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Convergence of supercell calculations for point defects in semiconductors: Vacancy in silicon

M. J. Puska, S. Po¨ykkö, M. Pesola, and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

~Received 10 February 1998!

The convergence of first-principles supercell calculations for defects in semiconductors is studied with the
vacancy in bulk Si as a test case. The ionic relaxations, defect formation energies, and ionization levels are
calculated for supercell sizes of up to 216 atomic sites using severalk-point meshes in the Brillouin-zone
integrations. The energy dispersion, inherent for the deep defect states in the supercell approximation, and the
long range of the ionic relaxations are shown to postpone the convergence so that conclusive results for the
physical properties cannot be obtained before the supercell size is of the order of 128–216 atomic sites.
@S0163-1829~98!05627-6#

I. INTRODUCTION

First-principles electronic structure calculations based on
the density-functional theory within the local-density ap-
proximation ~LDA ! for the electron exchange-correlation
energy1 are often used to study low-concentration defects~of
the order of one defect per million lattice sites! in semicon-
ductors, metals, and insulators. Typically, the aim of the cal-
culations is to describe isolated defects in an otherwise per-
fect crystal lattice. In principle, the Green’s-function
methods2 treat this limit exactly, but are not very practical
for the large embedded clusters necessary to incorporate the
long-range ionic relaxations. In the popular supercell ap-
proximation one repeats periodically a finite unit cell con-
taining the defect desired plus neighboring host atoms. The
periodicity of the ensuing superlattice enables the use of
powerful calculation methods designed originally for perfect
bulk lattices. One of them is the pseudopotential plane-wave
method,3 which also enables an accurate calculation of the
forces affecting the ions and thereby the optimization of the
ionic structure around the defect. The supercell approxima-
tion has obvious drawbacks in terms of the interactions be-
tween the defect and its periodic replicas. If the defect-defect
distance is not large enough the electronic structure of an
isolated defect is distorted because the deep levels in the
band gap form energy bands with a finite dispersion and the
localization of the deep level wave functions may change
considerably. In the worst case the deep level may end up@at
least for somek points in the superlattice Brillouin zone
~BZ!# in the region of the bulk energy bands resulting in
strong hybridization. The size of the supercell restricts also
the ionic relaxation. The relaxation pattern is truncated mid-
way between a defect and its nearest periodic replica. In the
case of long-range ionic relaxations this cutoff may be re-
flected dramatically close to the defect, as will be demon-
strated below.

The vacancy in bulk Si can be considered as the simplest
example of a point defect in a semiconductor lattice. Vacan-
cies in Si play an important role, e.g., in self- and impurity
diffusion and therefore the knowledge of their ionic and elec-
tronic structures is of utmost importance. Experimentally,
vacancies in Si have successfully been monitored using the
electron paramagnetic resonance technique~EPR!, the

electron-nuclear double resonance~ENDOR!, and the deep-
level transient spectroscopy~DLTS!.4 EPR and ENDOR give
the symmetries and spatial distributions of the highest un-
paired localized electron state. DLTS and EPR give informa-
tion about the ionization levels, i.e., about the values of the
electron chemical potential at which the defect changes its
charge state. Positron lifetime measurements have given in-
formation about the open volume changes for the vacancy-
phosphorus pair in Si when the charge state of the defect
changes.6 Also DLTS has been used for this purpose.7

Watkins has described the electronic and ionic structure
of the vacancy in Si on the basis of the linear combination of
atomic orbitals~LCAO! model.4 When a Si atom is removed
from the lattice, four dangling bonds, directed towards the
center of the vacancy, are formed. These dangling bonds
hybridize so that their totally symmetric combination, an
s-type state, lies in energy within the bulk valence band.
Three different combinations with nodal planes arep type
and they form deep levels in the energy gap. In the doubly
positive charge state of the defect the deep levels are empty
and the ionic relaxation preserves theTd-point symmetry of
the perfect lattice. In the singly positive and neutral charge
states one of the deep levels is occupied by one and two
electrons, respectively. The Jahn-Teller effect lowers the
point symmetry toD2d and breaks the degeneracy of the
deep levels. This symmetry is deduced from the EPR
measurement.5 Actually, the introduction of the second elec-
tron to the deep level results in a strong ionic relaxation and
a lowering of the total energy, overcoming the Coulombic
repulsion between the localized electrons. Therefore, it is
energetically favorable that the charge state changes directly
from the doubly positive to the neutral one. This is the fa-
mous negative-effective-U effect first predicted for the Si
vacancy by Baraffet al.8 and experimentally confirmed by
Watkins and Troxel.9 For the negative and doubly negative
charge states the symmetry is further lowered and the point
symmetry derived from the EPR~Ref. 5! and ENDOR~Ref.
10! measurements isC2v .

In spite of its obvious simplicity, the vacancy in Si is a
most challenging application for first-principles electronic
structure calculations, although this fact has not always been
fully appreciated. Sugino and Oshiyama11 realized the diffi-
culties of the supercell calculations when describing the
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highest occupied electronic state of the Si vacancy in the
negative charge state. Difficulties arise especially when one
searches for the ionic positions around the defect without any
~point! symmetry restrictions. The electronic and ionic struc-
tures are strongly coupled together, which is most clearly
seen in a spectrum of different ionic relaxation patterns ob-
tained as the approximations of the calculation vary. The
early Green’s-function calculations12 predicted that the ions
surrounding the vacancy in the neutral charge state relaxout-
wards from the center of the vacancy. The physics behind
this kind of pattern was explained to be the creation of
sp2-type hybridization for the ions surrounding the vacancy.
Later calculations employing the supercell approximation
within the plane-wave13,14 or tight-binding15 schemes con-
verged with aninward relaxation ~of nearest-neighbor at-
oms!, having a component lowering the symmetry fromTd
to the pairing-typeD2d point symmetry. This was the result
also in a recent cluster calculation for the Si vacancy.16 How-
ever, the results can be sensitive to the computational details
and also more complicated relaxation patterns have been
found.17 Besides the ionic relaxations, also the calculated
vacancy formation energy and the ionization levels show re-
markably scattered results between different works.

In this work we study systematically the convergence of
the LDA supercell calculations in the case of the vacancy in
silicon. Supercell sizes of up to 216 atomic sites are em-
ployed and the Brillouin zone is sampled using severalk-
point sets. These kinds of calculations have become feasible
only during the last years with the massively parallel super-
computers and electronic-structure codes especially designed
for them.18,19For Si we have used separable20 first-principles
norm-conserving pseudopotentials.21,22 The nonlinear core-
valence corrections23 are used to account for the overlap of
the core and the valence-electron charges. The pseudopoten-
tial has been carefully tested, in particular it has been con-
firmed to be free of unphysical ghost states24 using the analy-
sis by Gonzeet al.25 The valence electron structures have
been solved within the LDA~Ref. 26! and the plane-wave
basis set with a high cutoff energy of 15 Ry. Using the unit
cell of two atoms and increasing the number ofk points the
equilibrium lattice constant of bulk Si converges to 5.39 Å.
This is slightly less than the experimental value of 5.43 Å.
The discrepancy is typical for LDA calculations. Our calcu-
lation gives for the energy band gap the value of 0.47 eV.
The underestimation with respect to the experimental value
of ;1.2 eV is also typical for LDA calculations. The super-
cells used for the vacancy calculations and the geometric
properties of the corresponding superlattices are given in
Table I.

In all our defect calculations, unless otherwise stated, all
the atoms in the supercell have been allowed to move with-
out any symmetry restrictions. In the beginning of each re-
laxation atomic positions have been slightly randomized in
order to remove any spurious symmetries. In order to avoid
artificial stresses the lattice constant for a defect calculation
should be obtained from a bulk calculation using the same
density ofk points as in the defect calculation. The typical
variations of the lattice constant are in our calculations small,
of the order of 0.2%. The ensuing variations in ionic relax-
ation patterns and in total energies are not significant. This
we have tested with the doubly positive vacancy described

by the supercell of 64 atomic sites. The calculations indicate
that changes up to 1% in the lattice constant do not signifi-
cantly affect the results. Therefore we have used, for simplic-
ity, the same lattice constant of 5.39 Å in all of our subse-
quent calculations.

The organization of the paper is as follows: In Sec. II a
survey of the approximations used in the Brillouin-zone
summations is given. In Secs. III and IV we discuss the
results, and compare them with both experiment and the
most recent theoretical calculations. Section V summarizes
the results and gives the main conclusions.

II. BRILLOUIN-ZONE SAMPLING

For a perfect lattice the convergence of the electronic
properties can be achieved by increasing the number ofk
points in the Brillouin zone, or, alternatively, the product of
the number of atoms in the calculational unit cell and the
number ofk points. In conventional electronic-structure cal-
culations the increase of the number ofk points is much
more economical than the increase of the number of atoms:
the CPU time needed scales linearly with the former but is
proportional to the cube of the latter number. In the supercell
calculations for defects one would also like to use as small
supercells as possible but now the convergence is a more
subtle question due to the spurious defect-defect interactions
in the superlattice. Although the description of the properties
of the underlying perfect lattice can be improved just by
increasing the number ofk points, isolated defect properties
cannot be obtained until the unit cell is large enough. For
defects in metals already quite small supercells may give
well converged results if the number ofk points is large
enough.27 For defects in semiconductors the situation is more
difficult. This is because the defects in semiconductors in-
volve localized states and the description of these states, as
will be shown below, is not straightforwardly improved as
the number ofk points increases, i.e., the detailed choice of
the k-point sampling for the BZ integration may strongly
affect the convergence. However, in most defect calculations
BZ-sampling methods developed to describe bulk lattices are
used.

The simplest scheme to sample the BZ in supercell calcu-
lations is to use theG point only. When the size of the
supercell increases the wave functions calculated correspond
to severalk points of the underlying perfect bulk lattice so
that the perfect latticek space is evenly sampled. This
scheme offers also saving in computer resources because the
wave functions are purely real. In order to improve the de-

TABLE I. Details of the supercells used. The size of the super-
cell (N), the type of the superlattice, and the smallest distance (D)
from a site in a supercell to its periodic image are given.

N
Super-
lattice

D
~in units of the

superlattice constanta)

32 bcc 1.732
64 sc 2.000
128 fcc 2.828
216 sc 3.000
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scription of the wave functions, especially that of the delo-
calized bulklike states, and the description of the electron
density, it is beneficial to usek points other than theG
point.28 Thereby also components with wavelengths longer
than the supercell lattice constant are included in the plane-
wave expansions of the density and wave functions. This
idea leads to the so-called specialk-point schemes,29–32

which are widely used to sample the BZ also in defect cal-
culations.

Recently, Makovet al.33 introduced a scheme to choosek
points for the supercell defect calculations so that the defect-
defect interactions are minimized in the total defect energy.
They justified the different choices by a tight-binding model.
For example, thek-point set minimizing the defect-defect
interactions between the nearest-neighbor cells in the case of
a simple cubic superlattice without any symmetry in the su-
percell consists of theG and theL points @L is the corner

point (1
2 , 1

2 , 1
2 )(2p/a) of the BZ of the superlattice with the

lattice constanta]. At the L point the wave functions are
purely real as in theG point, but they change sign between
the adjacent cells. The use of these twok points was recom-
mended also by Korhonenet al.34 in the context of localized
positron states at lattice defects. Korhonenet al. justified the
recommendation by real-space arguments. Recently, also
Chadiet al.35 have used these twok points in defect calcu-
lations.

In our calculations we have employed severalk-point sets
to sample the BZ in order to systematically test the effects of
the sampling. The simplest one uses theG point only. The 23

k-point meshes are those by Monkhorst and Pack~MP! ~Ref.
31! ~eight points in the BZ!. In the case of the supercell with
64 atomic sites we have also employed the 33 MP k-point
mesh~27 points in the BZ!. The 33 MP mesh contains theG
point whereas the 23 MP mesh samples the Brillouin zone
ignoring theG point. Thek-point meshes recommended by
Makov et al.33 have been used for supercells with 32@one

k-point, (1
4 , 1

4 , 1
4 )(2p/a)] and 64~theG andL points! atomic

sites.

III. NEUTRAL Si VACANCY

A. Vacancy formation energy

The formation energy of a vacancy in Si in the charge
stateQ is calculated in the supercell approximation as

EQ
v ~me!5EQ

N211Q~me1Ev!2
N21

N
EN, ~3.1!

whereEN is the total energy of the perfect lattice supercell
with N atoms andEQ

N21 is the total energy of the supercell
containing one vacancy. The electron chemical potentialme
in Eq. ~3.1! gives the position of the Fermi level in the band
gap relative to the top of the valence bandEv . Average
potential correction has been employed in the calculation of
the position of the valence-band maximum in the defect
supercell.36–38 We use a neutralizing uniform background
charge in order to avoid long-range Coulomb interactions
between the supercells. When applying Eq.~3.1! we use in
the defect and perfect lattice calculations supercells of the
same volume and we also use the samek-point samplings. In

this way some systematic errors, especially those arising
from bulk components, cancel out in the calculated energy
differences.

The neutral vacancy formation energies obtained with dif-
ferent supercell sizes andk-point samplings after relaxing all
the ions without any symmetry restriction are given in Fig. 1.
The vacancy formation energies calculated using theG-point
sampling increase strongly and systematically as the size of
the supercell increases. TheG-point sampling contains the
~electronic! interactions between neighboring defects in the
superlattice as discussed by Makovet al.33 In the G-point
sampling these interactions areattractiveand they decay off
as the size of the supercell increases. The 23 MP mesh gives
in the case of small supercells formation energies that are
larger than the best converged value reflectingrepulsive
components of the defect-defect interactions. However, this
sampling seems to lead to a faster convergence than theG
point, indicating that some of the nearest-neighbor defect-
defect interactions are canceled. Finally, it is interesting to
see that the calculations using thek-point samplings recom-
mended by Makovet al.seem to result in a fast convergence
of the formation energy. This happens in spite of the fact that
the relaxation pattern of the vacancy has not yet converged.
Thus, from the energetical point of view the minimization of
the ~electronic! defect-defect interactions seems to be more
important than the detailed positions of the ions.

In order to get an idea of the energy surfaces in the space
spanned by the position coordinates of the ions we have
taken the ionic positions in the supercell with 64 atomic sites
calculated using a givenk-point sampling and repeated the
calculation with otherk-point samplings, keeping the ionic
positions fixed. The total-energy differences relative to the
original calculation with self-consistently relaxed ionic posi-
tions are given in Table II. Firstly, the matrix formed shows
that the self-consistent ionic positions always give the small-
est total energy supporting our contention that we have found
in each self-consistent calculation the global energy mini-
mum with respect to the ionic positions. Secondly, it is

FIG. 1. Formation energy of the neutral vacancy in Si. The
supercell size used is given on the top of each panel and thek-point
set used to sample the Brillouin zone is indicated as numbers; 1

5G, 2523, 3533, 45( 1
4 , 1

4 , 1
4 ), and 55G1L.
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amazing that the energy differences between the ionic con-
figuration with a relatively large outward relaxation obtained
with the self-consistentG-point calculation and those with a
large inward relaxation from the otherk-point samplings
~columns in Table II! are quite small. In the case of the
G-point sampling for the electronic structure the energy dif-
ferences between the ionic structures calculated employing
different k-point sets are only a few tenths of eV~the first
column in Table II!. This means a flat energy surface imply-
ing that the finding of the energy minimum requires the it-
eration of the forces acting on the ions very close to zero.
That requires, in turn, a huge amount of iteration steps for
the ionic positions. We have iterated atomic positions until
the largest remaining force component acting on any ion is
less than 331025 Ry/a0 .

B. Ionic relaxation

We have studied in detail the ionic relaxation pattern
around the neutral vacancy in Si, both the resulting point
symmetry and the magnitude of the ionic movements with
respect to the ideal lattice positions. Table III gives the re-
sults. The distances between the four nearest-neighbor ions
of the vacancy as well as the resulting relaxation volumes
with respect to the ideal vacancy are given. The point-

symmetry groups are deduced from the nearest-neighbor dis-
tances. In many cases, there is a small numerical noise com-
ponent in the distances and an ensuing slight indefiniteness
in the symmetry group. The flatness of the total-energy sur-
face in the space of ionic coordinates~see Table II! explains
this noise and partly the scatter in the relaxation patterns
between different calculations~see Table III!.

If the vacancy conserves theTd-point symmetry of the
ideal vacancy, all the six lengths in Table III are equal. The
D2d-point symmetry is signaled by four equal, longer dis-
tances and two equal, shorter distances. If four of the dis-
tances are equal and from the remaining two distances one is
longer than the other the point symmetry isC2v . According
to Table III the finalD2d -point symmetry, which is in agree-
ment with the present common opinion,4 is obtained consis-
tently only for the largest supercell of 216 atomic sites. In
the case of the supercell with 128 atomic sites theG-point
sampling gives theD2d symmetry whereas for the supercell
of 64 atomic sites this symmetry is obtained with the largest
33 sampling, which contains theG point. It is striking that
the simulation with the supercell of 64 sites and theG-point
sampling gives a strong outward relaxation of the nearest-
neighbor ions and the point symmetry ofC2v . The deviation
from the other calculations illustrates clearly the difficulties
encountered in the supercell calculations for the vacancy in
Si.

Some of the scatter in the results of Table III can be
understood on the basis of the energy dispersion of the
vacancy-induced deep levels. Because the deep-level wave
functions are ofp type their energy dispersion resembles that
of the top of the valence band: moving away from theG
point the possible threefold degeneracy is broken and the
energy eigenvalues are lowered. If the supercell consists of
64 atomic sites our electronic structure calculations give for
the energy dispersion the estimate of 0.7 eV. For the super-
cell of 216 atomic sites the corresponding estimate is 0.2 eV.
Thus for the small supercell sizes the energy dispersion is
even larger than the LDA band gap. This may lead to the

TABLE II. Calculated total-energy differences between the
most stable structures for a neutral vacancy in Si and the structures
obtained using differentk-point sets. In these calculations a super-
cell of 64 atomic sites has been employed. Energies are given in eV.

Ionic
structure G

k-point set
G1L 23 33

G 0.00 0.18 0.88 0.75
G1L 0.13 0.00 0.13 0.03

23 0.34 0.27 0.00 ;0.00
33 0.18 0.04 0.06 0.00

TABLE III. Distances between the ions neighboring the neutral vacancy in Si. In the perfect crystal, all
distances are equal to 3.81 Å. The relative volume change (V2V0)/V0 and the resulting point symmetry
group when the ions relax from their ideal lattice positions are also given.V and V0 are calculated as the
volumes of the tetrahedra formed by the four nearest-neighbor ions of the relaxed and the ideal vacancy,
respectively.Ev is the vacancy-formation energy defined in Eq.~1!. Distances are given in Å and energies in
eV.

Distance number
Supercell BZ sampling ~1!–~2! ~3! ~4! ~5! ~6! 100(V2V0)/V0 Symmetry Ev

216 23 3.38 3.38 3.36 2.96 2.90 241.4 ;D2d 3.31
216 G 3.39 3.39 3.39 2.89 2.89 242.4 D2d 3.27
128 23 3.43 3.43 3.41 3.41 3.41 227.6 ;Td 3.44
128 G 3.55 3.55 3.55 3.09 3.00 233.2 ;D2d 3.14
64 33 3.47 3.47 3.47 3.16 3.15 232.4 ;D2d 3.67
64 23 3.40 3.40 3.40 3.40 3.40 229.0 Td 3.42
64 G1L 3.57 3.57 3.57 3.34 2.96 229.5 C2v 3.23
64 G 4.16 4.07 4.07 4.83 3.06 111.7 ;C2v 2.86
32 23 3.61 3.61 3.61 3.52 3.52 217.4 ;Td 3.98
32 ( 1

4 , 1
4 , 1

4 ) 3.33 3.33 3.20 3.20 3.20 237.2 C3v 2.83

32 G 4.27 3.99 3.99 2.48 2.47 244.1 s1v 0.93
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hybridization of the deep-level states with the valence-band
states, and the delocalized character of the wave functions
can be strongly enhanced.

For theG point the deep-level energy eigenvalue falls into
the band gap. Therefore, theG-point calculation for the su-
percell of 128 atomic sites can give the correctD2d symme-
try. In contrast, the calculations employing the Monkhorst-
Pack 23 k-point mesh conserve theTd symmetry up to the
supercell of 128 atomic sites. In comparison with theG-point
calculation for theTd-symmetric vacancy, the triply degen-
erate deep state is split at eachk point into a nondegenerate
and a doubly degenerate state. The energy dispersion of the
nondegenerate state is so strong that its eigenenergy falls into
the valence band. The delocalized character of the hybridized
states is then seen as the conservation of theTd symmetry.

The relative relaxation volume (V2V0)/V0 shows a ten-
dency to increase when increasing the size of the supercell
~compare the numbers with the similark-point samplings for
the supercells of 128 and 216 sites!. The tendency is due to
the completion of the long-range ionic relaxation pattern:
when the size of the supercell increases, ions neighboring the
vacancy can move more from their ideal lattice positions.
The dependence of the relaxation amplitude on the supercell
size can be compared with the results by O¨ ǧüt et al.16 They
solved the electronic and ionic structures of the Si vacancy
by the cluster method so that the surface Si ions of the clus-
ters were fixed at the perfect bulk positions. They found also
that the inward relaxation of the nearest-neighbor ions of the
vacancy increases when the size of the cluster increases. The
convergence occurred when there were about 100 Si atoms
in the cluster.

According to Table III the calculations for the supercells
of 32 and 64 atomic sites by employing thek points recom-
mended by Makovet al.33 do not result in the correctD2d
symmetry. However, the relaxation of the nearest neighbor
ions is in both calculations into the correct direction, i.e.,
inwards.

C. Comparison with previous results

Our results can be compared with several other recent
supercell calculations for the neutral vacancy in silicon. Be-
low we discuss some of them in chronological order. The
comparison is hindered by the different types of pseudopo-
tentials and plane-wave cutoff energies used, but neverthe-
less quantitative trends in the results with respect to the su-
percell size and thek-point sampling can be seen.

Blöchl et al.39 used the supercell of 64 atomic sites and
sampled the BZ with up to 27k points (533 MP mesh!.
Their rather high value for the formation energy, 4.1 eV, is
consistent with our finding that the 33 BZ sampling gives the
highest formation energy of the differentk-point sets used
for the supercell of 64 atomic sites.

Virkkunen et al.17 calculated the electronic and ionic
structures of the Si vacancy using the supercell of 64 atomic
sites and theG point for the BZ sampling. Using the pseudo-
potential with s and p nonlocality the neutral vacancy re-
laxed according to theC3v-point symmetry so that one of the
nearest-neighbor atoms moved strongly to the open@111#
direction. The formation energy was found to be 2.8 eV. This

value as well as the strong outward relaxation, although dif-
ferent in details, are in good agreement with our present
calculation.

Seong and Lewis14 calculated the electronic and ionic
structure of the Si vacancy using the supercell of 64 atomic
sites and theG point for the BZ sampling. They found the
D2d-point symmetry and an inward relaxation so that the
relative volume change of the vacancy is235%. For the
vacancy-formation energy they obtained the value of 3.29
eV. The result contradicts our final fully converged results
for this supercell and BZ sampling with a large outward re-
laxation of the nearest-neighbor ions. However, our calcula-
tions converged first very close to theD2d symmetry with an
inward relaxation and only several further iterations changed
very slowly the relaxation to the outward direction and the
symmetry toC2v . Our final vacancy-formation energy with
the 64 atomic-site supercell and theG-point sampling is 2.86
eV, which is lower than 3.29 eV obtained by Seong and
Lewis.14 Using the numbers of Table II one can estimate that
our G-point value with the inward relaxation of the order of
235% in volume would be around 3.0–3.2 eV.

Ramamoorthy and Pantelides40 calculated the vacancy-
formation energy using a supercell of 32 atomic sites and
two specialk points.30 They obtained the value of 3.78 eV,
which is not far away from our value of 3.98 eV calculated
for this supercell size with the 23 MP k-point mesh.

Pankratovet al.41 used the supercell with 64 atomic sites
and eight specialk-points (23 MP mesh!. They obtained the
vacancy-formation energy of 3.6 eV, which is only slightly
higher than our value of 3.42 eV calculated for this supercell
size with the 23 MP mesh.

Zywietz et al.42 studied the occurrence of the Jahn-Teller
distortion in the neutral Si vacancy by supercells of up to 128
atomic sites and using severalk-point samplings. They re-
stricted the relaxations to obey theTd , D2d , or C3v symme-
try. The formation energies they obtained with theG point as
well as with the 23 and 33 meshes are in agreement with our
values within an accuracy of the order of 0.1 eV. It is also
remarkable that their calculations with a given supercell size
and k-point sampling gave for the vacancies with different
symmetries nearly the same total energies. This reflects, as
discussed in the context of Table II, the difficulty of finding
the ground-state ionic configuration.

IV. CHARGED Si VACANCIES

We have also made calculations for the charged states of
the vacancy in Si. The ionic structures of the charged vacan-
cies, when using different computational approximations, are
given in Table IV. The doubly positive charge state, which
has no electrons in the deep levels, shows the expected
Td-point symmetry. However, the size of the supercell is
seen to have a remarkable influence. For the supercells with
128 or less atomic sites the nearest-neighbor ions relax
slightly outwards irrespective of thek-point sampling. But
increasing the supercell to 216 atomic sites the nearest-
neighbor ions relax suddenly strongly inwards. This change
in the relaxation pattern is in agreement with the results of
the recent cluster calculations by O¨ ǧüt et al.16 It reflects the
fact that the vacancy-induced ionic distortions in Si propa-
gate preferably in the@110# zigzag directions.15 The defect-
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defect distance in the@110# direction is the same in the su-
percells with 64 and 128 atomic sites and the distance is too
small to allow an inward relaxation. In going to the supercell
of 216 atomic sites the defect-defect distance increases in the
@110# direction by the factor of 1.5 and the relaxation pattern
changes.

When the charge state of the vacancy is changed from
doubly positive to singly positive its point symmetry is low-
ered fromTd towardsD2d for those supercell sizes andk-
point samplings, that give a low-symmetry structure in the
neutral-charge state. The symmetry patterns obtained are not
as clear as in the neutral-charge state. The very strong
symmetry-breaking relaxation mode seen in the neutral-
charge state when calculating with theG-point sampling and
the 64-atomic-site supercell is not seen in the singly positive
charge state. The convergence of the ionic relaxation is simi-
lar to that for the doubly positive charge state: a supercell of
216 atomic sites is required to describe the long-range relax-
ation pattern. Then the point symmetry of the defect isD2d ,
i.e., the one obtained in the EPR measurements.5

For the negative-charge states the convergence of the
ionic relaxation with respect to supercell size and thek-point
sampling is slower than for the neutral-charge state~see
Tables III and IV!. The results can be affected by the too
narrow band gap of the LDA. The highest defect-induced
level can be strongly hybridized with the conduction-band
states. The highest-occupied electron states then have a
wrong character and the ionic relaxation differs from what
would be obtained with a larger band gap consistent with the
experiments. Our calculations performed with the supercell

of 216 atomic sites and theG-point sampling for the singly
and doubly negative charge states converge to theD3d-point
symmetry. In this solution one of the nearest-neighbor ions
of the vacancy has relaxed towards to the center of the va-
cancy so that a symmetric ‘‘split vacancy’’ results~see Fig.
2!. The ion in the middle of the defect is bonded to six
neighboring ions. In the doubly negative vacancy the highest
electron state is doubly degenerate and it lies in the band
gap. The state is fully occupied by four electrons so that
there is no Jahn-Teller distortion, which would lower the
D3d-point symmetry. The highest occupied level is aneg
orbital resembling the corresponding orbital obtained in the
LCAO model for an ideal divacancy.43 The electron density
of the fully occupied level is given in Fig. 2 showing that the
density is localized in the six dangling bonds of the split
vacancy. For the singly negative charge state a Jahn-Teller
symmetry lowering should take place. According to our re-
sults in Table IV the amplitude of the symmetry lowering is
small and the result is in disagreement with the EPR~Ref. 5!
and ENDOR ~Ref. 10! measurements indicating the
C2v-point symmetry for the singly negative vacancy.

Sugino and Oshiyama11 made supercell calculations for
the singly-negative vacancy in Si. First they obtained the
ionic structure by using a supercell of 64 atomic sites and the
23 MP k-point mesh. The symmetry was found to beC2v .
Our calculation with the same supercell size andk-point
sampling gives ionic relaxations similar in magnitude but
different in symmetry. Using the ionic positions obtained
with the small supercell Sugino and Oshiyama then studied
electronic structure in a larger supercell of 216 atomic sites.

TABLE IV. Same as Table III but for charged vacancies in Si.

Distance number
Charge state Q Supercell BZ sampling ~1!–~2! ~3! ~4! ~5! ~6! 100(V2V0)/V0 Symmetry EQ

v (me50)

21 216 G 3.45 3.45 3.45 3.45 3.45 226.1 Td 3.01
21 128 G 3.89 3.89 3.89 3.89 3.89 6.4 Td 2.57
21 64 33 3.85 3.85 3.84 3.84 3.84 2.6 ;Td 3.79
21 64 23 3.85 3.85 3.84 3.84 3.84 2.6 ;Td 4.11
21 64 G1L 3.92 3.92 3.92 3.92 3.92 8.7 Td 2.45
21 64 G 3.83 3.83 3.83 3.83 3.83 1.7 Td 2.01
11 216 G 3.38 3.39 3.37 3.03 2.98 239.4 ;D2d 3.20
11 128 G 3.76 3.76 3.76 3.68 3.63 26.9 ;Td 2.89
11 64 33 3.62 3.62 3.62 3.62 3.62 214.3 Td 3.62
11 64 23 3.62 3.61 3.61 3.61 3.61 214.8 Td 3.72
11 64 G1L 3.79 3.79 3.79 3.73 3.70 23.8 ;Td 2.85
11 64 G 3.74 3.74 3.74 3.73 3.69 26.2 ;Td 2.51
12 216 G 3.49 3.47 2.63 2.62 2.60 255.0 ;D3d 3.88
12 128 G 3.56 3.52 3.52 3.41 2.76 233.4 ;C2v 3.53
12 64 33 3.35 3.33 3.33 3.15 3.06 237.9 ;C2v 4.07
12 64 23 3.34 3.30 3.29 3.14 3.14 237.7 ;D2d 3.68
12 64 G1L 3.52 3.50 3.50 3.59 2.72 226.6 ;C2v 3.85
12 64 G 3.51 3.50 3.50 2.94 2.90 238.2 ;D2d 3.56
22 216 G 3.47 3.47 2.60 2.60 2.60 251.9 D3d 4.29
22 128 G 3.56 3.46 3.46 3.32 2.68 236.8 ;C2v 4.17
22 64 33 3.31 3.07 3.07 3.06 3.06 244.5 ;D2d 4.60
22 64 23 3.31 3.07 3.07 3.06 3.06 244.5 ;D2d 4.01
22 64 G1L 3.46 3.40 3.39 3.55 2.62 237.7 ;C2v 4.52
22 64 G 3.49 3.48 3.47 2.79 2.75 243.4 ;D2d 4.15
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They lowered the cutoff energy to 6 Ry so that the band gap
opened to 1.1 eV. The density of the unpaired electron was
found to be in a good agreement with ENDOR measure-
ments.

The vacancy-formation energies defined with respect to
the electric-chemical potential at the top of the valence band
are also given in Table IV. It can be seen that the variations
in the formation energy are largest for the doubly positive
charge state and they become smaller towards the more
negative charge states. Thus the trend is similar to that in the
convergence of the magnitude of the lattice relaxation.

The ionization levels resulting from the total-energy cal-
culations with different approximations are compared with
experiment in Table V. The ionization levels between ther-
modynamically stable states are given in bold whereas those
between a stable and an unstable one are shown in parenthe-
ses. The dashes mean that positive-charge states have not
been found due to the hybridization of the highest occupied

defect-induced state with the valence-band states. The
negative-effective-U level ~21/0! is seen to converge nicely
towards the experimental value when the size of the super-
cell increases. The experiments4 indicate that the levels
~0/2! and~2/22! locate around the midgap and in the upper
part of the gap, respectively. According to our calculations,
the higher ionization levels could be close to or above the
midgap, but the results are uncertain due to the too narrow
LDA band gap of 0.47 eV. TheG-point calculation with the
64-atomic-site supercell as well as with the largest supercell
of 216 atomic sites give a second negative-effective-U level
~0/22!, which is against the experimental findings. However,
the relatively good convergence of the formation energies for
the negative charge states in Table IV gives hope that the
ionization levels calculated from them could be used as
semiquantitative estimates. It is also noteworthy that the cal-
culations using more extendedk-point samplings as well as
that with the 128-atomic-site supercell and theG point both
give a thermodynamically stable singly negative charge
state.

V. CONCLUSIONS

We have studied the convergence of electronic-structure
supercell calculations for defects in semiconductors, with the
vacancy in Si as the test case. The electronic structures have
been described within the density-functional theory in the
local-density approximation using norm-conserving pseudo-
potentials and a plane-wave expansion for the wave func-
tions.

The convergence of the results is shown to be very slow.
This is because the energy dispersion of the localized deep
levels may lead for some choices of the Brillouin-zone sam-
pling to hybridization of the defect state with the bulk-energy
bands. If the supercell is not large enough the long-range
ionic relaxation pattern, especially in the@110# zigzag direc-
tion, may not be properly described. The ensuing solutions
may then have very different features, e.g., with respect to
the point symmetry of the defect. The slow convergence of
the supercell calculations should be borne in mind for differ-
ent defects in semiconductors, although the vacancy in sili-
con may be one of the most difficult cases due to the flatness
of the total-energy surface as a function of the ionic coordi-
nates.

The calculations for the neutral vacancy in silicon show
that the defect-formation energy can be estimated using

FIG. 2. Doubly negative Si vacancy. The spheres give the re-
laxed positions of the ions with respect to ideal bulk bonds denoted
by sticks. The isosurface of the electron density for the highest deep
level occupied by four electrons is also shown. The electron density
for the isosurface is half of its maximum value of 0.087 electrons/
Å3.

TABLE V. Ionization levels for the silicon vacancy. Numbers in the parentheses correspond to the
transitions between a thermodynamically stable and an unstable charge state. The experimental results for the
levels ~21/1! and ~1/0! are from Ref. 4. All the values are in eV.

Size ~21/1! ~21/0! ~1/0! ~0/2! ~2/22! ~0/22!

64 & G ~0.50! 0.43 ~0.35! ~0.70! ~0.59! 0.65
64 & G1L ~0.40! 0.39 ~0.38! 0.62 0.66 ~0.64!

64 & 23 – – – 0.26 0.33 ~0.30!
64 & 33 – – 0.05 0.41 0.53 ~0.47!
128 & G ~0.32! 0.28 ~0.24! 0.39 0.52 ~0.64!
216 & G ~0.19! 0.15 ~0.11! ~0.57! ~0.40! 0.49

EXPT. ~0.13! 0.09 ~0.05! –
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small supercells with;64 atomic sites, especially ifk-point
sets minimizing the effects of the defect-defect interactions
are used. To conclude, the existence and position of different
ionization levels is much more difficult. The too narrow
LDA band gap also contributes to this difficulty. Finally, one
has to be aware of the slow convergence when extracting
structural information, such as the point symmetry to be
compared with EPR data or the open volume of the defect to
be compared with positron annihilation results.

Specifically, in the case of vacancy in silicon we have
obtained the following~LDA ! results, which have converged
with respect to the size of the supercell and thek-point sam-
pling of the Brillouin zone. The point symmetries for the

doubly positive, singly positive, and the neutral charge state
are Td , D2d , and D2d , respectively. The nearest-neighbor
atoms relax in all these charge states inwards, decreasing the
open volume of the defect. The formation energy of the neu-
tral vacancy is 3.3 eV. The ionization level~21/0! lies 0.15
eV above the top of the valence band.

ACKNOWLEDGMENTS

This research has been supported by Academy of Finland
through a MATRA grant. We also acknowledge the generous
computer resources provided by the Center for the Scientific
Computing~CSC!, Espoo, Finland.

1See, for example, R. O. Jones and O. Gunnarsson, Rev. Mod.
Phys.61, 689 ~1989!.

2See, for example, M. Scheffler, Adv. Solid State Phys.22, 115
~1982!; O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys.
Rev. B27, 7144~1983!; P. J. Braspenning, R. Zeller, A. Lodder,
and P. H. Dederichs,ibid. 29, 703 ~1984!.

3M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D.
Joannopoulos, Rev. Mod. Phys.64, 1045~1992!.

4For a review, see G. D. Watkins, inDeep Centers in Semiconduc-
tors, edited by S. T. Pantelides~Gordon and Breach, New York,
1986!, p. 147.

5G. D. Watkins, inDefects and Their Structure in Non-metallic
Solids, edited by B. Henderson and A. E. Hughes~Plenum, New
York, 1976!, p. 203.
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