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Positron annihilation spectroscopy has been used to study the vacancy-type defects produced in
films grown by metalorganic chemical vapor deposition on different sapphire orientations. Zn
vacancies are the defects controlling the positron annihilation spectra at room temperature. Close to
the interfaces,500 nmd their concentration depends on the surface plane of sapphire over which
the ZnO film has been grown. The Zn vacancy content in the film decreases with thickness, and
above 1mm it is independent of the substrate orientation. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1855412g

Due to its relative low cost, its availability in large area
wafers, and its transparency up to about 6mm light wave-
length, sapphire is a potential substrate for mass production
of ZnO films. However, the heteroepitaxy of ZnO on sap-
phire presents several problems due to differences in their
chemical and physical properties.1

Undoped ZnO is usuallyn-type and excess electrons are
considered to be introduced by the presence of hydrogen,2

Zn interstitialssZnid and/or oxygen vacanciessVOd.3–5 The
n-type character typically introduces compensating acceptor
defects. Among them, vacancy-like defects have low forma-
tion energies according to calculations. Furthermore, they
can be experimentally detected as positron traps if they are
neutral or negatively charged.

There are several reports focused on the study of the
positron behavior in ZnO as single crystals and layers,6–9 in
addition to ion-implantation effects on ZnO10 and the study
of implantation-induced defects. Recently, several papers
pointed out the differences in ZnO layers grown on different
substrates and on different orientations of sapphire substrates
sRef. 11, and references thereind.

We have applied positron annihilation spectroscopy to
study open volume defects formed in ZnO samples during
growth by metalorganic chemical vapor deposition
sMOCVDd on differently oriented sapphire substrates. These
substrates show different deposition characteristics that make
them useful in technical applications and an understanding of
the type and concentration of those defects will allow in-
depth knowledge of the resulting films.

ZnO films were grown at atmospheric pressure in a hori-
zontal MOCVD reactorsMR Semicon 102d with a two-inlet
configuration, avoiding pre-reactions in the gas phase be-

tween the zinc and oxygen precursors: dimethylzinc-
triethylaminesDMZn-TENd and tertiary-butanolst-butanold.
The total nitrogen flow rate through the reaction chamber
was kept constant at 5.6 l /min, while the partial pressures of
the precursors had a pressure ratioRVI/II =5.

Sapphire substrates of different orientationss1, 1, −2, 0d
s0, 0, 0, 1d ands1, 0, −1, 0d sreferred to asa, c, andm planes,
respectivelyd were used as received. All the layers were

adPermanent address: Elektrika&Elektronika eta Fisika Aplikatua II Sailak,
Euskal Herriko Unibertsitatea, P.K. 644, 48080 Bilbao, Spain.

bdElectronic mail: fernando@we.lc.ehu.es

FIG. 1. ZnO reference samplesopen circled and ZnO film grown over
m-plane sapphiresclosed squared. sad S andW parameters vs energy of the
implanted positrons andsbd W/S plot.
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grown at 420 °C without any prior heat treatment of the
substrates. The deposition time was of 1000 s for all the
samples resulting in thicknesses around 500 nm. For more
details see Ref. 11. An undoped single crystal from Eagle
Picher, which did not present traps for positrons at room
temperature and has a positron lifetime of 170 ps,8 was stud-
ied as reference.

The experiments were performed at room temperature
with a monoenergetic slow positron beam in the 0–40 keV
range. The Doppler broadening of the annihilation radiation
was measured using a Ge detector with an energy resolution
of 1.24 keV at 511 keV. The energy windows, which were
used to define theS and W parameters, wereuEg-511 keVu
,0.8 keV spL /m0cø3310−3, where m0 is the electron
massd for the central S parameter and 2.9 keV, uEg
-511 keVu,7.4 keV s11310−3øpL /m0cø29310−3d for
the wingW parameter.

Figure 1 showsW andS parameters versus positron im-
plantation energy and mean implantation depthskzl=AEn/r;
r is the material density andn and A are 1.6 and 4
310−6 g cm−2 keV−1.6, respectivelyd obtained in the refer-
ence sample. TheW/S plot of the reference sample shows a
straight linefopen circles in Fig. 1sbdg where the upper left
corner corresponds toW andS parameters of ZnO-bulk. The
straight line indicates that there are only two states where
positrons annihilate. At very low implantation energies the
positrons are preferentially annihilating from surface states
sbottom right corner in the figured, but at high implantation
energies almost all the positrons are annihilating from delo-
calized states in the bulk material.

Figure 1 also shows the totally different behavior pre-
sented byS and W parameters in ZnO films grown over
m-plane sapphire. Both parameters show a small bump for
positron implantation energies within the range 5–15 keV,
corresponding to a penetration depth in the order of film

thickness. At very low implantation energies positrons are
annihilating mainly from surface statesfbottom right corner
in Fig. 1sbdg. At higher implantation energies theW/S plot
follows a straight line toward a cusp whose maximum de-
pends on the measured film. The cusp position corresponds
to the relative maximumsminimumd of the W parametersS
parameterd versus implantation energy found in Fig. 1sad.
This is a clear indication that in the 0–5 keV range positrons
are annihilating from states at the surface and the bulk of the
film. Supporting the previous indication, at implantation en-
ergies higher than the one corresponding to the cusp the mea-
sured values do not follow the previous straight line and they
tend toward a new position. The position obtained at the
highest implantation energies must correspond to positron
annihilation at the bulk of the sapphire. As a consequence of
the analysis, and taking into account that the positron mean
penetration depth corresponding to the cusp position is about
100 nm, we can conclude that the highest positron annihila-
tion probability at the bulk of ZnO films occur at the cusp of
the W/S plot.

The SsEd curve at low implantation energies represents
positron back-diffusion probability to the surface, from
which the positron diffusion length can be estimated by solv-
ing the diffusion equation in the conventional way.12 The
obtained value is 50±5 nm in agreement with the values
reported in ZnO grown homoepitaxially6 and over
ScAlMgO4 substrates.7 These values are about five times
lower than the lateral grain sizes measured by scanning force
microscopy in these samplessabove 180 nm in all the casesd.
However, a small contribution from grain boundaries to the
positron annihilation spectra may arise.

To study the influence of the layer thickness on the qual-
ity of the grown films, ZnO was grown overc plane and
s1,−1,0,2d sapphiresr planed for 2 h, under the same con-
ditions as the previous samples. Figure 2 shows the compari-
son of theW and S parameters obtained in films grown on
c-plane sapphire for two different deposition times. The fea-
tures of the curves corresponding toW andS parameters of
the film grown for 7200 s are wider than the ones of the film
grown for 1000 s. TheW/S plot fFig. 2sbdg clearly indicates
that increasing the thickness of the film grown overc-plane
sapphire, the cusp of theW/S plot moves toward values
closer to the bulk value in ZnO.

Figure 3 shows the cusp positions in all the studied ZnO

FIG. 2. ZnO films grown overc-plane sapphire for 1000 ssclosed squared
and 7200 ssopen circled. sad SandW parameters vs energy of the implanted
positrons andsbd W/S plot.

FIG. 3. W/S plot of the cusp positions in all the studied ZnO films.
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films. TheW andS parameters of the bulk reference sample
and the saturated trapping at Zn vacancies are presented too.
The parameters of saturation trapping at Zn vacancies have
been estimated from simultaneous lifetime and Doppler mea-
surements in electron irradiated single crystal ZnO.8 All the
measured cusp values fall within a straight line whose slope
amounts to −3.67s5d. This is a clear indication that the same
type of defect, the Zn vacancy, is responsible for the trapping
at the ZnO films studied in the present work.

The concentration of Zn vacanciessTable Id has been
obtained from the experimental data through the kinetic trap-
ping model.12 Taking into account the general behavior of
the trapping rate13 and the similarities between ZnO and
GaN, we have assumed the positron trapping coefficient of
Zn vacancies on the order of 331015 s−1 at 300 K as for the
Ga vacancy in that nitride.14

The concentration of Zn vacancies depends on the plane
of sapphire over which the film has been grown. In films
grown for 1000 s the minimum vacancy concentration has
been found in the film grown over them-plane orientation
where scanning force microscope reveals flat surfaces. How-
ever, thea, c planes of sapphire present well-defined stepped
surfaces11 that produce a different morphology. This different
morphology seems to be significant on the Zn vacancy con-
centration, even for samples 500 nm thick. This could be
evidence of a different internal microstructure of grains even
at long distances from the interface.

The Zn vacancy concentration of the ZnO film grown
over thec plane of sapphire decreases about four times when
increasing the film thickness from about 500 to 2000 nm. It
is interesting to notice that in the case of ZnO grown for 2 h
over ther-plane sapphire, the concentration of Zn vacancies
is very close to the one found in thick ZnO film grown over
c-plane sapphire. The dependence on film thickness is simi-
lar to the one found in the heteroepitaxy of GaN15 and InN16

on sapphire. In the nitrides, the thickness dependence of va-
cancy concentration can be associated with increased doping

due to oxygen diffusion from the substrate, leading to higher
concentration of compensating vacancies. However, in ZnO
oxygen diffusion from sapphire should not have such a role.
Therefore, the presented results indicate that the largest va-
cancy concentration induced in the film occurs at the first
steps of the growth, probably caused by the misorientation of
the substrate planes.

In summary, Zn vacancies are the defects giving contri-
bution to the annihilation spectra in ZnO grown by metalor-
ganic chemical vapor deposition on sapphire. Their concen-
tration depends on the surface plane of sapphire over which
the ZnO film has been grown. A correlation between the
misorientation of the sapphire surface planes and the concen-
tration of vacancies in the films have been observed for thin
s,500 nmd films, but this correlation disappears for thicker
s.1000 nmd films. Moreover, the defect content in the film
depends on the thickness of the film, and it is larger close to
the interface.

This work has been undertaken under Project Nos.
MAT2001-2920 and UPV00224.310-14553/2002.
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TABLE I. Zn vacancy concentrationsCVZnd in ZnO films grown over dif-
ferent planes of sapphire.

Growth time
ssd

Thickness
snmd

Growth
plane

CVZn

sppmd

1000 500 m 2.0s3d
1000 500 a 3.7s8d
1000 500 c 7s2d
7200 2000 c 1.9s3d
7200 2000 r 1.7s3d
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