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The possible charge states of the silicon divacancy V2 are studied using the local spin-density pseudopo-
tential method. The ionic coordinates are relaxed without any symmetry constraints. We obtain the formation
and binding energies as well as the ionization levels from total-energy calculations and use them to discuss
several experiments. We find using the 216-atom-site supercell thatV2

0 andV2
2 have a ‘‘mixed’’ structure that

includes both pairing and resonant-bond characters,V2
0 being more of the pairing type andV2

2 more of the
resonant-bond type.@S0163-1829~98!05327-2#

The Si divacancyV2 is particularly attractive from the
experimental point of view because it is easily produced by
electron irradiation and is quite stable and immobile. How-
ever, the theoretical interpretation of the experimental results
for V2 has turned out to be a difficult task due to the exis-
tence of several low-energy~meta!stable ionic structures of
V2. The reason for the difficulty is that formation of new
bonds from the dangling-bond electrons of atoms surround-
ing V2 may lead to a variety of competing ionic structures,
such as a breathing-mode structure, a pairing Jahn-Teller
~JT! structure~formation of weak covalent bonds1–3! or a
resonant-bond JT structure~the formation of two adjacent
short bonds4–6!.

The traditional linear-combination-of-atomic-orbitals
model by Watkins and Corbett1 ~WC! for V2 is based on the
pairing of atoms 1 and 2 as well as 4 and 5@see Fig. 1~a!#.
The ideal nonrelaxedV2

0 of D3d symmetry has the doubly
degenerateeu @occupied by two electrons, see Fig. 1~b!# and
eg ~unoccupied! states in the gap. The JT pairing distortion
reduces the symmetry toC2h causing theeu andeg levels to
split to nondegenerateau , bu andag , bg levels, respectively.
In the WC modelV2 undergoes a large JT distortion such
that theag level falls lower to form two lowest gap levels
with the bu level @see Fig. 1~b!#. The WC model was con-
structed to explain the electron paramagnetic resonance
~EPR! experiments including the hyperfine satellites, which
indicate that the odd electron of the chargedV2

1 and V2
2

must have an amplitude on the mirror plane, and only theag
andbu states have this property.

The ab initio calculations by Saito and Oshiyama4 result
in a different resonant-bondstructure forV2

2 (d235d13

,d12: au
2 bu

1) and a pairing structure forV2
1 (d12,d13

5d23: bu
1), which has given rise to a discussion concerning

the relevance of their results in interpreting the EPR data.7,8

Also, theab initio calculations by Seong and Lewis5 give a
resonant bond structure forV2

0 (d135d23,d12: au
2). These

calculations are based on the density-functional theory

~DFT! in the local-density~LD! approximation. However,
spin-polarized DFT using the local spin density~LSD! ap-
proximation should be more appropriate for the cases where
the defect has an odd number of electrons, i.e.,V2

1 and
V2

2 .9 The present paper reports results from well-converged
ab initio DFT LSD ~and LD! calculations for all possible
charge states ofV2 to obtain a conclusive and consistent
description of this important defect.

Our calculations are performed using a self-
consistent plane-wave pseudopotential method. The
Vosko-Wilk-Nusair10 ~VWN! and the Perdew-Zunger11 ~PZ!
parametrizations of the Ceperley-Alder data12 are used for
the exchange-correlation energy.13 We use for silicon a first-
principles norm-conserving pseudopotential14 in a fully sepa-
rable Kleinman-Bylander form.15 The nonlinear core-valence
corrections16 are used to account for the overlap of the core
and the valence-electron charges. All calculations are done
using a 15-Ry kinetic energy cutoff.

We have used a number of supercells of different sizes as

FIG. 1. ~a! The atomic structure of the ideal divacancy with the
six nearest-neighbor atoms. Dark spheres represent atoms, light
gray spheres vacancies.~b! The effect of the Jahn-Teller pairing
distortion on the levels of the silicon divacancy. The neutral charge
state with two electrons in the gap level is shown. The arrow de-
notes lowering of theag level in positive and negative charge states
suggested by Watkins and Corbett~Ref. 1!. Occupation of defect
levels in these two charge states isV2

1 : ag
1 and V2

2 : ag
2 bu

1 or
V2

1 : bu
1 andV2

2 : bu
2 ag

1 .
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well as different Brillouin zone~BZ! samplings to systemati-
cally explore the convergence of the computational results
with respect to defect-defect interactions. Supercell sizes of
64, 128, and 216 atoms have been used. For the BZ sam-
pling, theG point, theG1L, and the 23 Monkhorst-Pack17

~MP! k-point mesh have been used.
The ionic coordinates were relaxed without any symmetry

constraints. The relaxation was continued until the largest
remaining force component acting on any ion was less than 5
meV/Å. All calculations were performed in a massively par-
allel CRAY-T3E system using theFINGER code.18

The ionization level (Q8/Q) is defined as the position of
the Fermi levelme above which the thermodynamically sta-
blest charge state of the divacancy changes fromQ8 to Q.

These levels are determined from the total energies of a de-
fect supercellED

Q by solving the electron chemical potential
me from the equation

ED
Q1Q~me1EV

Q!5ED
Q81Q8~me1EV

Q8!. ~1!

Above,EV
Q is the position of the valence-band maximum in a

defect supercell. The values ofEV
Q for different supercells

have been aligned using the average potential corrections.6

The obtained defect ionization levels based on the total-
energy calculations are given in Table I together with the
experimental levels deduced from EPR experiments1 and
positron annihilation spectroscopy measurements.19 The
LSD results agree with the experimental levels well, al-
though the levels lie systematically around 0.2 eV lower in
the gap than the experimental values. The underestimation of
the band gap typical for LD calculations is possibly reflected
in this lowering, especially in the case of the uppermost ion-
ization levels.

The calculations with theG point and a supercell of 216
atom sites give a value of 4.94 eV for the formation energy
of V2

0 ~Table I!. The calculated value for the monovacancy
formation energy using the same supercell size and BZ sam-
pling is 3.27 eV.20 This results in a binding energy of 1.60
eV for V2

0 in excellent agreement with the experimental es-

TABLE I. Ionization levels, formation (Ef), and binding ener-
gies (Eb) for the divacancy in Si~in eV!. SC denotes the supercell.

G, 216 SC G, 128 SC 23 MP, 64 SC Experiment

~0/1! 0.04 0.13 0.04 0.25a

~2/0! 0.38 0.32 0.37 ;0.55b

~22/2! 0.43 0.47 0.59 0.75a

Ef (V2
0) 4.94 4.38 5.65

Eb (V2
0) 1.60 1.90 1.19 *1.6a

aEPR, Ref. 1.
bPAS, Ref. 19.

TABLE II. Calculated distances (di j ) between silicon atoms and relaxation energies (Er) of a divacancy
in different charge states. Results with theG-point sampling and the 128- or 216-atom-site supercells are
obtained using the VWN parametrization for the exchange and correlation energy. Calculations with the
64-atom-site supercell and with the 23 MP mesh use the PZ parametrization.R, P, B, and M denote
resonant bond, pairing, inwards breathing, and mixed structures, respectively.G denotes the symmetry point
group determined by the ionic structure. XC indicates whether the calculations are spin polarized~LSD! or
unpolarized~LD!. Distances are given in Å and energies in eV. The ideal distance between the silicon atoms
surrounding the divacancy is 3.81 Å.

Defect XC Supercell BZ sampling d12 d13 d23 d45 d46 d56 G Type Er

V2
21 LD 216 G 3.39 3.38 3.38 3.38 3.38 3.38 D3d B 0.39

V2
1 LSD 216 G 2.99 3.46 3.41 2.99 3.45 3.41S2 (;C2h) M (P) 0.50

LSD 128 G 3.53 3.70 3.67 3.53 3.70 3.67S2 (;C2h) M (P) 0.19
LSD 64 23 3.17 3.56 3.55 3.17 3.56 3.55 C2h P 0.33
LD 64 23 3.24 3.52 3.52 3.24 3.52 3.53 C2h P

V2
0 LD 216 G 2.89 3.45 3.26 2.89 3.45 3.27 S2 M (P) 0.71

LD 128 G 3.66 3.32 3.46 3.66 3.32 3.46 S2 M (R) 0.31
LD 64 23 3.09 3.43 3.45 3.09 3.43 3.45S2 (;C2h) P 0.44

V2
2 LSD 216 G 3.38 3.26 3.13 3.38 3.25 3.11 S2 M (R) 0.60

LSD 128 G 3.40 3.53 3.51 3.40 3.53 3.51S2 (;C2h) P 0.29
LSD 128 G 3.56 3.45 3.44 3.56 3.45 3.44 C2h R 0.29
LSD 64 G1L 3.45 3.52 3.55 3.45 3.52 3.55S2 (;C2h) M (P)
LSD 64 23 3.48 3.04 3.29 3.49 3.28 3.12 C1 (;C2) M 0.55
LD 64 23 3.30 3.34 3.35 3.29 3.36 3.34 ;C2h P 0.54

V2
22 LD 216 G 3.23 3.26 3.24 3.23 3.24 3.25 ;D3d B 0.68

LD 128 G 3.44 3.44 3.43 3.43 3.43 3.44 D3d B 0.38
LD 64 23 3.29 3.32 3.30 3.31 3.29 3.31 ;D3d B 0.72
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timate of* 1.6 eV given by Watkins and Corbett.1 Table I
also shows results for the other supercell sizes and BZ sam-
plings.

Table II shows the optimized ionic structures and the re-
laxation energiesEr for V2 in different charge states. The
relaxation energy is defined as the energy difference between
the total energies of the ideal and relaxed structures. The
energy gain increases considerably with increasing the size
of the supercell. The spin polarization increases the energy
gain ofV2

1 by 0.03 eV and that ofV2
2 by 0.04 eV using the

128-atom-site supercell. Smaller supercells do not allow the
defect to relax properly. This phenomenon has been ob-
served also with the silicon monovacancy.20

According to our calculations the doubly positive diva-
cancyV2

21 is not thermodynamically stable for any position
of the Fermi level in the band gap. The breathing mode re-
laxation obtained reflects the fact that there are no electrons
in the gap states, and the ionic structure gives a reference
against which one can compare the effects of the electrons in
the localized defect states.

All our calculations forV2
1 ~one electron in the gap state!

give a pairing type relaxation in agreement with the WC
model and the EPR experiments1 as well as with the LD
calculation by Saito and Oshiyama.4 The LSD calculation
with the largest 216-atom-site supercell gives a lowerS2
symmetry but the deviations from theC2h symmetry are
small, only about 0.02 Å. Figure 2 shows the spin densityr↑-
r↓ in the mirror plane forV2

1 . The unpaired electron occu-
pies thebu-type spin orbital and clearly has an amplitude in
the approximate mirror plane.

In the neutral charge stateV2
0 the defect states are occu-

pied by two electrons. The calculations with the 216-atom-
site supercell result in amixed structurebeing mainly of the
pairing type ~Table II!, in disagreement with the resonant-
bond structure found by Seong and Lewis.5 The point group
symmetry isS2 in contrast to theC2h symmetry obtained by
Seong and Lewis. This discrepancy seems to be due to the
defect-defect interactions: The calculation with the 128-
atom-site supercell~the defect-defect distance decreased by 1
Å as compared with the value in the case of the 216-atom-
site supercell! results again in a mixed structure but this time
it is mainly of the resonant-bond type. The calculations by
Seong and Lewis5 with a smaller 64-atom-site supercell give
the pure resonant bond structure. Also, the increase of the
BZ sampling to the 23 MP points results in a rather pure
pairing state in the case of the 64-atom-site supercell.

The calculations forV2
2 ~three electrons in the gap

states! with the 216-atom-site supercell result in amixed

structurewith anS2 symmetry~Table II!. We argue next that
the structure can be classified to a resonant bond type. The
defect electron density shown in Fig. 3~a! clearly indicates
that it is most natural to place the approximate mirror plane
perpendicular to the longd12 and d56 bonds~and thus such
that it includes approximately atoms 3 and 6 and the vacancy
sites!. The uppermost occupied spin orbital~practically r↑-
r↓) shown in Fig. 3~b! has the highest value near atom 3
~and 6! and therefore on the approximate mirror plane of the
defect. It is this maximum that gives rise to the main EPR
and electron-nuclear double resonance signals. Thus this
structure agrees better with the resonant bond result obtained
by Saito and Oshiyama4 than with the WC model. However,
the S2 symmetry does not seem to agree with the EPR
experiment.1 S2 belongs to the triclinic system whereas the
G7 spectrum by Watkins and Corbett1 corresponds to the
monoclinic-I system.21 The reason for this discrepancy is
presently not clear to us. TheS2 symmetry is obtained from
a well-converged calculation and we do not expect any fur-
ther refinements to change this symmetry. Some possible ex-
planations are as follows:~i! A motional averaging smooth-
ing the difference betweend13 andd23 as well asd46 andd56
may be present already at low temperatures~T,10 K!, with
the effect of raising the effective symmetry fromS2 to C2h ,
~ii ! the quantum-mechanical zero point motion of the
nuclei—not included in the LSD calculations—may contrib-
ute in raising the effective symmetry,~iii ! the experimental

FIG. 2. Spin densityr↑-r↓ for the divacancy in the positive
charge state. Dark spheres represent atoms, light gray spheres va-
cancies. The contour spacing is one-tenth of the maximum value
~0.055 electrons/Å3). The result is obtained usingG-point sampling
and the 216-atom-site supercell.

FIG. 3. Defect electron densities of divacancy in the negative
charge state obtained using theG-point BZ sampling, 216-atom-site
supercell and the VWN parametrization. The contour spacing is
0.00387 electrons/Å3 in both figures.~a! Electron density in the two
uppermost defect levels that are occupied by three electrons. Con-
tours start from the value 0.0071 electrons/Å3. ~b! Electron density
of the uppermost occupied spin orbital. Contours start from the
value 0.0009 electrons/Å3.
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resolution may not be sufficient to fully distinguish small
differences betweenS2 andC2h .22

As to the bonding, the uppermost occupied spin orbital is
antibonding for atoms 2~5! and 3 ~6! @change of the sign
between the atoms, Fig. 3~b!# increasing the shortest bond
lengths from 2.89 to 3.11–3.13 Å~Table II!. On the other
hand, the largest lengths decrease from 3.45 to 3.38 Å indi-
cating that this spin-orbital is bonding between atoms 2~5!
and 1~4!.

The calculations forV2
22 ~four electrons in the gap

states! result in a rather symmetric inwards breathing mode
structure with an approximateD3d symmetry~Table II!. This
is as expected: the JT mechanism does not lower the total
energy because the degenerateeu state is now fully occupied
by four electrons.

In conclusion, well-converged, fully relaxed LSD calcu-
lations give for the charged and neutral divacancy in Si for-
mation and binding energies as well as ionization levels that
agree quite closely with experiments. We find that positively
charged, neutral, and negatively charged divacancies have
mixed structures of theS2 symmetry that are lower in energy
than those of theC2h symmetry. The structures of the posi-
tive and neutral divacancies are of the pairing type whereas
the negatively charged divacancy is of the resonant bond
type, in agreement with Saito and Oshiyama.

We acknowledge the generous computing resources of the
Center for Scientific Computing~CSC!, Espoo, Finland. We
want to thank M. J. Puska, J. Eloranta, and R. Laiho for
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