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We study a fracture on a quasistatic time scale in a three-dimensi@balfuse network model with
“strong” and “weak” disorder. These two cases differ noticeably in the development of the fracture. For
strong disorder the damage scaling is very close to voluméfikenber of broken bondsl,~ L3/(In L)%
unlike for weak disordefN,~L24(InL)°3]. With strong disorder global load sharing is only approximately
valid. The size distribution of “avalanches” of broken fuses in the failure follows roughly a power-law
scaling. The power-law exponenthas a value close to 2, close to but differing from the exporebt2
expected of global load sharing. For weak disordes about 1.5 which means that the decay of the size
distribution is much slower than expected. These exponent values that characterize the development of damage
prior to catastrophic failure are comparable to experimental ones. For the final fracture surfaces we observe a
roughness exponeidt=0.4 for weak disorder. For strong disorder, severe finite size effects are seen, but the
exponent seems to converge to the same value as for weak disorder, which is close to the one for the 3D
random bond Ising domain wall universality clagS0163-182808)03642-X]

[. INTRODUCTION fatigue or in the beginning of notched failure tests, it is be-
lieved that cracks are in general smoother—the variation of
In this work we study crack formation and roughness inthe surface in the perpendicular direction is smaller gnd
disordered, three-dimension@D) brittle solids under con- measured in that region has a lower value. In this case the
ditions that correspond to slow crack growth. Slow growthrole of dynamical effects such as crack bifurcation should be
implies that the crack advances in such a way that the stregginimal. The observed roughness is small and one experi-
fields always remain in equilibrium. The question of how mental exponent value i50.458 At nanometer scales crack
disorder affects failure has recently become popular since th@ughness seems to be generally of the same order, e.g., for
realization that crack surfaces allow farposterioriconclu- graphité® {=0.43. For soda-lime silicate glass, the large and
sions about the failure process. In particular, the observesmall scale exponents afe-0.87 and; = 0.4, respectively’
self-affine character of interfaces in fracture problems and Here we study adiabatic crack formation using the ran-
the possibility of connections to fracture toughrigsomise  dom fuse networkRFN) model in which the stress field has
even practical engineering applications. time to readjust completely after each microfracture. RFNs
In the fractal range, fracture surfaces have been demorgonsist of individual fuse elements, which in the brittle case
strated to be self-affine over a range of length scales of seVail irreversibly when the local current exceeds a threshold
eral orders of magnitude. Hence the scaling of roughmess value. They allow for a generic description of disorder in the
(standard deviation of the crack profile in the direction per-material via the introduction of percolative disorder or local
pendicular to crack planecan be written ag~L¢. Both failure threshold distributions.
dynamics and the strength of disorder may affect the crack Two-dimensional RFNs have been studied extensively in
roughness scalingas measured by the roughness exponenthe context of statistical mechanics of failure of brittle
Z. One can also study the out-of-plane and in-plane expomaterialsl.2 The breaking currenit, obeys for dilute lattices
nents separately during failufe. in 2D the system sizéL) scalingl,/L~1/JInL,*® and the
The question that remains is why the roughness exponeisiame idea applies to the breaking poteriglas well. With
{ attains its actual value. The experimental evidence at larggandom breaking limits, the conclusion from numerical data
enough length scalesd>1 um) exhibits a spectrum of is thatV,/L~constr O(1/L?) for a brittle fracture in suffi-
result§ 8 centered around=0.8, but does not seem to be ciently large systems an¥,/L~1/(InL)%® for “ductile”
universal, in contrast to early claifisThe high value off  fracture!* The concept of ductility means that despite the
makes it difficult to formulate a theory which would exhibit microscopic brittle fuse behavior the macroscopic response
all the features that crack growth at large length scales and inecomes smooth and the global conductivity does not exhibit
driven, dynamic conditions showsAt small scales and es- a first order jump to zero from its macroscopic value in the
pecially in the case of slow crack growth, such as, e.g., iprecrack regime.
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Damage, quantified by the total number of broken bondsproduced the functional renormalization group predicfion
N,, can be divided to crack-related damage and off-crackk=0.41+0.01.
path damage. For 2D systems the crack-related component Here we analyze the failure of the 3D random fuse net-
would typically be expected to scale linearly with systemworks both from the point of view of fracture dynamics, and

size whereas the off-path damage may vary Considerabbf[‘om the point of view of final fracture surfaces. The existing
Kahng et al* obtained N,~L+const for brittle disorder few studies of three-dimensional lattice systems have con-

and N,~L16+L for ductile fracture. de Arcangelistal. ~Ccentrated either on generic size-scaling behavior in small
have obtained scalingis,~ L9958 for various breaking system&17 or on failure of two-component networR8 Our

limit distributions before the system enters the so-calle®Vn data concerning the scaling of the surface roughness

. with system size have been published in brief form
catastrophlsc phase amq)~L%-7lforthe.totaI number of bro- elsewh)(;ré.4 The computational mpodel used is defined in
ken bonds? The catastrophic phase is defined as the "G95 . 11 In Sec. Il we discuss the development of cracks in

i)/flstress-slt:ramtr(]:ur;/gbeyonotlhthe m?mmlum curfrznt along th ree dimensions and present some analytical estimates.
curve. For the sb case, the scaling laws of damage anRjayy in sec. IV, we proceed by showing results about the

failure é:iJYrrgnUvoItagg have been studied by Sahimi ‘,"mq.caling of crack surfaces and of the scaling of various ther-
Arbabi'®*"with a qualitatively similar picture emerging as in modynamical quantitieédamage, voltage/current to failure,

2D. ) etc). Section V ends the paper with a discussion of the re-
The generation of damage and the nature of\the€urve  gyts.

(analogous to the stress-strain cyraee related to the ques-
tion as to what happens in the absence of a dominating crack.
Once a propagating large crack has been formed it is natural

to expect the propagation to become *“trivial,” that is, the  we employ an electrical analog of fracture in three di-
current needed to advance the crack should decrease. Alggensions to study fracture processes, namely, the random
the scaling of the damage in this phase should arise frorfuse network in a cubic lattice. The external voltage is ap-
microfailures in the “fracture process zone,” an area arouncplied in the x direction, the lattice has periodic boundary
the crack tip. How this zone behaves during crack growtrconditions in they direction and free ones in thedirection.
and in the presence of various kinds of disorder is nontrivial]t is known that failure is more easily initiated near free
the mechanics of self-affine cracks being not understood verpoundaries? This effect is caused by large surface currents.
well.18 The question is whether the concept of a well-definecHence the choice of boundary conditions affects, e.g., the
stress-intensity factor makes sense in the presence of fluctugcaling of roughness in different lateral directions, as will be
tions close to the crack tip. seen in Sec. IV. A domain decomposition parallel version of

In contrast, in the early stages of crack growth the microthe conjugate gradient method employing thev message
failure dynamics should be controlled by statistics—the disassing library” has been used when running the code on a
tribution of local failure limits—and by global load sharing Cray T3D parallel computer. We have also used a Cray C90
since macroscopic crack growth is not dominant. It has revector computer for smaller system sizes. The system sizes
cently been claimed by Hansen and Hemthand Zapperi used range from a linear size bf=4 to L=48. The scaling
et al?° that the 2D RFN can be mapped in a spetiictiley ~ of the CPU time is approximately.p~L>* for largest sys-
case to a global load sharing fiber bundle model. The obtem sizes in the parallel version, due to overhead introduced
served “avalanches” or small-scale microfractures seem iy message passing between processors.
that case to obey similar statistics as fiber bundle models We use the constant probability distribution
with global load sharing, in which the process is exactly
solvable by a mapping to a random walk with dffftThe 1
energy release accompanied by such avalanches is in prin- W
ciple directly measurable with acoustic emisgfoand thus P(ic)= .
should make comparing theory and experiment possible. 0, otherwise

The topology of cracks in RFN models has received little
attention. Hansen, Hinrichsen, and Roux obtained a roughor the failure thresholdg, of individual fuses. The width of
ness exponent~0.7 for various fuse failure threshold dis- the distributiorw plays the role of alisorder control param-
tributions for the 2D cas®& The question of crack roughness eter. From studies of 2D random breaking limit RFNs it is
in 2D and 3D has recently been reconsidered bis@an known that the phase diagram of fracture should have three
et al, the conclusion being that the roughness exponent ofeneric regimes as a functionwf For very small values the
2D RFN failure interfaces seems to be very close to?2/3. failure is “trivial” with a single crack nucleation event being
Thus 2D brittle failure is also in the directed polymer uni- sufficient to bring about the fatal cra¢kAt larger values of
versality class, such as perfectly plastic yield interfe@der W, there is a nucleation phase ending in catastrophic crack
which ¢ is via the KPZ equation known to be exactly 3p3. formation. For large enough systems this leads to a trivial
Note that for # 1D there is some experimental evidence thatsize scaling for the damagéf=L). With both a distribu-
slow fracture surfaces scale with the expected exponerion extending down to zerow=2) and atw<2 in small
2/3%" It is natural to ask whether the analogy can be ex-enough systems a ductile phase exists having a nontrivial
tended to three dimensions. The 3D counterpart of a directesize scaling inN,. The same kind of argument can be ex-
polymer is an Ising random bond domain wall. Numericalpected to hold also in three dimensiofike trivial scaling
studies with graph theoretical optimization methods have rebeingL?, naturally, although it is unknown how exactly the

Il. NUMERICAL MODEL
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A current enhancement factor is~1.09. The argumentation
o, goes as follows. Let us denote with (v, ) the lower(up-
O O o pen bound of the breaking limit distribution, i.e., e.@.,

=1-—w/2. Let one assume that the breaking thresholds of
single fuses are, on the average, evenly distributed in the

B range[v_,v.]. Then the breaking threshold of tha&h
weakest bond is given by

O O O :::‘.:3 <Uweakes{n)>:U*+nW/L3' @

FIG. 1. The f : . f bonds | bic latti Notice thatv >0 makes the thermodynamic strength non-
. - -+ The Tigure IS a view of bonds In a cubic ‘atice perloelr"%ero, unlike in cases with dilution disorder oP4#i .) extend-
dicular to the applied external voltage. The solid circles represen -
ing down to zero. Similarly, one may deduce that the average

burnt fuses and those drawn in dashed line represent candidates % hold for the f ding theh kest -
fuses to be burned next. In the fuse labeled A, the current enhancg-i\rgil tc))y or the Tuses surrounding weakest one IS

ment is largest of all the neighboring fuses, 1.33, whereas, e.g., in

it is only 1.17. <vedge§n)>=v,+wl(4n+1).

lesser crack tip current enhancement and the larger number By equatinga(v weakesN)) and (vegedn)), one may de-
of neighboring potentially weak bonds balance each other agucen, the number of fuses breaking as a consequence of
discussed in the next section. current enhancement. For the case,<w and
2—w>O(1/L%? one may assume that the second term in
IIl. GROWTH OF CRACKS IN 3D Eq. (1) is negl|g|ple w'her'eby the calculation gives for the
damageN, the finite, size-independent value
A. Simple stability analysis

Fracture in two dimensions has usually been discussed Nc(w<2)~l ___}_ 2)
using Lifshitz arguments, i.e., the concept of most critical 4v_|2(a—1) w

dgfect§3 The scgling properties of _failure are then deter-go; the strong disorder limitw—2), the quantityp_—0
mined by the existence and formation of large defects fong the result is

dilution-type disorder and failure threshold disorder, respec-

tively. In two dimensions linear cracks are obvious candidate N(w=2)~L%% La. ©)
shapes, though the most critical defect geometry in 2D sys-

tems may be nontrivial® The three-dimensional cubic lattice ~ The second approach is to ask how much failure can be
geometry allows for more complicated crack geometries thamccumulated in random, isolated fuse failures before these
a planar square one. In 3D cubic lattices, the current enform cracks of siz&>1. Burnings of fuses are considered to
hancement near broken fuses is smaller than in 2D squat#e independent, unless the fuses are adjacent in the direction
lattices'® For neighbors of a single broken fuse we haveperpendicular to the external voltage. For the number of sta-
ayp=l4~1.273 andazp~1.093. Therefore it can be ex- tistically independent broken bondk;qc, One arrives with
pected that the amount of disorder required to cause a trathis assumption foa=2 at the result

sition from a brittle fracture mode driven by local current

enhancements to a ductile one is smaller in 3D. Another Ningep™ L¥2 (4)

]'Eopolo_glcal d';‘]feref‘ce |sdthat ford an derr:semble of ruFl)tu_erThe analysis hence results in a bound for the limiting width
uses in an otherwise undamaged and homogeneous lattice ,@ i preaking limit distribution separating the brittle and

rougd shape ;)S pfefer:jed over a “.”e"%f o(rl?;agh 1?' TTS ?uctile phasesv (L) ~2— O(1/1L%? asL—x. The expecta-
tﬁn enc;l/( can be y;1e\(ve an a mlnlmlfatu;n ofthe 'Utef,,a?h?.o ion is that the breaking mode is brittieapid crack growth
the crack area with intact fuses, or “surface tension.” ThiSg, gisorder parameter valuas<2 at the limitL—oo. Of

penn_y-shapeddh fork;n is the dmOSt Crt't'(f[f’il one T_thtrhee d'{. cqurse, the simplistic arguments are not complete: the stabil-
mensions, and has been used as a starting point in theore "iéj argument is based on the assumption that the formation of

an:lsllysr(]as ;nllcla§5|cal fracture mec?}aﬁi"czz ional . larger cracks is immediately fatal and long-range interactions
f rr:t e 1o t())lwmg, \Il<ve prlesgnt fKt rr]ee— Ilrpenzslgona &/erswnsuch as screening do not play any role. In Sec. IllC we
of the unstable crack analysis of Kahagal. for random compare the predictions of the analysis presented here with

breaking I'm.'t .”.‘Ode'.é- One goal is to galcu_la;e t_he_5|ze- the numerical data. We shall see that for the case of weak
dependent limiting widthw, of the breaking limit distribu- disorder they are valid up to the beginning of the cata-
tion, below which the rupture mode is trivially brittle. An- strophic phase.

other aim is to try to obtain finite size scaling of the number
of broken bonds required for the system to arrive at the cata-
strophic fracture phagd.. The Kahng argument is based on
the question: if a fuse fails, when does it automatically burn Two examples of fracture surfaces are seen in Fig. 2 for
the nearest neighbor assuming that the current enhancemdotv (w=1) and high (w=2) disorder. Diffuse damage—
is the same as in the dilute damage limit? i.e., microfracture not belonging to the final fracture
In 3D there are roughly 3° fuses per system, and four surface—is not shown. Thev=1 case apparently corre-
neighbors in the lateral direction for each burnt fuse. The 3Dsponds to current enhancement controlled fracture for most

B. Formation of final cracks
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FIG. 2. Two examples of the fracture surfaces in a 3D random
fuse network. Only broken fuses belonging to the final fracture
surfaces are plotted. Lefty=1; right: w=2. System size is 6
and the total number of broken bonds in the-1 case is 283 and
in thew=2 case 2014.

Fraction of broken fuses in surface

of the process. In contrast, strong disorder dominates so that (©) 02 04 06 03
. . . . Fraction broken
instead of a few major cracks the final fracture surface is
formed out of a coalescence of a large number of microc- FIG. 3. Percentage of burnt fuses in the final fracture surface as
racks. Note the total damage accumulated in both cases. a function of the number of broken bonds. The latter quantity has

The onset of the catastrophic stage in the weak disorddreen scaled with the total number of broken bonds. Left1
case is characterized by strong localization of damage in thesolid line: L =16, dashed linet. =40); right,w=2 (solid line: L
final fracture surface. The current enhancement created by8, dashed linet =16, dotted linel =28). Each of the curves is
the dominating large crack is sufficient to drive the crackan average over five individual runs. Please note the different sys-
further and overcome other competing cracks. A comparisofem sizes used in the two cases.
of the weak and strong disorder cases is shown in Fig. 3,
which displays the cumulative percentage of damage belong=L~%® for strong disorder. If one assumes that the damage
ing to the macroscopic rupture zone. The percentage of burmtot belonging to the final fracture surface is almost percola-
fuses belonging to the final fracture surface at any givertionlike (say, scaling a3 <), one obtains an estimate for
moment can be viewed as arder parametera measure for the fractal dimensiod; of the final fracture surface, namely,
the localization of the crack. The quantity plotted in Fig. 3 is
an integral of this order parameter. The figure demonstrates LD+ o6
that localization takes place for both valuesvof y=13" L 5

For weak disorder, the localization typically begins at the
point where approximately 50% of the fuses eventually 0 b&qom which one obtain®;=2.4— e. It will be seen later that
burnt have alrgady done S0 and leads to around half of rugpe scaling of the number of broken bondd &° for w=2,
turg events be|ng.cer.1tered in the fracture zonewreR, the  \yhich would yielde=0.1 andD;=2.3. As discussed below,
(quite wealx localization takes place only after 80% of the s s roughly in line with the roughness exponent obtained
eventual damage has taken place, except feB, where the  irectly from the simulations. To summarize, Fig. 3 shows
localization seems to increase smoothly. For both weak angq,y for low disorder a single crack outperforms all the rivals
strong disorder, relatively large fractions of bonds belong t0,nq eads to current enhancement driven failure. With strong

the final fractgre surface. Based on th?s tendency s'howing UBisorder, rupture proceeds with small cracks merging into
so frequently in both of the curves, quite often the final craclqarger ones all over the system.

surface seems to be formed at the location where many of the
first rupture events have taken place.

Next we study the fractions of burnt fuses belonging to
the fracture surfacg at the moment of macroscopic break- Next we turn to the dynamics of fracture. Cumulative
down. The scaling of this quantity is approximately counts of burnt fuses as a function of external voltéae

C. Crack dynamics
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FIG. 5. Avalanche size distributions fov=1, L=40 (dia-
FIG. 4. Cumulative count of the burnt fuses as a function of themonds andw=2, L=28 (+). Solid line: 7' =1.5, dashed line:
external voltage fow=1. Single simulation result; system size is r=2. The lines are only guides to the eye.
16°.
bundle models with local load sharing—failed fibers transfer
example shown in Fig.)4ddemonstrate that in the=1 case their load to nearest neighbors—lead to much higfoert
a certain number of burnt fus@., is required to bring the only effective avalanche size exponents>4.1% There
system to the catastrophic rupture regime after the first rupis—at least to our knowledge—no theory that would be ap-
ture event. This number is on the average close to 50% of thplicable to such precursor statistics with both global load
total number of broken bonds, a fact which is compatiblesharing and local current enhancement effects. A future idea
with Fig. 3. would be to consider the variation efwith system size and
One of the central questions in the failure of fuse net-the correlation lengths of avalanches with disorder. Both the
works is when is the current enhancement close to microcexponents extracted from the avalanche statistics are of the
racks important? Democratic load sharing fiber bundle modsame order as those measured by Garcimagtiral. for
els present a paradigm in which the local stress of an elememgcoustic emission in mode | failure of 3D medfa.
is only dependent on the global damage, and thus the micro- For the weak disorder case, the scaling\gf; with sys-
scopic “avalanches” or microfracture events of several contem size is quite close tb? (Fig. 6). The prediction of Egs.
currently failing elements can be analyzed exattlifor 2D  (3) and(4) for the ending of the noncorrelated phase appears
fuse networks it has been shown recently that the globalio be too low for all system sizes simulated. The prediction
democratic load sharin@GLS) principle may be applicable given by the independent fuse burning picture for the rupture
for strong disordet®2° Questions still remain about the va- potential of thenth fuse,v,~v_+nw/L?, holds quite well
lidity of the picture as fuse networks have size-dependenin 3D up to the catastrophic phase. The number of broken
strength scaling laws. bonds as a function of voltage per fusév,) grows in the
The Zapperet al. resultg® for thew=2 case show, simi- simulations slightly faster than the prediction for=1 and
larly to the GLS fiber bundles, a power-law deaay®? (7  slightly slower than the one fowv=2. This is an indication
=5/2) for the avalanche distributiofintegrated over the that current enhancement plays a smaller role in 3D than in
whole fracture process as in the case of fiber bundiggure 2D when disorder is weak and also shows the trivial fact that
5 shows the corresponding distribution for weak and strong

disorder for our 3D RFN'’s for two large system sizds ( 5000
=40 for weak,L = 28 for strong disordegr The data has been %
coarse grained by logarithmic binning into 10 bins for both
cases. We find that the exponemthich should not be di- 2000 ‘f’ y
mension dependent, if the GLS picture is corréstroughly =1
7~2.0 forw=2, ignoring the high-end tail of the distribu- 1000 -
tion. The tail exhibits strong fluctuations, and one should = so0l % %
recall that the eventual failure of the mean-field model close _°
to the point of catastrophic failure should be visible in ex- %
actly such a way. Note that one can study either current- 200} ) %
driven or voltage-driven avalanches. In our case the expo-
nent seems to be independent of the ensemble. 0or
Forw=1 the effective exponent is even smallers 1.5. <}
This would seem surprising, as larger cracks tend to be 501

16 27 37 40 48
System size

ool

formed because of local stress enhancements. Thus one
would expect a sharp decay of the avalanche distribution for
large sizes as such ones would be equivalent to immediate FIG. 6. Number of broken bonds before the catastrophic failure,
catastrophic failure, and very rare. Simulations of fiberfor the weak disorder case. The lihé is only a guide to the eye.
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FIG. 7. The maximum voltage in the brittle case with the scaling  FIG- 8. The scaling of the total damage measured with average
V, /L ~1/(InL)°3 shown with a line. of the number of bonds broken during failure as a functiorwof
Upper datasetw=2; lower one,w=1. The highest line indicates

the strong disorder case involves also stronger screening ezg“ig‘e'”}eh belh awo(; €L t?]nd thh?,\,li)vzvezt ?ne the mv?l fmit
fects. Note that the picture of independent failure events i~L3/zlln L)Oi sér::ﬁn rawn throughw=<data represents ap
expected to be true only for the first part of tié curve; the g

subsequent processes up to global failure are a different The total number of broken bonds as a function of system

StOlrr)(.summar the scaling of avalanche sizes in 3D a earSize is close to a trvial fracture mode fow=1
Y, 9 bp b~ LZY(InL)°3] and almost volumelike fow=2 (Fig.

to obey power laws but with smaller exponents than sugs

gested previously on the basis of mean field-type global Ioag).' The results for strong Qisorder are i.n pgrticular cpnsigtent
sharing theory®? This result is in qualitative agreement with a power-law scaling times a logarithmic correction, i.e.,

with experimental evidence but cannot be explained with any
of the known results from different models of load sharing in
a system of elastic components in parallel. The approach
based on the stability of crack$was found to give too low S , _ _
a value for finite size scaling of the beginning of the “cata- This is in accord with the scaling of the rupture potential,
strophic” phase of rupture. Before the catastrophic phase?xactly as one would expect to be the case at the thermody-

not surprisingly, the assumption of uncorrelatedness of danf?@mical limit. The earlier 2D results fav=0.7-1.0 show a
age was found good. trivial scaling N,~L +const forw=1.2 and “ductile” one

N,~L+ L8 for w=1.5. The scaling of broken bonds in the

limit of strong disorder agrees with the mean field picture
IV. SCALING OF FRACTURE that one gets by integrating(i.) up to aL-dependent cutoff
A. Thermodynamical quantities scale. The cutoff scale is consistent with a “critical defect”
-type-like fracture point scaling. Straightforward power law
Yits n,~L? result in the exponenta=2.25 anda=2.95 for
weak and strong disorder, respectively. The logarithmic cor-
rection, however, seems to fit the data better and is consistent

L3

(In L)0.3' (6)

Nb"“

We discuss first the scaling of the breaking potential usin
the quantityv; =V /L, the voltage corresponding to the first
fracture event in the system ang=V, /L, the actual break-

ing potential of the system in relation to the voltage corre-, i, theV,, scaling as well. Note finally the fact that does

sponding to the lower limit of the _breaking limit digtribution not scale exactly with the system volume is also related to
v The Ka_lhng—type argumentation for the _brea_kmg POteNYat the avalanche size exponentiffers from the global
tial Vy, predicts that the system is always brittle in the ther'load sharing one.

modynamic limit, if w<2. For bothw=1 andw=2, the

: . , X Finally we comment on the compatibility of the scaling of
scaling can be fitted with the forri,~L/(InL)?, with y

: i k ) the number of broken bonds with that ¥f andl, in the
=0.3(Fig. 7). For strong disorder, this form applies for sys- pjy1e case. In Sec. Il C it was shown that the number of
tem sizesL>10. In the 2D case, a similar ansatz yielfls  proken honds before catastrophic failure scales approxi-
~0.8, an_d_|s app_llcable fqr strong disorder only. Sahimi mately with the cross section of the systef,~L2. Since
and Arbabi find their force-displacement d&t@J) for three 1, “increases faster with this indicates that the damage ac-
dimensions best collapsed with a trial function of the ffm ¢\ ;mylated in catastrophic crack propagation is nontrivial
F~[L%/(In L)*]h(U/L™), with =0.2, which is thus com- (faster thari_2)
parable to ours. The 3D numerical results correspond to the '
effective current enhancement being smaller than expected

on analogy from two dimensions. The scaling of the maxi-

mum current which the system can sustain in both cases is We measure the roughness of a rupture surface, possible
approximately trivial, i.e., it is comparable to the cross-overhangs excluded, using the ordinary definition, i.e., the
sectional are&.?°, average width of the interface

B. Crack surface roughness
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" ] be expectedC(l) for weak disorder data yields approxi-
71 X AA&X)} | mately 0.4 0.1 for the scaling exponent €f(I). The use of
AX height-height correlation functions in measuring the value of
s o X the roughness exponetitat short distancefg?(10)] can be
1t A x : questioned, buC(l) can be viewed as a means of possible
X o differentiation between the two directions even if it does not
Prad give the value off precisely.
m__‘_mf—g" 1 The roughness results obtained by measuring directly the
PPN width of the rupture interface and calculating the height-
5353 © height correlation functions show that the roughness expo-
o2t @ zeta=0.42 - | nent may be universaf. That is, , would attain its random
. © bond Ising value of 0.41 after initial finite size crossover
o effects. According to the results of Hansehal. the scaling
x + i s of fracturg guantities in two Qimgnsions does not depend on
System size the breaking threshold distribution, as long as there are no
excessively strong bond8.If very strong bonds exist, they
FIG. 9. Roughness of rupture interfades defined in Eq(7)]  can trap a propagating crack, given that their volume fraction
as a function of system size. Upper dataset: 2, lower one:w s |arge enough. Assuming that the universality of the scaling
=1. X and ¢: raw data;A, +, [: sampling; upper dashed line:  of fracture quantities also applies to 3D, the possible univer-
¢{=0.3; lower dashed line;=0.42. The lines are only guides to the ggjity of roughness exponents would extend also to distribu-
eye. tions different from the constant one used by us. This would
also be the expectation based on the analogy with directed
r=(h?,—(h)s, (7)  polymers in random media. In that case, for the scaling ex-
ponents to differ from the usual ones, the energy distribu-
tions should, e.g., have anomalous tails for large values.

05F x

Roughness

0.1

where( ), signifies averaging over spatial coordinafiesre:
perpendicular directions The scaling of roughness as a
function of the system size is measured with the expodgnt
i.e., r~L¢. A change in the exponent is seenvat1 with V. DISCUSSION

small enough system sizes, which is most probably due to ) )

finite size effects. To correct for this, we compute “win- e have presented results for a three-dimensional random
dowed” roughness, taking samples of slz& L of systems fu_se network model concerning the effect of disorder on the
of sizeMXM with M=2L. The sampling is performed in brittle and ductile fracture modes. The rupture of the system

two ways, namely, by taking samples only of the middle offias been studied for two values of the strength of disorder

the system in the first case and averaging over many sampl@9d several system sizes and compared with analytical argu-
of each system in the second. ments. Comparisons were also made with earlier numerical

The results of this averaging are seen in Fig. 9, where ifeSUItS'_ _ . : '
can be observed that the anomalous scaling of roughness at ' "€ increasing concentration of damage in the final frac-
small system sizes disappears with the sampling method. F&ré crack for weak disorder indicates that fracture is gov-
w=2, the “raw” data yield an exponeng~0.7 (in agree- erned by a small number of relatively large cracks. When
ment with theD; argument presented in Sec. Il),Bvhereas disorder is strong, the final rup?‘tur.e surface 'S formed by an
the exponent obtained with sampling is consistent with mini_gmalgam of”a I_arge n_umber Of. m|crocra<_:ks. However, the
mum energy surface roughness. The difference between th@valanche” distribution of microcrack sizes does not fol-
two sampling techniques is due to boundary effects, a facC" @ mean field picture c.’f global load _sharmg. The power-
which will be illustrated below. law exponent for. strqng d|sord_er, for which one could gxpect

The distribution of roughness valu®r) is not Gauss- such behavior, is dlst'lnctly dlf_ferent .from the analytﬁ?all
ian, but has a tail extending towards large values. Henc¥alue 5/2, abou_t 2. This, combined with the damage_ scaling
normal symmetric error bars do not give a correct descripti0r’f}Xponem(eﬁeCt'Ve exponent close to),3shows most I|k_ely
of the variability of roughness. It turns out that with the that even the dynamics of the strong disorder case is gov-

sampling method, this asymmetry is amplified in the SenS(grned by stress-enhancement effects in the final stages of

that when samples are taken from a larger system, the avefupture. For vyeak disorder we pbtain an effective exponent
ose value is unexpectedly still lower, about 1.5. It would

age roughness can be larger than the sample size. Of coursg, . : .
this does not occur in direct simulations. These undulation§€ interesting to try to relate the apparent load sharing with

cause the averaged roughness of the samples to differ frome failurg gtati_stics. This has been recently attempted for
more realistic fiber bundle models. The net outcome seems

he most fr nt val f roughn in r). . -
t eTo (;italylaz%u&; e?f:cet gf a?lti]sgotrESiSc bofzgr?énglr;& c)onditions,t0 be that the failure probaplhty of large systems seems to b?
we have measured the height-height correlations determlngd at a mesoscopic length scale, but with democratic
load sharing at that levél.
_ N2 " The smaller current enhancement causes the three-
ch= \/<[h(x) OO hser IX=X1=1 ® dimensional system to be “less brittle” than its 2D counter-
of the surface in both directions perpendicular to the externgbart at the same disorder level. This effect shows in the scal-
voltage. It can be shownthatC(l)~I¢. The results display ing of the number of broken bonds being further from the
differences between the periodic and free directions, as couldivial fracture in 3D than in 2D. Also, the brittle case yields
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the scalingV,~L/(InL)* for the breaking potential, wittx case, the fracture nucleates from weak regions in the system.
=0.3. This scaling applies also to the strong disorder data forinally, any analytical description of the actual dynamics of
system size$ >10. The macroscopic fracture points are re-crack growth as well as a rigorous derivation for the rough-
flected in the damage accumulated, in spite of the fact thatess of fracture surfaces is still lacking both in two and three
thew=2-case has arbitrar"y weak fuggand could perhaps dimensions for S|0W, adiabatic crack grOWth processes.

be expected to result in an algebraic scaling.

Our numerical data show that the finite size of the system
affects the roughness results, as expected. After all the attain-
able system sizes are limited indeed, to say nothing about We thank the Edinburgh Parallel Computing Center
ranges in which continuum mechanics would be valid. ThugEPCQ and Center for Scientific ComputingSQO in Ot-
the scalings of crack surfaces of random fuse networksiniemi, Finland for generous computing resources. This
should be considered with a grain of salt. Nevertheless ther@ork has been supported by the European Union TRACS
is evidence of algebraic roughness, witlbeing close to the scheme, the Technology Development Center of Finland
minimum energy surface value 0.41. In comparing our re{TEKES), the Academy of Finland, and by U.S. DOE Grant
sults with experimental data, we note that no initial notch forNo. DE-FG02-090-ER45418. M.J.A. would like to thank
initiation of crack growth was used in our simulations. In our Phil Duxbury for many entertaining discussions.
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