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First-principles study of fully relaxed vacancies in GaAs

K. Laasonen, R. M. Nieminen, and M. J. Puska
Laboratory of Physics, Helsinki Uniuersity of Technology, SF 02150 Espoo, Finland

(Received 11 March 1991)

The structural and electronic properties of vacancies in GaAs have been studied using ab initio molec-
ular dynamics. The atomic structures of vacancies in different charge states have been optimized by us-

ing a simulated-annealing procedure. The neighbor-atom relaxations are modest for neutral, singly neg-
ative, and doubly negative Ga vacancies as well as for the neutral As vacancy. In the case of singly and
doubly negative As vacancies, very strong inward relaxations are found. These inward relaxations al-
most recover the fourfold coordination of the neighboring Ga atoms of the vacancy. The analysis of re-
cent positron-annihilation experimental data is discussed in the light of these results.

I. INTRODUCTION

The electrical and optical properties of semiconductors
are to a large extent determined by the point defects these
materials contain. Besides different types of impurities,
native defects such as vacancies and antisites form the
most important and widely studied classes of point de-
fects. ' A characteristic feature of many point defects in
semiconductors is the strong coupling between the elec-
tronic structure, which depends on the charge state, and
the ionic configuration around the defect. For example,
the strong lattice relaxation around a vacancy in silicon
results in an Anderson "negative-U" system, i.e., the va-
cancy does not bind a single localized electron, but the
occupancy of the deep level can be changed from zero to
two. Another example is served by the metastable EL2
defect in GaAs. In most of the models for EL2 atomic
displacements occur as a result of electronic excita-
tion. 4 '

In this work we study the properties of vacancies in
GaAs. We solve for the electronic structures and the cor-
responding ionic positions simultaneously and self-
consistently by using the so-called Car-Parrinello (CP)
method, which combines density-functional theory
(DFT) and molecular dynamics (MD). The CP method is
a full ab initio method without any empirical parameters.
The forces between the atoms are calculated on the basis
of DFT, and the ions are then moved accordingly using
MD. An important benefit of the CP is also that in the
supercell calculations it can handle significantly larger
unit cells than the conventional DFT methods. This is
essential for avoiding unphysical interactions between va-
cancies in neighboring supercells.

There have been several studies of GaAs vacan-
cies, ' ' but none of these has been fu11y self-consistent
with respect to both electronic and ionic degrees of free-
dom. Either the ionic relaxation is totally neglect-
ed, ' "" or only a symmetry-conserving, so-called
breathing relaxation, is taken into account. ' Therefore,
our main purpose in this work is to examine the effects
due to ionic relaxations in a fully self-consistent way us-
ing a large simulation ce11. We are especially interested

in how the positions of ions neighboring the vacancy
change when the charge state of the vacancy changes.
This has important consequences for the interpretation of
recent positron-annihilation experiments, ' which
detect strong relaxation around a native vacancy. The
outline of this paper is as follows. In Sec. II we describe
the essential features of the CP method and the choice of
numerical techniques relevant for this work. The results
are presented and discussed in Sec. III, and Sec IV is a
short summary.

II. METHODS

A. Density-functional approach

In the CP method the electronic structure of the sys-
tem is described on the basis of the density-functional
theory. DFT shows that in order to describe exactly all
the ground-state properties of the system it is, in princi-
ple, sufficient to know just the ground-state electron den-
sity. This makes it possible to map the system of many
interacting electrons to an equivalent system of nonin-
teracting electrons, which reduces the computational
complexity of the problem enormously. Moreover, the
DFT equations have a variational character with respect
to the electronic density, i.e., the correct electron density
gives the lowest ground-state energy. This enables the
solution of the DFT equations iteratively instead of exact
diag onalization.

The DFT total energy of a system of interacting atoms
can be written in the following form:

EDFT[n(r), IRt]]=T[n(r}]+fdr V,„,(r}n(r}

+, f d fd, n(r) ( ')
/r —r'/

ZI ZJ
+E„,[n (r)]+—,

' g ~, (l)
tee ~

where n(r) is the electron density, Rt are the instantane-
ous position vectors of the nuclei, T is the noninteracting
kinetic energy for the electrons, V,„, is the Coulomb po-
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has proven in practice to be a rather reliable approxima-
tion. Above, c,„, is the exchange-correlation energy per
electron in a homogeneous electron gas. ' The other
terms besides E„, in Eq. (1) can be calculated exactly so
that the accuracy of the LDA determines the accuracy of
the calculation. When compared with experiments, LDA
has been shown to give very good results for many prop-
erties of the systems of interacting atoms, while systemat-
ic errors occur for some properties. Equilibrium bond
distances between atoms and vibration frequencies belong
to the former category, whereas total binding energies
and the widths of band gaps in semiconductors and insu-
lators are generally not well reproduced within LDA. In
this work we are mainly interested in the structural prop-
erties of the systems, and thus LDA should be rather reli-
able for our purposes.

In order to solve the energy minimization problem it is
convenient to express the electronic density as a sum over
the single-particle Kohn-Sham orbitals P;(r),

where f; are the Fermi-Dirac occupation numbers. The
noninteracting-particle kinetic energy can now be written
as

T[n]= —
—,
' g f;P;(r)V P;(r) . (4)

The single-particle orbitals can be solved from the
Kohn-Sham equations

HP;(r) =e;f, (r),
where

H= —
—,'V +V,„,(r)+ fdr', +n(r') 5E„", [n]

r —r' 5n r

This Hamiltonian 8 depends on the single-particle orbit-
als g; through the electron density n (r), which calls for a
self-consistent solution.

B. Pseudopotentials and plane waves

The next approximations are to deal with the valence
electrons only in Eq. (1) and to use pseudopotentials' to
describe the effects of tightly bound core electrons. Usu-
ally the cores play only a small role in the formation of
the chemical bonds between atoms, and therefore this
so-called frozen-core approximation is adequate. ' Within
these approximations n(r} and ZI in Eq. (1) have to be
reinterpreted as the pseudo-valence-electron-density and
the ionic charge, respectively. We use the norm-
conserving nonlocal pseudopotentials by Bachelet,

tential due to the nuclei, E„, is the exchange-correlation
energy, and ZI are the nuclear charges. The exact form
of E„, is not known, but the local-density approximation
(LDA)

E"„, [n(r)]= fdr n(r)E„,[n(r)]

Hamann, and Schliiter' (BHS). For numerical conveni-
ence we use a separable form for the nonlocal com-
ponents as introduced by Kleinman and Bylander (KB).
The KB scheme can have, due to numerical instabilities,
some unfavorable features. ' Namely, it is possible that
there exist spurious states in the band structure, e.g.,
states, which have more nodes but a lower energy than
the physical state. The existence of these spurious states
depends strongly on the choice of the pseudopotential pa-
rameters. Therefore we do not use for GaAs the original
parameters by Bachelet, Hamann, and Schluter' but an
equivalent set which should be free of these spurious
states.

In the pseudopotential approximation it is possible to
use the plane-wave (PW) expansion for the single-particle
orbitals. Thus,

g;(r)= g C;(G)exp(iG r),

where 6's are the reciprocal lattice vectors for the super-
lattice and C;(G)'s are the corresponding Fourier
coefficients. We include in this expansion PW's up to a
certain cutoff G,„,which is determined by the numerical
accuracy requirement. Notice that we calculate P's only
for the I point (k=0} in the Brillouin zone of the super
lattice. This restriction is motivated by the fact that the
unit cell is so large that band dispersion is small (see
below). The use of the 1 point only allows us to restrict
to real eigenfunctions (in r space}, which saves both com-
puting time and memory. In fact, multiple-k-point calcu-
lations are hardly feasible even with present supercom-
puter resources.

The use of PW's has many desirable features. Firstly,
the PW's are very fast to handle using the fast Fourier
transformation (FFT). This makes the computational
work in the iterative diagonalization algorithm (see
below) to scale as M lnM, where M is the number of
PW's. Secondly, the forces between atoms can be calcu-
lated directly and very accurately, and no corrections to
a numerical implementation of the Hellman-Feynman
theorem are needed. Thirdly, the PW basis has a uni-
form accuracy throughout the whole supercell and does
not have the overcompleteness problems that are typical
of localized (e.g., Gaussian) basis sets. This guarantees
that an increase of the number of PW's systematically
brings the results closer to the limiting values.

The main drawback of the PW's is that in order to de-
scribe accurately rapid variations of the one-particle
wave functions, the number of PW's needed can be very
large, especially when the pseudopotential is strong.
Even when using the relatively soft BHS-type pseudopo-
tentials, most of the first-row atoms (such as 0) or transi-
tion and nobel metals (such as Cu) cannot be treated with
PW's, except in very small systems. Other pseudopoten-
tials are now available, which seem very promising in
describing both the first-row and the transition-metal
atoms. The CP method is also essential in the sense that
the huge amount of PW's often necessary would make it
impossible to use conventional diagonalization routines,
which usually scale like M . In the present work the PW
basis is used together with the ab initio pseudopotentials
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of Stumpf, Gonze, and SchefBer.
In dealing with charged vacancies and other defects in

semiconductors, one has to be careful with the long-range
Coulomb interaction. In order to avoid unphysical situa-
tions the total charge of the simulation supercell has to
be zero. In this work we compensate the extra or missing
(relative to the neutral vacancy) electron charge on the
localized deep levels at the vacancy with a rigid back-
ground charge, which is uniformly spread over the whole
simulation cell to compensate for any long-range
Coulomb effects (i.e., it does not affect exchange and
correlation). This could, in principle, cause some sys-
tematic errors in our results, but as long as the simulation
cell is large compared to the size of the vacancy and as
long as the deep-level wave functions are well localized,
this background effect is expected to be quite small.

C. Molecular dynamics

+ y A„.((c,~c, ) —s,, ) . (8)

Above, p is a fictitious mass parameter for the "kinetic"
energy of the electronic degrees of freedom, Ml are the
physical masses of the ions and A; are the Lagrange rnul-

tipliers. The last term in Eq. (8) is the orthogonality con-
straint, with

(c, Ic, ) = y c,"(G)c,(G) . (9)

From the classical Lagrangian of Eq. (8) one can derive
the classical equations of motions for both the electronic
and ionic degrees of freedom as

gE DFT
pc;(G) = — + g A,J C, (G),

gE DFT

M;RI(G) =—
I

(10)

When the plane-wave basis set is used the derivation
with respect to ionic positions can be made directly,
without using the Hellman-Feynman theorem. The
Lagrange multipliers have been evaluated in this work by
using the iterative method described in Ref. 27.

The Born-Oppenheimer (BO) surface is the minimum
of E with respect to the electronic degrees of free-
dom, i.e.,

@[[Rl] ]=minE [C, ,R, ] .

The idea of the CP method is to consider the total
DFT energy [Eq. (1)] as a many-dimensional classical po-
tential with the ionic positions Rl and the Fourier com-
ponents C„(G}of the electron wave functions as vari-
ables ' in a global mininuzation (iterative diagonaliza-
tion) procedure. Then one writes an effective Lagrangian
in which the orthogonality constraints between the eigen-
functions are treated by using the technique of Lagrange
multiplier s:

X.= —,
' g p~c;(G}~ +—,

' QMIRI E[C—;,RI]

The BO potential-energy surface defines the true dynam-
ics of the ions, but the second-order temporal dynamics
manages to keep the electronic states remarkably close to
the BO surface without extra rninirnization steps, provid-
ed that p &&Ml. In the case of insulators and semicon-
ductors the total energy, calculated with the CP method,
stays very close to the BO surface even for several
thousands of time steps.

D. Numerical considerations

In the GaAs simulations we use a cubic supercell with
periodic boundary conditions. This simulation cell con-
tains 64 or 63 atoms for the perfect lattice and for the lat-
tice with a vacancy, respectively. For the pseudopoten-
tials we use the sp nonlocality for both Ga and As with
the cutoff parameters c&(s)=1.5 and ct(p)=1.7 for both
Ga and As. The energy cutoff for the plane-wave ex-
pansion is 13 Ry, which corresponds to about 4000 PW's
per eigenstate. With these numerical parameters, calcu-
lations for the perfect GaAs lattice show that the lattice
constant of a =10.67ao minimizes the total energy. This
is very close to the experimental value of 10.68ao. We
have also made convergence tests by studying in the
above-defined simulation cell single As and Ga atoms and
As&, Gaz, and GaAs dimers with different energy cutoffs.
These results are also well converged at the cutoff of 13
Ry. Since the calculations are spin compensated, the
quantitative results for the dimers cannot be compared
with experiment. In the dynamical simulations used to
find the minimum-energy atomic positions the time step
is 5.7 a.u. (=1.7X10 ' s). The value of the electronic
mass parameter p is 400 a.u. , whereas the masses used for
the ions are between 2 and 10 arnu.

In order to initiate the defect calculations we first cal-
culate the electronic structure for bulk GaAs using the
steepest descent (SD) method for the electronic degrees of
freedom (C;) only. Therefore we remove one atom from
the center of the simulation cell and solve for the new
electronic structure. Then we let all the atoms move ac-
cording the forces derived from Eq. (8) and the equations
of motion [Eq. (10)]. In order to find atomic coordinates
corresponding to the local energy minima we use both a
simulated annealing (SA) process and the normal steepest
descent method. In the SA process we slowly reduce the
ionic kinetic energy of the system by scaling the fictitious
velocities C;(G). In the beginning of simulations SA is

much faster than the SD method, but close to the
minimum the SD method becomes more effective. The
effectiveness of both SA and SD can be increased by re-
placing the physical masses of the ions with some ficti-
tious, much smaller masses. With SA we have used
masses of 5 —10 amu and with SD masses of 2 —3 arnu.
Combining the SA and SD methods one can rather
effectively find the minimum configuration of the atoms.
If possible, we use as a starting point for a new charge
state of a vacancy the relaxed ionic configuration for a
charge state of the vacancy previously treated. This nat-
urally saves plenty of computing work if the new
configuration is close to the old one.
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I,
L,
XI
X3
Li
Xs
L3
I is
r,

Present

—12.43
—10.88
—10.17
—6.72
—6.55
—2.56
—1.06

0
0.7

Ref. 30

—12.56
—10.90
—10.14
—6.72
—6.54
—2.59
—1.09

0
0.62

Experiment

—13.1
—11.24
—10.75
—6.70
—6.70
—2.80
—1.30

0
1.42

III. RESULTS AND DISCUSSION

The band structure obtained for the perfect GaAs lat-
tice is compared with the results of similar calculations
by Zhang et al. and with experiments in Table I. The
eigenvalues we obtained are very close to the values in
Ref. 31. The maximum difference is less than 0.15 eV.
The calculated band gap is about 0.7 eV, which is due to
I.DA much smaller than the experimental value of 1.52
eV.

In the following we analyze for each vacancy the ionic
relaxation and the electronic structure. The ionic relaxa-
tion is divided into three components: the breathing
mode and the two components of the pairing mode.
These modes are shown schematically in Fig. 1. The
breathing mode incorporates the inward or outward re-

TABLE I. Single-particle eigenvalues (in eV) at some selected
k points for bulk GaAs. The second column gives the present
results and the third column contains the theoretical values of
Ref. 30 obtained by using the sp nonlocal pseudopotentials. The
fourth column contains the experimental results quoted in Ref.
31.

laxation of the system and it describes in an average sense
the (open) volume change at the vacancy. The pairing-
mode components describe the deviation from pure radial
(breathing-mode) relaxation. The electronic structure is
analyzed by making contour plots of charge densities and
selected wave functions. Moreover, the single-particle ei-
genvalues are compared with results obtained by other
similar calculations.

When an ideal vacancy is created in the perfect GaAs
lattice, the dangling sp bonds hybridize and form bond-
ing and antibonding states. If the Td lattice symmetry is
conserved, the antibonding states belong to the
threefold-degenerate T2 representation and form deep lo-
calized states in the energy gap. A symmetry-breaking
relaxation connected with the Jahn-Teller effect lifts the
spatial degeneracy. The bonding states belong to the
nondegenerate A

&
representation and they lie within the

valence band. The T2 states are p like and the A, state is
s like with respect to the vacancy site. Including the spin
degeneracy, six electrons can occupy the T2 states, while
two electrons can go into the A& state. The repulsive
potential due to the Ga or As vacancy pushes six (degen-
erate, including spin) electron states out of the valence
band. In the case of the Ga vacancy (As vacancy) only
three (five) valence electrons are removed with the Ga
atom (As atom), and therefore the neutral Ga vacancy
(As vacancy) has three (one) electrons in the localized
deep levels. Due to the larger number of removed elec-
trons, the As vacancy is a stronger repulsive perturbation
than the Ga vacancy. This is rejected in the fact that in
the case of the As vacancy the deep levels lie in the band
gap close to the conduction-band minimum, whereas the
deep levels of the Ga vacancy are just above the valence
band edge. ' ""

A. Ga vacancies

I

I

I
I
I

I
I

I

I
I
I

I

p

We study the Ga vacancy in the three different charge
states, i.e., VG„VG, , and VG, containing three, four,

P1 P2

1:
2:
3:

(1,1,1)/P3

(-1,-1,1 ) / P3

(-1,'l, -1 ) /~3
(1,-1,-1)/~3

(-1,-1,2) /+6

(1,1,2)/P6

(1,-1,-2) /l6
(-1,1,-2 )/P6

(1,-1,0) /P2

(-1,1,0)IP2
(-1,-1,0) /v 2

(1,1,0) /P2

FICx. 1. The different projection vectors of the relaxations.
The arrows pointing outwards from the vacancy (b) are the
breathing-mode components. The arrows p, are the pairing
mode components and the arrows p2 are the vectors orthogonal
to the previous two.

FIG. 2. The electronic density corresponding to the highest
state of VG, . The figure shows a region of the (110) plane limit-
ed by the borders of the simulation cell. The plane is chosen so
that there is a bond between the As atoms neighboring the va-
cancy. The contour spacing is one tenth of the maximum value.
The black dots are the Ga atoms and the white ones are the As
atoms. The vacancy is marked with a black square.
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TABLE II. Relaxations and deep-level eigenenergies (c.&„) for di8'erent vacancies in GaAs. The breathing and pairing mode relax-
ations (See Fig. 1) are given in percent of the bulk bond distance in GaAs. For the breathing mode the negative (positive) sign
denotes inward (outward) relaxation. ~ is the experimental positron lifetime connected with the vacancy.

Vacancy

VG,

VG,
V,
VAs

VAs

VA
2

Breathing
(%)
—3.9
—2.9
—3.8
+3.0
+2.0

—16.4
—17.4

Pairing 1

(%)

1.3
1.2
0.9
0.0
0.6

17.0
15.6

Pairing 2

(%)

0.9
0.2
0.1

0.0
0.0
0.0
0.7

(eV)

0.56
0.57
0.58

1.41
0.65
0.59

0.59
0.58
0.59

12.9

0.62

(ps)

260'

295
258

'References 36 and 37.
References 14 and 15.

and five electrons on the deep levels, respectively. The
results for the different relaxation components and the ei-
genvalues of the localized deep levels states are presented
in Table II. In the symmetry-conserving breathing mode
all the negative vacancies relax inwards. The relaxations
are small, a few percent of the equilibrium bond distance.
The pairing mode components are even smaller. They
are negative in sign, which indicates that the nearest As
atoms of the vacancy get pairwise closer to each other, in
addition to the reduction in distance between them due to
the inward breathing relaxation. However, all the atomic
movements are small (the next-nearest neighbors hardly
move at all) so that the relaxation is very well contained
inside the simulation cell.

According to Table II the deep levels due to the Ga va-
cancies are below the middle of the experimental band
gap. The deep levels (two for Vo, and Vo, , three for

Vo, , our calculations are spin-restricted) are nearly de-

generate, the energy splittings being of the order of 0.01
eV. The electron density corresponding to the highest
state of VG, is plotted in Fig. 2. The wave function is
mainly p like about the As sites. The wave function of
the third deep level in VG, is very similar to that of the
second deep level in Vo, (Fig. 2) rejecting the near de-
generacy of the deep levels in the Ga vacancy. The deep
states have some tendency to spread along the atomic
chains, which means that these states are nearly degen-
eracy also with the top of the valence band. However,
the localization to the vacancy region is high enough in
the comparison with the extent of the simulation cell, so
that the interaction of a vacancy with its periodic replicas
is expected to be small.

cy. In the positively charged vacancy no Jahn-Teller dis-
tortion is operative. For the neutral vacancy with a sin-
gle electron the distortion is also small. We argue that
this is due to the delocalized nature of the T2 state. As
can be seen from Fig. 3, the singly occupied deep state at
the neutral As vacancy is spread out spatially. The delo-
calized nature rejects that this state is in fact in the ener-

gy region of the conduction band in the perfect lattice
According to our calculations the neutral As vacancy

deep level is 1.4 eV above the valence-band edge and the
width of the band gap is about 0.7 eV. (Note that within
the single-k-point approximation level filling can be
unambiguously done by occupying the discrete energy
levels in succession. ) In order to treat this state more ac-
curately one should avoid the artificial interactions be-
tween unit cells, which result in a small but finite band
dispersion for the localized defect states. Similarly to our
case of the neutral As vacancy, the calculations for a neu-
tral Si vacancy with a smaller 54-atom supercell have
been found to suffer from interactions between super-
cells. One could use a larger simulation cell in the su-

B. As vacancies

The As vacancy is studied in four different charge
states, VAs VAs VAs and VAs containing zero,
one, two, and three electrons on the deep levels, respec-
tively. The results of the calculations are presented in
Table II and in Figs. 3—5. For the positively charged and
neutral As vacancy the breathing-mode relaxation is
rather small, 2 —3% outwards. The pairing-mode relaxa-
tion is also small and similar to the case of the Ga vacan-

FIG. 3. The electronic density corresponding to the highest
state of VA, . The figure shows a region of the (110) plane limit-

ed by the borders of the simulation cell. The plane is chosen so
that there is no bond between the Ga atoms neighboring the va-

cancy. The contour spacing is one tenth of the maximum value.
The symbols are the same as in Fig. 2.
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percell method or, alternatively, use Green's-function
embedding methods. Moreover, in all methods one
should avoid the problems due to the too narrow band
gap, for example, by using the scissors-operator tech-
nique discussed by Baraff and Schluter. This is because
even according to the Green's-function methods the deep
level at the neutral As vacancy is above the bottom of the
conduction-band calculated in LDA. ' ' Unfortunately,
in our case improvements are hardly possible because the
next suitable supercell would contain 128 atoms (and 512
electrons), which is beyond the available computer
resources. However, we believe that the structural prop-

FIG. 4. (a) One of the four nearest Ga atoms of the VA, in

the unrelaxed case. The bond distances and the bond angles
are shown in the figure. The cube formed by the four nearest
Ga atoms is shown on the right-hand side of the figure. (b) As
in (a), but after relaxation. The parallelpiped formed by the
four nearest Ga atoms is shown on the right-hand side of the
figure.

erties obtained are reliable in spite of these problems be-
cause they are determined by the total energy and the
electron density, which are the relevant physical quanti-
ties in DFT. The total-energy differences for different lat-
tice relaxations are of the order of 0.1 —0.3 eV. While this
is similar in magnitude with the estimated band disper-
sion due to the supercell, experimentation with multiple
k points using a tight-binding model shows that the to-
tal energy is not sensitive to the level width. Moreover,
Wang, Chang, and Ho have shown using the tight-
binding method for Si that the results for defect forma-
tion energies and relaxations do not significantly change
for supercell sizes between 64 and 512 atoms.

Unlike in case of the Ga vacancy the change of
charge-state changes dramatically the structure of the As
vacancy. When one electron is added to VA, and VA, is
created, the breathing-mode relaxation goes from +2 to
—

16%%uo (Table II). At the same time strong pairing-mode
relaxations appear. Moreover, the energy level of the lo-
calized state is substantially lowered, i.e., from 1.4 to 0.6
eV above the top of the valence band. This makes the
Jahn-Teller distortion large. It is interesting to recognize
that the relaxation almost recovers the fourfold coordina-
tion of the Ga atoms nearest neighbors to the vacancy.
This is illustrated in Fig. 4. In the ideal case the four Ga
atoms next to the vacancy form a tetrahedron, which can
be completed to a cube as shown. The distance between
two adjacent Ga atoms is 7.6ap ~ In the relaxation the
cube deforms to a tetragon, in which the distances be-
tween the adjacent Ga atoms are 5.4ap and 6.9ap. As a
result the Ga atoms have almost gained a fourfold coordi-
nation. The electron density plots for the deep state in
Figs. 3 and 5 show the formation of a strong bond be-
tween the closest Ga atoms. Figure 3 gives the electron
density corresponding to the deep level at the neutral As
vacancy. The bond between the two Ga atoms is very
weak. Figure 5 shows that in the case of the negative va-
cancy there are clear bonds between the closest Ga
atoms.

The doubly negative As vacancy is very similar to the
VA, . The last electron added goes to a state with a
different symmetry as the strongly bonding state in Fig.
5. The highest state is not well localized, and therefore it
does not disturb the well localized bonds between the
closest Ga atoms.

C. Discussion

FICx. 5. The electronic density corresponding to the highest
state of VA, . The plane is chosen so that their is a bond be-
tween the Ga atoms neighboring the vacancy. The contour
spacing is one tenth of the maximum value. The symbols are
the same as in Fig. 2.

In the case of the Ga vacancy, the dangling bonds do
not show a tendency to form bonds between the As atoms
around the vacancy in any charge state. The small in-
ward relaxation can be understood as a very weak bond-
ing between As atoms surrounding the vacancy or a
weakening of the back bonds between these As atoms and
the neighboring Ga atoms. The inward relaxation does
not increase monotonically as a function of the number of
electrons in the localized states as one would naively ex-
pect from the increase of negative "charge" inside the va-
cancy. However, the changes between the charge states
are very small and a highly accurate calculation of the re-
laxation is dificult because the equipotential surfaces are
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very Hat.
The positive and neutral As vacancies relax outwards.

In the neutral case, there is only one electron occupying
the localized states formed by the dangling bonds in a
rather large vacancy. This additional "negative charge"
is not enough to compensate the strengthening of the
back bonds due to the lowering of the coordination num-

ber of the Ga atoms nearest to the vacancy. The second
localized electron in VA, goes to the same symmetry
state as the first one. This strengthens the bonds between
the Ga atoms and according to our results there is a huge
change in the relaxation. It is interesting to note that in
the case of a vacancy in Si the lattice relaxation and the
associated total energy lowering, when adding the second
localized electron, are so large that the vacancy with one
localized electron Vs;+ is unstable. This is the well-

known Anderson "negative-U" system. Unfortunately
due of the compensating electronic background the zero
level of the total energy will change with the charge of
the system. This makes it diScult to compare the rela-
tive energies of different charge states.

The electronic structures for the unrelaxed neutral Ga
and As vacancies have been studied by Bachelet, Baraff,
and Schliiter' by the pseudopotential Green's-function
method. We can make qualitative comparisons of their
results with ours for the Ga vacancy in all charge states
and also for the neutral As vacancy. These Green's-
function calculations give unique values for the localized
energy levels, whereas the supercell method always re-
sults in some band dispersion, which makes strictly quan-
titative comparisons difficult. The charge densities and
the positions of the deep energy levels in the band gap are
in good qualitative agreement. Bachelet, Baraff, and
Schluter' give the positions of 0.06 and 1.08 eV above
the top of the valence band for the deep levels in the neu-
tral Ga and As vacancies, respectively. Puska et al. '

have obtained with the Green's-function technique corre-
sponding to the linear-muffin-tin orbital (LMTO) method
within the atomic spheres approximation (ASA) similar
results, 0.06 and 1.13 eV for the neutral Ga and As va-

cancy, respectively. Our corresponding values are some-
what higher in energy, i.e., 0.56 and 1.4 eV. The interac-
tions between neighboring vacancies (band dispersion) in

our calculations may raise the localized energy levels rel-
ative to the Green's function calculations. When the
charge state of the vacancy becomes more negative the
deep level raises according to Puska et al. ' due to the in-
creased Coulomb repulsion between the localized elec-
trons. This tendency is not reproduced in our calculation
because the effects due to the lattice relaxation compen-
sate and even overcome the Coulomb repulsion.

The only other calculation of vacancy relaxation in

GaAs that is known to us is by Schemer and Scherz. '

They have studied the singly negative Ga vacancy and
the neutral As vacancy allowing only a breathing-type re-
laxation. For VG, and VA, they report the breathing-
mode relaxation of +2% and —3%, respectively. These
relaxations are in the opposite directions as our results,
but the main conclusion from both calculations is that
the relaxations in these cases are small in magnitude.
The deep level positions obtained by SchefBer and

FIG. 6. The total valence electron density corresponding to
VG, . The rapid variations of the density inside the As-ion cores
are not shown. The first contours surrounding the interstitial
regions correspond to the electron density of 0.006ao ' and the
contour spacing is 0.01ao . Note that there is a local maximum
just above the center of the vacancy. The figure shows the same
(110)plane as Fig. 2. The symbols are the same as in Fig. 2.

Scherz, ' about 0.1 eV for V&, and 1.25 eV VA, are in

good agreement with the results discussed above.
It is interesting to compare the present results with the

positron lifetime measurements for GaAs. ' ' ' The
positron annihilation rate is proportional to the effective
electron density seen by the positron. Positrons are
trapped by vacancies in solids because of the reduction of
the repulsion due to positive ion cores. In semiconduc-
tors, however, this trapping does not occur for positively
charged vacancies, due to the long-range Coulomb repul-
sion. In the lifetime measurements, positron trapping at
vacancies is seen as an appearance of a long-lifetime corn-

ponent in the spectrum. The lifetime increases because
the average electron density seen by a positron trapped
by a vacancy is smaller than that for a positron delocal-
ized in the perfect crystal. According to the present un-
derstanding' ' ' the lifetime related to the vacancies is
sensitive to the open volume seen by the positron. The
calculations also show that the positron lifetime

FIG. 7. The total valence electron density corresponding to
VA, . The rapid variations of the density inside the As-ion cores
are not shown. The figure shows the same (110) plane as Fig. 5.
The symbols are the same as in Fig. 2 and the contour spacing
as in Fig. 6.
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changes with the breathing relaxation, but pure tetrago-
nal and trigonal relaxations do not appreciably affect the
positron lifetime. Moreover, the positron lifetime is not
directly sensitive to the charge state of the trap, i.e., if the
charge-state changes but the change in relaxation is not
taken into account, the positron lifetime remains nearly
unaltered. ' ' This insensitivity rejects the relatively
delocalized nature of the deep electron states at vacancies
and the fact that the positron has the tendency to follow
the electron charge transfer. Therefore the positron life-
time measurements are an efficient tool to monitor the
open volume, in particular the amplitude of the breathing
relaxation, at the vacancies.

The measured positron lifetimes associated with
different vacancies in GaAs are collated in Table II. For
the Ga vacancies, only one lifetime value of 260 ps has
been seen. ' Also according to our calculations only
one component is to be expected, because the relaxations
in different relevant charge states are very similar. In the
case of the As vacancy it has been found that the positron
lifetime decreases from the value of 295 ps to the value of
258 ps when the charge of the As vacancy decreases by
one. ' ' This is a very large change in the positron life-
time (the positron lifetime for the perfect GaAs lattice is
230 ps) and indicates a strong inward relaxation of the As
vacancy. Recently, using indirect experimental argu-
ments the 295 ps and 258 lifetime components have been
associated with V~, and V~, , respectively. ' This as-
signment is in complete qualitative agreement with our
results, which show that the change in the breathing-
mode relaxation between these states is large, 18.5%.
Moreover, this is in accord with theoretical calculations,
which estimate that the amount of relaxation needed to
produce the experimental lifetime difference is about
15%. On the other hand, in order to reproduce the ab
solute lifetime values with the present positron state cal-
culation methods the relaxations of the vacancies should
be more in the outward direction. ' Thus, the present
results for the electronic and atomic structures for the va-
cancy defects indicate a need for a reexamination of the
basic approximations, nominally the inclusions of the
many-body effects, in the lifetime calculation for posi-
trons in shallow semiconductor traps. However, the rela-
tively large difference [260 ps vs 295 ps (Refs. 37, 38, and
14)] in the positron lifetimes between the neutral Ga and
As vacancies can be understood on the basis of the total
valence electron densities shown in Figs. 6 and 7. One
can see that the open volume for the As vacancy is larger
than for the Ga vacancy. Total valence electron density
for VA, is shown in Fig. 8. The open volume is clearly
reduced from that for the neutral vacancy in Fig. 7.

IV. SUMMARY

We have performed state-of-art calculations for the
electronic and ionic structures of vacancies in GaAs.
Studying different charge states we find that the changes

FIG. 8. The total valence electron density corresponding to
VA, . The rapid variations of the density inside the As-ion
cores are not shown. The figure shows the same (110) plane as
Fig. 5. The symbols are the same as in Fig. 2 and the contour
spacing as in Fig. 6.

in the ionic relaxations are usually rather small, but when
going from Vz, to Vz, a very large inward relaxation
takes place with a strong pairing of the Ga atoms nearest
to the vacant site. This finding shows that the ionic re-
laxations are coupled in a crucial way with the electronic
structure of defects in GaAs, and the understanding of
the properties of GaAs is not possible without a simul-
taneous optimization of electronic and ionic degrees of
freedom. This conclusion has been drawn also in the case
of a recent theoretical model for the EL2 defect in
GaAs. In this work we have briefly discussed the ionic
relaxations obtained parallel with the results from posi-
tron lifetime spectroscopy, which is a sensitive tool to
detect vacancy defects and the open volumes associated
with them. The present results show that the calculated
changes in the relaxations (open volume) correlate very
well with observed lifetimes. The largest effect is as-
signed to the transition between the neutral and singly
negative As vacancy.
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