboost, ada and gbm-models. While discriminant analysis models had roughly average 

performance, nearest neighbors models, support vector machines and neural networks, on the 

other hand, had below average performance. 

As can be seen in Appendix 4, the F1 scores for this comparison vary quite wildly. The models 

are so uncertain about their predictions that they do not predict many positive samples (and in 

some cases none at all) with the default prediction threshold of 0.5. Hence, the F1 scores are 

probably not as informative for this comparison as the AUC values are. 
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5.4 General comparison 
The table in Appendix 5, presents the general comparison of models. For each model, Kendall’s 

Tau and the true positive rate (TPR) is reported. The table is sorted in descending order of the 

Tau-value. 

In this general comparison, we have included a few baselines as comparison points for our 

models. For baselines, we use a uniformly random prediction, the equity ratio for 2012 and 

Laitinen’s and Altman’s Z scores for 2012. We see that just about all of the tested models beat 

the three baselines by a clear margin.  

There are quite a few jumps in performance from the earlier comparisons. According to the 

RMSE and MAE metrics, the rpart and blackboost-regressors only ranked 8th and 10th 

respectively, but for this general comparison, they are the two best models in terms of 

Kendall’s Tau. The blackboost-regressor also does very well in terms of the true positive rate. 

Another significant improvement in performance is shown by the nnet classifier, which had 

below average performance for the AUC, but now ends up being the best classifier in terms of 

the Tau. On the other hand, a several findings from the classification and regression 

comparisons also hold true for the general comparison. For one, decision tree models remain 

the best model class. Additionally, the glm-based classifiers do quite well. 

As for the comparison between regression and classification models, regression models tend 

to do better in terms of Kendall’s Tau, while classification models do better in terms of the 

TPR. Nonetheless, regression models are slightly better overall, with the best models having 

TPRs that are quite close to the TPRs of the best classification models. The svm-regressor is 

somewhat of an exception, as it clearly outperforms the svm-classifier in terms of both the Tau 

and the TRP.  

5.5 Model ensembling 
For the ensemble models, we chose the 6 best regression models and the 6 best classification 

models according to Kendall’s Tau. Using these base learners, we constructed the following 

ensembles using uniform voting (as described in the methods section) 

• An ensemble with all the 12 best regression and classification models (ensemble_all) 

• An ensemble with the single best regression model and the single best classification 

model (ensemble_two) 

• An ensemble with the 6 best regression models (ensemble_reg) 

• An ensemble with the 6 best classification models (ensemble_clf) 
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The model performance metrics for these ensembles (and the base learners) can be found in 

Appendix 6. 

From the table in Appendix 6, we see that ensembling seems to work quite well in this case. All 

of the four ensembles outperform all other models except for the rpart-regressor in terms of 

the Tau, with the ensemble consisting of all 12 base learners having the highest Tau-value at 

0.193. In terms of the TPR, the three best ensembles also outperform all base learners, with 

the ensemble of the 6 best classifiers having the highest TPR. 

5.6 Final model choice 
Based on the performance comparisons, we chose the ensemble with the 12 best regression 

and classification models as our final model. It had the best performance in terms of the Tau 

and the second best performance in terms of the TPR. Additionally, we presumed that having 

as many as 12 base learners could bring some stability to the predictions, as a few extreme 

predictions from a few of the base learners will not have a colossal effect on the ensemble 

predictions. 

5.7 Model interpretation 
In this subsection, we investigate the decision rules behind the predictions some of our better 

models. First, we take a look at the decision tree of our best-performing single regression 

model, rpart. In the second section, we investigate the importance of the individual features of 

another fairly well-performing regression model, the cforest. 

5.7.1 Decision tree 

A somewhat surprising finding was the strong performance of the rpart decision tree model, 

particularly in terms of Kendall’s Tau. It outperformed a number of complex models, such as 

gradient boosting machines and random forests, which are formed by averaging and 

combining the predictions of several individual decision trees in different ways. In the plot in 

Figure 8, we display the decision tree of an rpart-model that was fit to the entire training set. 
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Figure 8: Decision tree plot 

The decision tree is fairly simple, with four decision nodes and five outcome nodes. For each of 

the outcome nodes at the bottom, the model predicts the median of the displayed box-and-

whisker plot. As there are only five outcome nodes, the model only predicts five different 

scores. The decision rules can be deduced by reading the tree from top to bottom. The lowest 

score prediction occurs in the leftmost node, for cases where the 2011 relative indebtedness 

exceeds 159.25%. The highest score prediction occurs in the rightmost node for cases where 

the 2011 relative indebtedness is below 159.25%, the 2011 gross profit exceeds 56 500€, the 

firm is not located in the X region, and the 2011 ROI exceeds 20.45%. 

5.7.2 Random forest interpretation 

In this sub-section, we investigate the decision rules of the cforest-regressor, which was the 

second-best single regression model in terms of the RMSE. The cforest-model is a random 

forest, so it is formed by averaging a large number of decision trees of the type presented in 

the previous sub-section.  

A brief interpretation of the importance of the individual features of a random forest was 

conducted with the earlier investigation of the importance of the individual features using the 

Boruta procedure. A key shortcoming of that investigation was that only the magnitude of the 

influence of a variable was considered and not the direction of the relationship. Admittedly, 
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interpreting the direction of influence is not always straightforward in a collection of decision 

trees, as it is possible that both very large positive and very large negative values of a 

particular variable are associated with the same predictive outcome. Nonetheless, we made an 

attempt at estimating the direction of the relationship between the variables and the 

response. We fit the cforest-regressor to all of the training data and used this model to predict 

customer scores for the test set of non-Aktia companies. The firms of this test set were divided 

into good and bad firms by classifying the top 5% of the highest scoring non-Aktia customers 

as good firms. The means for all the predictor variables were computed for the two classes of 

firms, and for each predictor variable, we computed the percentage difference between the 

good group and the bad group. This percentage difference in the group-wise predictor means 

was then used as a measure of the direction of the relationship between the predictors and 

the response. Much as for the plots of the Boruta procedure, the magnitude of the 

relationship was quantified by using the feature importance of the random forest. This 

information was then plotted on a bar graph, where the lengths of the bars represent the 

importances of individual features (the magnitude), and the colors of the bars represent the 

group-wise percentage differences in predictor means (the direction). For the cforest-

regressor, this particular plot can be found in Figure 9. 
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Figure 9: Variable importance and direction 

In Figure 9, the solid red and blue bars have the largest directions of influence numerically. The 

variables with the clearest positive influence on the response are the 2011 ROA and the ROI 

for the same year. For these variables, the percentage difference between the good and bad 

groups is several hundred percent. In other words, the 2011 ROI and ROA values are several 

times larger for the group of (predicted) good firms than for the group of bad firms. The 

variables with the largest negative influence on the response are the relative indebtedness-

variables and the dummy variable for region X. For these variables, the values in the group of 

good firms are only a small fraction of the values of the bad firms. For the rest of the variables, 

the percentage differences between the variable means in the two groups are positive. For a 

few variables (the T5 values), the percentage differences are quite small, while e.g. the T1 

variable for the year 2012 has a fairly large percentage difference between the good and bad 

groups. 
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As a final target of investigation, we grouped the importance of individual features by year in 

Figure 10. 

 

Figure 10: Variable importance by year 

As can be seen from Figure 10, the emphasis is on more recent financial ratios. Only one 

financial ratio from 2009 is included (the relative indebtedness); for the year 2010, three ratios 

are included (the gross profit, the total assets and the total liabilities). Whenever a financial 

ratio occurs many times, the latest figure tends to be the most significant, except for the gross 

profit, where the 2011 gross profit has a slightly higher feature importance than the other 

years. Figure 10 also shows the strong emphasis that is placed on the relative indebtedness-

variable. 
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6 Discussion and evaluation 
In the first part of this section, we evaluate the merits and the shortcomings of our customer 

scoring model. After this, we move on to our second and third research questions. We 

approach the sales resource allocation problem by proposing an action plan for carrying out 

the customer selection suggested by our scoring model. In the third subsection, we present 

some ideas on how Aktia could move towards an analytics-driven sales process, and how this 

scoring procedure could inform the design of such a process. In the fourth and final 

subsection, we relate our findings to the academic literature. 

6.1 Scoring model – Key findings, shortcomings and ideas for further 

research 
Perhaps the most interesting discovery of the corporate scoring process is the proposed 

feature selection. The significant features found by the Boruta procedure were in line with 

expectations, and the feature importances of the final random forest were reasonable both in 

terms of the magnitude of the effect and the direction. A higher level of indebtedness led to 

less favorable scores, while strong performance in e.g. the ROI and ROA metrics led to more 

favorable scores. 

 In a somewhat unexpected turn, our model ended up penalizing companies from one 

particular region (Region X) quite heavily. The reason for this should be investigated further. 

One possible explanation is that Aktia’s market share in this region is quite low and a few 

poorly performing or excessively competitively priced loans may stand for a large share of 

Aktia’s business in the region. As a result, the models will associate the region with customers 

of poor quality, and flag all companies from that region as unwanted customers. One needs to 

consider whether future customers should be penalized for the region’s past challenges. One 

possibility is to completely remove the region variable from future versions of the model to 

avoid this problem. 

Another aspect of the feature weightings that could warrant further research is the relative 

importance of the same ratio for different years. For the regression formulation, the relative 

indebtedness ratio was found to be statistically significant for three years (2009, 2011 and 

2012). On the other hand, the return on assets was found to be significant only for 2011. This 

variable was, however, the most important single financial ratio according to feature 

importance. It is not entirely clear as to why certain variables are confirmed only for one year, 
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while other variables are included for several years. Perhaps the RoA does not vary much over 

the years and it is sufficient to only include the feature for one year. 

Another component of the model that could be useful for Aktia in the future is the proposed 

scoring of Aktia’s corporate customers, and the scorecard approach underlying the scoring 

process. It offers a new perspective into customer segmentation: instead of discrete clusters of 

thousands of customers, the customer score distributes customers into “segments of one” in a 

more continuous fashion. As we noticed when struggling with outliers during the score 

definition process, a few select companies stand for surprisingly large shares of the bank’s 

losses and profits. Our scoring approach brings special attention to these outliers, and thereby 

encourages action to either correct the worst losses or to nurture the most profitable 

customer relationships of the bank. 

Additionally, our scoring process led to a few theoretical insights. Of the tested model classes, 

decision tree models had the best general performance across the board. Of the two proposed 

problem representations, the regression formulation ended up performing slightly better than 

the classification formulation, particularly in terms of Kendall’s Tau. For the true positive rate, 

however, the best classifiers ended up slightly outperforming the best regressors. Another 

interesting finding was our success in improving model performance through ensembling. 

With a simple linear voting ensemble involving the strongest-performing base learners, we 

were able to improve performance in terms of both the Tau and the true positive rate. The 

fairly large differences in relative performance for different scoring metrics could warrant 

some further investigation. We chose Kendall’s Tau as our ranking metric due to its robustness 

and ability to handle ties, but it is possible that some other metric could be a better choice. In 

this case, selecting the metric was challenging due to the need to compare regression and 

classification models. 

The most significant shortcoming of the model was its lack of explanatory power. While both 

our regression and classification models outperformed random predictions, the absolute 

performance of our models remained quite weak. For classifiers, our best models only reached 

a cross-validated AUC of roughly 0.65, which is somewhat mediocre. In terms of the Tau, even 

our best ensembles stayed below a value of 0.2, which means that the probability of ranking a 

pair of objects correctly is only just below 0.2 higher than the probability of an incorrect 

ranking. The weakness of the model led to a general lack of robustness for the experiments. 

For two different cross-validation strategies or even for different random seeds, we could end 

up with fairly significant mix-ups in the best-performing models. Additionally, we found that 
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different random seeds resulted in notably different decision trees. For some random seeds, 

we were unable to build decision trees due to the lack of explanatory power in the variables. 

One possible solution to the lack of explanatory power is to acquire more training data. The 

dataset used for this thesis was intentionally quite small, and also slightly outdated, as the 

scoring model developed for this thesis aims to function as a pilot. With roughly 100 000 

companies in the Voitto + database, and Aktia’s market share of a few percentage points, the 

upper limit for the maximum size of the training set is somewhere around 5 000 companies, 

implying a tripling of the current training set. In order to further increase the size of the 

dataset, one could consider abandoning the current approach of aggregating all yearly data 

into one observation and instead adding several annual observations for each company. 

Another possible approach to improve the explanatory power could be to tune the 

hyperparameters further or to try other statistical models, but these fine tuning efforts are 

unlikely to help much. 

While we may experiment with several potential means of improving the explanatory power of 

the model, it is likely that there is only a weak relationship between financial statement 

information and the quality of a customer. In addition to being in good financial health, a 

company needs to select Aktia as its primary bank to become a highly scored customer. The 

process of selecting a bank is difficult to model with using only information about the financial 

statements of a firm. Hence, it seems reasonable to assume that the explanatory power of 

financial information with regards to customer quality will be somewhat limited. 

6.2 Implementing the customer selection proposed by the scoring 

model 
For the customer scoring model to be of any practical use for Aktia, it needs to inform some 

type of action. Hence, this subsection is dedicated to describing a process for deploying the 

customer selection recommended by the scoring model. The suggested process is outlined in 

the flowchart in Figure 11. 
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Figure 11: Initiating the sales process 

As can be seen in Figure 11, we suggest a two-tiered customer acquisition process, where the 

first layer of cold calls is handled by phone sellers, with corporate sellers being responsible 

mainly for handling the follow-up appointments arranged by the phone sellers. The idea is that 

the first stage of cold calling is somewhat standardized and does not require the domain 

expertise and experience of the corporate sellers. Freeing corporate sellers from making cold 

calls allows them to keep their workload at reasonable levels. Importantly, corporate sellers 

should still be included in designing the cold calling process, e.g. when it comes to the sales 

script, and the customer selection. In the following discussion, we go through each of the 

stages of initiating the sales process. 

6.2.1 Step 0: Updating the data and the model 

As discussed in the previous section, the limited dataset could be a possible explanation for 

the fairly weak explanatory power of the model. Hence, we recommend for more training data 

to be used for the model that will be used in the actual customer selection. 

In addition to increasing the amount of training data, the data should be updated to reflect a 

more recent period. Currently, the most recent financial statements are from 2012. If we start 

contacting customers based on this data, there is a risk of contacting firms that have gone 

bankrupt or undergone a severe deterioration in financial health over the past few years.  

To ensure the best possible fit for the selected firms, some firms could also be filtered out 

from the training data. For our first version, we included all firms regardless of their size, as 

Step 3b: Follow-up appointments  

Step 3a: Large-scale cold calling 

Step 2b: Regional pilot - follow-up appointments 

Step 2a: Regional pilot - cold calling 

Step 1: Gathering contact information 

Step 0: Updating data + model 
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our training data was not particularly large to start with. For the next version, we could filter 

out very large firms (e.g. firms with more than €100m in revenue), as very large firms may 

require somewhat more tailored approaches for customer acquisition. 

Following the update of the data, we should also update the model by repeating the model 

comparisons, and making sure that our chosen models still perform relatively well with the 

new dataset. Also, if a more complicated statistical approach is deemed too opaque, it is 

possible to replace the model with some type of simple decision model, such as e.g. ranking 

companies in descending order of ROI. If necessary,  the firm scorecard could also be updated. 

6.2.2 Step 1: Gathering contact information 

Our external dataset with financial information on companies contains the business ID of the 

companies (Y-tunnus). This ID also provides a connection to further, publicly available, contact 

information, such as the registration address of the company, but the phone numbers for 

companies are rarely included in open data sources. In order to efficiently contact selected 

firms on a larger scale, some type of automated process for mapping business IDs to phone 

numbers should be developed. Most likely, this requires  the assistance of an external provider 

of contact information, such as Fonecta. The first step would be to identify what types of 

sources for contact information Aktia currently uses, and the applicability of these sources for 

the current context. Whereas the acquisition of contact information is currently conducted in a 

somewhat ad-hoc fashion, we should explore the feasibility of creating a more systematic 

process for gathering contact information for corporate customers. 

6.2.3 Step 2: Regional pilot 

The cold calling hit rate is one key parameter that influences the implementation of the 

customer contacting procedure, as it determines the number of calls that needs to be done to 

achieve a certain number of appointments with potential customers. Correspondingly, it also 

determines the number of sales resources that needs to be involved in the cold calling step. 

Due to the importance of the hit rate, we propose arranging a regional pilot for determining a 

reasonable first guess for the hit rate. For example, Aktia could call 500 or 1000 Helsinki 

companies with a high predicted customer quality, and then compute the hit rate as the 

proportion of customers that agree to a follow-up appointment at one of Aktia’s branch 

offices. For these follow-up appointments, we could further investigate what proportion of 

appointments lead to sales, and what products drive successful sales. 

In addition to providing us with a first estimate for the hit rate for cold calls, the pilot would 

provide an opportunity to test out different sales pitches and approaches to new customer 
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acquisition. For instance, we could write down two different sales scripts for the cold calls and 

compare the relative performance of the two scripts. Additionally, we could apply the 

modelling ideas used for the customer scoring in order to determine whether certain financial 

ratios help in predicting the success of cold calls. 

The information gathered from the follow-up appointments is also very valuable. In addition to 

investigating the close rate for the selling appointments, we can interview the corporate 

sellers to gather their opinions on the selected companies: Do the selected companies seem to 

have potential or does the customer selection do more harm than good? 

After the regional pilot, one option is to completely abandon the customer selection 

procedure, and not proceed with the analytics-driven sales process, e.g. if the hit rate in the 

cold calling phase is too low, if the selected customers do not align with Aktia’s desired 

customer profile, or if the appointments do not generate enough sales. 

6.2.4 Step 3: Execution phase 

If the customer selection procedure is deemed worthy of continuing after the pilot, we can 

move on to performing customer acquisition on a larger scale, across all of Aktia’s operative 

regions. In the resource planning of this execution step, there are three key parameters: the 

hit rate of the cold calling phase, the close rate of the follow-up appointments, and the desired 

number of new corporate customers to acquire. The former two will be determined by the 

pilot, while the latter should be chosen by Aktia to match the company’s growth objectives. In 

the short run, we assume the sales resourcing will remain fixed at current levels, as it 

significantly simplifies the problem of resource planning. 

In the chart in Figure 12, we present a rough assignment of sales resources, where one 40-

hour work week of time from each corporate sales resource is assigned to holding follow-up 

appointments set up by cold calls. In the assignment, we use a cold call hit rate of 5%, a follow-

up appointment close rate of 25%, a cold call duration of ten minutes, and a follow-up 

appointment duration of two hours. In the name of corporate secrecy, the regions have been 

anonymized and the sales resource quantities altered. 
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Figure 12: One proposed sales resource assignment (for illustrative purposes only) 

With the aforementioned assumptions, the sales resource assignment of Figure 12 leads to the 

acquisition of 270 new customers. With a low cold call hit rate of 5%, we notice that the 

workload of new customer acquisition falls quite heavily on the cold callers. In total, the 

workload of the corporate sales resources stands at 54 workweeks while the cold calling 

requires as many as 90 workweeks. In our simple model, the required cold calling work 

depends linearly on the hit rate. Hence, a doubling of the hit rate to 10% would halve the 

required cold calling work to 45 workweeks, and an increase of the hit rate to 25% would 

shrink the load to 18 workweeks. The sensitivity of the workload to assumptions about the hit 

and close rates further emphasizes the usefulness of an initial pilot round of cold calls and 

follow-up appointments. 

In the execution phase, it would be highly beneficial to collect as much information about the 

attempted customer acquisitions as possible. In addition to the financial, geographical and 

industry classification information in the Voitto + database, information about the types of 

products or sales pitches used in approaching the customer would be very useful. Additionally, 

different corporate sellers can perform better in approaching different kinds of companies. 

 
Region 1 Region 2 Region 3 Region 4 Region 5 Regions Region 6 

270 New customers, total 

Customers, regions 25 25 15 75 100 30 

25% Appointment close rate 

100 100 60 300 400 120 

200 200 120 600 800 240 

Appointments 

Hours à 2h 

5 5 3 15 20 6 Available resources 

40 40 40 
 

40 40 40 Hours/resource 

5% Cold call hit rate 

2000 2000 1200 6000 8000 2400 Cold calls 

21600 Total cold calls 

3600 

90 

Cold call hours à 10 mins 

Total workweeks à 40 h 
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Hence, documenting information about the seller of each new customer acquisition attempt 

could be useful. 

6.3 Moving towards an analytics-driven sales process 
In this thesis, the focus has mainly been on detecting and acquiring customers that resemble 

Aktia’s current high-quality customers. In the longer term, the objective is not only to detect 

high-quality customers, but also to identify customers that have a high probability of becoming 

Aktia’s customers. At the time this master’s thesis project began, there was very little data 

about successful and failed attempts at new customer acquisition. Hence, we focused on a 

slightly easier problem for which data was available. The methods and models used in the 

customer scoring problem are, however, also applicable for the more ambitious problem of 

predicting customer acquisition probabilities. The main challenge lies in establishing a data 

pipeline that stores relevant information about the sale as well as the outcome of the sale, for 

both cold calls and follow-up appointments. 

The first question in designing the data pipeline relates to data collection. Currently, we have 

the financial data of the Voitto + database, and the corresponding industry classification and 

geographical data. To further bolster this data, we suggest collecting some additional data for 

both the cold calls and the follow-up appointments. For the cold calls, e.g. the following data 

could be useful: 

• The type of sales pitch used (e.g. based on a categorization of sales scripts) 

• The duration of the call 

• The caller 

• The outcome (appointment/no appointment, favorable/unfavorable responses) 

For the follow-up appointments, we suggest the following information be gathered: 

• The products and offers suggested to the firm 

• The seller 

• The outcome (sale/no sale) 

• Information about why the firm was willing to agree to the follow-up appointment 

• Information about why the firm did/did not become a customer 

These are initial suggestions for what variables should be documented in customer acquisition 

attempts. For the follow-up appointment phase, in particular, there may be good reason to 

include more information, as the appointments are longer and less formulaic than the cold 

calls. This data could even be documented in slightly less structured form, e.g. by allowing 
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sellers to write down short descriptions of the appointments. A key challenge is making sure 

that the data collection process is not obtrusive for corporate sellers or phone sellers. Hence, a 

lot of effort should be put into choosing data points that are informative and quickly 

documentable. 

By gathering and analyzing information about the cold calls and the follow-up appointments, 

we can hopefully improve the hit rates and close rates by updating the sales propositions to 

potential new customers. However, we will not be able to use this information for training our 

customer selection model, as none of the newly collected data will be available for non-

encountered firms. Hence, for our customer selection model, we are limited to the Voitto + 

data that was used for the initial selection model. Nonetheless, the newly gathered 

information will provide us with two new response variables: one variable denoting the 

success of the cold calls and another denoting the success of follow-up appointments. One 

possible way of utilizing these new variables would be to represent the problem as a three-

class classification problem, where one class contains firms that fall out in the cold calling 

phase, another class contains firms that pass the cold calling phase but fall out in the 

appointment phase, and a third class contains firms that pass both phases and end up as new 

customers. This type of model would allow us to choose firms that are likely to become Aktia’s 

customers, or to focus on firms that are likely to pass the first cold calling phase. In addition to 

collecting information on the hit and close rates, we are also interested in eventually 

computing the realized customer scores for the customers acquired with the new sales 

process. This will give us valuable validation data for evaluating our model. For our current 

score, we use profitability data from a three-year period, which causes a significant delay 

when scoring new customers. If we want to avoid a three-year validation cycle, we may have 

to make some adjustments to the scorecard for newly acquired corporate customers. 

In the diagram in Figure 13, the envisioned sales process is depicted. 
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Figure 13: Flowchart of data-driven sales process 

The main operative process is drawn in blue. At certain parts of the sequence, data is used to 

improve the process. These “feedback” points in the process are indicated in red. 

Furthermore, data that is currently available is denoted by solid arrows while new proposed 

data inputs are denoted by dashed arrows.  

The sales process is executed in batches. For each batch, we start with our selection model, 

and perform a customer selection according to the model. For the very first batch, the model 

will be based on only the Voitto + predictors and the initial customer score information. After 

the selection, phone sellers contact the selected customers. Follow-up appointments are 

arranged for interested customers. This marks the end of the batch. After each batch, the 

selection model is updated. We investigate the collected information on the successes and 

shortcomings of the sales efforts, and use this information to improve future sales activities. 

Additionally, data on the quantities of successful and failed sales efforts are used as response 

variables for the updated selection model. The initial scoring model only uses the corporate 

scores as response variable information, while future batches also take into account the hit 

and close rates of the two sales phases. After updating the model, we select a new batch of 

non-contacted customers, and the process starts anew. 

Cold calls

Follow-up 
appointments

Customer 
selection

Selection 
model

Predictors 
Voitto +Response

Customer scores

Close rateHit rate

Monitoring
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6.4 Implications for future research 
This thesis can be seen as an addition to the academic literature on credit scoring models. Our 

perspective is slightly different to most existing approaches, as we model customer quality on 

a more holistic level than models which only focus on default probabilities. Additionally, we 

considered both regression and classification formulations of the scoring problem. For our 

dataset, decision tree models were found to perform the best. In the literature review that 

preceded our modelling work, decision tree models did not stand out while e.g. neural 

networks and support vector machines did. This could warrant some further research. If 

decision tree models can match or even exceed the performance of complex non-linear 

models, their interpretability could make them a very attractive option for future credit 

scoring models. This thesis is also somewhat more transparent than traditional academic 

credit scoring papers in terms of explaining and documenting the underlying predictor 

variables and interpreting the fitted statistical models. 

Another important finding was the long-tailed distribution of the profitability values of the 

modeled corporate banking customers. The vast majority of firms are concentrated in a fairly 

narrow band of modest profitability values, but a few outliers stand for significant portions of 

the total profits and losses. The type of profitability-based scoring that was proposed in this 

thesis could be useful in identifying these outliers, and thereby drawing attention to the most 

profitable customers. This continuous scoring method also supports a “segment-of-one”-type 

of approach to customer portfolio management, which has been suggested as a fitting 

segmentation method for banking by Winger and Edelman (1989).  The relationship-based 

nature of corporate banking requires customized services and products, and a continuous 

customer score could support this by facilitating more fine-grained customer segmentation. 

For our second and third research questions, i.e. how Aktia should allocate its sales resources 

and redesign the sales process, this thesis presents a roadmap for future action. Here, some of 

our choices in the process design could lead to valuable insights during the implementation 

process. In our sales resource assignment, we propose a two-tiered sales process, where 

customers are first approached by phone for appointments, where the business of the 

customer is hopefully won. Here, the intention is to gather data on successes and failures of 

the cold calls and follow-up appointments, and to hopefully use these insights to improve the 

hit and close rates of the two stages of the process. If deployed, this procedure can offer many 

valuable insights about systematic sales processes: 
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• Does a two-tier sales approach work, or is one tier of sellers (only cold calls/only 

appointments) better?  

• Can we gather useful and clean data without distracting the efforts of sellers? 

• Can we use the gathered data to improve the hit rates of the cold calls and the close 

rates of the follow-up appointments? 

• Does a more careful selection of new customers lead to any noticeable bottom-line 

gains? 

Just as the deployed sales process can inform future research, existing research should also 

inform the implementation of the sales process. In designing the analytics-based sales process 

in section 6.3, we considered some of the best practices of strong analytics performers. By 

performing the process in batches, we can move towards a self-correcting process, where data 

is not used for reporting and evaluating performance after the fact, but rather for guiding sales 

efforts in, close to, real time. There is also further room to utilize findings from the literature in 

other aspects of the sales process. The literature importantly identified the value of good loan 

officers. When only considering quantitative factors, corporate banks will overwhelmingly end 

up financing similar, financially stable companies at the expense of some more opaque firms 

with significant upside but higher risk. As much of the real value of corporate lending comes 

from resolving information asymmetries between financers and SMEs, the incorporation of the 

experience and expertise of loan officers in the sales process should also be considered. This 

could be realized by e.g. redesigning the corporate scorecard with the help of the corporate 

sellers, or by performing an initial filtering of the dataset on the basis of their input.  
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7 Conclusion 
In this master’s thesis, we have laid the foundation for a comprehensive, analytics-driven sales 

process for corporate banking. From an empirical perspective, we have constructed, compared 

and validated a variety of different scoring models for the selection of corporate customers. 

From a qualitative perspective, we have proposed a process for implementing the customer 

selection suggested by our scoring model. Additionally, we have outlined an initial plan for 

establishing a continuously updated and improved process for the acquisition of new 

corporate customers. 

In terms of empirical results, our modelling work brought to light several statistically 

significant predictors of customer quality. Among the most important predictors were 

variables relating to financial health, such as the relative indebtedness, and variables relating 

to profitability, such as the return on assets and the return on investment. In terms of 

methodological results, we found decision tree-based models to be the strongest-performing 

class of models. Additionally, we tried out two different formulations of the customer scoring 

problem: a regression formulation, where customer quality is modelled as a continuous 

numerical score; and a classification formulation, where customer quality is modelled as a 

binary variable that divides firms into good firms and bad firms. Of these two formulations, the 

regression formulation performed better in terms of Kendall’s Tau, while the classification 

formulation performed better in terms of the true positive rate. When considering both 

metrics, the regression formulation performed slightly better overall. By combining our best 

models using a linear voting approach, we were able to exceed the performance of our base 

learners in terms of both Kendall’s Tau and the true positive rate. 

In terms of the results of our qualitative work, a key finding was the importance of a pilot 

implementation of the customer selection procedure. In our initial quantitative estimations, 

we found the workload required for new customer acquisition to be highly dependent on the 

hit rate of initial cold calls and the close rate of follow-up appointments. A pilot would give us 

some initial estimates for these retention rates, and would help us generate a realistic 

understanding of the feasibility of a large-scale customer acquisition process. Additionally, our 

qualitative work brings attention to key data points that should be collected from sales 

activities, and how this data could be used to improve future sales efforts and customer 

selections. In the lean innovation framework, our initial scoring model is the “minimum viable 

product” that should be iteratively improved according to input from users, and the results of 

using the model. 
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In terms of concrete benefits for Aktia, this thesis project adds several new tools to Aktia’s 

analytics toolbox. Through the data cleaning and processing of the Voitto + data, Aktia now 

has four years’ worth of financial data for thousands of Finnish firms in its data warehouse. 

The scoring of Aktia’s corporate firms allows Aktia to rank the firms in its corporate portfolio 

and to identify its most and least profitable corporate customers. Additionally, the 

programming work related to feature selection, statistical modelling and model validation is 

directly applicable in other contexts, e.g. for loan default prediction, customer retention 

prediction or customer revenue prediction. 

In addition to the technical contributions of this thesis, a successful implementation of the 

suggested analytics-based sales process has the potential to generate significant business 

gains for Aktia. Currently, Aktia’s customer selection is limited to flagging risky firms with 

insufficient credit ratings. With a fairly rudimentary baseline, even a weak customer selection 

model could lead to a significant improvement in the quality and profit potential of acquired 

customers. In addition to this, setting up a system to collect more detailed information about 

successful and failed cold calls and appointments could generate remarkable business gains. 

By introducing techniques for analyzing sales efforts and using these techniques for honing 

sales activities, Aktia could improve its customer acquisition and retention rates in many 

different sales channels. Concretely, these retention improvements would lead to a higher 

productivity of sales activities and an increased rate of new customer acquisition, which are 

both in line with Aktia’s strategic growth targets.  
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9 Appendices 

9.1 Appendix 1: Z-score definitions 
Laitinen’s Z-score (Balance Consulting, n.d.) is computed as follows: 

𝑍𝑍 = 1.77 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝑟𝑟 % + 14.14 ∗ 𝑄𝑄𝑟𝑟𝐹𝐹𝑐𝑐𝑄𝑄 𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟 + 0.54 ∗ 𝐸𝐸𝐸𝐸𝑟𝑟𝐹𝐹𝑟𝑟𝑦𝑦 𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟 

The financial result-percentage is computed as: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝑟𝑟 % = 100 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝑟𝑟/𝑅𝑅𝑟𝑟𝑅𝑅𝑟𝑟𝐹𝐹𝑟𝑟𝑟𝑟 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝑟𝑟 = 𝑁𝑁𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝑟𝑟 + 𝐷𝐷𝑟𝑟𝐷𝐷𝑟𝑟𝑟𝑟𝑐𝑐𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹,𝐹𝐹𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝑎𝑎𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹 𝐹𝐹𝐹𝐹𝑑𝑑 𝑤𝑤𝑟𝑟𝐹𝐹𝑟𝑟𝑟𝑟 − 𝑑𝑑𝑟𝑟𝑤𝑤𝐹𝐹𝑟𝑟 

A larger Z-score implies a higher creditworthiness, with the following thresholds: 

• Over 40: Excellent 

• 28-40: Good 

• 18-28 Satisfactory 

• 5-18: Weak 

• Below 5: Awful 

Altman’s Z-score for private firms is computed as  

𝑍𝑍 = 0.718 ∗ 𝑇𝑇1 + 0.847 ∗ 𝑇𝑇2 + 3.107 ∗ 𝑇𝑇3 + 0.420 ∗ 𝑇𝑇4 + 0.998 ∗ 𝑇𝑇5 

where 

𝑇𝑇1 =
𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝑟𝑟 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝑟𝑟 𝐿𝐿𝐹𝐹𝐹𝐹𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝑟𝑟

𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 

𝑇𝑇2 =
𝑅𝑅𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑑𝑑 𝐸𝐸𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸𝑟𝑟

𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
  

𝑇𝑇3 =
𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇

𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 

𝑇𝑇4 =
𝐸𝐸𝑟𝑟𝑟𝑟𝑄𝑄 𝑉𝑉𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 𝑟𝑟𝑓𝑓 𝐸𝐸𝐸𝐸𝑟𝑟𝐹𝐹𝑟𝑟𝑦𝑦
𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹 𝐿𝐿𝐹𝐹𝐹𝐹𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝑟𝑟

 

and 

𝑇𝑇5 =
𝑆𝑆𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟

𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
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Just as Laitinen’s Z-score, a larger Altman’s Z-score implies a higher level of creditworthiness. 

The Z-score has the following “Zones of Discrimination”: 

• Z > 2.9: “Safe” Zone 

• 1.23 < Z < 2.9: “Grey” Zone 

• Z < 1.23: “Distress Zone” (Altman and others, 2000, pp. 12, 20–21) 
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9.2 Appendix 2: Overview of compared statistical models 
This appendix offers an overview of all the compared classification and regression models that 

we used in this thesis. Most of the information has been gathered from the online 

documentation of the Mlr package (Bischl, 2015). In some cases, additional information was 

sought from the documentation of the packages hosted on the CRAN repository for R 

packages. 

For each model we document the following information 

• The model identifier 

• A brief description of the model 

• The model class 

• The supported modelling task (classification and/or regression) 

The overview of statistical models is structured around the following model classes: 

• Boosting models 

• Decision tree models 

• Discriminant analysis models 

• Generalized linear models 

• Nearest neighbors models 

• Neural network models 

• Support vector machine models 

• Other models 

Some models fall under multiple model classes. These models are documented for the model 

class which comes first in the alphabetical order. 
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9.2.1 Boosting models 

Model identifier Description Type Task 

ada Decision trees boosted using 

the Ada meta-algorithm 

Boosting, Decision 

trees 

Classification 

blackboost Gradient boosting with 

regression trees 

Boosting, Decision 

trees 

Classification, 

Regression 

gbm Gradient boosted decision 

trees 

Boosting, Decision 

trees 

Classification, 

Regression 

xgboost Gradient boosting (as 

implemented in the xgboost-

package) 

Boosting, Decision 

trees 

Classification, 

Regression 

glmboost Boosted generalized linear 

models 

Boosting, 

Generalized linear 

model 

Classification 

9.2.2 Decision tree models 

Model identifier Description Type Task 

bartMachine An implementation of the Bayesian 

Additive Regression Trees algorithm 

Decision 

trees 

Classification, 

Regression 

cforest Random forest of conditional inference 

trees 

Decision 

trees 

Classification, 

Regression 

ctree Conditional inference tree model Decision 

trees 

Classification, 

Regression 

extraTrees Ensemble of extremely randomized 

decision trees 

Decision 

trees 

Classification, 

Regression 

J48 J48 decision trees Decision 

trees 

Classification 

randomForest Random forest of decision trees Decision 

trees 

Classification, 

Regression 

randomForestSRC Random forest of decision trees (as 

implemented in the randomForestSRC-

package) 

Decision 

trees 

Classification, 

Regression 

rpart Decision tree model Decision 

trees 

Classification, 

Regression 
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9.2.3 Discriminant analysis models 

Model identifier Description Type Task 

lda Linear discriminant analysis Discriminant 

analysis 

Classification 

mda Mixture discriminant analysis Discriminant 

analysis 

Classification 

plsdaCaret Partial least squares discriminant 

analysis 

Discriminant 

analysis 

Classification 

qda Quadratic discriminant analysis Discriminant 

analysis 

Classification 

rda Regularized discriminant analysis Discriminant 

analysis 

Classification 

sda Shrinkage discriminant analysis Discriminant 

analysis 

Classification 

9.2.4 Generalized linear models 

Model identifier Description Type Task 

binomial Binomial regression Generalized 

linear model 

Classification 

glmnet Generalized linear models with 

Lasso or Elasticnet regularization 

Generalized 

linear model 

Classification, 

Regression 

LiblineaRLogReg Logistic regression (as 

implemented in the LiblinearR-

package) 

Generalized 

linear model 

Classification 

lm Simple linear regression Generalized 

linear model 

Regression 

logreg Logistic regression (as 

implemented in base R) 

Generalized 

linear model 

Classification 

lqa Penalized generalized linear 

models with the LQA algorithm 

Generalized 

linear model 

Classification 

multinom Multinomial regression Generalized 

linear model 

Classification 

penalized.lasso Lasso-regularized linear 

regression 

Generalized 

linear model 

Regression 

penalized.ridge Ridge-regularized linear Generalized Regression 
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regression linear model 

plr Logistic regression with a L2 

penalty 

Generalized 

linear model 

Classification 

probit Probit regression Generalized 

linear model 

Classification 

9.2.5 Nearest neighbors models 

Model identifier Description Type Task 

fnn Fast k-nearest neighbors model Nearest 

neighbors 

Classification, 

Regression 

Ibk K-nearest neighbors (as 

implemented in the Rweka-

package) 

Nearest 

neighbors 

Classification, 

Regression 

kknn K-nearest neighbors Nearest 

neighbors 

Classification, 

Regression 

9.2.6 Neural network models 

Model identifier Description Type Task 

brnn Feed-forward neural network with 

Bayesian regularization 

Neural 

network 

Regression 

elmNN Extreme learning machine for single 

hidden layer feedforward neural 

networks 

Neural 

network 

Regression 

nnet Single-hidden layer neural network Neural 

network 

Classification, 

Regression 

9.2.7 Support vector machine models 

Model identifier Description Type Task 

ksvm Support vector machine (as 

implemented in the kernlab-

package) 

Support 

vector 

machine 

Classification, 

Regression 

rvm Relevance vector machine Support 

vector 

machine 

Regression 

svm Libsvm-based support vector 

machines (as implemented in the 

Support 

vector 

Classification, 

Regression 
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e1071-package) machine 

9.2.8 Other models 

Model identifier Description Type Task 

bdk Supervised version of Kohonen's self-

organising map 

Other Classification, 

Regression 

cubist Rule- and instance-based regression 

modeling 

Other Regression 

earth Regression model based on 

Friedman's Multivariate Adaptive 

Regression Splines-procedure (as 

implemented in the Earth-package) 

Other Regression 

Jrip Propositional rule learner Other Classification 

mars Regression model based on 

Friedman's Multivariate Adaptive 

Regression Splines-procedure (as 

implemented in the mda-package) 

Other Regression 

naiveBayes Naive Bayes Other Classification 

OneR Rule-based OneR-classifier Other Classification 

pcr Principal component regression Other Classification 

plsr Partial least squares regression Other Regression 

rsm Response surface regression Other Regression 

xyf X-Y-fused self-organising maps Other Classification, 

Regression 
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9.3 Appendix 3: Comparison of regression models 
Model identifier Model class RMSE MAE 

bartMachine Decision trees 10.47276 8.725286 

cforest Decision trees 10.4931 8.761483 

randomForestSRC Decision trees 10.50747 8.797584 

randomForest Decision trees 10.53103 8.829922 

mars Other 10.53293 8.765768 

earth Other 10.54626 8.797766 

extraTrees Decision trees 10.58358 8.841442 

rpart Decision trees 10.60242 8.882099 

ctree Decision trees 10.61077 8.87554 

blackboost Boosting, Decision trees 10.62642 9.009433 

brnn Neural network 10.6554 8.945144 

svm Support vector machine 10.6865 8.676228 

glmnet Generalized linear model 10.69469 9.011372 

lm Generalized linear model 10.70507 9.017976 

pcr Other 10.70507 9.017976 

penalized.lasso Generalized linear model 10.70507 9.017976 

penalized.ridge Generalized linear model 10.70507 9.017976 

rsm Other 10.70507 9.017976 

plsr Other 10.70507 9.017976 

cubist Other 10.75295 8.824273 

gbm Boosting, Decision trees 10.80042 9.202922 

ksvm Support vector machine 10.9807 8.888162 

nnet Neural network 11.09808 9.15241 

rvm Support vector machine 11.24974 9.168726 

xgboost Boosting, Decision trees 11.3975 9.241743 

kknn Nearest neighbors 11.59112 9.430867 

fnn Nearest neighbors 12.05799 9.744438 

elmNN Neural network 13.31599 10.64525 

xyf Other 13.53085 10.48837 

Ibk Nearest neighbors 14.27701 11.13187 

bdk Other 14.28295 10.94394 
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9.4 Appendix 4: Comparison of classification models 
Model Model class AUC F1 

bartMachine Decision trees 0.645944 0.148382 

cforest Decision trees 0.641541 0.050029 

ada Boosting, Decision trees 0.628138 0.214354 

gbm Boosting, Decision trees 0.622422 0 

glmboost Boosting, Generalized linear model 0.622063 0.028447 

randomForestSRC Decision trees 0.621416 0.147259 

lqa Generalized linear model 0.621375 0.031587 

extraTrees Decision trees 0.62086 0.190735 

glmnet Generalized linear model 0.620377 0.003584 

LiblineaRLogReg Generalized linear model 0.619445 0.041137 

plsdaCaret Discriminant analysis 0.619124 0.021282 

sda Discriminant analysis 0.618551 0.090294 

lda Discriminant analysis 0.61802 0.04446 

randomForest Decision trees 0.617878 0.139401 

rda Discriminant analysis 0.61742 0.07406 

binomial Generalized linear model 0.617071 0.044323 

logreg Generalized linear model 0.617071 0.044323 

multinom Generalized linear model 0.617071 0.044323 

plr Other 0.617071 0.044323 

mda Discriminant analysis 0.616641 0.050928 

probit Generalized linear model 0.616078 0.034424 

naiveBayes Other 0.595799 0.463711 

blackboost Boosting, Decision trees 0.595557 0 

xgboost Boosting, Decision trees 0.582825 0.269461 

nnet Neural network 0.579265 0.107965 

xyf Other 0.560204 0.287946 

ctree Decision trees 0.559838 0 

qda Discriminant analysis 0.555001 0.456675 

ksvm Support vector machine 0.553753 0.010914 

J48 Decision trees 0.549857 0.076334 

kknn Nearest neighbors 0.548904 0.300508 

svm Support vector machine 0.541358 0 

79 
 



Ibk Nearest neighbors 0.53576 0.34486 

bdk Other 0.530486 0.240179 

OneR Other 0.51079 0.242459 

Jrip Other 0.509499 0.089676 

rpart Decision trees 0.5 0 
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9.5 Appendix 5: General comparison of scoring models 
Model Task Model class Tau True Positive Rate 

rpart Regression Decision trees 0.186354 0.38576779 

blackboost Regression Boosting, Decision 

trees 

0.176081 0.411985019 

cforest Regression Decision trees 0.171155 0.402621723 

earth Regression Other 0.170652 0.411985019 

nnet Classification Neural network 0.169458 0.391385768 

gbm Regression Boosting, Decision 

trees 

0.168886 0.402621723 

bartMachine Regression Decision trees 0.168832 0.402621723 

mars Regression Other 0.1675 0.41011236 

cforest Classification Decision trees 0.165969 0.419475655 

svm Regression Support vector 

machine 

0.16539 0.402621723 

cubist Regression Other 0.164147 0.383895131 

bartMachine Classification Decision trees 0.163018 0.417602996 

randomForestSR

C 

Regression Decision trees 0.162753 0.380149813 

ctree Regression Decision trees 0.160068 0.368913858 

gbm Classification Boosting, Decision 

trees 

0.157742 0.393258427 

randomForest Regression Decision trees 0.157041 0.393258427 

extraTrees Regression Decision trees 0.150007 0.391385768 

brnn Regression Neural network 0.149592 0.393258427 

plsdaCaret Classification Discriminant analysis 0.147851 0.387640449 

glmboost Classification Boosting, 

Generalized linear 

model 

0.145727 0.400749064 

glmnet Classification Generalized linear 

model 

0.145566 0.389513109 

lqa Classification Generalized linear 

model 

0.145338 0.400749064 

sda Classification Discriminant analysis 0.14291 0.400749064 
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ada Classification Boosting, Decision 

trees 

0.142595 0.398876404 

glmnet Regression Generalized linear 

model 

0.142113 0.38576779 

lm Regression Generalized linear 

model 

0.14161 0.383895131 

pcr Regression Other 0.14161 0.383895131 

penalized.lasso Regression Generalized linear 

model 

0.14161 0.383895131 

penalized.ridge Regression Generalized linear 

model 

0.14161 0.383895131 

plsr Regression Other 0.14161 0.383895131 

rsm Regression Other 0.14161 0.383895131 

rda Classification Discriminant analysis 0.141099 0.393258427 

LiblineaRLogReg Classification Generalized linear 

model 

0.140477 0.397003745 

extraTrees Classification Decision trees 0.140175 0.38576779 

lda Classification Discriminant analysis 0.140101 0.400749064 

binomial Classification Generalized linear 

model 

0.138924 0.393258427 

logreg Classification Generalized linear 

model 

0.138924 0.393258427 

plr Classification Other 0.138924 0.393258427 

multinom Classification Generalized linear 

model 

0.138917 0.393258427 

probit Classification Generalized linear 

model 

0.137459 0.393258427 

randomForestSR

C 

Classification Decision trees 0.136367 0.400749064 

mda Classification Discriminant analysis 0.133426 0.387640449 

nnet Regression Neural network 0.132476 0.391385768 

blackboost Classification Boosting, Decision 

trees 

0.132293 0.389513109 

randomForest Classification Decision trees 0.13219 0.387640449 
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ksvm Regression Support vector 

machine 

0.125314 0.383895131 

rvm Regression Support vector 

machine 

0.123869 0.383895131 

naiveBayes Classification Other 0.118688 0.397003745 

ctree Classification Decision trees 0.110147 0.367041199 

xgboost Regression Boosting, Decision 

trees 

0.108525 0.36329588 

bdk Regression Other 0.10088 0.352059925 

xgboost Classification Boosting, Decision 

trees 

0.094747 0.359550562 

qda Classification Discriminant analysis 0.093285 0.342696629 

kknn Regression Nearest neighbors 0.091166 0.36329588 

kknn Classification Nearest neighbors 0.082241 0.337078652 

fnn Regression Nearest neighbors 0.070011 0.31835206 

J48 Classification Decision trees 0.06582 0.209737828 

Ibk Classification Nearest neighbors 0.065395 0.348314607 

bdk Classification Other 0.061036 0.312734082 

ksvm Classification Support vector 

machine 

0.0603 0.335205993 

svm Classification Support vector 

machine 

0.056184 0.323970037 

Ibk Regression Nearest neighbors 0.056173 0.333333333 

xyf Regression Other 0.050992 0.331460674 

xyf Classification Other 0.047689 0.335205993 

Jrip Classification Other 0.044212 0.234082397 

Altman’s Z-score 

2012 

Baseline Baseline 0.040708 0.288389513 

Equity ratio 2012 Baseline Baseline 0.037779 0.279026217 

Laitinen’s Z-score 

2012 

Baseline Baseline 0.022465 0.299625468 

OneR Classification Other 0.01671 0.342696629 

Random 

prediction 

Baseline Baseline 0.014636 0.303370787 
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rpart Classification Decision trees 0 0 

elmNN Regression Neural network -0.07531 0.213483146 
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9.6 Appendix 6: Comparison of ensembles and the best base learners 
Model Task Model class Tau True Positive Rate 

ensemble_all Ensemble Ensemble 0.193389 0.43071161 

ensemble_two Ensemble Ensemble 0.191388 0.41011236 

rpart Regression Decision trees 0.186354 0.38576779 

ensemble_reg Ensemble Ensemble 0.186166 0.423220974 

ensemble_clf Ensemble Ensemble 0.185622 0.434456929 

blackboost Regression Boosting, Decision 

trees 

0.176081 0.411985019 

cforest Regression Decision trees 0.171155 0.402621723 

earth Regression Other 0.170652 0.411985019 

nnet Classification Neural network 0.169458 0.391385768 

gbm Regression Boosting, Decision 

trees 

0.168886 0.402621723 

bartMachine Regression Decision trees 0.168722 0.402621723 

cforest Classification Decision trees 0.165969 0.419475655 

bartMachine Classification Decision trees 0.164433 0.413857678 

gbm Classification Boosting, Decision 

trees 

0.157742 0.393258427 

plsdaCaret Classification Discriminant analysis 0.147851 0.387640449 

glmboost Classification Boosting, Generalized 

linear model 

0.145727 0.400749064 

 

  

85 
 



9.7 Appendix 7: Technical description of analytics pipeline 
Based on the work done for this thesis, we established a first proposal for an analytics pipeline 

for customer selection. In the diagram below, the pipeline is represented as a sequence of R-

scripts. 

 

In the following we briefly describe the tasks performed by each of the seven scripts. The 

discussion is divided into two parts: building the dataset and building the scoring model. 

9.7.1 Building the dataset 

9.7.1.1 corporate_data_tables.R 

The script queries and aggregates the data in the Voitto + tables in Aktia’s data warehouse. 

There are two Voitto + tables: one table with complete financial statements and another with 

financial ratios. For the table with financial statement information, we pick the desired rows 

from the financial statements for the relevant years. For the table with financial ratios, the 

information is in columnar format, and we pick the desired columns. In the end, we generate a 

table where each company has one row of observations for each year. We use the ROracle-

library to connect to Aktia’s databases. 

corporate_data_tables.R

data_towide_impute.R

corporate_scoring.R

Predictor variables

Response variable

Dataset

Scoring model

feature_selection.R

model_comparisons.R

model_interpretation.R

write_predictions.R
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9.7.1.2 data_towide_impute.R 

After running corporate_data_tables.R, our data is in long format, where each company has 

one row of observations for each year. We use R’s reshape2 package to turn the data into fully 

wide format, where each company only has one row of observations and the year observed is 

indicated in the name of the column. In addition to transforming the data to wide format, the 

script also performs an imputation of missing values using the mice-package and its predictive 

mean matching-method of mean imputation. Here, we noticed that the imputation only 

successfully completes for years 2009-2012. Hence, we chose to limit our dataset to these 

years. 

9.7.1.3 corporate_scoring.R 

With the corporate_scoring.R-script, we read the relevant internal data on Aktia’s own 

customers to determine the customer scores. Concretely, this entails querying profitability 

data, information on the primary bank status of customers, and information on the number of 

product categories bought by a customer. Based on this information, we compute the 

customer scores, as explained in 4.4.2. In this script, we also use the ggplot2-library to plot the 

utility curves displayed in section 4.4.2 (Figure 4) 

9.7.2 Building the scoring model 

We generate our dataset by joining the tables generated by the scripts in section 9.7.1. Based 

on this dataset, we fit our scoring models, and eventually perform the intended scoring of 

potential new customers. 

9.7.2.1 feature_selection.R 

Using R’s Boruta package, we perform a random forest-based feature selection for our 

dataset, for both a classification and a regression formulastion of our customer selection 

problem. We store the results of the feature selection for later use. 

9.7.2.2 model_comparisons.R 

We select the features considered relevant by the Boruta-procedure, and fit a wide variety of 

classification and regression models to our data using the mlr-package. We output and store 

diagnostic information for both the classification and regression formulations, and the more 

general problem of ranking customers. We choose a handful of the best models according to 

Kendall’s Tau-metric and ensemble these models using a simple linear voting ensemble. Again, 

the diagnostic information is saved on disk. 
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9.7.2.3 model_interpretation.R 

We choose two well-performing and highly interpretable models (the cforest random forest-

model, and the rpart decision tree-model), and interpret their results. For the rpart-model we 

plot its suggested decision tree. For the cforest-model, we plot the feature importances of the 

predictor variables. Additionally, we plot the results of the Boruta feature selection procedure. 

9.7.2.4 write_predictions.R 

For the first run of our scoring model, the ensemble of the 12 best-performing models was 

found to have the best performance. Hence, it was chosen as the final decision model for this 

initial run. In the write_predictions.R-script, we fit these 12 models on all of the available 

training data, compute predictions for all the non-Aktia firms in the test data, and ensemble 

the predictions using the simple linear voting model. The predictions are written to Aktia’s 

database. 
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