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Vacancy-formation energies for fcc and bcc transition metals
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Laboratory of Physics, Helsinki University of Technology, FIN-02150 Espoo, Finland
(Received 28 November 1994)

‘We have performed first-principles total-energy calculations for vacancy-formation energies in six
bee (V, Cr, Nb, Mo, Ta, W) and six fcc (Ni, Cu, Pd, Ag, Pt, Au) transition metals within the
local-density approximation of the density-functional theory. The calculations are done using the
full-potential linear-muffin-tin-orbital method employing the supercell technique. The calculated
vacancy-formation energies are in good agreement with experiments especially for the fcc metals,
but in the case of V and Cr the calculated values are significantly larger than the experimental ones.

I. INTRODUCTION

The knowledge of the properties of vacancies is neces-
sary for understanding the thermodynamic and kinetic
behavior of metals. The most important quantity is
the vacancy-formation energy Ef, which determines the
equilibrium vacancy concentration and contributes to the
self-diffusion coefficient in the monovacancy mechanism,
which is the main diffusion process in close-packed met-
als as well as in the bcc iron.! The activation energy
for self-diffusion Q%9 is the sum of the vacancy-formation
energy Ef and of the migration energy of the vacancy
ET. Experimentally the vacancy properties are very dif-
ficult to obtain, because very pure samples and a small
concentration of thermal vacancies are required for reli-
able results. The theoretical approach is not easy either.
While the properties of perfect crystals are obtained from
standard first-principles density-functional calculations,
the calculations for point defects are much more difficult
because of the loss of translational symmetry. This prob-
lem is usually solved by using either supercell or Green’s-
function methods. For vacancies in simple metals, there
have been several calculations.! '° However, in the case
of transition metals, for which pseudopotential methods
are difficult to apply, calculations of vacancy properties
are much more scarce.l1714

For the transition metals, there exists experimental
vacancy-formation energies!®>!® to compare with and
thereby one can get an idea about the importance of
different approximations used in the calculations. Espe-
cially interesting are the effects due to the local-density
approximation (LDA) for the electron exchange and cor-
relation energy. The vacancy-formation energy suits this
purpose very well, because one need not calculate the
energy of an isolated atom, which is a source of error
when comparing the experimental and theoretical cohe-
sive energies. When calculating vacancy-formation en-
ergy, there is no core electron energy problem because of
the cancellation of errors, and in a metal the basic con-
cept of an electron gas is better satisfied than is the case
for an atom. Actually, in our calculations, the LDA is
expected to be the most severe approximation. This is
because we can control the errors due to the numerical
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approximations. Also, the errors due to the omission of
the lattice relaxation of the atoms neighboring the va-
cancies are only of the order of one-tenth of an eV,13°
and thus are about one order in magnitude smaller than
the typical LDA errors in binding energies.”

In this paper, we present results of first-principles
density-functional calculations for the vacancy-formation
energies of six bec (V, Cr, Nb, Mo, Ta, W) and six fcc (Ni,
Cu, Pd, Ag, Pt, Au) metals. We have omitted the lattice
relaxation around the vacancy and used the supercell ap-
proach in our full-potential linear-muffin-tin-orbital (FP-
LMTO) calculations.!®!® Because the results for differ-
ent metals are obtained using the same basic assump-
tions, reliable studies of the trends along the transition
metal series are possible. The organization of the present
paper is as follows. In Sec. II, we describe the computa-
tional details. Section III contains the results obtained
and their discussion. Section IV is a short summary.

II. COMPUTATIONAL METHOD

The self-consistent electronic structure calculations
presented here are based on the density-functional the-
ory within the LDA.'" In practice, we use the form sug-
gested by Perdew and Zunger?® to interpolate between
the results by Ceperley and Alder?! for the exchange and
correlation energy in a homogeneous electron gas. The
Kohn-Sham equations are solved using the FP-LMTO
method.'®1® The basis for one-particle wave functions
consists of s, p, and d partial waves with kinetic energies
of —x? = —0.01 and —1.0 Ry centered on the ideal lattice
sites; thus, 18 functions per sphere are used. The den-
sity and potential are expanded in spherical harmonics
up to angular momentum ln,a.x = 4 inside the spheres.
The k-space integrations are performed with an evenly
distributed point mesh of 16 and 10 irreducible points for
the bcc and fcc supercells, respectively. For a better nu-
merical stability, each sampled energy is broadened with
a Gaussian having o = 20 mRy.

As a matter of fact, the use of the full nonspheric-
ity of charge density is essential in order to get accurate
vacancy-formation energies.??1:12 The atomic-sphere ap-
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proximation (ASA), which gives quite reasonable struc-
tural properties of bulk systems (e.g., the lattice con-
stant, elastic constants), does not give reliable total en-
ergies for defects.?14

In the calculations for the vacancies supercells with
27 and 32 lattice sites for bcc and fcc metals are used,
respectively. For the lattice constants, the values opti-
mized for perfect crystals are employed and the atoms
neighboring the vacancies are not allowed to relax from
their perfect lattice positions. The total energies of bulk
metals are also calculated in the same supercell geometry
in order to have better cancellation of numerical errors.

III. RESULTS AND DISCUSSION

The calculated lattice constants (ag” ") and bulk
moduli (B*F~FY) are summarized in Table I together
with the experimental data?? (ag*® and B*P) and results
of several previous calculations. The table shows the FP-
LMTO results by Korling and Higlund?? and the LMTO-
ASA results by Ozoligs and Kérling.24 Both calculations
are performed using the LDA as well as the generalized
gradient approximation (GGA).23 Also shown are the
Korringa-Kohn-Rostoker (KKR) results by Moruzzi et
al.?® Tt is seen that the FP-LMTO-LDA underestimates
lattice constants, especially in the beginning of the 3d se-
ries. The underestimation is a well-known deficit of the
LDA. The FP-LMTO-GGA values seem to be in good
agreement with the experimental data. The effect of the
ASA is to increase the equilibrium volume of the crystal
compensating thereby the contraction predicted by the
LDA. The bulk modulus is seen to follow the well-known
parabolic behavior in the d series. The slight discrepancy
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between our FP-LMTO-LDA calculations (FP-PW) and
those of Ref. 24 (FP-LMTO-LDA) is most probably due
to the fact that in Ref. 24 the basis set contains also f
functions with the kinetic energy of —x? = —0.01 Ry and
that there the extended 4p states of the 4d metals were
treated as semicore states.

In the supercell approximation, the vacancy-formation
energy is a function of the size of the supercell and it
reads®26

~ -1
Ef(N)=E(N -1,1,Q) — N

E(N,0,9), (1)
where E(N,v,Q) is the total energy of a supercell con-
taining N atoms and v vacancies at a volume Q. We
assume that the lattice parameter is not affected by the
formation of the vacancy, i.e., 2 = Q@ = NQg, where Q
is the equilibrium volume per atom in the corresponding
bulk system. In Fig. 1 the charge density of the ideal
supercell, that of the vacancy supercell, and their differ-
ence are shown in the case of vanadium supercell size of
N = 27. In Fig. 2, the corresponding charge densities
for copper are shown for the supercell size of N = 32.
The charge density differences near the nuclei seem to
be quite large but they are in fact very small compared
to the unperturbed density. (The figures show the to-
tal charge density.) As seen from the figures, the elec-
tronic screening in metals is very effective and we expect
that the vacancies are essentially isolated in the super-
cells used, which should be the case because we are not
relaxing the atoms from their ideal lattice sites. It has
been shown that the electronic part for the formation en-
ergy converges very rapidly with respect to the supercell
size, whereas the elastic part (i.e., the part connected to
the relaxation of atomic positions) converges more slowly

TABLE I. Calculated and experimental lattice constants and bulk moduli for the 12 metals stud-
ied. FP-PW denotes the present FP-LMTO results within the LDA. The FP-LMTO values within
the LDA (FP-LDA) and within the GGA (FP-GGA) are taken from Ref. 24. The LMTO-ASA
values within the LDA (ASA-LDA) and within the GGA (ASA-GGA) are taken from Ref. 23. The
KKR values are from Ref. 25 and the experimental (exp) values are from Ref. 22. The lattice con-
stants are in atomic units (1 a.u. = 0.52175 A) and the bulk moduli in Mbar. Aa is the difference
between the calculated lattice constants (a§” "F") and the experimental values (ag*P).

\' Cr Ni Cu Nb Mo Pd Ag Ta w Pt Au
bcc bce fce fcc bcce bce fce fcc bcce bce fcc fce
aftrvw 549 525 6.47 6.66 6.04 584 7.27 758 6.08 589 7.39 7.68
agtTLPA 5.53 6.14 588 7.25 6.07 5.88 7.36
agt oA 5.66 6.25 5.97 7.45 6.21 598 7.51
apSA—ILPA 563 537 6.54 6.28 6.02 7.37 6.28 6.07 7.51
agSAt~SSA 571 545  6.70 6.39 6.11 7.53 6.38 6.15 7.65
ag¥® 554 530 6.55 6.76 6.20 5.89 7.42 7.79
ag*® 5.73 544 6.65 682 6.24 595 7.35 7.73 6.24 597 741 7.71
Aa (%) -42 -35 -27 -26 -32 -18 -11 -19 -26 -1.3 -03 -0.4
BFFP-PW 1.85 293 265 1.92 156 264 232 142 194 3.29 3.05 1.93
BFP-LDA 2.12 1.89 2.97 2.26 1.87 3.05 3.06
BFP-GGa 1.08 1.67 2.59 1.71 1.75 2.71 2.63
BASA-LDA 199 287 2.68 1.76 2.63 2.18 2.05 3.03 291
BASA-GGA 184 220 253 1.66 2.42 2.09 1.83 2.72 2.32
BXXR 1.64 2.70 220 1.55 1.68 251 1.70 1.02
BexP 1.62 1.90 1.86 1.37 1.70 2.73 1.81 1.01 200 3.23 278 1.73




9528

with the increasing supercell size.l>3*

In Table II, the dependence of the vacancy-formation
energy on the supercell size (N) and on the number of
k points (nk) is summarized in the case of vanadium.
It is seen that the convergence with respect to the k-
space summations is achieved for the supercell sizes of
N = 8 and N = 16. It is also reasonable to suppose
that nk = 16 is sufficient for V = 27. The conver-
gence with the increasing supercell size is less satisfac-
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tory. There seems to be non-negligible attractive inter-
actions between vacancies in the N = 8 and N = 16
supercells, where the vacancy-vacancy distances are 1.73
and 2.0 lattice constants, respectively, and there is only
one atom between the nearest vacancies. In the case
N = 27, the distance between vacancies is 2.6 lattice
constants and there are two atoms between the nearest
vacancies, so that the interactions between vacancies are
weaker. This is also seen from Fig. 1. In the N = 27 case,

(b)

38

FIG. 1. Electron density in vanadium (a) for a perfect supercell, (b) for a vacancy supercell, and (c) the difference between
(a) and (b). In (c) the solid line is for positive difference and dashed line for negative one. The size of the supercell is N = 27
and the plane of the figures is the (110) plane. Units are in 0.001 bohr™2 and the spacing between contour lines is 4 units.



the induced charge difference between the two atoms on
the line connecting the vacancies is vanishingly small,
whereas in the case of N = 16, there is a coupling be-
tween the vacancies mediated by the atoms in the (001)
direction. In conclusion, we believe that the vacancy-
formation energy obtained with N = 27 has converged
with an accuracy much better than the difference be-
tween the N = 16 and N = 27 results, i.e., 0.3 eV.
For the fcc lattice the effect of the supercell size and the
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number of the k points were not studied because of lim-
ited computational resources. It is seen from Fig. 2 that
the charge density of the vacancy supercell relaxes very
rapidly to the bulk value. The vacancy induced pertur-
bation is localized within the first nearest-neighbor shell
around the vacancy. The comparison with Fig. 1 and
the convergence test made for bcc vanadium assures us
that N = 32 and nk = 10 are enough to obtain the for-
mation energies for the fcc structures with a reasonable

(a) 54
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FIG. 2. Electron density in copper (a) for a perfect supercell, (b) for a vacancy supercell, and (c) difference between (a) and
(b). In (c) the solid line is for positive difference and dashed line for negative one. The size of the supercell is N = 32 and the
plane of the figures is the (111) plane. Units are in 0.001 bohr™2 and the spacing between contour lines is 4 units.
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TABLE II. Vacancy-formation energy of vanadium as a
function of the supercell size (N) and the number of the k
points (nk) in the irreducible Brillioun zone.

N=38 N =16 N =27

nk Ef (eV) nk EI (eV) nk EI (eV)
29 2.75 10 2.70 8 2.98
47 2.78 20 2.77 16 3.06
72 2.78 35 2.77

precision with respect to the experimental uncertainties
and the effects of the neglected relaxation energy of the
lattice.

The calculated values for the vacancy-formation en-
ergies are given in Table III together with the previous
theoretical estimates and experimental data. In Fig. 3,
the present theoretical cohesion and vacancy-formation
energies are compared with the experimental ones and
trends are studied along the different columns of the
Periodic Table. The theoretical cohesive energies are
systematically of the order of 1-2 eV larger than the
experimental ones. This reflects the LDA overbinding
and also the effect of the approximation of the spherical
charge density,?” made in the calculation of free atom
energies. In the case of the early bcc metals of the d
series the experimental vacancy-formation energy obeys
as a function of the atomic number a similar increasing
trend as the cohesion energy. The theoretical vacancy-
formation energies for the bcc metal columns show much
weaker dependencies. These different trends are due to
the large discrepancies in the case of V and Cr. For
Nb, Ta, Mo, and W the theoretical values are closer to
the experimental ones. The theoretical and experimental
vacancy-formation energies for the late fcc metal columns
show slightly decreasing dependencies as a function of
the atomic number, whereas the cohesive energies show
a minimum at the 4d elements. Also the absolute values
of the formation energies are in a much better agreement
than in the case of the bcc metals studied. Also the now
omitted lattice relaxation energies should be smaller for
the more densely packed fcc lattices than for the more
open bcc lattices.

When studied along the rows of the Periodic Table
(see Table III), the calculated vacancy-formation ener-
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FIG. 3. Theoretical (filled symbols) and experimental
(Ref. 22) (unfilled symbols) cohesion energies E.on and va-
cancy-formation energies Ef of the 12 transition metals stud-

ied.

gies increase at the beginning and decrease at the end
of the different d series. This means that the vacancy-
formation energies follow the general trend known from
the cohesion?® and surface?® energies. The parabolic
trend in the cohesion properties arises from the fact that
when going from left to right on transition metal series
the number of d electrons increases. When adding elec-
trons in the d states one first occupies the bonding states
and after the band is half full one starts to occupy the
antibonding states; one obtains the parabolic shape for
the strength of d bonds.

The trends observed in the cohesive properties are of-

TABLE III. Theoretical and experimental values for the vacancy-formation energies. A supercell size of N = 27 has been
used for bce metals and a size of N = 32 for fcc metals. Also the results of the other known full-potential calculations are

shown.
Ef (eV) v Cr Ni Cu Nb Mo Pd Ag Ta w Pt Au
bcc bee fcc fcc bce bcc fcc fcc bcc bcc fcc fce
FP-LMTO 3.06 2.86 1.77 1.33 2.92 3.13 1.65 1.24 3.49 3.27 1.45 0.82
Experiment 2.2° 2.27° 1.79% 1.28° 2.6 3.0® 1.70° 1.11® 2.8°  3.6-4.1° 1.35° 0.93®
2.1 2.0° 1.78" 1.28°  2.7-3.0® 3.2° 1.85° 1.11° 2.9° 4.0° 1.32° 0.89°
1.19° 3.1° 4.1°
Other calc. 1.764 1.414 1.57¢ 1.20¢
1.29° 1.06°

2Reference 15.
PReference 16.
°Reference 30.
dReference 13.
°Reference 12.
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TABLE IV. The values of the ratio Ef/E.,, calculated from the theoretical vacancy formation

and cohesive energies.

Metal El/El,. Metal E!/E., Metal Ef{/E., Metal Ef/E.
v 0.32 Cr 0.27 Ni 0.27 Cu 0.28
Nb 0.27 Mo 0.26 Pd 0.33 Ag 0.33
Ta 0.32 W 0.26 Pt 0.20 Au 0.19

ten explained in.a simple bond cutting model. In this
model, the energy per atom depends linearly on its lo-
cal coordination number (i.e., it is a constant times the
number of the nearest-neighbor bonds). This model
works well for covalent materials, where the coordina-
tion is quite low and there are strong directional bonds.
In metals, where the coordination is larger and bond-
ing is more isotropic, the bond strength is approxi-
mately proportional to the square root of the coordina-
tion number.?8:2° In the second-moment approximation
of the tight-binding model, the energy per atom is a func-
tion of the local coordination number of the atom,

E(C) = E;, — AVC + BC, (2)

where the attractive square root term takes into account
the bond strength saturation and the last term is a weak
repulsive term.'32® The parameters Fy, A, and B can be
obtained from least-squares fits of calculated total ener-
gies of systems having different local coordinations.?8:2°
In the case of the fcc lattice Eq. (2) is easy to apply, but
for the bcc lattice one encounters the problem of how to
treat the next-nearest-neighbor distances, which are only
slightly longer than the nearest-neighbor distances.

We have applied the tight-binding model (2) in analyz-
ing the vacancy-formation energies. Following Ref. 28,
the parameters are determined as follows: the (small)
constant term Fj is neglected, because we are interested
in energy differences only. The energy per atom in the
bulk E(Cp) is set equal to —E! ,, which is the nega-
tive of the cohesive energy calculated relative to the free
non-spin-polarized atom. The value for B is chosen to
be B = 0.03E._,, which has been shown to give reason-
able results in the case of the surface energies of the 4d
transition metals.2® With these choices the model gives
for the ratio Ef /E! , a constant value, which depends
only on the coordination number of the lattice. For the
fcc this ratio is 0.33. If one neglects the repulsive term a
larger constant of 0.51 is obtained. For the bcec metals one
cannot get an estimate for the constant ratio because of
the next-nearest-neighbor bonds. The values of the ratio
E{ /E!., calculated from the theoretical vacancy forma-
tion and cohesive energies are given in Table IV. The
ratios for the 3d and 4d fcc metals Ni, Pd, Cu, and Ag
are quite close to the tight-binding model value of 0.33,
whereas for Pt and Au the ratios are considerably lower.
In the case of the bcc metals, the Ef /E! | ratios are
around 0.3. As a conclusion from Table IV, one can say
that the simple tight-binding model can roughly repro-
duce the magnitude of the ratio Ef/E’_, , but there exist
also clear trends not explainable with this simple model.

Previous calculations exist for vacancy-formation ener-
gies for some fcc transition metals. The agreement with

the present results is excellent as can be seen from Ta-
ble ITI. Also the agreement between the present values
and the experimental ones is good for the fcc metals. For
the fcc metals now studied the experimental values are
known quite well, except in the case of Pd for which the
low purity of the samples is a problem.!® The experimen-
tal values of the early 4d and 5d transition metals are also
quite well reproduced but discrepancies are seen to oc-
cur expecially for the early 3d transition metals V and
Cr. In the case of bcc metals, the experimental values
are much more uncertain than those for the fcc metals
partly due to relatively impure samples and partly due
to small Ef /E™ ratios.!® For the fcc metals, the exper-
imental values for single vacancy diffusion data are well
converged, i.e., Q3¢ = Ef + E™, whereas for the bcc met-
als the situation is much worse. For the bcc metals the
present calculated vacancy-formation energies are useful
when comparing the different experimental values. In
the future, it should be also interesting to calculate the
migration energy of monovacancy diffusion for the bcc
metals in order to get an estimate for the activation en-
ergy for self-diffusion in the monovacancy mechanism.

IV. CONCLUSIONS

In conclusion, it has been shown that ab initio full-
potential calculations provide reliable values for the
vacancy-formation energies of transition metals. For the
fcc metals the calculated vacancy-formation energies are
in good agreement with known experimental data. For
the bcc metals the agreement is less satisfactory. This is
partly due to the larger scatter in the experimental val-
ues, but in the case of V and Cr the calculated values
are significantly, i.e., about 1 eV, larger than the exper-
imental values. The discrepancies for V and Cr are not
unexpected because the LDA is known to overbind these
metals more than the metals later in the 3d series.?3:24
Thus these materials provide a useful testing ground
for different corrections to the LDA, such as the GGA
method. For some fcc metals there exists other full-
potential calculations'!:!3 which are in good agreement
with present ones.
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