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PHYSICAL REVIEW 8 VOLUME 34, NUMBER 2

Resistivity of Ca-Al metallic glasses

15 JULY 1986

J. Laakkonen and R. M. Nieminen'
Laboratory ofPhysics, Helsinki University of Technology, SF-02150 Espoo 15, Finland

{Received 11 December 1985)

The resistivity of Ca-Al metallic glass is calculated as a function of temperature and composition.
The diffraction model is used, including the partial dynamic structure factors. To account for the
blurring of the Fermi surface we propose a new model which preserves the wave-packet character of
the scattering electron. The results compare favorably with the experimental measurements avail-
able, indicating that the diffraction model is applicable also for high-resistivity systems. The use of
t-matrix formulation of scattering is seen essential and the value of the Fermi wave vector to be
used is shown to need careful consideration. The Fermi-surface blurring is found to affect the resis-
tivity but the changes are not drastic. The origins of the large resistivity are seen to be in the strong
scattering from Ca atoms, as expected, but also in the changes in the atomic and electronic struc-
ture.

I. INTRODUCTION

In an earlier publication' (hereafter referred to as paper
I) we reported calculations of the resistivity and thermo-
power of Mg-Zn metallic glasses. We applied the diffrac-
tion model using dynamical partial structure factors and
also considered the effect of the Fermi-surface blurring
due to the finite mean fro: path of electrons. Except for
the composition dependence of the thermopower, the
model was found to describe well the electric transport
properties of amorphous Mg-Zn alloys. Here we further
improve the method by taking into account the effect of
blurring the Fermi surface more rigorously and by using
the t-matrix formulation for the electron-ion interaction
instead of a simple model potential. In addition to blur-
ring the Fermi surface the finite electron mean free path
also has an effect on the electron-phonon interaction.
This has been discussed extensively by Cote and Meisel2 3

and their treatment is adapted here. Finally, a minor
change from paper I is to be found also in the treatment
of the multiphonon terms of structure factors. This
framework is then applied to a detailed investigation of
Ca-Al amorphous alloys.

Previously, ' the effect of blurring of the Fermi surface
due to the finite electron mean free path was included as
suggested by Ferraz and March. In this method, basical-
ly, the free-electron density matrix is substituted for by a
product of a free-electron density matrix and an exponen-
tially decaying factor which describes the decay of corre-
lations due to scattering. This leads to a resistivity for-
mula with an integral over momentum-transfer vector q
from zero to infinity. This formulation apparently does
not conserve momentum for q&2kF (kF is the Fermi
wave vector). Furthermore, the probability of existence of
electrons with a wave vector considerably greater than k~
is highly improbable as given by the Fermi-Dirac distribu-
tion. This is not accounted for by the method of Ferraz
and March. For this reason we choose a new approach
and consider the scattering problem in terms of wave
packets.

In the diffraction model the electron-ion interaction has
traditionally been described by a (weak) pseudopotential.
Here, instead, we apply the t-matrix formulation. This
we do to eliminate the choice between different pseudopo-
tentials and to be able to describe accurately scattering
from one scatterer. The latter argument is important
especially when considering high-resistivity systems. For
comparison, however, we give some results computed us-

ing the Ashcroft model potential and an ab initio pseudo-
poteiltial.

When compared with the Mg-Zn alloy discussed in pa-
per I, the Ca-Al metallic glass is an interesting case for
several reasons. Firstly, even though calcium and alumi-
num are simple metals (like Mg and Zn), the resistivities
measured for the Ca-Al alloys are extremely high (p & 300
JLIQ cm) and depend strongly on the composition of the al-
loy. ' For Mg-Zn alloys the measured resistivities are well
below 100 pQ cm. This is usually considered a condition
for the applicability of the diffraction model. It will thus
be of interest to see how well the diffraction model works
in this intermediate- or strong-scattering case. The aim is
thus to carry the refined diffraction model through as
completely as possible. Comparison with experiment then
reveals the importance of other possible localization
mechanisms and of effects beyond the present treatment,
such as charge transfer in the heterovalent system.

The paper is organized as follows: Sec. II contains the
formulation of the resistivity calculation, the results of
which are presented in Sec. III. Section IV contains a dis-
cussion and conclusions.

II. CALCULATION OF THE RESISTIVITY

The high electrical resistivity of metallic glasses implies
that the long electronic mean free path of crystalline met-
als is severely diminished in the amorphous state. An
electron can no longer be described as a delocalized (plane)
wave with sharp wave-vector value k, but one has to deal
with wave packets and a spread of k values. This certain-
ly is important in such cases as Anderson localization, but
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tP(r, 0)=,i f d'k q(k)e
(2n )'~i (2)

it may have a considerable effect on the resistivity even

well before the onset of localization.
To see easily how the wave-packet formulation enters

the diffraction model, it is best to go to the original
Ziman derivation of the model. The resistivity p is com-
puted from the differential scattering cross section
der(8)/dQ as

2fr 0'
p ~ 1 —cos sin

0 Q

A formula for do/dQ is derived in standard quantum-
mechanics texts by considering a wave packet,

y(k) =exp[ —(k —ko)'/2(b, k)'],
and for the I.orentzian,

p(k) =
( Ik —ko I

+i bk)" (8)

where n is an integer.
To compute the energy-dependent phase shifts in the

partial-wave expression for fk(8), one needs a potential
V(r) T.his we take to be the atomic potential of the par-
ticular atom (Ca or Al) calculated using the Herman-
Skillmans programs, shifted so that the potential vanishes
at the Wigner-Seitz —cell boundary (assumed spherical).
Thus, with this "crystal zero, "

where the wave packet is defined by a smooth function p
of width b,k and centered around a mean momentum ko.
ro is the position of the packet at time t =0. It is usually
assumed that qr is a peaked function and that the scatter-
ing amplitude fi,,(8) is a slowly varying function over the

range where y is appreciably different from zero (near
k=ko). Then one obtains

V(r) = V„(r)—V„(R),
where V„ is the atomic potential and

' 1/3

(10)

= If (8) I'

When
I fi (8)

I
is now expanded using either the Born

approximation or the partial-wave series, the regular
forms of the diffraction-model equations for the resistivi-
ty are recovered. While this assumption is vahd in most
cases, in some metalhc glasses the resistivity p may be so
large that the electronic mean free path I as computed
from the Drude formula (atomic units are used here and
in the following),

p =kr/n, l—,

is of the order of one or two lattice distances. Then the
uncertainty in the position of the electron is M-l, and
from the uncertainty principle Mb k ) 1 one obtains

b, k =s/l,
where s is a number of the order of 1. Since typically
kF & 0.6 a.u., one sees that the width of the wave packet
can be a sizable fraction of the mean momentum of the
wave packet (ko-kF) and the approximation (3) may
break down. When this assumption is relaxed, one ob-
tains, instead of Eq. (3) (for details see the Appendix),

f d'k
I q«) I' Ifi(8) I

'
dQ f d'k Iq(k) I'

For the shape q(k) of the wave packet, below we use
both Gaussian and I.orentzian forms. For the Gaussian
the wave packet

with n equal to the atomic density of the alloy. Other ef-
fects due to the condensed phase were neglected.

For comparison, the use of a pseudopotential for the
matrix element instead of the partial-wave expansion was
studied. Two potentials, the Ashcroft model potential9
and an ab initio pseudopotential, ' were considered. The
empty core radius R, of the Ashcroft model potential was
determined as in paper I, i.e., by fitting the liquid-metal
resistivities. Using typical values for the packing fraction

g and the hard-sphere diameter n of liquid metals, " we
obtain R, (A1)=0.624 A and R, (Ca)=0.910 A. No
correction for the possible charge-transfer effects was ap-
plied. The ab initio pseudopotential parameters were tak-
en from Ref. 10. The screening was included by using the
dielectric function given by Taylor. '

Cote and Meisel ' have noted that the change in the
electron-phonon interaction due to the finite electron
mean free path can be taken into account through the
Pippard-Ziman condition. ' In short, this means that if
the phonon wavelength exceeds the electron mean free
path l, the electron does not "see" the phonon and the
scattering is diminished. In the calculations this is includ-
ed ' by multiplying the one-, two-, etc. phonon terms of
the dynamical structure factor appearing in the phonon
wave-number integral by the Pippard function' [F(ql)]:

2 y tanh-'y 3
(11)

y —tanh y

With these refinements the resistivity p can now be com-
puted from the equation (also see paper I)

n; 1

3mn, 4 k yk
2

X f d k Iy(k) I f dqq f c, g (2m+1)e™sin5'P (cos8) S„(q,co)
k2 —~ 2n exp( ar) —1
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00

+cs g (2m +1)e sin5~ P (cos8) Sbs(q, co) +(c,cb)'~ g g (2m +1)(2n +1)sin5'

X sin5„ P (cosg)p„(cosg)

i(5 —5 ) i(5~ —5~ )X(e " +e "
) S, i(qco)

cos8=1 —q /2k and n, =kF/3' . (12)

Above, n; and n, are the ion and electron densities,
respectively, c, and cb are the concentrations
[c,=N, /(N, +Ns), etc.] of species a and 5, 5' and 5
are the mth phase shifts corresponding to the potentials
of atoms of type a and b, P= 1/ksT, and S,&(k,r0) is the
dynamical partial structure factor. For the shape of the
wave packet [y(k)], the functions of Eqs. (7} and (8) are
used and the k integrals are over the whole k space. In
(7) and (8), ko denotes the mean momentum of the wave
packet (i.e., the momentum of the scattering electron) for
which the Fermi wave vector k~ was used. The wave vec-
tor q is the momentum transfer between the Fourier com-
ponents of the scattering wave packet, and the limits of
the q integral (from 0 to 2k} ensure the conservation of
momentum. The electron mean free path I is determined
self-consistently using Eq. (4}. When computing the
width of the wave packet hk, the relationship hk —1/I is
reasonable even if the exact value of the parameter s in
Eq. (5) is not known. Therefore, we first computed the
resistivity as a function of s and then fixed s for different
types of wave packet. The order for the Lorentzian-type
wave packet [power n in Eq. (8)] was chosen to be n =10.
The phase shifts in (12) were included up to angular-
momentum quantum number 1 = 10.

The dynamical partial structure factor was computed in
the same way as in paper I, except for one change. The
multiphonon contribution is now taken into account by
using the Sham-Ziman approximation, ' i.e., inclusion of
the multiphonon terms is assumed to cancel the Debye-
Waller factor in the one-phonon term.

Next, the parameters of the model are given. For the
details of the model we refer to paper I. The density d of
the Ca-Al alloy was determined from a graph fitted to the
values measured for CasoAiio and Ca60Al~ metallic
glasses and those of pure Ca and Al (crystalline) metals:
F«CasDAlzo, d =1.714 g/cm', for C~l~, d =1.936
g/cm; «r Ca, d =1.54 g/cm; and for Al, d =2.70
g/cm . The Wigner-Seitz radius R was fixed to the value
of 3.64 a.u. The hard-sphere diameters crc, and oA& were
obtained from the nearest-neighbor distances calculated
by Hafner' for the amorphous CasoAl~ compound. In
order not to exceed the fcc maximum packing density for
any composition, we slightly decreased the values given by

Hafner (keeping the ratio cr~/+~i. constant) and used
the following diameters: crc,——3.41 A and 0&i ——2.86 A.

The sound velocities were determined as in paper I, i.e.,
by scaling from the pure-metal values by 1/vd. The
longitudinal and transverse speeds of sound used are, for
Al, uL ——6300 m/s and uT ——3230 m/s, and, for Ca, '

uL ——4030 m/s and u T 2190 m/s. In the glassy metal the
same value for the longitudinal speed of sound was used
as for the crystalline material; the transverse speed was
decreased by 15'%%uo from the corresponding crystalline
value. '

An important parameter is the Fermi wave vector kF.
Previously, ' it was determined directly by the free-
electron formula, but in the case of Ca-Al alloy this
method is obviously not as justified as for Mg-Zn. This is
indicated by the apparent k+ value determined from the
Hall-effect measurements: According to these measure-
ments, k~ either stays nearly constant' or changes with
composition, being considerably smaller than the free-
electron value. Following the former experimental result
we used in our calculations, kF ——1.18 A ' for the whole
composition range. For comparison, some calculations
were repeated with kF values determined directly from
the free-electron formula.

III. RESULTS

Figure 1 shows the calculated four largest scattering
phase shifts as a function of energy (as measured from the
crystal zero) for Al and Ca. From Fig. 1(a) one sees that,
for Al, s and p scattering dominate and the d contribution
emerges gradually only at high energies. For Ca [Fig.
1(b)] the situation is different: the d-phase shift changes
now abruptly at k =1.2 A ', resembling a resonance.
This results in strong d-eave scattering. Band-structure
calculations for Ca-Al metallic glass ' also show the signi-
ficance of Ca-derived d states.

When studying the effect of a finite electron mean free
path using the franmwork presented in the preceding sec-
tion, one has to specify the width of the wave packet hk
via Eq. (5). Dbviously, one cannot unambiguously deter-
mine s and therefore the resistivity of two Ca-Al metallic
glass compounds at T =300 K were computed as a func-
tion of s. The results for Ca60A140 shown in Fig. 2(a) indi-
cate a common behavior for both types of wave packets:
With increasing s the resistivity at first decreases by about
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in. To study the effect of Fermi-surface blurring for the

CasoAlqc compound, the values s =0.25 and 0.5 were
used.

The temperature dependence of the resistivity of the
CasoA14o compound is presented in Fig. 3. When com-
pared with the experimental results one sees that the
sharp Fermi-surface curve with kF=1.18 A ' gives the
best fit: Experimentally, the p(T) curve dna:reases mono-
tonously with increasing temperature, approximately par-
abolically at lowest temperatures, and linearly at higher
temperatures. In Fig. 3 this is qualitatively reproduced
well, except for a small discrepancy below 50 K. Quanti-
tatively, the change in p(T) values between T =0 and 300
K is theoretically considerably less than the experimental
findings (2—3% versus 11—13%). We shall return to
this question in the following section. The experimental
room-temperature value for the resistivity (381—433
p, Q cm}, however, is well reproduced theoretically (see Fig.
2). Figure 3 clearly shows how the inclusion of the effect
of a blurred Fermi surface does not drastically change the
form of the temperature dependence even when a very
wide wave packet is used: with increasing s the tempera-
ture dependence only becomes gradually weaker. Once
again, no essential differences between the two wave-
packet forms can be seen. In addition to the Fermi-
wave-vector value kz ——1.18 A ', the temperature depen-
dence for the sharp Fermi was also calculated using the
kF value given by the free-electron formula (kF ——1.33
A '). In this case the change is more pronounced: The

temperature coefficient of resistivity (TCR) becomes posi-
tive and the magnitude of resistivity at T =300 K drops
from 369 to 128 pQ cm.

Figure 4 shows the resistivity as a function of tempera-
ture for the CaioAlzo amorphous alloy. Now the curve
corresponding to a sharp Fermi surface (i.e., s =0) is seen
to gi.ve a resistivity that increases monotonously with tem-
perature, i.e., the TCR, defined as a=(l/p)(dp/dT), is
positive. In this case the inclusion of the Fermi-surface
blurring decreases the room-temperature value of the
TCR and makes the temperature dependence steeper when
the width of the wave packet increases.

According to these results, the wave-packet formulation
has different effects on the temperature dependence of
resistivity for the CasoA14o and Ca3cA17o systems: In the
former case the TCR increased and in the latter case it de-
creased when the wave-packet width increased. To study
this apparently contradictory behavior, we have plotted, in
Fig. 5, the TCR as a function of resistivity at room tem-
perature. Except for one point (the CaMA17Q alloy with
the widest Gaussian wave packet), the dependence of the
TCR on resistivity is seen to be linear in both cases. This
kind of behavior is also well known experimentally when
the TCR's of different compositions are studied (the so-
called Mooij correlation}. 22 Now it is obvious that the in-
clusion of Fermi-surface blurring either increases or de-
creases (nearly linearly) the room-temperature TCR, de-

pending on whether the resistivity is decreased or in-

creased, respectively. The qualitative form of the p(T}

sharp Fermi surface 1.02

6, ~=05

1.02

0.98

l

200

l

&OO 500

400 500

FIG. 3. Resistivity of Ca60A140 metallic glass as a function of
temperature. Two of the curves are computed using the sharp-
Fermi-surface formula, while the others take into account the
Fermi-surface 11urring. The type of wave packet and the value
of the width parameter s are shown. If not otherwise indicated,

0
the value of the Fermi wave vector used is kF ——1.18 A

FIG. 4. Resistivity of CaioA170 metallic glass as a function of
temperature. The curves are computed for a sharp Fermi sur-
face and for Gaussian {G) and Lorentzian {L) wave packets.
The corresponding value of the width parameter s is indicated.
In a11 cases, k~ ——1.18 A
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FIG. 5. Temperature coefficient of resistivity as a function of
resistivity. Open symbols refer to Ca60A40 and solid to
Ca30A17p. The circles give the sharp-Fermi-sllrfsce vahles sfld
the triangles and squares show the results of using Gaussian and
Lorentzian wave packets, respectively. The widths of the wave

packets are the same as those in Figs. 4 and 5.
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100
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curve does not change. The direction of change in the
resistivity with increasing wave-packet width depends on
the composition.

For a more detailed comparison with experiments, the
computed temperature dependence of resistivity is shown
in Fig. 6 for Ca-Al compounds containing 20, 40, 45, and
60 at. % Al. All these calculations are due for a sharp
Fermi surface —according to the preceding discussions the
inclusion of the Fermi-surface blurring only slightly in-
creases the room-temperature TCR [below (see Fig. 9}, it
is shown that for this concentration range a nonzero
wave-packet width decreases the resistivity]. There are
experimental measurements for concentrations 20—45
at. %%uoA1 . Thes ecompar e favorabl ywit h th e theoretica 1

results: In each case the temperature dependence above 50
K is about linear with a negative TCR. The dependence
is found to be weakest for the 20—at. % Al curve and to
become sto:per when going towards 45 at. % with an ob-
vious saturation around 45 at. % Al. For a compound of
60 at. % Al our calculations show still the same kind of
temperature dependence, with a slope about halfway be-
tween the curves corresponding to 20 and 40 at. % Al.

The theoretical and experimental TCR's as a function
of composition at 300 K are shown in Fig. 7. The calcu-
lated and measured curves indicate the same qualitative
features. Moreover, the TCR clearly shows how the com-
puted and measured TCR's agree even quantitatively for
20 at. % Al, but the experimental TCR decreases far more
rapidly than the theoretical one when going towards
higher Al contents. The theoretical curve has a minimum
at 45 at. % Al. To test this there are unfortunately no
measurements for compositions with more than 45 at. %
Al.

Mizutani and Matsuda have measured a prominent,
linear dependence between the TCR and the resistivity,

FIG. 6. Temperature dependence of resistivity for different
Ca-Al metallic glasses. The numbers give the Al content in

at. %. A sharp Fermi surface ~as used and kp ——1.1S A ' for
all cases.

0

i

40 60
Concentration Al (ot. '/o)

FIG. 7. Temperature coefficient of resistivity (TCR) as a
function of composition at room temperature. Present results
are shown by sohd line, circles refer to the experimental mea-
surements by Love et al. (Ref. 5), and triangles to those by
Mizutani and Matsuda (Ref. 20).
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(i.e., the Mooij correlation) at 300 K for Ca-Al com-
pounds with 25—40 at. % Al. The corresponding theoret-
ical results for compositions with 20—70 at. % Al are
shown in Fig. 8. One can see a clear correlation between
the TCR and the resistivity: The TCR decreases as the
resistivity increases, as is also confirmed experimentally.
The theoretical values are, however, more scattered, and
in the high-resistivity end the decrease in the TCR seems
to set in more slowly than the linear dependence would
lead one to expect.

Figure 9 shows the composition dependence of resistivi-
ty at room temperature. Four theoretical curves are
drawn, corresponding to different assumptions about
Fermi-surface blurring and the value of k~. Also, the
available experimental results ' are shown. There is a
rather good agreement between experiment and theory for
curves with k~ ——1.18 A '. The assumption of a sharp
Fermi surface is seen to best reproduce the experimentally
found fast and large increase in the resistivity with an ap-
parent maximum around 45 at. % Al. This same kind of
behavior also results when the blurring of the Fermi sur-
face is taken into account, but the rise in the resistivity
and the position of the maximum deviate more from the
experiments the larger the width of the wave packet is
(note that even for the same b,k the FWHM is larger for
the Gaussian- than the Lorentzian-type wave packet).
These results, along with the temperature-dependence
curves (Figs. 3„4, and 7), indicate that the width of the
wave packet to be used in the theory developel here is ac-
tually very small; a "correct" value for s is probably
closer to 0 than 0.5.

The use of partial structure factors enables one to ex-
press the resistivity in the form [see Eq. (12)]

I
e7P

l f ( I l

400

300

I I

20

1 1 1 1 i I

60 80 '100

Concentration Al (Gt. % I

FIG. 9. Resistivity of Ca-Al metallic glass as a function of
composition. Two curves have been calculated by taking into
account the blurring of Fermi surface; these are marked as
"Lorentzian" and "Gaussian" according to the type of the wave
packet used. The wave-packet-width parameter has a value
s =O.S in both cases. One of the sharp-Fermi-surface curves
was calculated by using the Fermi-wave-vector value from the
free-electron formula; in aH the other cases k~ ——l. 18

'=const for whole concentration range. The calculations
correspond to T =300 K. The experimental points shown by
the circles (T =29S K) are from Love et al. (Ref. S) and the tri-
angles ( T =300 K) refer to the measurements by Mizutani and
Matsuda (Ref. 20).

P =PA&-At+PC -Ca+PC -Al ~ (13)

~ 65

-0.8
25 ~

~ 60
~ )5

~55
50

100

1 I

200 300

q (pQcm)

g5 e

I

400

FIG. 8. Relation between TCR and the resistivity at 300 K
for Ca-Al metallic glass. Each point corresponds to a different

composition. This is indicated by the number giving the Al con-

tent in at. %. The sharp-Fermi-surface formulation has been

used.

where p; &
is the term including the partial structure fac-

tor p; (k,co). Then one may roughly say that p;.; describes
the resistivity due to scattering from atoms of type i and

p, (i~j} is a kind of interference term. A plot of these
components as a function of composition is shown in Fig.
10. The two sets of curves correspond to a sharp Fermi
surface and a Gaussian wave packet with s =0.5. Figure
10 reveals various interesting features. First, in Ca-Al
metallic glass, Ca is a strong-scattering element giving a
large contribution to the total resistivity. For large Al
concentrations, pA] A~ turns out to be small, but for inter-
mediate concentrations pA~A~ rises unexpectedly high,
above 100 p, Qcm. This effect is obviously a consequence
of changes in atomic [S„,~,(k,co)] and electronic (value
of kp } structure. When approaching the pure-metal ends,
the interference term pc, && goes to zero, but between these
two limits pc, ~~ is seen to provide a large fraction of the
total resistivity. At high Al concentrations, pc A& is even
negative. This is a structural effect following from
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FIG. 10. Composition dependences of the three resistivity
terms p~~ ~~, pq, .c„and pc, &~ which add up to the total resistivi-

ty. The solid curves have been calculated using a sharp Fermi
surface and the dashed ones are from the wave-packet formula-
tion with a Gaussian wave packet (s =0.5). The temperature is
T=300K and kF ——1.18 A
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FIG. 11. Resistivity as a function of the Fermi wave vector
at T =300 K. Two alloys containing 40 and 70 at. % Al are
considered. The sharp-Fermi-surface formulation is used.

Sc,.~&(k,co) not being positive definite. As noticed earlier,
the wave-packet formulation is not seen to give any new
qualitative features, but quantitative changes are notable,
especially at intermediate concentrations. An interesting
property evident in Figs. 9 and 10 is that when approach-
ing the pure-metal ends, the resistivity becomes essentially
independent of the wave-packet width; only for the high-
resistivity Ca can a small difference be seen.

The k~ dependence of the resistivity is presented in Fig.
11, where the resistivities of Ca60A140 and Ca30Alqo com-
pounds are plotted as a function of the Fermi wave vector.
The fast increase for small kF and the approach towards
zero at large k~ result from the 1/n, factor in Eq. (12).
The important point in Fig. 11 is the sharp peak with a
very large increase in resistivity in the vicinity of k =1.2
A '. The curves concretely show the sensitive depen-
dence of resistivity on the value of kF, i.e., on the elec-
tronic structure of the metallic glass. The fact that not
only the height but also the positions of the peaks of Fig.
11 change with composition makes the concentration
dependence of kz of utmost importance in the diffraction
model. The results of the calculations for the concentra-
tion dependence of resistivity (Fig. 9) clearly support the
use of kF-=1.18 A '=const for the whole composition
range, as deduced from Hall-effect measurements. ' The
application of the free-electron formula for kF, on the
other hand, is seen to result in an incorrect composition
dependence of resistivity (see Fig. 9). This finding is con-

sistent with the conclusion ' that Ca-Al metallic glass is
not a free-electron-like system.

%e also computed the resistivity using a pseudopoten-
tial instead of a t matrix (the results to be described are
for the sharp-Fermi-surface formulation with kz ——1.18
A ' throughout). The Ashcroft model potential and the
ab initio pseudopotential by Bachelet, Hamann, and
Schliiter' were applied. In the case of Ashcroft potential,
the room-temperature resistivity of Ca60A14o was 80
pQcm and p(T =0) was smaller than p(T =300 K) with
the p(T) curve turning downward around 300 K. All this
is clearly in contradiction to the experiments. The ab ini
tio pseudopotential gave distinctly better results: Now
p(T =300 K) 170 pQcm and the temperature depen-
dence was closer to the correct form with p(T =0)
~p(T =300 K), but the dependence was still markedly
less steep than that shown in Fig. 3. Both potentials
yielded a composition dependence of p(c) being convex
upward with a maximum at c=40—50 at. % Al. These
findings suggest that the t-matrix formulation of scatter-

ing is essential for high-resistivity metallic glasses formed

of simple metals, even if good results have been obtained
with pseudopotentials for the usual, low-resistivity glasses
of simple metals.

»nally, we comment on the effect of the Pippard func-
tion' and the Sham-Ziman approximation. ' For the in-
clusion of electron mean-free-path effects on the
electron-phonon. interaction in the form of the Pippard
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function, we found what Meisel and Cote did:i The
room-temperature values of resistivity and the TCR de-
crease and the low-temperature minimum of the p(T)
curve become shallower. The absolute value of resistivity
decreased only 1—2%, but the change in temperature
dependence was notable and a reduction by roughly a fac-
tor of 2 in the TCR was seen. The Sham-Ziman approxi-
mation is meant to take into account the neglected terms
in the dynamical structure factor when the multiphonon
expansion is truncated at the one-phonon term. Corre-
spondingly, the Sham-Ziman approximation is expected to
have some effect only at high temperatures by increasing
the resistivity. At low temperatures multiphonon. process-
es are scarce in any case; thus, as a result, multiphonon
terms increase the TCR. The calculation confirmed this:
Below 100 K practically no change in resistivity was seen;
at 300 K it increased by about 0.7% and at 500 K by
about 1.7%.

IU. DISCUSSIONS AND CONCLUSIONS

The results given show that the calculations reproduce
well, both qualitatively and quantitatively, the magnitude
and the composition dependence of the resistivity. For
the temperature dependence the agreement is only qualita-
tive; experimentally, considerably steeper temperature
dependences have been found. The same observation was
made earlier for the Mg-Zn system in paper I. Very re-
cently, Hafner considered this seeming inadequacy of
the diffraction model. He points out that usually, as in
this paper, the thermal expansion of the material is not
taken into account. For crystalline metals this is justified,
since the change in p(T) from T =0 to room temperature
is very large, but in the case of metallic glasses this
change is only a few percent and then even the small ef-
fect of thermal expansion should be accounted for. Now
the thermal expansion would affect n; and the S,s(q, ~)'s
in Eq. (12). For the dynamical structure factors the re-
sulting change in p is difficult to estimate, but a decrease
in n; due to expansion will directly decrease p also, when
temperature increases. This makes the TCR smaller:
Hafner found a decrease in the TCR by a factor of 2—3
due to thermal expansion. Depending on the composition,
this is just what is needed in Fig. 7. From Fig. 8 it is ob-
vious that in order to make the u-versus-p dependence
linear, the volume effect, i.e., the expansion, should be
largest for those compositions with the largest resistivi-
ties. It would thus be of interest to know the thermal ex-
pansion of Ca-Al metallic glass as a function of composi-
tion.

The calculated composition dependence of resistivity
(Fig. 9) agrees rather well with experiment. Since the
phase shifts used were independent of concentration, it
appears that the concentration dependence of resistivity is
mostly due to that of dynamical structure factors and the
Fermi wave vector. The determination of the phase shifts
from the atomic-type potential excludes composition ef-
fects such as charge transfer. This procedure can be ex-
pected to be most accurate near the ends of the concentra-
tion range and least accurate for intermediate composi-
tions. However, from Fig. 9 it can be seen that the agree-

ment with experiment is best at intermediate concentra-
tions and seems to start to degrade when approaching the
pure-Ca end. Then the deviation close to pure Ca hints of
a possible inadequacy of the S,s( k, ro) to describe this con-
centration range, since here the phase shifts should be
best. Here the composition dependence of S,b(k, co) fol-
lows from that of S~(k}, as described in paper I. The
static structure factors are obtained from the Percus-
Yevick approximation for hard spheres. In general, this
gives a good account of the composition dependence, but
it would be useful to have S,b(k) for amorphous alloys
(especially for small concentrations of the other constitu-
ent} obtained using other methods.

The results indicate that it is not vital to include the
Fermi-surface blurring in the theory. It is true that the
blurring changes somewhat the absolute value of resistivi-
ty as well as its temperature and composition dependence,
but the changes are only slight modifications to the
shape-Fermi-surface results and no new features emerge.
The resistivity components pA~. A~, pc, G„and pc, z& in Fig.
10 show a larger effect than the total resistivity when the
wave-packet formulation is used. Specifically, pAi. ~~ in-
creases and pc, G, predominantly decreases when the blur-
ring is included. The changes are largest for intermediate
concentrations. A possible explanation is that the propa-
gation of the wave packet is distorted most in those cases
where, in addition to the structural disorder, the chemical
disorder as well is large

Various authors ' ' have concluded that the diffrac-
tion model is well suited to describe the low-resistivity
metallic glasses composed of simple metals, but questions
have been raised as to whether the model can account for
high-resistivity systems. To the authors' knowledge the
present calculation is the first in which the model is ap-
plied to a high-resistivity simple-metal amorphous alloy.
The results obtained compare favorably with the experi-
mental findings: The magnitudes of the resistivity and
concentration dependences are all reproduced by the
model. Furthermore, we find the same interrelationship
between the resistivity and its temperature coefficient (the
Mooij correlation) as is evident from experimental mea-
surements. This clearly supports the application of the
diffraction model to high-resistivity systems as well —at
least in the cases where the alloy constituents are simple
metals.

A new method was proposed to take into account the
scattering-induced blurring of the Fermi surface. When
electrons are considered as wave packets, the uncertainty
in the electron momentum enters naturally as the width of
the wave packet. This was clearly seen to affect the resis-
tivity, but precise quantitative statements are difficult to
make since there is no way of unambiguously determining
the width of the wave packet. However, the changes are
not expected to be extensive, and considering all the other
parameters of the model, the usual sharp-Fermi-surface
formulation is sufficient in most cases. The largest effects
were seen at intermediate concentrations, i.e., for compo-
sitions where there is also a considerable chemical disor-
der in addition to the structural one.

By far, the most important single parameter of the
model was seen to be the Fermi wave vector k~. Here, its
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value was deduced from the Hall-effect measurements

showing kF-const=l 18. A ' for the whole concentra-
tion range. This yielded good results for the resistivity.
The use of the free-electron formula for kF, on the other
hand, results in a very poor composition and temperature
dependence of the resistivity. In this context it is ap-
propriate to stress the need to carefully determine the
value of kF when applying the diffraction model. For
low-resistivity simple metals the free-electron formula
seems to work well, but in the high-resistivity case scaling
with experimental Hall-effect measurements is in order.

The concentration dependence of the resistivity was
seen to be determined mostly by that of kF and S,b(k, ea).

This calls for the use of realistic dynamic structure fac-
tors when reliable estimates of resistivity are wanted. The
decomposition of total resistivity into components due to
scattering from Al and Ca atoms, and an interference

term, revealed their markedly different concentration
dependencies. It is thus essential to maintain the full

theory with partial structure factors in order to account
for the sensitive interplay between different terms.

Much of the high resistivity in Ca-Al metallic glass al-

loys was seen to follow from electron scattering from Ca
atoms. For intermediate concentrations, however, very

sizable portions also resulted from Al scattering and the
interference term.

The calculated temperature dependence of resistivity
turned out to be smaller than the experimental one. The
diffraction model, even with mean-free-path corrections,
thus seems unable to account for the large negative TCR's
observed in high-resistivity alloys. As shown elsewhere,
a possible reason for this is the disregard of thermal ex-
pansion in the calculations. This explanation cannot, un-

fortunately, be tested, since the necessary thermodynamic
data are not available.
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APPENDIX: DIFFERENTIAL CROSS SECTION
FOR A %'IDE %AVE PACKET

The following formulation is based on the derivation of
a differential cross section for the usual case of a peaked
wave packet found in standard quantum-mechanics text

books. After scattering, the wave packet of Eq. (2) is, at
f at time t,

l Olg

d(r)=d(rr —, retr 0)e + rrr f dry( )fk('Pe)e (Al)
r(2n) ~

where vo=]]Iko/m is the initial velocity of the particle and fmo ——Tmuo. Note that in (Al) the scattering amplitude f],(r)
has been kept inside the integral. The total number of particles scattered into solid angle dQ at r is

A( (r)= r J drk J drk yak)[p()r')]'"fe(r)[fj(k)] eee ''e f dhe e, (A2)
(2m ) 00

where N is the total number of incident particles. The t
integral above gives a 5 function:

I

where C is a normalization constant. Now we obtain, for
the number of scattered particles,

2n 5
I
(k —k') v[] I

= 5(
I
k —k'

I
cose),=2~

Uo
(A3) N„(r)=, C f 13k I(p(k) I

2
I f],(r) I 2.

2n 5[(k—k').vo]~ 5(k —k'),
Uo

(A4)

where 8 is the angle between vo and k —k'. This means
that in (A2) either k=k or vg(k —k). In the latter case,
because of the term e" " '",' the largest contribution is
obtained when k =k', especially when k =ko and k'=ko
[since (p(k) has maximum at k =ko]. Then, due to the
constraint vo). (k—k), we have cos(vo, k) =cos(v[],k'), and
since (p(k) and f],(r ) have azimuthal symmetry around vo,
one may rotate k' to get k=k'. This shows that in Eq.
(A2) one may safely substitute, for the 5 function of (A3),

, c f d'k
I
+(k)

I
.

(2m)3
(A6)

The differential cross section for a wide wave packet is
then

dg f d'k
I v «) I' If] (r)

I

'

f d k Iy(k)I
(A7)

Using the same reasoning the number of incident particles
can be expressed as
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