

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

- Author(s): Pesola, M. & Joo Lee, Young & von Boehm, J. & Kaukonen, M. & Nieminen, Risto M.
- Title: Structures of Thermal Double Donors in Silicon
- Year: 2000
- Version: Final published version

Please cite the original version:

Pesola, M. & Joo Lee, Young & von Boehm, J. & Kaukonen, M. & Nieminen, Risto M. 2000. Structures of Thermal Double Donors in Silicon. Physical Review Letters. Volume 84, Issue 23. 5343-5346. ISSN 0031-9007 (printed). DOI: 10.1103/physrevlett.84.5343.

Rights: © 2000 American Physical Society (APS). This is the accepted version of the following article: Pesola, M. & Joo Lee, Young & von Boehm, J. & Kaukonen, M. & Nieminen, Risto M. 2000. Structures of Thermal Double Donors in Silicon. Physical Review Letters. Volume 84, Issue 23. 5343-5346. ISSN 0031-9007 (printed). DOI: 10.1103/physrevlett.84.5343, which has been published in final form at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.84.5343.

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Structures of Thermal Double Donors in Silicon

M. Pesola,¹ Young Joo Lee,¹ J. von Boehm,² M. Kaukonen,¹ and R. M. Nieminen¹

¹Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

²LTAM, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

(Received 30 December 1999)

Accurate total-energy calculations are used to study the structures and formation energies of oxygen chains as models for thermal double donors (TDD's) in Si. We find that the first three TDD's (TDD0–TDD2) consist of one four-member ring, with one or two adjacent interstitial O atoms. These metastable TDD's form bistable negative-U systems with the corresponding stable, electrically inactive staggered structures. The TDD3-TDD7 structures are found to consist of four-member rings with adjacent interstitial O atoms at both ends. The TDD's with a central "di-Y-lid" core are found to become energetically competitive with the four-member ring TDD's only for clusters larger than ten O atoms.

PACS numbers: 61.72.Bb, 61.72.Ji, 71.55.Cn

A scientifically challenging and technologically important phenomenon is the appearance of thermal donor (TD) families in Czochralski-grown Si during annealing [1-3]. TD's are believed to have a common core into which oxygen is aggregated. The most studied TD family consists of up to 17 thermal double donors (TDD's, TDD0-TDD16) appearing in the temperature range 350-550 °C [4-6]. Despite years of intensive studies, the structures of TDD's are still not known, nor is the source giving rise to their donor property based on the (0/+) and (+/++) levels at around $E_c - 0.07$ eV and $E_c - 0.15$ eV, respectively [1]. The early TDD's (TDD0-TDD2) exhibit still unexplained bistability [2,5,7]. Also unexplained remains the anomalously high formation rate of TDD's as well as the relation between adjacent TDD's [1]. Electron nuclear double resonance (ENDOR) experiments have revealed that TDD's have $C_{2\nu}$ symmetry from TDD3 onwards: the O atoms lie on the same (110) mirror plane and the C_2 symmetry axis lies in the [001] direction [1-3,8,9]. According to the interpretation of the ENDOR results the C_2 symmetry axis should not contain O atoms [8]. If the $C_{2\nu}$ symmetry is to be maintained during the growth process, the O atoms must be added in pairs [2,8,9]. However, if the O atoms are added one by one then an alternating $C_{2\nu}$ - C_{1h} symmetry should occur [2,8,9].

The aim of this Letter is to report systematic studies on the structures and formation energies of oxygen chains as atomistic models for TDD's using density-functionaltheory (DFT) methods in the local-density approximation (LDA) [10]. We find that the first three TDD's (TDD0–TDD2) consist of one four-member ring (R) containing two threefold coordinated O atoms (O_r) responsible for the donor property [11], and one or two adjacent interstitial O atoms (O_i). These metastable R-TDD structures and the corresponding stable electrically inactive staggered O_i structures form bistable negative-*U* systems. TDD2 is found to form from TDD1 via a restructuring process. TDD3 is found to consist of two adjacent R's and TDD4-TDD7 are found to consist of more adjacent R's with O_i 's at the ends. The TDD's with a central "di-Y-lid" core (two O atoms denoted by O_{2Y} each bonded to three near Si atoms in a Y-shape fashion and two adjacent side O_i 's) [12] are found to become energetically competitive with the R-TDD's only at ten O atoms. The DFT LDA total energy calculations are performed using the self-consistent plane-wave pseudopotential (PP) method [10]. For Si we use the norm-conserving Hamann PP [13] with the nonlinear core valence exchange-correlation scheme [14]. The PP is of the fully separable Kleinman-Bylander form [15] and the s component is used as the local one. For oxygen we use the ultrasoft Vanderbilt PP [16]. A kinetic-energy cutoff of 28 Ry, the Γ -point sampling and cubic 128 or elongated 108 or 162 atom-site supercells are used. The elongated supercells allow us to study long oxygen chains, because the intersupercell $[11\bar{0}]$ distance is in this case about 22 and 35 Å for the 108 and 162 atom-site supercell, respectively. All ionic coordinates are allowed to relax without any constraints until the largest remaining Hellmann-Feynman force component is typically less than 5 meV/Å. The calculations for shallow donors are done for the case where the donor level is empty, i.e., for the doubly positive charge state. This seems to be justified because the shallow donor state is delocalized and can have only a marginal effect on the defect relaxations.

In agreement with Chadi [17], we find that the energetically most favorable TDD structures contain only O atoms (no Si interstitials or vacancies). The optimized lowest energy structures are shown in Fig. 1 and the corresponding formation energies [18] as functions of the electron chemical potential μ_e in Fig. 2. The TDD structures consist of R's and adjacent O_i's. The simplest calculated TDD structure, shown in Fig. 1(a), contains one O_i and one R [11] consisting of two O_r's responsible for the donor property. The calculated staggered O_{3i} [19], shown in Fig. 1(b), is electrically inactive. As seen from Fig. 2, O_{3i} and O_i-O_{2r} form a bistable negative-U system [the O_i-O_{2r}⁺ line (not shown) lies above the intersection of the O_i-O_{2r}⁺ and O_{3i} lines]. It is thus natural to identify O_i-O_{2r} as TDD0 because it obeys the experimentally observed bistability [2].

FIG. 1 (color). Calculated first thermal double donor structures containing four member rings and electrically inactive (X) structures. (a) $O_i - O_{2r}^{++}$. (b) Staggered O_{3i} . (c) $O_{2i} - O_{2r}^{++}$. (d) $O_i - O_{2r} - O_i^{++}$. (e) Staggered O_{4i} . (f) $O_i - O_{3r} - O_i^{++}$. (g) $O_i - O_{7r} - O_i^{++}$. Red and blue balls denote oxygen and silicon atoms, respectively. Si-O bonds ≤ 2.3 Å have been drawn.

Chadi [17], using similar methods to ours and a 32-atom site supercell, found a stable C_{2v} symmetric O₃ complex and suggested it as a candidate for TDD1. Ramamoorthy and Pantelides [20], with a 64-atom site supercell, speculated this O₃ complex to be unstable by 0.1 eV with respect to O_i-O_{2r}. Using a 128-atom supercell, we confirm this instability. Our calculation results in an energy 0.28 eV higher than for the ring structure.

FIG. 2 (color). Calculated formation energy plots for the oxygen complexes containing 3-5 oxygen atoms. Formation energies for the neutral configurations of the centers are shown as dotted lines. The electron chemical potential is measured from the valence band maximum.

shown in Fig. 1(e), is electrically inactive and will be called the X state in the following. As seen from Fig. 2 both O_{2i} - O_{2r} and O_i - O_{2r} - O_i form with O_{4i} a bistable negative-*U* system [the O_i - O_{2r} - O_i^+ (O_{2i} - O_{2r}^+) line lies above the intersection of the O_i - O_{2r} - O_i^+ and O_{4i} $(O_{2i}-O_{2r}^{++})$ and O_{4i} lines] in fair agreement with the infrared (IR) absorption experiments [21,22]. $O_i - O_{2r} - O_i^{++}$ can be relatively easily formed from $O_{2i}O_{2r}^{++}$ (the calculated barrier equals 0.36 eV) in agreement with the experimental kinetic study implying that TDD2 may form via reconfiguration from TDD1 [23]. The calculated barriers from O_{2i} - O_{2r}^{++} and O_i - O_{2r} - O_i^{++} to the staggered O_{4i} equal 0.36 and 0.50 eV, respectively, which after adding the experimental difference from TDD^{++} to TDD^{+} of 0.15 eV agree quite closely with the experimental values of 0.54 eV for TDD1 $\rightarrow X$ and 0.71 eV for TDD2 $\rightarrow X$ [5,7]. It is thus natural to identify O_{2i} - O_{2r} as TDD1 and $O_i - O_{2r} - O_i$ as TDD2. Adding one O_i to $O_i - O_{2r} - O_i$ results in the calculated R-TDD structure $O_i - O_{3r} - O_i^{++}$, shown in Fig. 1(f). The formation energy of the staggered O_{5i} is so high that no bistability occurs any more (Fig. 2). $O_i - O_{3r} - O_i^{++}$ contains

Adding one O_i to O_i - O_{2r} results in two calculated TDD

structures, O_{2i} - O_{2r}^{++} and O_i - O_{2r} - O_i^{++} , shown in Figs. 1(c) and 1(d), respectively. The calculated staggered O_{4i} [19],

bistability occurs any more (Fig. 2). $O_i - O_{3r} - O_i$ contains two adjacent R's (the R₂ core) and has the required C_{2v} symmetry. However, $O_i - O_{3r} - O_i^{++}$ contains one O_r on the C_2 symmetry axis which seems to conflict with the interpretation of the experimental ENDOR results [8]. Nevertheless, this is not necessarily a disagreement because ENDOR does not detect an increase of the number of O atoms in the TDD structures [24] contradicting the usual belief of an increasing number of O atoms in the TDD family. Moreover, ENDOR and electron paramagnetic resonance experiments do not always detect light elements on the C_2 axis of a defect [25]. Since we also find that the di-Y-lid structure is unstable for O_5 , it is natural to identify $O_i - O_{3r} - O_i$ as TDD3.

The next four calculated TDD structures contain more adjacent R's and are $O_i - O_{4r} - O_i^{++}$ (three R's), $O_i - O_{5r} - O_i^{++}$ (four R's), $O_i - O_{6r} - O_i^{++}$ (five R's), and $O_i - O_{7r} - O_i^{++}$ (six R's) shown in Fig. 1(g). All these R-TDD⁺⁺ structures have the same C_{2v} symmetric R₂ core as $O_i - O_{3r} - O_i^{++}$ and also contain one O_r on the C_2 symmetry axis. $O_i - O_{5r} - O_i^{++}$ and $O_i - O_{7r} - O_i^{++}$ with an odd number of O atoms have C_{2v} symmetry. $O_i - O_{4r} - O_i^{++}$ and $O_i - O_{6r} - O_i^{++}$ with an even number of O atoms have approximately C_{2v} symmetry in their centers but their overall symmetry is C_{1h} . We identify $O_i - O_{4r} - O_i$, $O_i - O_{5r} - O_i$, $O_i - O_{6r} - O_i$, and $O_i - O_{7r} - O_i$ as TDD4, TDD5, TDD6, and TDD7, respectively. We have not calculated larger R-TDD's but it is very likely that they can be formed by adding more O_i 's to the chains attached to the R₂ core.

The formation energies per O atom for $\mu_e = 0$ and the unoccupied Kohn-Sham donor levels of the calculated TDD⁺⁺'s are shown in Fig. 3. The calculated donor levels

FIG. 3 (color). Formation energy per oxygen atom of calculated oxygen-only TDD⁺⁺'s for the electron chemical potential $\mu_e = 0$. Inset: Unoccupied Kohn-Sham donor levels measured from the valence band maximum at Γ . The calculated band gap equals 0.56 eV. Black dots denote the energies of R-TDD⁺⁺'s and green dots those of di-Y-lid O_{xi}-O_{2Y}-O⁺⁺_{xi}, x = 1, 2, 3, 4.

of the R-TDD's (upper data points in the inset of Fig. 3) approach the conduction band minimum with an increasing number of O atoms consistently with the IR absorption experiments [2,4-6].

Consider then C_{2v} -symmetric TDD's having the di-Y-lid core [12]. The calculated di-Y-lid structure [12] is shown in Fig. 4(a). This $O_i - O_{2Y} - O_i$ has the required $C_{2\nu}$ symmetry without any O atoms on the C_2 symmetry axis. However, we find that the formation energy of $O_i - O_{2Y} - O_i^{++}$ is by 0.84 eV higher than that of $O_i - O_{2r} - O_i^{++}$ (Fig. 3). Moreover, the (neutral) $O_i - O_{2Y} - O_i$ is not a thermal, but a deep donor: the calculated distance of the occupied Kohn-Sham donor level from the valence band maximum equals 0.2 eV and the corresponding orbital is very localized [Fig. 4(a)]. Increasing the number of adjacent O_i's shifts the unoccupied Kohn-Sham donor level higher towards the conduction band minimum (lower data points in the insert of Fig. 3) consistently with the IR absorption experiments [2,4-6]. Because of the steady decrease of the formation energy per O atom of the di-Y-lid-TDD's (upper data points in Fig. 3) the formation energy per O atom of O_{4i} - O_{2Y} - O_{4i}^{++} shown in Fig. 4(b) falls to the region of the lowest formation energies per O atom of the R-TDD⁺⁺'s (Fig. 3). Thus, O_{xi} - O_{2Y} - O_{xi} $(x \ge 4)$ seem to become the last members of the TDD series which, however, also causes the change of the core. However, it is difficult to assess the exact transition from R-TDD's to di-Y-lid-TDD's because also other factors besides the formation energy (such as kinetics) play a role.

The difference between the R and di-Y-lid cores is as follows. At first, the R core can gain energy fast by form-

FIG. 4 (color). (a) Calculated constant-value surface of the electron density of the uppermost occupied electronic state of the neutral charge state of O_i - O_{2Y} - O_i (di-Y-lid). The electron density isosurface is at half of the maximum value of 0.03 e/ A^3 . (b) O_{4i} - O_{2Y} - O_{4i}^{++} . Si-O bonds ≤ 2.3 Å have been drawn. Red and blue balls denote oxygen and silicon atoms, respectively.

ing new adjacent R's. This mechanism seems to get exhausted at N = 6 (Fig. 3). On the other hand, although the formation of the di-Y-lid core requires originally more energy, it has a better ability to deform and release the strain caused by aggregating O_i 's, making the di-Y-lid-TDD's eventually competitive with the R-TDD's (Fig. 3).

In the di-Y-lid-related oxygen-semivacancy complexes the Si atom on the C_2 axis (Si₁ in Fig. 4) is displaced to the interstitial position (the cross in Fig. 4). The calculated formation energy for a neutral semivacancy consisting of O_{2Y} and two (four) side O_i 's (see Fig. 4) equals 3.9 (4.4) eV. The calculated oxygen-semivacancy structures show no electrical activity. The observation that displacing the Si atom on the C_2 axis of the di-Y-lid core to the interstitial position relieves strain may explain the finite number of the members of the di-Y-lid-TDD family: increasing the number of O_i 's causes increasing strain that at some point is relieved by ejecting the center Si atom to the interstitial position which simultaneously destroys the electrical activity.

As to the structures containing Si interstitials (Si_i) and vacancies we find in agreement with Chadi [17] that the formation energies for these structures are high. All models containing Si_i, including the O_i-Si_i-O_i model proposed by Deák *et al.* [26], have a formation energy of more than 4 eV in their doubly positive charge states at $\mu_e = 0$. We further find that the O atoms of O_i-Si_i-O_i⁺⁺ relax out of the (110) plane. We also studied several other structures composed of one Si_i and two or four O_i's. Placing one Si_i to the nearest T_d position resulted

in a staggered structure remaining in the (110) plane: The binding energy between O_{2i} and Si_i equals 1.7 eV and between O_{4i} and Si_i 0.9 eV [27]. Thus, Si_i 's—if available—may bind to O_i 's and form shallow double donor complexes.

To summarize our results: (i) The first three R-TDD's $(O_i-O_{2r}, O_{2i}-O_{2r}, and O_i-O_{2r}-O_i)$ [Figs. 1(a), 1(c), and 1(d)] with the lowest formation energies of the double donor structures are identified as TDD0, TDD1, and TDD2, respectively. (ii) They also form with the electrically inactive staggered O_{3i} and O_{4i} [Figs. 1(b) and 1(e)] bistable negative-*U* systems. (iii) $O_i-O_{xr}-O_i$, x = 3, 4, 5, 6, 7 [see Figs. 1(f) and 1(g)] with the same C_{2v} symmetric R_2 core are identified as TDD3-TDD7 despite the fact that their cores contain one O atom on the C_2 symmetry axis. (iv) At ten O atoms the di-Y-lid-TDD's are found to become energetically competitive with the R-TDD's.

The authors wish to thank Dr. T. Mattila, Professor K. Laasonen, and Professor M. J. Puska for many valuable discussions. The group of Professor Th. Frauenheim is acknowledged for their tight-binding programs. This work has been supported by the Academy of Finland. M. P. ac-knowledges the financial support of the Väisälä Foundation, the Finnish Cultural Foundation, and of the Progress of Technology Foundation. We acknowledge the generous computing resources of the Center for the Scientific Computing (CSC), Espoo, Finland.

- Early Stages of Oxygen Precipitation in Silicon, edited by R. Jones (Kluwer Academic Publishers, Dordrecht, 1996), and references therein.
- [2] C.A.J. Ammerlaan, in *Properties of Crystalline Silicon*, edited by R. Hull (INSPEC, London, 1999), p. 663.
- [3] C. P. Ewels and R. Jones, in *Properties of Crystalline Silicon* (Ref. [2]), p. 267.
- [4] B. Pajot, H. Compain, J. Lerouille, and B. Clerjand, Physica (Amsterdam) 117B & 118B, 110 (1983).
- [5] P. Wagner and J. Hage, Appl. Phys. A 49, 123 (1989).
- [6] W. Götz, G. Pensl, and W. Zulehner, Phys. Rev. B 46, 4312 (1992).
- [7] Ya. I. Latushko, L. F. Makarenko, V. P. Markevich, and L. I. Murin, Phys. Status Solidi (a) 93, K181 (1986).

- [8] J. Michel, J. R. Niklas, and J. -M. Spaeth, Phys. Rev. B 40, 1732 (1989).
- [9] T. Gregorkiewicz, H. H. P. Th. Bekman, and C. A. J. Ammerlaan, Phys. Rev. B **41**, 12628 (1990).
- [10] S. Pöykkö, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 57, 12174 (1998).
- [11] L.C. Snyder, J.W. Corbett, P. Deak, and R. Wu, Mater. Res. Soc. Symp. Proc. 104, 179 (1988).
- [12] L.C. Snyder, P. Deak, R. Wu, and J.W. Corbett, Mater. Sci. Forum 38–41, 329 (1989).
- [13] D. R. Hamann, Phys. Rev. B 40, 2980 (1989).
- [14] S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).
- [15] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
- [16] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990); K. Laasonen,
 A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, Phys.
 Rev. B 47, 10142 (1993).
- [17] D.J. Chadi, Phys. Rev. Lett. 77, 861 (1996).
- [18] The formation energies are obtained from total energy differences between unit cells with a defect complex and perfect crystal. They depend on both electron and atomic chemical potentials. We use the formulation of S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. **67**, 2339 (1991).
- [19] M. Needels, J.D. Joannopoulos, Y. Bar-Yam, and S.T. Pantelides, Phys. Rev. B 43, 4208 (1991).
- [20] M. Ramamoorthy and S. T. Pantelides, Appl. Phys. Lett. 75, 115 (1999).
- [21] T. Hallberg and J. L. Lindström, Appl. Phys. Lett. **68**, 3458 (1996).
- [22] J. L. Lindström and T. Hallberg, in *Early Stages of Oxygen Precipitation in Silicon*, edited by R. Jones (Kluwer Academic Publishers, Dordrecht, 1996), p. 41.
- [23] D. Åberg, B. G. Svensson, T. Hallberg, and J. L. Lindström, Phys. Rev. B 58, 12 944 (1998).
- [24] C. A. J. Ammerlaan, I. S. Zevenbergen, Yu. V. Martynov, and T. Gregorkiewicz, in *Early Stages of Oxygen Precipitation in Silicon*, edited by R. Jones (Kluwer Academic Publishers, Dordrecht, 1996), p. 61.
- [25] G. Davies and R. C. Newman, in *Handbook on Semiconductors*, edited by T. S. Moss (Elsevier Science, New York, 1994).
- [26] P. Deák, L. C. Snyder, and J. W. Corbett, Phys. Rev. B 45, 11 612 (1992).
- [27] The value of 3.7 eV for Si interstitial formation energy was obtained from J.-L. Mozos and R. M. Nieminen, in *Properties of Crystalline Silicon*, edited by R. Hull (INSPEC, London, 1999), p. 319.