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Nuclear spin relaxation at ultralow temperatures
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Nuclear spin relaxation induced by hyperfine coupling is studied theoretically at positive and negative
submicrokelvin temperatures. By avoiding the assumption of the high-temperature limit, adopted in conven-
tional theories, we derive a formula in which the relaxation rate is expressed in terms of thermal averages of
nuclear spin energies. The exchange interaction induces an asymmetry in the energy spectrum, which leads to
relaxation rates that depend on whether the nuclear spin temperature is positive or negative. High-temperature
expansion methods and Monte Carlo simulations are applied to explain the anomalous results by Hakonen
et al. in rhodium qualitatively.@S0163-1829~99!12313-0#

I. INTRODUCTION

The success in finding nuclear spin ordering in noble met-
als has opened a new field in ultralow-temperature physics.1

After the discovery of antiferromagnetic order in copper be-
low 58 nK,2 silver was found to undergo phase transitions at
560 pK to antiferromagnetic~AF! order and at21.9 nK to
ferromagnetic~F! order.3,4 In these experiments negative
temperatures were produced by rapid inversion of the exter-
nal field. AtT,0 the system is stabilized by maximizing the
free energy5 so that high-energy excitations become impor-
tant, in contrast toT.0 where the equilibrium is established
by the free-energy minimum and low-energy excitations are
important.

The experimental studies have been extended to the
search for nuclear ordering in rhodium. Although the nuclear
order has not been achieved in experiments down to 280 pK
and up to2750 pK, it was found that the paramagnetic
susceptibility displays AF Curie-Weiss behavior atT.0 and
a crossover from F to AF tendency atT,0.6 Furthermore,
Hakonenet al. found that, at the extreme temperatures, the
nuclear spin relaxation is about two times slower atT,0
than atT.0.7 When the temperature of spins decreases and
becomes comparable with the internal field seen by the nu-
clei, the assumption of high temperature adopted in the con-
ventional theories cannot be applied anymore. At these tem-
peratures, a deviation from the Korringa law is expected to
occur.8 However, as far as the relaxation with infinitesimal
difference of temperatures between the nuclear spins and the
conduction electrons is considered, as in the conventional
theories,9 one cannot make a distinction between positive
and negative temperatures. On the other hand, the two
samples used in the experiments7 contained 6 and 14 ppm of
iron impurities. Although it is known that magnetic impuri-
ties increase the relaxation rate in metals,10,11 it seems not
very successful to pinpoint them as the origin of the anomaly
at T,0. Hence the anomaly has remained unexplained and
motivates the present study.

II. FORMULA FOR NUCLEAR-SPIN RELAXATION

We consider the rate of heat flow from nuclear spins~sys-
tem! to conduction electrons~reservoir! following Leggett
and Vuorio.12 We assume that the nuclear spin system is in
internal thermal equilibrium at temperatureT, different from
the temperature of the reservoirTe . In the experiments,7

performed in magnetic fields less than 400mT, Te was
about 100mK, whereasT was on the order of61 nK. We
denote the inverse of temperature (1/kBT) as b and be for
the system and reservoir, respectively.

We assume that the heat flow is mediated by the hyperfine
coupling

H5A(
i

I i•si , ~1!

where I i and si are the nuclear spin operator and the
conduction-electron-spin operator at sitei. Leggett and
Vuorio12 wrote down an expression for the heat-flow rate
from the system to the reservoir on the basis of the golden
rule,

dQ

dt
5

2p

\
A2(

i
(

a5x,y,z
(
n,n8

(
m,m8

Pn
~n!Pm

~e!~En2En8!

3u^nuI Iaun8&u2u^musiaum8&u2d~En1Em2En82Em8!,

~2!

wheren andn8 refer to the states of the system,m andm8 to
the reservoir.Pn

(n) andPm
(e) denote the canonical distribution

for the system and the reservoir, respectively. Leggett and
Vuorio12 expanded the r.h.s. of Eq.~2! in Db5b2be and
retained only the first-order terms in order to apply the
theory to the case where the temperature of the system is
close to that of the reservoir. However, in the present case,
Db.b anduDbu@be , so that we proceed with the calcula-
tion of Eq.~2! without expanding inDb. In a similar manner
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as done by Leggett and Vuorio,12 we introduce correlation
functions for the nuclear spins and the conduction-electron
spins:

F ia
~n!~v!5

1

2p\E2`

`

^I ia~ t !I ia&eivt dt, ~3!

F ia
~e!~v!5

1

2p\E2`

`

^sia~ t !sia&eivt dt, ~4!

whereF ia
(n)(v) andF ia

(e)(v) are defined by thermal averag-
ing of the nuclear spin and the conduction-electron Hamilto-
nians atb andbe , respectively.

In terms of the correlation functions, Eq.~2! is expressed
as

dQ

dt
522pA2 (
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a5xyz
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`

\vF ia
~n!~v!F ia

~e!~2v!dv.

~5!

By the fluctuation-dissipation theorem, the correlation func-
tions defined in Eqs.~3! and~4! relate with the local suscep-
tibilities, given in the units ofgmB andgNmN :

F ia
~n,e!~v!5

1

p

Im x ia ia
~n,e!~v!

12e2b\v
. ~6!

Though Imx ia ia
(n) (v) changes its sign depending onb,0 or

b.0, F ia
(n)(v) remains positive. If we substitute Eq.~6!

into Eq. ~5!, we can confirm thatdQ/dt vanishes whenb
5be , since Imx(v) is odd inv. Therefore we may rewrite
Eq. ~5! to the form

dQ

dt
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whereF ia(v) denotes the thermal average atb5be . Here
we notice that the characteristic frequency of the nuclear
spins is much lower than that of the conduction electrons.
Therefore it is legitimate to replaceF ia

(e)(2v) with
F ia

(e)(0) and to put it outside the integral in Eq.~7!. Then,
with aid of Eq.~6!, it is allowed to write
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dt
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whereF ia
(n)(v) does not depend oni as far as the system is in

the paramagnetic phase and, as the conduction-electron sys-
tem is paramagnetic and in a weak external field,x ia ia

(e) (v)
does not depend ona. As a result we can write Eq.~8! as

dQ
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whereN denotes the total number of spins. For a noninter-
acting electron gas,

lim
v→0

Im x i i
~e!~v!

\v
5

p

2
rF

2 , ~10!

whererF is the density of states at the Fermi energy per spin.
In the case when magnetic impurities are present, they inter-
act with the conduction electrons and remain in thermal equi-
librium at be . It is well known that magnetic impurities
enhance the relaxation rate of neighboring nuclear spins in
metals.10,11 Therefore to define a unique spin temperature in
the presence of magnetic impurities, rapid spin diffusion is
necessary among nuclear spins.10 Hereafter we confine our-
selves to this case. Then, the effect of magnetic impurities
appears via Imx ia ia

(e) (v) which acts equally atT.0 andT
,0 as can be seen from Eq.~9!. The difference in relaxation
rate betweenT.0 andT,0 must then come from the sec-
ond factor in Eq.~9! which consists of the correlation func-
tion of nuclear spins. We consider this in the following.

As it can be shown rigorously by returning to the Leh-
mann representation that

(
a5xyz

E
2`

`

\vF ia~v!dv52
1

\
^@H,I i #I i&b , ~11!

we obtain from Eq.~9!

dQ
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where we have defined

1

t0
5

2A2

\be
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v→0

1

N (
i

Im x i i
~e!~v!

\v
. ~13!

For a noninteracting electron gas, Eq.~13! turns into the
Korringa relaxation rate 1/t05pA2rF

2kBT/\ using Eq.~10!.
The nuclear spin Hamiltonian is of the form

H5Hint1Hz , ~14!

whereHint consists of the Ruderman-Kittel interaction, ex-
pressed as

Hex52(
~ i , j !

Ji j I i•I j , ~15!

and the dipole-dipole interaction between the nuclear spins.
The Zeeman energyHz in the presence of an external field
H0 is given by

Hz52\gH0 (
i

I iz . ~16!

It holds that

(
i

@Hint ,I i #•I i52Hint , ~17!

and
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(
i

@Hz ,I i #•I i5Hz . ~18!

Inserting Eqs.~17! and ~18! into Eq. ~12!, we obtain

dQ

dt
5

1

t0
~2DEint1DEz!, ~19!

where DEint5Eint(b)2Eint(be), with Eint(b)5^Hint&b
andDEz is defined in a similar way. On the other hand, by
definition we have

dQ

dt
52

d

dt
~Eint1Ez!. ~20!

Combination of Eqs.~19! and ~20! yields

d

dt
~Eint1Ez!52

1

t0
~2DEint1DEz!. ~21!

By the assumption that the nuclear spin system is in internal
equilibrium atb, Eint andEz are expressed in terms ofb.
Therefore, we rewrite Eq.~21! in the form

db

dt
52

1

t0

2DEint1DEz

d

db
~Eint1Ez!

, ~22!

which determines the relaxation rate ofb. Equation~22! is
our central result which tells that the inverse temperature
approaches the equilibrium in proportion to the differences
of interaction and Zeeman energies from their equilibrium
values and inversely proportional to the specific heat. In the
actual experimental situation,be /b.1025 and, moreover,E
decreases linearly withb at high temperatures. Therefore
Eint,z(be)!Eint,z(b) andDEint,z can be replaced withEint,z
in Eq. ~22!. In order to integrate Eq.~22!, one must know
explicitly Eint(b) andEz(b) as functions ofb. For simplic-
ity we discard the dipole-dipole interaction hereafter, so that
Eint(b) is replaced byEex(b).

III. EVALUATION OF THE RELAXATION RATE

In the high-temperature limit,Eex52b Tr Hex
2 and Ez

52b Tr Hz
2 . Then Eq.~20! is easily solved to giveb2be

5(b i2be)exp(2t/t) with

t215t0
21~2 TrHex

2 1Tr Hz
2!/~Tr Hex

2 1Tr Hz
2!. ~23!

This is a well-known result,9 wheret21 is independent ofb
so that no difference appears betweenb.0 andb,0. How-
ever, when we include the first-order correction

Eex52b Tr Hex
2 1

1

2
b2 Tr ~Hex

3 1HexHz
2!, ~24!

Ez52b Tr Hz
21b2 Tr HexHz

2 , ~25!

Eq. ~22! becomes

db

dt
52

b

t0

~2 TrHex
2 1Tr Hz

2!

~Tr Hex
2 1Tr Hz

2!

3F11b
~Tr Hex

3 12 TrHexHz
2!Tr Hex

2

~2 TrHex
2 1Tr Hz

2!~Tr Hex
2 1Tr Hz

2!
G .

~26!

It is obvious from Eq.~26! thatb no longer shows exponen-
tial decay and that a difference in the relaxation rate between
b.0 andb,0 appears. Furthermore, in vanishing field the
last factor on the r.h.s. of Eq.~26! turns to @1
1(b/2)TrHex

3 /Tr Hex
2 #, which grows with increasingb.0

for AF exchange interaction (Ji j ,0) since TrHex
3 .0. The

reverse holds for F exchange interaction (Ji j .0). Con-
versely, forb,0 the above relations are reversed. For strong
fields, on the other hand, the last factor on the r.h.s. of Eq.
~26! becomes unity, so that the relaxation remains just as in
the high-temperature limit. We next discuss in general terms
the roles of the exchange and Zeeman energies.

First, if the exchange interaction can be neglected, it holds
that Ez(b)52N\gH0/2 tanh(b\gH0/2) for I 51/2. Insert-
ing this into Eq. ~22!, we obtain db/dt5
2(1/t0\gH0)sinh(b\gH0) which is integrated as
tanh(b\gH0/2)5c exp(2t/t0), (c5constant). This shows
that relaxation takes place equally forb.0 andb,0. Sec-
ond, if the external field is absent, Eq.~22! turns to

db

dt
52

2

t0

1

d

db
log uEexu

. ~27!

That is, theb dependence ofEex(b) determines fully the
relaxation rate. The steeper is the change ofEex(b), the
slower is the relaxation rate. The rate is no longer symmetric
with respect tob50 in contrast to the case of the Zeeman
energy and this appears via the energy spectrum of the ex-
change interaction. Letr(E) be the density of states due to
the exchange interaction. Then, from the expressionEex(b)
5*Er(E)exp(2bE)dE/*r(E)exp(2bE)dE, it becomes clear
that the larger the density of states is at positive high~nega-
tive low! energy, the steeper isuEexu at b,0 (b.0). This
can be seen to be the case using the results of Monte Carlo
simulations as discussed below. With the change of the sign
of exchange interaction, the structure of the energy spectrum
reverses aroundE50 and so the relaxation rate atb.0 is
replaced with that atb,0. Equation~27! tells also about the
critical behavior at the nuclear ordering temperatureTC
(bC51/kBTC). Let us suppose thatEex;(b2bC)2a near
TC . Then the r.h.s. of Eq.~27! varies proportionally to (b
2bC), which shows critical slowing down of the relaxation
time. To obtain semiquantitative understanding of the experi-
mental results7 we next proceed with estimations based on
Monte Carlo simulation and on high-temperature expansion.

IV. APPLICATION TO RHODIUM SPINS

Rhodium, as well as silver, hasI 51/2 and face-centered-
cubic lattice. Following the model for rhodium,6 we replace
the Ruderman-Kittel interaction with the nearest- and next-
nearest-neighbor interactionsJNN /h5217.1 Hz and
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JNNN /h59.8 Hz, respectively. For this system microcanoni-
cal Monte Carlo simulations have been performed to calcu-
late the density of statesr(E) and the entropyS(E)
} ln r(E) in zero field by treating the spins as classical.13

Figure 1 of Ref. 13 shows the asymmetry with respect toE
50 in r(E), which is somewhat extended towards the posi-
tive, high-energy side. Using thisS(E), we have calculated
Eex(b) which is shown in Fig. 1~a!. The asymmetry inr(E)
betweenb.0 andb,0 is reflected in the energy as well.
Note that the slopedEex /db at b50 differs from a
quantum-mechanical high-T expansion by an order of mag-
nitude, which is due to the classical treatment of spins having
I 51/2. By using thisEex(b), Eq. ~27! is integrated and the
resultingb(t) is shown in Fig. 2~a!. Relaxation atb,0 is
clearly slower than atb.0. As the employed Monte Carlo
simulation treats the system as classical spins and is limited
to the case of vanishing field, we next apply the method of
high-temperature expansion.14,15

Elaborate calculation of the high-temperature expansion

with nearest- and next-nearest-neighbor interactions has been
made for the susceptibility and the zero-field specific heat up
to sixth order inb.15 However, to evaluate Eq.~22! in the
presence of an applied field, we must know the susceptibility
and the specific heat in a finite applied field. We made an
expansion ofEint(b) andEz(b) up to third order inb which
contains the term ofH0

4 in Ez(b). As the high-temperature
expansion is valid forbJNN , bgmH0!1, it is difficult to
compare directly with the experiments done atH0540 mT
andT;1 nK (520.8 Hz•h) since this field corresponds to
gH0/2p553.6 Hz in Rh (g/2p51.34 MHz/T).7 The calcu-
lated results forEex and Ez at 20 mT are presented in Fig.
1~b!. It can be seen from Fig. 1~b! thatEex(b) varies steeper
at b,0 than atb.0. Using these values ofEex andEz , we
integrate Eq.~22! to obtain the time dependence ofb and the
nuclear spin polarization̂I z&, which are displayed in Fig.
2~b!. Here we have assumed that the initialb at t50 is
60.25 in the units ofuJNNu21, in which the critical value is
known asbc50.498 for the model withJNN only.14 Al-
though ^I z& is proportional tob in the high-temperature
limit, nonlinearity appears with increasingubu. As a result, a
difference in behavior is seen betweenb and^I z&, as well as
in the initial values of̂ I z& for b560.25. Certainly, one can
see bothb(t) and ^I z(t)& to relax slower atb,0 than at
b.0. This behavior of̂ I z& is consistent with the experimen-
tal result.7 For a detailed comparison with the experimental
results, the calculation should be done at the experimental
valueH0540 mT. However, such an attempt displayed un-
physical behavior in the time dependence ofb(t) in the
third-order approximation. It is therefore necessary to go to
higher order in the high-temperature expansion, or to use
more accurate results forEex(b) andEz(b).

Nuclear spin relaxation at ultralow temperatures has re-
cently been studied in silver by Tuoriniemiet al.16 using
neutron transmission techniques. They found that the relax-
ation timet depends on nuclear entropy. In zero field and at
high entropies, i.e., at high temperatures, the experiment
yields t215(2.260.5)t0

21 . However, at lower entropies
(S,0.8R ln 2), t215(2.960.2)t0

21 , i.e., the relaxation is
considerably faster. Moreover, they observed that the char-
acteristic field at whicht crosses over from low- to high-
field regions at small entropies is larger by a factor of about
three than that given by Eq.~23!. Concerning the low-field
relaxation, as lower temperatures correspond to smaller en-
tropies, we have found a qualitative agreement with this ex-
perimental result since the exchange interaction is antiferro-
magnetic in Ag. For further comparison with the
experimental result, the exchange and Zeeman energies
should be calculated including the ordered state.

V. CONCLUSIONS

In conclusion, to clarify the anomaly that nuclear relax-
ation at negative temperatures is slower than at positive tem-
peratures, we have derived a formula for the relaxation rate
of b. It consists of a product of factors, one of which is
governed by the exchange and Zeeman energies for the
nuclear spins while the other one is represented by the imagi-
nary part of the conduction electron susceptibility which
does also include the effect of magnetic impurities. The
former depends on the nuclear spin temperature, in particu-

FIG. 1. Energy as a function of inverse temperatureb calculated
using~a! Monte Carlo simulation atH050 ~Ref. 13! and~b! high-
T expansion atH0520 mT ~see text for details!. Exchange and
Zeeman energies are shown by solid and dashed lines, respectively.

FIG. 2. ~a! Relaxation of inverse spin temperatureb as a func-
tion of time atH050 obtained from Eq.~22! using the energy from
Monte Carlo simulation~solid line! and high-T expansion~dashed
line!. In the latter, the initial values forb have been chosen so that
the expansion remains convergent.~b! Inverse temperature~solid
curve! and spin polarizationp ~dashed curve! as functions of time
calculated using high-T expansion atH0520mT. In all cases, the
upper and lower traces refer tob,0 andb.0, respectively.
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lar, whether the system is atb.0 or b,0. Since the AF-
dominated exchange interaction increases the density of
states at positive energy, and thus enhancesd lnuEexu/db at
b,0, it makes relaxation slow atb,0 ~while the reverse
holds for the F-dominated interaction!. That is, whenb,0,
the positive energy states contribute to the increase ofEex
and suppress the relaxation rate; this just corresponds to the
fact that the free energyF is maximized atb,0. Critical
slowing down has been predicted from the theory, which
shows the relaxation rate to turn proportional to (b2bC)
when b passes through the nuclear ordering temperature
TC (bC51/kBTC). Regarding the effect of magnetic impu-
rities, they act to enhance the relaxation rate equally atb
,0 andb.0 and, therefore, do not affect the difference in
the relaxation rate betweenT,0 andT.0. We have applied
the results of Monte Carlo simulations with classical spins as
well as high-temperature expansions up to third order inb to

the derived formula and found a qualitative agreement with
the experimental results. For a more quantitative comparison,
further improvement is necessary in the evaluation of the
exchange and Zeeman energies.

ACKNOWLEDGMENTS

We thank J. T. Tuoriniemi for valuable discussions on his
experimental results. One of us~H.I.! wishes to express his
gratitude to the Low Temperature Laboratory, Helsinki Uni-
versity of Technology for hospitality during his stay. This
work was supported by OCU Oversea Long Stay Mission
Program for Professors, by a Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Science, Sports and
Culture of Japan, by the Academy of Finland, and by the
Human Capital and Mobility Program ULTI of the European
Community.

1A. S. Oja and O. V. Lounasmaa, Rev. Mod. Phys.69, 1 ~1997!.
2M. T. Huiku and M. T. Loponen, Phys. Rev. Lett.49, 1288

~1982!; M. T. Huiku, T. A. Jyrkkiö, J. M. Kyynäräinen, M. T.
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