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We study numerically the existence and character of bound states for positive and negative point charges
shielded by the response of a two-dimensional homogeneous electron gas. The problem is related to many
physical situations and has recently arisen in experiments on impurities on metal surfaces with Shockley
surface states. Mathematical theorems ascertain a bound state for two-dimensional circularly symmetric po-
tentials V�r� with �0

�dr rV�r��0. We find that a shielded potential with �0
�dr rV�r��0 may also sustain a

bound state. Moreover, on the same footing we study the electron-electron interactions in the two-dimensional
electron gas, finding a bound state with an energy minimum for a certain electron gas density.

DOI: 10.1103/PhysRevB.74.115411 PACS number�s�: 73.20.Hb, 71.15.Mb

I. INTRODUCTION AND MOTIVATION

The properties of the two-dimensional �2D� electron gas,
and in particular the phenomena induced by isolated or clus-
tered impurities embedded in it, have attracted a large vol-
ume of experimental and theoretical research. The interest
stems from the increasingly more ideal realizations of the 2D
electron gas, for example, at interfaces of semiconductor het-
erostructures, at semiconductor surface inversion layers, at
�noble� metal surfaces as Shockley surface states, or as quan-
tum well states in metallic overlayers on insulators or other
metals. At the same time the development of different pho-
toelectron and scanning tunneling spectroscopies has enabled
an increasingly more accurate characterization of these
systems.1,2

Many experiments deal directly or indirectly with the ex-
istence of bound electron states in systems interacting with
the 2D electron gas. The impurity-induced electron localiza-
tion has been studied in the Shockley surface state
systems.3–5 The quantum diffusion of hydrogen on metal sur-
faces reflects the coupling of the hydrogen with the metallic
�possibly 2D� electron gas.6,7 Finally, a bound state between
two electrons in a 2D electron gas has been proposed as an
alternative pairing mechanism to the phonon coupling for
high-temperature superconductivity.8,9 Remarkably, it was
explicitly pointed out8 that the many-body ground state of a
dilute gas of fermions is unstable to pairing if and only if a
two-body bound state exists.

The background for the above-mentioned physics is laid
by basic mathematical theorems. First, in two dimensions,
for any everywhere attractive circularly symmetric potential
V�r�, there exists always a bound state no matter how weak
the potential is. For the case of a shallow potential valley
characterized by the �0

�dr rV�r��0 condition, an explicit ex-
pression for the energy eigenvalue Eb was derived in the
textbook by Landau and Lifshitz.10 It turns out that the bind-
ing energy depends exponentially on the inverse of a nega-
tive constant �given by the condition� in the investigated

weak-coupling limit. The theorem of Simon11 extends the
conditions for a bound state to the �0

�dr rV�r�=0 case, i.e., to
not everywhere nonpositive or not everywhere nonnegative
suitable potentials.

In this paper we present a numerical analysis for the ex-
istence of a 2D bound state in potentials satisfying the
�dr rV�r�=0 condition. The physically motivated effective
potentials Veff�r�=�V�r� will refer to the perfectly shielded
fields of embedded attractive or repulsive unit charges in a
2D electron gas, and � plays the role of a convenient cou-
pling constant for the detailed numerics. In the repulsive case
the screening is constrained by the fact that the maximum of
the surrounding hole density is the uniform electron gas den-
sity. In addition to the cases based on the mentioned standard
condition, the overscreening and underscreening of unit
charges �with �=1� will be investigated as well. The corre-
sponding potentials could mimic the shielding dynamics in,
for example, standing wave generation4 on surfaces in the
presence of impurities. Slightly surprisingly, we find a bound
state also for the overscreened attractive and underscreened
repulsive potentials. In order to treat also the electron-
electron effective interaction we use in the Schrödinger equa-
tion the reduced mass �=1/2. The energy of the ensuing
bound electron pair has a minimum at a certain electron gas
density.

The rest of the paper is organized as follows. In the next
section, Sec. II, we shall deduce our physically motivated
model potentials for numerical, 2D bound-state calculations.
The results obtained are presented on illustrative figures, by
considering relevant parameter ranges in coupling, screening
tuning, and density of the electron gas. Finally, Sec. III is
devoted to a short summary. Hartree atomic units �=e2

=me=1 will be used in the equations and discussion below.

II. MODELS AND RESULTS

A. Shielded potentials

We begin with a few mathematical expressions. The 2D
Fourier-Hankel �FH� transformation of a function F�r� is
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F�q� = 2��
0

�

dr rJ0�rq�F�r� , �1�

where J0�x� is the zeroth-order Bessel function. The inverse
FH transform has the form

F�r� =
1

2�
�

0

�

dq qJ0�qr�F�q� . �2�

These equations will be used below, in model-potential con-
struction.

The field of an embedded charged particle is shielded in
the 2D electron gas. Thus instead of the bare Coulomb form
vc�q�=2� /q, one can write in momentum space

V�q� = ± vc�q��1 − 	n�q�� �3�

for the shielded field around unit charges of different signs.
Here 	n�q� is the screening density in momentum space.
With a unit norm 	n�r� one obtains, via the above Eqs. �1�
and �3�, V�q→0�
q limiting behavior if the real-space den-
sity decays faster than r−4. This case corresponds to the
�dr rV�r�=0 condition of Simon’s theorem.

Notice that the well-known12 quasiclassical Thomas-
Fermi �TF� approximation for impurity screening in a 2D
electron gas results in a monotonic potential

VTF�r� = ± �
0

�

dq
q

q + 2
J0�qr� = ± �

0

�

dx
xe−2

�x2 + r2�3/2 . �4�

The negative and positive signs in Eq. �4� refer to embedded
attractive and repulsive unit charges, respectively. At large
distances �r→�� the VTF�r� potential falls of as ±1/ �4r3�,
and one gets the �0

�dr rVTF�r�= ± �1/2� condition. Therefore,
this type of potential with negative sign belongs to the class
analyzed by Landau and Lifshitz.10

We shall characterize the 	n�r� density directly by the
properly normalized hydrogenic �H� and Gaussian �G� forms
��2 /2��exp�−�r� and ��2 /��exp�−�2r2�, respectively. The
corresponding Fourier-Hankel transforms are �3 / ��2+q2�3/2

and exp�−q2 / �2��2�, respectively. Using the former in Eq.
�3� and applying Eq. �2�, we get

VH�r� = ±
1

r
�1 − 2u2�I0�u�K1�u� − I1�u�K0�u��� , �5�

in which u=�r /2 for shorthand. The Gaussian form results
in

VG�r� = ±
1

r
�1 − 	2�zI0�z�e−z� , �6�

where z=�2r2 /2. In the above equations Ii�x� and Ki�x� are
modified Bessel functions.

We stress that V�q=0�=0, i.e., �0
�dr rV�r�=0 in these

models. For long distances these shielded potentials decay as
3/ �2�2r3� and 1/ �4�2r3�, respectively. The attractive po-
tentials are exhibited in Fig. 1, by fixing �=4 �solid curve�
and �=2	2 �dashed curve�. The �=4 value could corre-
spond to a strictly atomistic electron density, 1s-like in 2D.
For a detailed comparison, two other potentials are also plot-

ted; that is, the bare Coulomb one Vc�r�= �−1/r�, and the
conventional Thomas-Fermi form VTF�r� of Eq. �4�.

In order to go beyond the �0
�dr rV�r�=0 condition, one

may multiply the shielding parts of Eqs. �5� and �6� by a
variable � �see Eqs. �10� and �13� below�. In such a way we
can investigate the overscreened ���1� and underscreened
���1� cases, for which �0

�dr rV�r ,���0. Moreover, as dis-
cussed above, the effective potentials have a multiplicative
coupling constant �, �Veff�r�=�V�r ,���. In our 2D numerics
� and � will serve as convenient parameters.

B. Numerical solution of the 2D Schrödinger equation

The bound-state energy levels �Eb� and wave functions
���r�� satisfy the 2D Schrödinger equation


−
1

2�
�2 + Vef f�r� − Eb���r� = 0, �7�

where � is the reduced mass; it is unity for the impurity-
electron case.

In circular symmetry the wave function separates as

��r� =
eim�

	2�
Rmn�r� , �8�

where m=0, ±1, ±2, . . . is the azimuthal quantum number
and n=1,2 ,3 ,… is the radial quantum number related to the
number of radial nodes �n−1� of the radial wave function
Rmn�r�. In this work we are interested only in the values m
=0 and n=1. Further, by making the substitution Umn�r�
=r1/2Rmn�r� we obtain the differential equation

d2Umn�r�
dr2 + 
2��Eb − Vef f�r�� −

�m2 − 1/4�
r2 �Umn�r� = 0.

�9�

This is the same form as the radial equation studied in
spherically symmetric problems. We solve the equation on an

FIG. 1. �Color online� The shielded attractive potentials of Eq.
�5� �solid blue curve� and Eq. �6� �dashed red curve� with �=4 and
�=2	2, respectively. The dotted black curve refers to a bare Cou-
lomb potential −1/r. The dash-dotted green curve is devoted to the
attractive Thomas-Fermi form of Eq. �4�.
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exponentially expanding radial mesh, r�j�=rmin exp��j
−1�	x� with j=1, . . . ,N. With a given guess for the eigen-
value Eb the function Umn�r� is integrated outward from the
origin and inward from a large radius by starting with its
asymptotic expansions. At a matching point close to the clas-
sical turning point the logarithmic derivatives of the outward
and inward integrated solutions are required to coincide by
adjusting the eigenvalue Eb. The parameters of the radial
mesh, rmin, 	x, and N, are varied until the numerical conver-
gence of the eigenvalue is obtained.

C. Attractive electron-ion interaction

According to our numerical calculations, the attractive
VTF�r� of Eq. �4� gives Eb

�TF�=−0.2853, while the VH�r� of
Eq. �5� results in Eb

�H�=−0.0296 values for �=4, in Hartree
units. There is about an order-of-magnitude reduction in
binding due to atomistic screening, beyond the quasiclassical
result.

In order to study the so-called not everywhere nonpositive
case �physically, the shielded positive charge� in more detail
we will use, without loss of generality, �=4 in Eq. �5� and
modify it as

Vef f
H �r� = − �

1

r
�1 − 8�r2�I0�2r�K1�2r� − I1�2r�K0�2r��� .

�10�

In Fig. 2 we have plotted the Eb
�H���� energies obtained with

�=1 and �� �0.97,1.03�. The � tuning refers to small
under- and overscreening. The figure clearly shows the sen-
sitivity of binding to the details of the shielding. For ��1
one has �0

�dr rVef f�r��0, with Eq. �10�.
Additional information on the � dependence of Eb

�H����
for Eq. �10� and �=1 is given in Fig. 3 with �
� �1.25,0.75�. In this case �0

�dr rVef f�r�=0 for any �finite�
�, as we pointed out earlier. In harmony with Simon’s
theorem,11 �Eb�����exp�−c�−2�, we get for our case
�Eb

�H����� value of c of about 5.292 for the suitable constant
in the investigated coupling-parameter range. The macro-
scopic dielectric constant of a real medium can result in re-

duced ��1 values for effective interactions.
In this attractive impurity case we have shown a remark-

able sensitivity of the theoretical bound-state characteristics
to the shielding conditions. This is in accord with important
spectroscopic information obtained4 by scanning tunneling
spectroscopy of different adatoms in the standing wave pat-
terns generated. The observed peak shift and amplitude de-
crease in differential tunneling conductance, as adatoms ap-
proach a step on the surface, signal the experimental
sensitivity.

We note that our detailed numerical analysis is based on
an effective Schrödinger equation. Further attempts are
needed therefore to consider the many-body aspects of the
localization problem in more detail. For example, the proper
description of the width of an adatom-induced weakly bound
state and its influence on scattering characteristics are impor-
tant questions for future studies.

D. Repulsive electron-electron interaction

The so-called not everywhere nonnegative case �physi-
cally, the shielded negative charge� will be treated similarly

FIG. 2. Energy eigenvalue Eb
�H���� based on Eq. �7� with

Eq. �10� for �=1 and �� �0.97,1.03�.
FIG. 3. Binding energy �Eb

�H����� based on Eq. �7� with Eq. �10�
for �=1 and �� �1.25,0.75�.

FIG. 4. �Color online� Energy eigenvalues Eb�rs� in the shielded
field of a negative charge. Data are based on Eq. �7� with �=1/2,
and �=�=1 in the applied two effective interactions. The solid
blue and dashed red curves refer to the hydrogenic �Eq. �5�� and
Gaussian �Eq. �6�� models, respectively. See the text for further
details.
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via Eq. �5� of positive sign, but with the constraint

��2/2�  n0 = 1/��rs
2� �11�

in order to model bounded, complete depletion of the 2D
electron gas density at r=0. Here rs is the density parameter
of the 2D gas with density n0. The same constraint is used to
reparametrize Eq. �6� �positive sign� with

��2/�  n0 = 1/��rs
2� �12�

as

Vef f
G �r� = + �

1

r
�1 − �	2�zI0�z�e−z� , �13�

where, according to the above discussion, z= �r /rs�2 / �2��
now. Remember, that at �=1 one has �0

�dr rVef f�r�=0, inde-
pendently of the value of the finite �.

As we use depletion-constraint-based densities to model
effective electron-electron interactions, it is important to give
additional physical arguments about their proper behavior.
The interaction energy ��� of a repulsive point charge with a
surrounding, normalized ��=1� shielding hole can be char-
acterized by the classical equation

� = −
1

2
2��

0

�

dr r
1

r
	n�r� . �14�

This equation results in �H=−1/ �	2rs� and �G=−	� / �2rs�
for the exponential and Gaussian screening, respectively.
These energies are between the values based on exchange-
only, �x=−4	2/ �3�rs�, and Wigner single-atom,13,14 �W

=−1/rs, limiting approximations. The latter corresponds to
the 	n�r�rs�=n0 extremum model for the hole density, and
the former to the Pauli hole15 of an ideal 2D system.

The two repulsive potentials discussed above in detail are
used in Eq. �7� with the reduced mass �=1/2, and the fol-
lowing numerical results are obtained. The energy eigenval-
ues Eb�rs� are plotted in Fig. 4, as a function of the density
parameter rs. Computed values are connected by solid �the
case of exponential shielding� and dashed �the case of Gauss-
ian model� curves. The other parameters behind these results
are fixed as �=�=1.

Remarkably, there are rs parameter values at which the
binding energies are optimal, i.e., they have extremal values.

By increasing or decreasing the density of the electron gas,
the bindings become weaker. The extremal values are at
about rs=11.4 for the hydrogenlike model, and at rs=17.2
for the Gaussian model. The binding energies are in the 10−3

range in atomic units, for the dilute system. Low carrier den-
sity and thus small Fermi energy �F=1/rs

2 are important
characteristics of cuprate superconductors.16 In these materi-
als the ratio of the critical temperature �Tc� and the Fermi
energy is in the range of 10−1. Furthermore, there is a satu-
ration and supression of Tc with increasing carrier density;
for further detail we refer to Fig. 3 of Ref. 16.

The observed extremal character is related, physically, to
our pseudononlinear construction of the effective shielding
of repulsive charges; namely, the constraint via the bounded
depletion hole at r=0 fixes a reasonable scaling in the poten-
tials. In standard linear-response theory9 the hole density at
r=0 can become higher than the host density n0. In such an
attempt one can get a monotonic dependence of Eb�rs� on rs

in the resulting shielded fields.
Further information is given in Figs. 5 and 6, which show

the 2D radial densities 2�r���r��2 computed with bound-state
wave functions at the extremal Wigner-Seitz parameters. The
corresponding potentials are also plotted. As expected, the
square-integrable wave functions are localized at about the
potential minima. In the investigated equal-mass case this

FIG. 5. The radial density 2�r���r��2 and the potential based on
hydrogenic screening of a negative unit charge. These are computed
at the rs=11.4 value of the density parameter.

FIG. 6. The radial density 2�r���r��2 and the potential based on
Gaussian screening of a negative unit charge. These are computed
at the rs=17.2 value of the density parameter.

FIG. 7. The coupling-constant ��� dependence of the energy
eigenvalue for the repulsive case. The results are based on the
Gaussian model of Eq. �13� with �=1/2 in Eq. �7�. The Wigner-
Seitz parameter is rs=17.2 and �=1.
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extension can represent a certain coherence length; some-
what surprisingly it is only twice the extremal density param-
eter.

As we observed in Fig. 3 for the attractive case, the bind-
ing energy depends on the coupling �. An illustration of this
fact for the repulsive case is given in Fig. 7. The Gaussian
model of Eq. �13� is used with �=1, �=1/2, and rs=17.2.
Results for ��1 are plotted. We can approximate our data
by a quadratic expression, i.e., �Eb

�G�������2. Rescaling of
�=1 by a macroscopic dielectric constant could result in a
notable reduction of the above-mentioned binding energies
�see Fig. 4 also�.

We finish our representation by discussing the question of
undershielding the repulsive charge. Figure 8 is devoted to
this problem. We have used Eq. �13� with �=1 and ��1 in
the Schrödinger equation �7� with �=1/2, at rs=17.2. One
can observe �see Fig. 2 for the attractive case� essential re-
ductions of energies for the �0

�dr rV�r��0 unconventional
condition.

The last results of Figs. 7 and 8, together with Figs. 4–6,
signal a nontrivial sensitivity of the magnitude of the binding

energy on the concrete physical situation. Fortunately, there
is a physical limitation. It should be clear from the discussion
of Eq. �14�, and as our illustrative figures indeed show, that a
more localized real-space character of the bounded �and nor-
malized� depletion hole around a repulsive unit charge re-
sults in an effective potential with a repulsive part of shorter
range. Clearly, the limitation is given by the Wigner model,
in which one has the 	n�r�rs�=n0 extremum for the hole.

III. SUMMARY

In this work we have investigated the problem of bound
states in two-dimensional shielded potentials. Effective po-
tentials, based on direct approximation for the screening
charge densities around attractive and repulsive unit charges,
are employed. In particular, the effective electron-electron
interaction is modeled via a properly constrained depletion
hole. In the detailed numerical analysis performed, we found
that in both the basically attractive and basically repulsive
potentials bound states appear under the �0

�dr rV�r�=0 stan-
dard, and may appear under the �0

�dr rV�r��0 unconven-
tional conditions. In the repulsive case the extremal character
of the binding energy, as a function of the density of the host
2D electron gas, is established with our physical models for
effective electron-electron interactions.
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