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Although the precise microscopic knowledge of van der Waals interactions is crucial for understanding

bonding in weakly bonded layered compounds, very little quantitative information on the strength of

interlayer interaction in these materials is available, either from experiments or simulations. Here, using

many-body perturbation and advanced density-functional theory techniques, we calculate the interlayer

binding and exfoliation energies for a large number of layered compounds and show that, independent of

the electronic structure of the material, the energies for most systems are around 20 meV= �A2. This

universality explains the successful exfoliation of a wide class of layered materials to produce two-

dimensional systems, and furthers our understanding the properties of layered compounds in general.

DOI: 10.1103/PhysRevLett.108.235502 PACS numbers: 63.22.Np, 71.15.Nc, 62.25.�g, 34.20.Cf

Recent progress in the mechanical [1,2] and chemical
[3,4] exfoliation of weakly bonded layered inorganic com-
pounds, such as BN, MoS2, WSe2, Bi2Se3, Bi2Te3, raises
prospects for manufacturing two-dimensional materials
which can be used in a plethora of applications [5]. The
optimization of the exfoliation process should be helped by
a precise knowledge of the interlayer bonding in the parent
layered compounds, data which are currently unavailable.
This lack of data is also hampers the studies of the layered
compounds themselves, which can be topological insula-
tors [6], thermoelectrics [7], charge-density-wave materi-
als [8], and superconductors [9].

Two closely related quantities, the binding energy, EB,
between the layers and the energy required to remove an
individual layer, the exfoliation energy, EXF, are of crucial
importance for optimizing the process to produce a two-
dimensional structure, as well as for understanding the
interlayer bonding in the three-dimensional parent materi-
als. Unfortunately, essentially no information on the inter-
layer bonding is available from experiments, with the only
exception being graphite [10–12]. Moreover, the standard
first-principles computational approaches based on
density-functional theory (DFT) with widely used local
and semilocal exchange and correlation functionals are of
little help, since these functionals fail to account for the
nonlocal van der Waals (vdW) interactions between the
layers, as has been demonstrated for graphite [13,14].

Recently, however, several methodologies that are able
to handle vdW interactions have become available for
calculations. In this Letter, we apply two of these, the
nonlocal correlation functional method (NLCF) of
Refs. [15–17], and the adiabatic-connection fluctuation-
dissipation theorem within the random-phase approxima-
tion (RPA) [18–20] to study the interlayer binding of
layered compounds. The NLCF approach is free from
material specific parameters and has been shown to be in

good agreement with experimental data for various sys-
tems [15,16]. RPA is expected to be highly accurate in the
limit of long wavelength fluctuations involved in the vdW
interaction between distant objects [21] and has served as
the basis for analytic vdW theory for a long time [22], but
is less accurate for short-range interactions involved in the
covalent bonding in solids [23,24]. This has been ad-
dressed in a number of recent works aiming to improve
the properties of the RPA by introducing further terms in
the many-body interaction [24,25] and by the introduction
of approximations to the exchange-correlation kernel [26].
However, these extensions come at a formidable computa-
tional cost and the short-range deficiency mostly affects the
total correlation energy and is less serious when comparing
energy differences [23]. The RPA approach has been dem-
onstrated to produce accurate results for small molecules
[27], atomization energies in solids [20,28], surface and
adsorption energies [29], and the binding of graphite [30].
In an attempt to get a bird’s-eye view of the typical
behavior of the interlayer bonding in weakly bonded lay-
ered materials, we perform high-throughput calculations
for a large set of compounds, identified by data mining
techniques to be likely candidates for layered structures
with predominantly vdW types of interactions between the
layers. Unfortunately, the RPA is currently prohibitively
expensive from the computational point of view to be used
as the standard method of choice, and is applied here as a
reference for a smaller set of compounds.
A set of layered compounds were selected by searching

the Inorganic Crystal Structure Database [31] and applying
geometric criteria to identify vdW-bonded layered struc-
tures. The criteria were based on the packing ratio of the
crystal, identification of gaps in the structure along the
crystallographic c axis, and verification that the interlayer
bonds were elongated beyond what is expected for cova-
lent bonds by comparison with the sum of the covalent
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radii. The filtering procedure is described in detail in the
Supplemental Material [32]. The benefit of this procedure
is that it will generate a selection unbiased by our own
expectations and previous knowledge, thus providing a
more diverse set. From the generated list of compounds,
we selected a subset of tetragonal and hexagonal or trigo-
nal systems and further enlarged the list by making sure
that all reported layered compounds of transition metal
dichalcogenides (MX2, with M being a transition metal
and X being either S, Se, or Te) were on the list. After the
removal of some of the most computationally demanding
systems, we arrive at a mixed set of 86 compounds—
metals, semimetals, insulators, and magnetic compounds.
Apart from the MX2 compounds, the list thus obtained
contains many important materials, such as graphite, BN,
and the topological insulators Bi2Se3 and Bi2Te3. All
calculations were performed using the projector aug-
mented wave method as implemented in the electronic
structure package VASP [33,34]. We used an in-house
NLCF implementation [35] and the standard VASP imple-
mentation of RPA [20]. Crystal geometries were automati-
cally generated from database searches using the program
CIF2CELL [36].

The procedure for calculating EB is illustrated schemati-
cally in Figs. 1(a) and 1(b). In order to get accurate
estimates of EB, a general assessment of the different
DFT-based approaches was necessary. The list of inves-
tigated methods included the local density approximation
(LDA), the semiempirical method by Grimme [37,38]

[dispersion-corrected Perdew–Burke–Ernzerhof functional
(PBE-D)] as well as the NLCF methods by Dion et al. [15]
(vdW-DF1), Lee et al. [16] (vdW-DF2), and Vydrov and
van Voorhis [17] (VV10). We compared the calculated
interlayer binding energies to the more sophisticated
many-body treatment of RPA for a subset of layered com-
pounds, and studied how well the different DFT-based
approaches reproduce the reported vdW bond lengths, the
only experimental data pertaining to the vdW interaction
that is available for all compounds.
The conclusion is that all NLCF methods reproduce the

RPA trends of EB sufficiently well to be useful for predict-
ing interlayer binding energies, whereas two other popular
choices for treating vdW interactions, LDA and PBE-D, do
not [39]. In fact, any of the NLCF type of functionals can
be rescaled by its average deviation from the calculated
RPAvalues to yield an estimate of the RPA energy, limited
primarily by the inaccuracies in equilibrium bond lengths.
In particular, we find that the VV10 [17] functional is
highly successful, both for producing accurate geometries
and following the EB trends of RPAvery closely, so that an
accurate estimate of the RPA binding energy can be ob-
tained by simply rescaling the VV10 results by a factor of
0.66, and we will henceforth refer to this as the NLCF
estimate of the binding energy. It should be noted that this
estimate is purely based on the empirical observation of the
trends for the 28 compounds investigated by RPA. This is
illustrated in Fig. 1, where a representative set of the
calculations are shown, first as a demonstration of the

(a)

(b)

(c)

(d)

FIG. 1 (color online). (a) Procedure for calculating the interlayer binding energy by increasing the interlayer distance, d.
(b) Schematic illustration of a binding energy curve. (c) A set of interlayer binding energies calculated using the RPA and the
VV10 functional, demonstrating how a rescaling of the VV10 values can be used to match the more computationally demanding RPA
values. (d) Comparison chart for a number of different functionals widely used for treating vdW interactions relative to the RPA
results.
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effect of the rescaling in panel (c), and then by a compari-
son of a set of different functionals in terms of their relative
deviations from RPA in panel (d). We also point out
that RPA is superior to all other methods at reproducing
the experimental vdW interplanar bond lengths, with a
maximal deviation of 4%, thus further demonstrating the
high accuracy of RPA for vdW bonding in layered com-
pounds. The full data set used for the functional compari-
son is available in the Supplemental Material, Secs. II and
IV [32].

The smaller set of EB calculated using RPA and the
full set estimated by the rescaling of the VV10 data, are
shown in Fig. 2. The peak of the distribution is around

13–21 meV= �A2 (taken as 1 standard deviation around the
average of the distribution), with a tail that is slightly more
significant toward lower than toward higher binding ener-
gies. This region contains, among other compounds, graph-
ite and BN, and also most of the MX2 compounds. There
are outliers in the distribution at slightly higher binding
energies, consisting primarily of the Co family ditellurides
and NiTe2 and PdTe2. These compounds have significant

binding energies (15–25 meV= �A2) even when calculated
using a regular generalized-gradient approximation (GGA)
functional, which normally produces little or no binding
for vdW-bonded systems. This indicates that, although
there are contributions also from covalent interactions
captured by the GGA type functional, in a few cases, the
size of the vdW component of the binding remains
the same. We have not been able to find correlations of
EB to any other quantity in the present set of compounds.
The quantities scanned for such correlations were the
interlayer distances, intralayer thicknesses, and band gap
or metallicity, as well as properties of the constituent atoms
such as the atomic weights and polarizabilities. Nor can we
find any reason such as simple band filling arguments that

would give any correlation to the binding energies. We
conclude that the strength of the vdW bonds in layered
solids is a universal quantity. Such a universality is in line
with observations by Coleman et al. [3,4], based on the
experimental data on chemical exfoliation of a large set of
MX2 and Bi2Te3 compounds. Detailed information on the
binding energies for specific compounds is tabulated in the
Supplemental Material, Sec. IV [32].
The statement of universality of the vdW component of

the binding energy of layered compounds raises the ques-
tion whether our initial selection criteria might have been
biased in such a way that we only find compounds with a
vdW component of the binding energy in this range.
Within a given selection it is of course never possible to
validate the selection itself, but we nevertheless gain con-
fidence by the lack of correlation to any conspicuous
quantity within our selection. It is hard to see how one
could arrive at some group of compounds with different
binding properties in such a way that it does not constitute
a variation of some the properties to which we have found
no correlation within our data set.
In view of the known qualitative differences between

metals and semiconductors for large separations [40], the
observed universality seems counterintuitive, but can be
understood through simple arguments. The binding energy
is determined by the balance of the repulsive and attractive
parts of the interaction near the equilibrium geometry, and
these quantities depend on the electron density profile. The
repulsive part stems from the exchange interactions and
can be estimated well based on the electronic density alone
[41]. Similar considerations apply to the attractive vdW
interactions, described, e.g., by Zaremba and Kohn [42],
who derived a form for the high-frequency–long-
wavelength limit of the density response of a surface in
terms of the density profile, and were also among the
arguments leading up to the original formulation of the
NLCF method [43]. As the density profiles of different
vacuum interfaces show similar exponential decays, we
can understand why the vdW component of the binding
is constant and larger variations come from covalent
bonding.
Taking into account the recent interest in layered MX2

systems [3,4] we present in Fig. 3 EB for all layered forms
of MX2 compounds, which are found in the early and late
transition metal d series. We have also filled out some gaps
among the experimentally reported structures by calcula-
tions for hypothetical layered structures of CrTe2, TcSe2,
TcTe2, ReTe2, NiS2, and NiSe2. The crystallographic
parameters for these compounds are reported in the
Supplemental Material, Sec. III [32]. Our findings are
shown in Fig. 3, illustrating the variation of EB as we
move across the transition metal series, and by the respec-
tive chalcogen species. Most energies fall in the region

EB ¼ 15–20 meV= �A2 and, as a rule, the factor that most
strongly determines the binding energy appears to be the

FIG. 2 (color online). Distribution of binding energies esti-
mated from a NLCF (VV10), and distribution of the binding
energies calculated by RPA, in blue. The vast majority of the
compounds fall in the interval�13–21 meV= �A2. We also mark in
which histogram bin some particular compounds are. The outliers
on the high binding energy side around 30 meV= �A2 are mostly a
set of tellurides where weak covalent bonds contribute as well.
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transition metal species, while the dependency on the
chalcogen species is weaker. Exceptions to these rules
are found among the Cr compounds and the Co and Ni
family tellurides, which, as previously discussed, have
large covalent and electrostatic contributions to the binding
energies. Inasmuch as the atomic polarizabilities vary
smoothly as function of the transition metal or chalcogen
species [44], the lack of persistent trends in Fig. 3 is
important. This demonstrates the importance of a correct
description of the electronic states, incorporating collective
effects such as the band formation, to capture trends in the
binding energies.

The interlayer binding energy is closely related to the
exfoliation energy, EXF, the cost of removing a single layer
from the surface of the bulk compound. It is expected that
EXF � EB � 2Esurf , where Esurf is the surface energy, and
this point is further explained in Sec. IV of the
Supplemental Material [32]. We simulated exfoliation for
a series of multilayer systems by peeling off the top layer,
as shown in the inset of Fig. 4. The figure demonstrates, for
the cases of graphene, BN and MoS2, how peeling off a

single layer costs increasingly large amounts of energy as
the number of underlying layers increases. This behavior
originates from the interaction of the topmost layer with
not only its nearest neighbor, but also other layers.
However, the difference between EB and EXF is small, no
more than 4%, primarily due to surface relaxation effects,
as our calculations for graphene, BN, and all hexagonal,
nonmagnetic MX2 compounds indicate. Thus, the exfolia-
tion energy can be assumed to be equal to the interlayer
binding energy in all layered materials, so that our accurate
theoretical results for interlayer binding energies are not
only important for understanding the properties of bulk
layered compounds and inorganic multiwalled nanotubes
[45], but should also be useful in the optimization of the
exfoliation process.
In conclusion, using advanced calculation techniques, we

have shown that the interlayer binding energies of weakly
bonded layered compounds are found in a small energy

interval of 13–21 meV= �A2. These energies fall very close
to the exfoliation energies of the compounds, and are of high
importance for the understanding of weakly bonded layered
solids and their exfoliation into single layers.
This research was supported by the Academy of Finland

through the COMP Centre of Excellence Grant 2006–
2011. Computational resources were provided by
Finland’s IT center for Science (CSC). The ISCD has
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FIG. 3 (color online). Interlayer binding energies of the tran-
sition metal dichalcogenides. Panels (a), (c), and (e) show the
variation of the binding energy with respect to the transition
metal species and panels (b), (d), and (f) show the variation of
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FIG. 4 (color online). Energy required for exfoliation of a
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number of layers n as shown schematically in the inset figure.
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