-

View metadata, citation and similar papers at gore ac.uk brought to you byfz CORE

provided by Aaltodoc Publication Archive

' Aalto University Aaltodoc

. OPEN aACCESS

Author(s):  Harju, A. & Sverdlov, V. A. & Nieminen, Risto M. & Halonen, V.

Title: Many-body wave function for a quantum dot in a weak magnetic field
Year: 1999
Version: Final published version

Please cite the original version:

Harju, A. & Sverdlov, V. A. & Nieminen, Risto M. & Halonen, V. 1999. Many-body wave
function for a quantum dot in a weak magnetic field. Physical Review B. Volume 59,
Issue 8. 5622-5626. ISSN 1550-235X (electronic). DOI: 10.1103/physrevb.59.5622.

Rights: © 1999 American Physical Society (APS). This is the accepted version of the following article: Harju, A. &
Sverdlov, V. A. & Nieminen, Risto M. & Halonen, V. 1999. Many-body wave function for a quantum dot in a
weak magnetic field. Physical Review B. Volume 59, Issue 8. 5622-5626. ISSN 1550-235X (electronic). DOI:
10.1103/physrevb.59.5622, which has been published in final form at
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.59.5622.

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that material may
be duplicated by you for your research use or educational purposes in electronic or print form. You must
obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or
otherwise to anyone who is not an authorised user.


https://core.ac.uk/display/80716251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.aalto.fi/en/
http://aaltodoc.aalto.fi
http://www.tcpdf.org

PHYSICAL REVIEW B VOLUME 59, NUMBER 8 15 FEBRUARY 1999-II

Many-body wave function for a quantum dot in a weak magnetic field

A. Harju* V. A. Sverdlov] and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, FIN-02150 Espoo, Finland

V. Halonen
Theoretical Physics, University of Oulu, FIN-90570 Oulu, Finland
(Received 21 October 1998

The ground states of parabolically confined electrons in a quantum dot are studied by both direct numerical
diagonalization and gquantum Monte Cafl@MC) methods. We present a simple but accurate variational
many-body wave function for the dot in the limit of a weak magnetic field. The wave function has the
center-of-mass motion restricted to the lowest-energy state and the electron-electron interaction is taken into
account by a Jastrow two-body correlation factor. The optimized wave function has an accuracy very close to
the state-of-the-art numerical diagonalization calculations. The results and the computational efficiency indi-
cate that the presented wave function combined with the QMC method suits ideally for studies of large
guantum dots[S0163-1829)07907-3

I. INTRODUCTION Il. VARIATIONAL WAVE FUNCTION

In the usual model for a quantum dot, electrons with an

The progress in the fabrication of semiconductor quamun’éffective massm* are moving in two dimensions and are
dots(QD) has stimulated an increasing interest in investigat- 2

) . ; confined by a parabolic potentiélw%r .5 The one-body
ng the pr_opertles Of.SUCh _systellnsErom the theor_etlcal problem is similar to the harmonic oscillator otwith fre-
point of view, a QD is an ideal many-electron object for

. . . guency w?= w3+ w2, wherew,=eH/m*c) and is easily
studying fundamental physical prc_)pertles of .correlated elecéolved for an arbitrary magnetic field.® The single-particle
tron systems. One of the theoretical goals is to unders_tan\glave functions are in scaled units,
the nature of the many-body ground states for various
magnetic-field strengths. As the experiments are mainly per- r2
formed in the magnetic-field strengths of few tesla, we con- ¢n,+|m|°<(XiiY)anr?l(fz)EX!{ - E)’ «h)
centrate on the limit of weak magnetic field.

In principle, the most accurate theoretical method forwheremis the angular momentum quantum numiveis the
studying QD’s is the direct numerical diagonalization of theshell index andn’=(n—|m|)/2. The normalization is not
many-body HamiltoniaR.The method is, however, restricted needed, because it drops away in the QMC approach. For the
to rather small electron numbers. For the zero-magnetic-fielinteraction between electrons, the normal;;1potential is
case, it is applicable to less than ten electrons. Moreovetsed.
being purely numerical, the method does not give much As a consequence of the parabolic potential, thg center-
physical insight. From the mean-field approaches, th@f-mass(CM) motion can be separated from the relative mo-

density-functional theory and its generalization for a nonzerdion for any number of particles. If one is interested only in
magnetic field, the current-density-functional theorythe ground_ state, one should ensure that the CM mo_t|on hiis
(CDFT),? approximatively include the correlation effects and been restrlctgd to the Iqwest-_canergy state. In practlce, Fh|s
are thus good candidates for studying systems of larger eleg_equwement IS mc')st easily fulfilled by the following coordi-
. 5=~ ~hate replacemenit:

tron numbers. The comparison of CDFT to numerical diago-
nalization results shows reasonablé few percentagree-
ment in energies for a three-electron dot, but its general
applicability for strongly correlated cases is questionable. wherex, andy,, are the coordinates of the CM. Note that

In this paper, we show that a simple trial wave functionthis replacement is done only in the phase part of the single-
combined with a quantum Monte Carlo meth@MC) can  particle wave function.
solve the ground states of the parabolic QD in the weak The variational many-body wave function is built from
magnetic fields nearly exactly. We show that the agreemerthe single-particle basis given above. If one is to solve the
with the diagonalization method is extremely good and thamany-body problem in a mean-field sense, the one-body
the scheme presented here can be easily extended to a mughve functions would be used to build Slater determinants
larger number of electrons than is possible to handle accuor spin-up and for spin-down electrons. Then one would
rately by diagonalization. In this way, the scheme is nearlymodify the one-body wave functions to account for the effect
as accurate as the diagonalization method, but its comput&f other electrons in some *“self-consistent—mean-field”
tional cost is comparable to the cost of CDFT or other meanway. This is not, however, done here. On the contrary, we
field methods. assume that the effect of the electron-electron interaction on

Xiiy_’;(iiyz(x_xcm)ii(y_ycm): 2
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TABLE I. Numerical diagonalizatiorfRef. 12 and variational 86 " " T
energies for a three-electron QD. The parameter vato&sm, 8551 N=6 :
=0.067, e=12.4 have been used, and the confinement ds, ,‘5
=3.37 meV. The magnetic field is zero. The energies are in meV. 8o Exact diag. ,’/
84.5 ,/
State Exact energy QMC energy S al
@ ’
E /

1 26.82 26.88 5835 /

2 28.27 28.35 2wl 7

3 30.02 30.03

528 Qmc s
82k x/ /o,/
] B15f --=--------c -
the many-body wave function can be separated from the
Slater determinants discussed above. We will see later that 80 005 01 o1 02 o025 03 035
this is really a reasonable approximation. Doing so, the n
variational many-body wave function reads FIG. 1. The two-particle density®(r,,r,) from diagonaliza-
tion (full line) and from QMC(dashed lingfor the stateV; of Eqg.
W =det [{n,m}]det[{¢nm I} F{ri}), (3 (5). Lengths in nm. On the leftright) panel, electron with spin

where only the functiorF is unknown. The functiorF de- down (up) i§ fixed to 20 nm from the center and the density of
pends on the coordinates of all electrons. One should als@PPOSite spins are plotted.

note that each one-body wave function containingr y from the direct numerical diagonalization. In Table 1. we

depends orall other states via the CM coordinates. In this compare thle M(;Jenelr os ;o?a th:ze—lele.ctron D "thV\{he

way, the one-body orbitals are already “correlated.” But the ™. pare the Q 9! QD wi .
agonalization one¥ The three states presented are the first

one-body orbitals do not have any variational parameters, at%:ree lowest-energy states in the limit of weak magnetic
is the case in the usual QMC treatment of, for example, Id.*3 We can see that the agreement is very good, the error

atoms and molecules. More details on good quantum nu 1€t ) o )
bers and the spin contamination of the present form can b eing approxma_tely 0.3% in the worst case. Fpr comparison,
found in Ref. 9 the CDFT error is larger by an order of magnitdde.

A great simplification is obtained for the variational wave The determinant parts of the states given in Table | are

function if we assume that the main effectfnis the two- W, =det [ o oJdet [ o0, 1 1] (5)

body correlation, as is the case in the strong-magnetic-field ’ e

limit. 20 In that limit, up to 98% of the Landau-level mixing is W,=det[ ¥y 1]det[ Yoo, ¥4l (6)
captured by two-body correlation factors, without modifying

the multiconfigurational many-bO(_jy wave funqtion buil'_[ Wa=det[ o0, 11125 (7)

from the lowest-Landau-level functions. Using this approxi- .
mation forF, it can be written as One can analyze the phase structure of these wave functions

by explicitly writing down the determinants. The common
N exponential part of the one-body wave functions does not
F{r})= H J(rij), (4)  change the phase structure of the many-body wave function.
N One should note that the same is true for the fornk aised
where the product is over all pairs of electrons anis a in the present work. Having this in mi_nd, the phase structures
two-body correlation factor. For it we use the Jastrow form®f the three lowest states can be written as
J(rij) =exdar; /(1+b'rij)], wherea andb are variational pa- W, (2,— 23), ®)
rameters. We use differeatandb for pairs of parallel and
opposite spins. Our many-body wave functlo_n has thus only W0t (21— Zom) (25— 23), 9)
four variational parameters. These are easily found by the
stochastic gradient approgimat?dr{SGA). technique. Vo (2,—2,)(2— 23) (25— 24), (10)
The explicit rule for building the variational wave func-
tion has thus two important parts. The first one is the restricwhere we have usezi=x+iy. It is very interesting to com-
tion of the CM motion to ensure that it is in the lowest- pare this with the work of Boltof? It turns out that his trial
energy state. The second ingredient is the inclusion of th#ave function has exactly the same phase structure. Further
two-body correlation factor that reflects the simple idea thagvidence for the correctness of these phase structures is
the electrons avoid each other and their relative motion igiven by the fixed-phase Monte Carlo energies of Boltbn.
correlated. Next, we will show that these two simple ideasie has shown that having these phase structfixesl the
are enough to explain a great deal of the many-body physicexact energies are within the error bars of his Monte Carlo
in QD’s. simulations. We can thus speculate that the small error in the
energies above is due to the form used for the funckon
IIl. RESULTS and is mainly a three-body correlation effect. In addition, if
other forms ofF are used, these should also leave the phase
A good test for the variational wave function given abovestructure of the wave function the same.
is to compare the energies obtained with it with the ones In Fig. 1, we compare the two-particle densities
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TABLE Il. Exact and variational energies for a four-electron 170
QD. The magnetic field is zero. The parameter valuesnaém, 168l N=8 o
=0.067, €=13, andfiwy=1.0 meV. The energies are in meV. Pt
The error estimate for the last digit is in the parentheses. 1667 PO
164k |* Exac}[ giag. g:? et
o . S= .
State Exact energy QMC energy 6ol xac e
[ R
E :
1 17.222) 17.211) 160 5
2 17.360) 17.441) 3158_ Lo
156 ,-I"‘?
p@(r,r,) from diagonalization and from QMC for the state 154} /QMC B
V¥,, with one of the electron coordinates fixed. The agree- 2l >=0,27
ment is excellent. FrmTEEEsT 8=t
The one-electron picture has a second candidate for the 50— 01 02 0.3 04 05
determinant part of th&,, namely, 1n
~ FIG. 2. Total energy as a function of the inverse of the number
Wo=det [ o oldet[ o0, 22l (1) of shells used in the numerical diagonalization for six electrons.

The parameter values arem*/my=0.067, €e=13.0, hwg
=3.0 meV, and H0. The QMC energy is marked witk . The fit
presented is discussed in the text.

This has the same angular momentum as stje The

states corresponding ', and ¥, (without restricting the
CM motion) are the two important configurations for the

second ground state of a three-electron (R&f. 1 as the For larger particle numbers, the number of states that can
magnetic field increases from zero. The phases of these tWgs sed in the direct numerical diagonalization restricts more
stateswithout restricting the CM motion are seriously the accuracy obtained. In Fig. 2, we present our

numerical diagonalization energies for various numbers of
basis states together with our QMC energy for six electrons.
_ The extrapolation to an infinite basis in the diagonalization
Vo (25— 25), (13 predicts the energy-81.5 meV. This is, however, only an

and the two wave functions are clearly linearly independent?snmate’ obtained by a least-squares fit using a fundipn

If, however, one restricts the CM motion to the lowest IeveljL o exfl —pn], wheren is the number of the lowest many-

: : ; y shells included in the basis of the numerical diagonal-
n theset tW_O sta'Fes, their phases c~hange. The phase Obta'r}%%?ion andE,, «a, and B8 are the fitted parameters. The
for ¥, is given in Eq.(9), and forV,, the use of Eq(2)

. ; convergence of the diagonalization does not, in general, fol-
leads to an identical phase structure. Thus the total manyg,, exactly the form used, and it is not even as smooth a

body wave functions are the same for these two modified,nction of n as we assume in the present form, but the
states. This is a satisfactory feature of the presented construaécuracy of the energy estimate is sufficient for the present
tion of the many-body wave function. In addition, the prob- comparison. The QMC energy is in good agreement with the
lem of identifying the experimentally observed Secondextrapolated value, being only approximately 0.2 meV
ground state using a one-particle description can be Sa"’?dhigher. One should ’note that the QMC energy is clearly more
One should note that we have not used any analytical . rate than the diagonalization using six lowest shells. On

tricks for the construction of the variational_ wave function aSthe other hand, even the use of five lowest shells is enough to
was done, for example, in Ref. 14 to obtain the phase struGspain semiquantitative agreement with experiméhts.

tures given above. These kinds of tricks are only applicable rpg |55t comparison with the numerical diagonalization is

for small particle numbers and the generalization to largeg, 4 gight-electron QD. For it only five lowest many-body
partlcle nu_mbers is difficult to find. In this respect, the varia-gpaiis can be used in the diagonalization. We compare two
tional basis presented here should work equally well fOrgiate5 with total spin§=1 and S=0. The results can be
QD’s containing any number of particles. , seen in Fig. 3. The difference of the QMC energies from the
_For four electrons, we compare the following two stateSe,a0/ated ones is again very small, only around 0.3%. The
with the dlagopahzaﬂon method. The _determmant parts obyror of the five-shell diagonalization is six times larger.
the wave functions for the states are given by The recent experiments of Refs. 1 and 16 provide a good
_ test for the theoretical methods. In Fig. 4 we compare the
Wa=det[yooldetvoo, 11 ¥1.-1], (14 experimental transition points with the QMC ones fsr
=6 case. One can see that the agreement is very good. The
Wo=det[o0.v11det Yoo, Y1]- 19 finite thickness of the real QD andgthe Iong-rangeys?:reening
These states are the two ground states for small magnetif the electron-electron interaction are treated using a scaled
field values. In Table I, we compare the QMC results with Coulomb strength in the calculation, which is only a crude
the diagonalization ones. We can see that the agreement aoproximation for these effects. The confinement strength
again very good. The errors are around 0.3% and 0.5%. Wand the scaling of the Coulomb interaction cannot be ob-
can also see that the state number one is lower in energy, iined from the experiments and are thus free parameters for
good agreement with the experimental finding of Ref. 1 andheory. The confinement value uséd,=4.5 meV is in a
Hund's rule. reasonable range with experimental vafue,~5 meV for

W521(2,~ 23), 12
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40f’
20
0
-20
-40

-40 20 0 20 40
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FIG. 3. Total energies as a function of the inverse of the number
of shells used in the numerical diagonalization for eight electrons.
The higher energies are f&=0 and lower forS=1, respectively.
The parameter values arem*/my=0.067, e=13.0, fiw,
=3.457 meV, and H0. The QMC energies are marked with.

The fits are discussed in the text.

0 1 2 3 4 5 6 7 8 9

one electron dot, as the confinement is weaker for larger(®

electron numbers. The scaling of the Coulomb interaction

value «=0.7 is obtained from the experimental transition
- - e i i

point for the N=2 case; assuming that the confinement

strength is nearly the same as fér=1. |

IV. CONCLUSION

The results reported above clearly show that the presente(gb)

variational many-body wave function is extremely efficient. Fig. 4. Upper panel: Experimental energy f8r=6 QD (Ref.
The energies Ob_talned are, In every case, In exce"?nt agreeg). The kinks show the transition points where the lowest energy
ment with the diagonalization energies. The error is of thestate changes. The QMC transition points are marked With
same order for all the cases. Because the number of vari@MC parameters used arem*/my=0.067, e=12.9, fiw,

tional parameters is independent of the electron number, we 4.5 meV, g* = —0.44. Vo= a€?/er;, with «=0.7. Lower
can conclude that the presented variational wave functiopanel: Electron occupations of the lowest energy states.
combined with the quantum Monte Carlo method is a very
promising technique to study larger quantum dots, too.
Perhaps the most important aspect of the variationai)0

bod f . din thi is that it dy wave function for a parabolic quantum dot. The wave
many-body wave function presented In this paper Is that It I§,jciion leads to an accuracy comparable with the direct nu-
easy to construct and it can be easily interpreted. There ar,

licit rules in th X v that the CM ferical diagonalization. It has much better computational
two explicit rubes. In :] elconstrulctloln, ngmﬁy that tl e scaling as a function of the electron number. The wave func-
motion must be in the lowest level and that the electrong;, -on0sed has a very intuitive structure, which is useful

avoid each other. The practical implementation is straightforin understanding the many-body physics of electrons in

ward, as was shown above. These simple rules lead 10 gQ),5n1um dots. In addition, the good scaling of the computa-
accuracy that has previously been obtained only by the d|req onal cost of the quantum Monte Carlo method combined

numerical diagonalization technique. In the diagonalization i the proposed variational wave function indicates that
method, the topology of the total many-body wave functiony,e method outlined here is a perfect tool for studying the
is, however, hidden in the enormous set of the expansiol|actronic properties of quantum dots

coefficients. The wave function presented here really gives
insight into the topology of the many-body wave function for

electrons in a parabolic QD. Also the experimentally ob-

served states can be identified using simple free-electron de-

terminants with certain good quantum numbers, if the two We would like to thank T. Oosterkamp for providing the
important ingredients of the construction presented here arexperimental data and P. Piéeiilan for helpful conversa-

kept in mind. tions.

In summary, we have built a simple variational many-
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