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Locally activated Monte Carlo method for long-time-scale simulations
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G. Jungnickel and Th. Frauenheim
Laboratory of Physics, University of Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany

~Received 11 August 1998; revised manuscript received 2 July 1999!

We present a technique for the structural optimization of atom models to study long time relaxation pro-
cesses involving different time scales. The method takes advantage of the benefits of both the kinetic Monte
Carlo ~KMC! and the molecular dynamics simulation techniques. In contrast to ordinary KMC, our method
allows for an estimation of a true lower limit for the time scale of a relaxation process. The scheme is fairly
general in that neither the typical pathways nor the typical metastable states need to be known prior to the
simulation. It is independent of the lattice type and the potential which describes the atomic interactions. It is
adopted to study systems with structural and/or chemical inhomogeneity which makes it particularly useful for
studying growth and diffusion processes in a variety of physical systems, including crystalline bulk, amorphous
systems, surfaces with adsorbates, fluids, and interfaces. As a simple illustration we apply the locally activated
Monte Carlo to study hydrogen diffusion in diamond.

I. INTRODUCTION

The molecular-dynamics~MD! ~Ref. 1! simulation
method is an extremely powerful tool to study microscopic
motion based on the Newtonian dynamics of atoms interact-
ing through a model potential. The equations of motion are
solved using a mesh of discrete time steps. The time step
must be short compared the phonon frequencies, usually a
fraction of a femtosecond. Hence, the total simulation time,
which is of the order of 1000 to 100 000 steps dependent on
the model potential, is only in the picosecond region. At
maximum, MD methods can be used to simulate atomic pro-
cesses occurring on a time scale of nanoseconds. For a vari-
ety of physical situations, however, this is far too short to
study the true dynamics of a system, in particular for diffu-
sive processes such as atom migration on surfaces, certain
formation processes during growth, and defect migration in
bulk material.

A recent extension of standard MD schemes due to Voter2

focuses on the simulation of such processes. By adding an
artificial boosting potential to the true local energy landscape
of the atoms, the energy barriers to configurations which are
normally not accessible by ordinary MD can be overcome.
Thus, the atoms are forced to do movements which are re-
lated to barrier heights incompatible with normal thermal
activation energies, yielding an extended time scale.

Another class of methods that has been proposed to relax
a system over a large period of time is based on the knowl-
edge of the local energy barriers. In a method by Barkema
and Mousseau3,4 the local energy barriers are explicitly
searched for with an inverse conjugate gradient method us-
ing a modified force vector. Atoms are allowed to make
jumps over the actual saddle points found according to a
standard Metropolis Monte Carlo~MC! algorithm with a fic-
titious temperature~2500 K!. This temperature is the param-
eter which controls the acceptance rate of certain relaxation
processes and hence the time scale under consideration. This

parameter is, however, not knowna priori and difficult to
determine. Furthermore, the method suffers from the fairly
general problem whether all saddle points relevant for the
evolution of the system can be found. This scheme which is
known as the activation-relaxation technique~ART! has been
used in identifying relevant local relaxation processes in
amorphous silicon at low temperatures.6

If the dynamics of a system can be described as a se-
quence of rather independent infrequent events, long time
scales can be modeled using transition-state theory~TST!.
Since its development in the thirties, TST has been applied to
a wide range of phenomena.7–9 Voter developed a TST based
kinetic Monte-Carlo~KMC! method for describing the dy-
namics of such infrequent events in a regular lattice and ap-
plied it to the study of rhodium clusters on Rh~100!.10 Here,
we develop a method based on similar ideas which, however,
is more general and can be used to investigate diffusion re-
actions without assuming a regular lattice. Since this requires
some knowledge of the local energy landscape in the vicinity
of a moving atom it also contains features common to the
ART described above.

In TST based methods, rate constants for infrequent
events usually depend on the predetermination of reactants
and products, e.g., on the knowledge of the local energy
minima prior to and after a chemical reaction. Then, various
schemes11,12 may be applied to reach transition states which
are characterized by the saddle points of the energy land-
scape. From this information one can extract the transition
probability for an event and the related time scale. However,
if significant reactions are missed initially or if the potential
changes remarkably during the evolution of the system, the
information gained from such simulations is quite restricted.

Our method, therefore, starts from ideas similar to ART in
that we focus on the determination of the most relevant if not
all energy barriers that an atom sees in its immediate neigh-
borhood at any time the atom is going to make a move. In
the locally activated Monte-Carlo~LAMC ! technique,13
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we imagine a model structure as a system for which the short
range and the short medium range order14 are the prime fac-
tors responsible for the actual form of the local potential.
Therefore, we concentrate on finding the energy barriers in
the vicinity of an atom and the related smallest energy paths.
This is done by efficiently mapping the energy landscape in
a few directions around each atom and defining a local dis-
tribution function for the probability of the atoms to escape
from their current positions.

Within LAMC an event is the instantaneous jump of se-
lected atoms called the movers over one of their nearby bar-
riers. For this, the local distribution of escape rates deter-
mines the probability in which direction the selected atom
will move. Once the escape direction is chosen due to this
distribution function the transition probability is assumed to
be unity. Hence, movers are forced to jump even if the en-
ergy barrier in the selected direction is rather high. Since the
typical escape rate for the event is mapped there is a well-
defined control over the real time scale in which this event
takes place. Using the LAMC scheme together with a MD
simulation introduces small random disturbances but allows
to advance the clock after a jump according to the average
escape rate of the mover and, therefore, extends the time
scale enormously.

The paper is organized as follows. In Sec. II we present
the ideas behind LAMC in more detail. As an example we
discuss in Sec. III the diffusion of a hydrogen atom in dia-
mond, which is an important process for understanding the
chemical vapor deposition~CVD! frequently used to deposit
diamond thin films.15 Note that this application involves
modeling of heteropolar interactions although the problem is
simplified due to the homopolar symmetric host in which the
hydrogen atom is allowed to move. A discussion of the
power of LAMC follows in Sec. IV.

II. METHOD

In traditional TST based MC studies, the possible reac-
tions that may occur in the system are assumed to be known
a priori. The global evolution of the system is separated into
single atom events~generic moves! for which the typical
barriers are predetermined and assumed to remain unchanged
as the system relaxes. Usually the barriers are calculated for
the generic moves of an atom in an otherwise ideal host
matrix by the most accurate methods available16,17 before
actually doing any structural optimization of the model. A
Monte Carlo step consists of randomly selecting one of the
atoms and one of the generic moves and of evolving the
system according to the transition rate for this move. The
rate is given as an exponential of its predetermined barrier
height. The barrier controls the acceptance rate in much the
same way as the total energy difference between the initial
and a final state of the model in an ordinary Metropolis MC
method.

In practical situations such as surface growth or relaxation
of amorphous materials it is rather unlikely that the typical
barriers remain constant over a longer period of time. Also, it
is extremely difficult if not impossible to predict the most
relevant generic events in particular in systems with many
different types of atoms. Therefore, we present a method
which within the limits of TST is suitable for the relaxation

of any given structure provided the dynamical behavior be-
comes largely determined by infrequent events.

Classically, the fundamental assumption in TST is that
there exists a dividing surface in phase space with two prop-
erties: ~i! it separates reactants from products and~ii ! any
trajectory crossing this surface will not recross it. The related
rate constants which describe the equilibrium flux of par-
ticles through the dividing surface can be approximated to a
good extent by simple transition state theory~STST!10:

kSTST5npn0exp@2~Esaddle2Emin!/kbT#, ~1!

wherenp is the number of possible exit directions,n0 is the
harmonic frequency,EsaddleandEmin are the energies at the
transition state and at the minimum, respectively,T is the
temperature andkb is the Boltzmann constant. The second
basic TST assumption in practice is violated to a certain
extent, since each crossing of the dividing surface does not
necessarily correspond to a reactive event. Thus Eq.~1! gives
an upper bound to the true rate constant. MD methods have
been used to calculate dynamical corrections to STST rate by
determining the fraction of TST surface crossings that lead to
a true reactive event.18 These studies show that the STST
rates are very close to the dynamically exact rate constants.

Provided there exists a systematic way of finding all or at
least all the lowest and significant saddle points of the energy
landscape in the immediate neighborhood of an atom one
would be able to evolve the system in accord with the STST
expression for the rate constant. We wish to implement this
idea into a Monte Carlo type algorithm which can be easily
combined with MD in order to study a structure dynamically
under the influence of long-term processes. Generally, there
is no explicit restriction for the model potential which is used
to evaluate the atomic interactions and, hence, the saddle
points. The actual choice for this potential may be critical
though and the most accurate quantum-chemical potentials
should be given the preference. This is particularly essential
in sensitive bonding situations such as in carbon when clas-
sical potentials19–23 usually applied for large models may
frequently fail to reproduce the true barriers in the structure.

For example, Tersoff’s classical potential which has been
applied very successfully in a number of carbon
studies21,24–26was shown to result in additional local minima
and associated barriers in the energy landscape when study-
ing the relaxation of an hypothetical icosahedral carbon
cluster.27 In contrast, true density-functional or Hartree-Fock
based self-consistent potentials require computer resources
that would restrict the size of the models under consideration
enormously and are almost impractical for real diffusion or
growth modeling.

For the total-energy calculations in this study we therefore
utilize as a reasonable compromise the recently developed
density-functional based tight-binding approach~DFTB!.28,29

This method derives its name from the use of self-consistent
density-functional calculations for pseudoatoms in order to
construct transferable tight-binding~TB! potentials for the
non-self-consistent solution of the Kohn-Sham equations of
the many body system. The main idea of the scheme is to
superpose local atomiclike orbitals to make up the molecular
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states where the set of local orbitals is chosen in such a way
as to predict the total charge density of the full structure as
well as possible. Then, the Kohn-Sham equations for the
complete model need not be solved self-consistently but still
give a reasonable total energy.

The DF-TB method has been successfully applied to vari-
ous carbon systems, ranging from small clusters28,30 to buck-
minster fullerenes and related oligomers,31 amorphous car-
bon systems,32 and carbon surfaces.33–35 Moreover,
heteropolar interactions of carbon with hydrogen, boron, and
nitrogen have been modelled accurately with this
technique.35–37 A flow chart of the LAMC method that we
introduce is presented in Fig. 1 and will be discussed below.

A. Choice of the diffusing atoms

In general all atoms in a given model structure may be
involved in infrequent jumps~diffusive events! over barriers
in their neighborhood. The number of atoms that are explic-
itly considered may be restricted in order to study only such
processes that are associated with a certain atom type or a
subregion of the full model~such as a surface!. In the fol-
lowing those atoms where events are initiated are called the
movers which does not mean that the remaining atoms in the
system are kept fixed at their positions. The number movers
will be designated byNdiff . The reason for these definitions
is to prevent other events such as the self-diffusion in the
bulk from interfering with the particularly interesting cases
such as the migration on a surface.

B. Choice of the global search directions

The definition of general search directionsr direction
i for

which events may take place is a central feature of our
method. We will call such a direction a diffusion direction
hereafter although we do not necessarily restrict the scheme
to diffusion in the classical sense. Diffusion directions may
be assigned to any of theNdiff atoms. The maximum number
of the possible diffusion directions per atomndd

i basically
determines whether we are able to find all the local barriers
that an atom sees when being activated from its harmonic

basin in the energy landscape. To avoid extensive calcula-
tions, however, we consider this numberndd

i to be finite and
small. Thendd

i search directions are obtained in the follow-
ing way: take a random diffusion direction; the restndd21

i

directions are chosen by uniformly sampling an imaginary
sphere around the moving atom.

The total number of search directions determines the suc-
cess rate with which one will be able to find all or at least the
essential local barriers in the next step of LAMC. Thendd

i

for each mover can be made to depend on the local geometry
around the mover, for example,ndd

i may depend on the num-
ber of the nearest neighbors of the mover.

C. Search for the saddle points

1. Finding true diffusion barriers by the projected conjugate
gradient (PCG) method

The global search directions defined so far in general do
not contain the true barriers of the system although the
saddle points are expected to be close, in particular when the
number of search directions is large. To find the relevant
diffusion barriers we utilize a method recently introduced to
specify changes in barrier heights on top of diamond surfaces
due to the presence of dopants in subsurface layers.35 In this
particular scheme single energy barriers are found by a series
of conjugate gradient~CG! relaxation processes with modi-
fied forces for the diffusing atom. The principle is similar to
what has been introduced to ART.3,4 In our method, how-
ever, the force on the diffusing atom is projected onto equi-
distant planes which are always perpendicular to the global
search direction. Therefore, the diffusing atom can only relax
within these virtual planes, whereas all other atoms can fully
relax due to the true interatomic forces acting on them.

Between two consecutive CG steps the diffusing atom is
pushed from the current to the next plane on a straight line
connecting the position in the current plane with the final
point on the global search direction. Then the whole system
is CG relaxed under the restrictions described above.

Note that all atoms can react to the changes in the position
of a single mover and that the particles can even get around
huge barriers that may exist along the global search direc-
tion. Figure 2 shows a snapshot of a typical situation when
searching for a single barrier. The solid circles indicate the
initial and final position of the moving atom, dotted circles
mark its positions along the migration path at various steps
of the calculation. The start and end points along the global
search direction which is marked by the straight dashed line
for the i th single mover are indicated byrW initial

i ,rWfinal
i , respec-

tively. The relaxed position of the mover in one of the planes
is rWcurrent

i .
As discussed above, in any diffusion step the mover is

initially set to the crossing point of the next plane along the
global search path and the vectorrWfinal

i 2rWcurrent
i . Therefore,

the mover will be always focused back onto the global
search direction so that the search path cannot diverge which
is the major difficulty in another study5 that attempts to find
all the local barriers. The position of atomi in the next vir-
tual plane is given by

FIG. 1. The flowchart of the LAMC procedure described in
Chap. II.
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rWnext
i 5rWcurrent

i 1
rWfinal

i 2rWcurrent
i

ntotal2ncurrent
, ~2!

wherentotal is the total number of steps between the initial
and the final point along the global search direction. This is
the parameter which determines the accuracy of the barrier
height finally found. It is chosen such that the step length
~i.e., the distance between the adjacent planes in Fig. 2!

rWfinal
i 2rW initial

i /ntotal becomes so small that the desired accuracy
in the height of the energy barrier can be obtained.

There is a certain degree of freedom how to pick the final
position of a mover along a selected global search direction.
In order to make the algorithm very much independent of
this choice the position is set quite far away (.100 Å) from
the initial local minimum. This is possible since the search
for saddle points in the vicinity of the global search direction
is terminated as soon as the first relevant saddle is found.
The maximum number of search steps determines the dis-
tance between the virtual planes that restrict the motion of
the mover. For the example in Sec. III we usedrWfinal

i

2rWcurrent
i 5100 Å, ntotal52000 yielding a spacing of 0.05 Å .
The number of search steps already made (ncurrent) ranges

from zero tontotal21. The single search step is finished by
relaxing the system with the CG method allowing all atoms

in the structure to change their positions while constraining
the mover onto the plane perpendicular torW initial2rWfinal. The
projected force for such a diffusing atom is calculated as

Fprojected
k 5Fk2~r final

k 2r initial
k !

~FW •DrW !

uDrW u2
, ~3!

whereDrW5rWfinal2rW initial , andk denotes thex,y, or z coordi-
nates. The projected force is substituted for the true total
force acting on the diffusing atom. After this procedure the
CG total energy minimization operates in the usual way.
Note also that projecting forces before actually calling the
CG algorithm is sufficient for all of the subsequent CG steps
since the conjugated directions constructed during the mini-
mization of the energy functional depend linearly on the ini-
tial data.

The method enables us to find a minimum-energy path
related to any of the given global search directions indepen-
dently. Therefore, the scheme can take full advantage of par-
allel computer architectures. If the initial position of a mover
is a local minimum this path must either contain at least one
saddle point to overcome or the total energy increases
steadily.

2. Finding the saddle point configurations

The saddle points are searched by moving diffusing atoms
or movers along global search directions as described above.
The movement of a single mover is continued until~i! a
saddle point is reached with an energy at leastdEmin higher
than the total energy at the starting point or,~ii ! the total
energy becomes ‘‘much’’ larger (dEmax) than the initial en-
ergy. For this work,dEmin anddEmax were chosen to be 0.2
and 7.0 eV, respectively.

The saddle point position of thei th mover rWsaddle
i is de-

fined as the position vector of atomi where the total energy
decreases for the first time after leaving its initial position.
The lower limit dEmin is used to suppress very frequent
events. The detailed study of the short term behavior of the
system is the standard task of ordinary MD simulations.
Here, this limitation was set to 0.2 eV and we investigated
migration processes with exceeding barriers. Therefore, large
escape rates associated with the smallest energy barriers do
effectively not contribute to the time scale. For case~ii !, any
kesc attributed to associated directions is set to zero. The
Nsaddlesaddle point positionsr saddle

( i , j ) andkesc
( i , j ) are saved.

D. Choice of a diffusion event

After determination of the

Nsaddle5(
i 51

Ndiff

ndd~ i ! ~4!

saddle points related to the events~i.e., all the barriers which
surround all atoms declared to be movers!, the escape rates
kesc

i are calculated using Eq.~1! assuming that the attempt
frequencyn is the same for all events. In principle it is pos-
sible to estimate the true attempt frequency for each process
using the harmonic approximation.10 This calculation ofn0,
however, is demanding and beyond the current computer re-

FIG. 2. The projected conjugate gradient method. Here the dif-
fusing atom is moved in four steps from the initial positionr in to
final positionr in . ForcesFprojectedacting on the diffusing atom are
restricted to the planes perpendicular to the diffusion direction dur-
ing the CG minimization.
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sources. The number of diffusion directionsndd
i which are

taken into account for an atomi is only restricted by the
computer power. It may depend on the local atomic geom-
etry.

The saddle points found for each global search direction
of every mover define a set of local escape rates of the atoms
from their harmonic basins. This set of escape rates can be
regarded as a distribution function from which the most
popular event, i.e., a mover plus its escape direction can be
found by drawing with a probability given by the distribution
function.

In the simplest variant, the selection of the diffusing atom,
the ‘‘mover,’’ and its diffusion direction, is a single step
process. The particular diffusion event is selected from the
pool of all possible ones by weighting the selection with the
probability of the jump. In this way the physical reactions
which can occur within the predefined energy window of the
saddle pointsdEmin,Esaddle,dEmax are explicitly taken into
account in the STST-way according to Voter.10 Here, lower
lying saddle points are more frequently chosen than others
which may be a deficiency in particular in heteropolar or
inhomogeneous systems. In the worst situation the time in-
crements are always almost the same and only a subset of
events is considered. The evolution of the system may then
become artificially confined to a small part of the full system.

In contrast, to increase the importance of slower events
for the evolution of the system the procedure may be altered
to a random selection of the mover followed by drawing the
event in accord with the pool of the escape rates of the se-
lected mover. So the sum in Eq.~5! is restricted to the dif-
fusion directions belonging to the selected single mover
only. All the diffusing atoms have the same probability to be
chosen for the mover and the fluctuation of time increments
after completed diffusion jumps becomes remarkable@Eq.
~5!#. Here, the long term evolution is governed by the diffu-
sion events with large barriers and rapid diffusion events are
partially suppressed. However, when choosing this ‘‘super-
long’’ time scale, the detailed balance condition is lost. Thus
the ensemble averages cannot be accumulated in a reliable
way. We note that the energy window has the role of a time
filter in a way similar to previous KMC studies.38,39

E. Completion of the event

After the event has been chosen the chosen atom is set to
the precalculated~Sec. II C! saddle point positionr saddle

( i , j ) ~i.e.
slightly behind the saddle point, as defined in Sec. II C!.
Thereafter the whole structure is CG relaxed without any
further restriction or modifications of the forces in order to
find the final state after the successful diffusion event. Plac-
ing the mover at the actual saddle point is the activation step
of the event in the ART terminology.

The time dimension can be included into the simulations,
if the attempt frequencyn0 in Eq. ~1! is known from either
experiments or calculations of the vibrational spectra at the
local minima and the saddle point configurations. The clock
is incremented after an event by

Dthop5F (
j 51

ndd

kesc
j G21

, ~5!

where the indexj includes the diffusion directions of the
atom which made the most recent jump.kesc is the same as
kSTST in Eq. ~1!, except that the number of possible exit
directionsnp is set to one because all the saddle points are
searched individually. This time incrementDthop yields a
lower limit of the time duration while it assumes that any of
the diffusion jumps has taken place. An alternative way to
define the time increment is given by Battaileet al.17 How-
ever, in the LAMC, the pool of the escape rates may change
after every diffusion jump, so it is not clear that the time
increment suggested by Battaileet al. converges to the cor-
rect value.

F. Update of the distribution of escape rates

For those atoms whose local environment changes consid-
erably due to the diffusion event the local escape rates need
to be updated before drawing from the pool of escape rates
again in order to define the next successful event. This is
done in the same way as described above in Secs. II A, II B,
and II C. The update is only necessary for atoms that
changed their coordination numbers in the recent event re-
markably or that have moved during the subsequent CG
steps more than a critical distance. Note that atoms may
change their status from being defined as ‘‘movers’’ to
‘‘nonmovers’’ or vice versa during the simulation according
to the definition of a mover.

III. SIMULATION DEMONSTRATIONS

A. Results for hydrogen diffusion in diamond

To illustrate our LAMC method we study hydrogen dif-
fusion in diamond. We consider this process as a sequence of
uncorrelated jumps from one interstitial site to another. A
single hydrogen atom is moving between 64 carbon atoms
enclosed in a cubic cell with periodic boundary conditions.
Thus, the number of diffusing atomsNdiff ~Sec. II A! is just
one. The number of global diffusion directions per atomndd
~Sec. II B! is set to six. The first initial diffusion directions
~Sec. II B! is selected randomly and the rest five are sampled
uniformly on an imaginary sphere. The six virtual final
points rWfinal ~Sec. II C! are selected to be points towards the
six initial diffusion directions and 100 Å away from the dif-
fusing atom. The total number of diffusionntotal steps is set
to 2000, yielding the spacing of 0.05 Å between the PCG
planes~Sec. II C and Fig. 2!. Six carbon atoms on the faces
of the supercell are fixed to prevent a center of mass motion.
This leads to higher energy barriers at the boundary of the
supercell and to an artificial reflection of the diffusing atom.
These effects do not change our conclusions significantly.
An alternative way to prevent the motion of the supercell is
to add a constant force component to all atoms in the super-
cell after the true forces are calculated.

The properties of interstitial hydrogen in diamond have
been studied earlier by Estleet al.40 at the approximateab
initio Hartree-Fock level with the method of partial retention
of diatomic differential overlap~PRDDO!, representing the
bulk host by small saturated cluster models. Their calcula-
tions indicate that the lowest-energy site for hydrogen is an
interstitial in the relaxed bond-centered~BC! site which ap-
pears to be 2.7 eV below the tetrahedral~T! site. By linear
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interpolation between the atomic positions of the relaxed BC
andT site models, they could estimate the barrier inbetween
to be of the order of 5 eV.

The BC site has also been found more stable compared to
the T site by Chuet al.41 on the same level of theory using
saturated cluster models containing up to 44 carbon atoms.
There, however, the barrier between the BC and theT site
has been determined to be only about 2.5 eV above the BC
site.

A barrier of about 1.9 eV has been determined for the
migration from one BC site to a neighboring BC site in the
study by Mehandruet al.42 using the semiempirical atom su-
perposition and electron-delocalization molecular orbital
technique with a 46 C-atom cluster model. The density-
functional pseudopotential self-consistent field calculation
using the local-density approximation~SCF-LDA! calcula-
tion by Briddon et al.43 utilizing a C26H3O cluster model
focuses on the stability of molecular hydrogen inside the
diamond crystal. For monatomic hydrogen they find the BC
site to be more stable compared to theT site by 1.9 eV. The
site energies and related barrier heights are summarized in
Table I and compared to values obtained in the previous
studies.

We started our investigation with the determination of the
equilibrium configurations for hydrogen in either the intersti-
tial BC or theT site by CG relaxing idealized geometries,
allowing all the atoms in the system to relax. When hydrogen
is in the BC site relaxation forces the C-C bond containing
the hydrogen atom in the middle to stretch by 0.80 Å giving
rise to C-H distances of 1.17 Å . The C-C distance is 52%
greater than the normal bond which is slightly larger than
previously reported by Estleet al.40 ~42%!, Mehandru
et al.42 ~43.5%!, and Briddonet al.43 ~43%!. Within DF-TB
the BC site is more stable than theT site by 1.6 eV. This
energy difference is about 1 eV lower than found in the
Hartree-Fock calculations40 but in very good agreement with
the SCF-LDA results.43

We then applied the PCG algorithm to the calculation of
the characteristic barriers separately. Our calculations do not
fully support the results by Mehandruet al.42 with respect to
the transition from a BC to a neighboring BC site. The bar-
rier appears to be about 30% higher than previously reported
and seems to be the most unlikely transition compared to the
other pathways betweenT and antibonding~AB!, AB and
BC, or T and BC sites. The latter three barriers are almost
isoenergetic and about 2 eV lower than the former saddle
point. This strongly suggests that the diffusion of hydrogen
in diamond does not occur between neighboring BC sites.

The BC sites self-trap hydrogen and can additionally bind
other H’s in a nearby AB configuration.43 This causes hydro-
gen to stay at BC sites for longer periods than atT or AB
sites. After activation into one of those configurations H has
almost equal chances to rapidly diffuse between them or
back to a BC site where it is trapped again. This appears to
be consistent with the picture for silicon.41,44

On the diffusion path from the BC site to theT site the
hydrogen atom maintains its bonding to one of the two
neighboring C atoms with an increasing bond length~from
1.1 to 1.3 Å!. The energy barrier is reached close to~within
0.25 Å! theT site. This saddle point configuration is charac-
terized as a stretched tetrahedron with a H atom in the
middle. The nearest neighbor H-C distances are about 1.3,
1.5, 1.7, and 1.8 Å .

Note that within our method the system is continuously
relaxed during the search of the saddle points and that it may
be viewed as a search with least constraints. Typically, the
relaxations are of the order of 0.4 Å for the C atoms neigh-
boring the BC hydrogen and 0.1 Å for C atoms closest to the
hydrogen at aT site. Therefore, it is not surprising that the
barriers are noticeably lower than in the previous studies by
Estleet al. and Chuet al., where a linear interpolation tech-
nique to constrain the geometries was applied to find upper
limits for the transition state energies.

When studying the evolution of the system with the
LAMC algorithm, diffusion takes place mostly between BC
andT sites as expected. During a simulation of 20 diffusion
jumps, only once a different state was reached. This new
configuration is of particular interest and will be called the
antibonding site which has not been observed for monatomic
hydrogen in diamond before. For silicon the same configu-
ration has been determined to be a local minimum44 in the
energy landscape, too.

The AB state occurs when the hydrogen atom is neither in
an exact bond-centered nor a tetrahedral position. The AB
state is reached by moving the H atom 0.15 Å from the
tetrahedral position to the~111! direction. The neighboring C
atom in this direction moves towards the H atom yielding a
true C-H bond of 1.08 Å. The AB site is only marginally~0.1
eV! higher in energy than theT site, and the barrier from aT
site to the AB site is found to be 0.460.1 eV.

We calculated the vibrational spectra for the BC andT
sites, as well as for the transition-state between them, in or-
der to get the attempt frequencies for BC toT andT to BC
reactions. Equation ~1! yields kBC-to-T5437.7631012

3exp(22.0 eV/kT)(1/s) and kT-to-BC5631.1631013

3exp(20.4 eV/kT)(1/s). At 1100 K these result tokBC-to-T
521360(1/s) andkT-to-BC57.0231011(1/s). With this infor-
mation the diffusion constant can be estimated as44,45

D5
1

6 (
i , j

uRi2Rj u2niki j , ~6!

whereni is the probability for the hydrogen atom to be lo-
cated at a given site in the lattice.

Here nBC5 16
24 , nT5 8

24 3exp(21.6 eV/kT)51.5631028

at 1100 K, andRi2Rj5RT2RBC51.47 Å. We thus arrive
at an estimate ofD'9.0310213 cm2/s.

The diffusion constantD can be evaluated another way by
calculating it directly from

TABLE I. Energies of various sites for H relative to the energy
at a BC site and the energy barriers. All energies are in eV.

This Work Ref. 40 Ref. 42 Ref. 41 Ref. 43

DET 1.660.1 2.7 5.3a 2.7 1.9
DEAB 1.760.1
ET-to-BC

barr 0.460.1 5.1 2.5
EBC-to-BC

barr 2.660.1 1.9
ET-to-AB

barr 0.460.1
EAB-to-BC

barr 0.260.1

aT site is not stable.
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D5
1

6
lim
t→`

H d

dt
^@x~ t !2x~0!#2&J , ~7!

where the average is an ensemble average. The time evolu-
tion of the square of the displacements of the diffusing H
atom is shown in Fig. 3. In this evaluation only the BC
positions are taken into account. By calculating the diffusion
constant from Eq. ~7! we obtain again D'9.0
310213cm2/s. This is expected since the Eqs.~6! and ~7!
should give the same result when the simulation time ap-
proaches infinity. The Eq.~7! is of course more convenient
in a general diffusion case when neither the diffusion paths
nor the metastable states are knowna priori.

Our estimated diffusion constant for the ideal crystalline
host is about three times larger than experimental values.46

However, in experiments diamond contains point defects,
such as vacancies, impurities, and grain boundaries. The BC
interstitial itself has a partially filled level close to the con-
duction band which becomes filled when a second hydrogen
in an AB type of configuration or other impurities such as
nitrogen are present nearby.43 Hence, lattice defects can trap
a diffusing H atom and thus reduce its diffusion rate.

B. Self-interstitial diffusion in silicon

Additionally we have simulated the self-interstitial diffu-
sion in silicon. The supercell consists of 65 atoms. Two en-
ergy minima are found during a six diffusion jump LAMC
run. The lower in energy corresponds the^110& split inter-
stitial with Si atom separation 2.26 Å, in good agreement
with tight-binding calculations by Munroet al.47 Our second
minimum resembles thê1033& split interstitial by Munro
et al., the Si atom separation being now 2.22 eV. The path-
way between these two minima involves a bond rotation,
which was also found to be the lowest energy pathway by
Munro et al. ~they use eigenvector following approach to
find the saddle points!. We find that thê 110& split intersti-
tial lies 0.41 eV deeper in energy~Munro et al. 0.56! com-
pared to thê 1033& split interstitial. Moreover, our barrier
from ^110& split to ^1033& split is 0.53 eV~Munro et al.

0.60! and to the reverse direction 0.12 eV~Munro et al. 0.03
eV!. However, the supercell in the calculations by Munro
et al. consists of 216 atoms compared to ours of 64. These
results demonstrate that the current method can also handle
diffusion processes involving bond rotation.

IV. DISCUSSION

Finally, we wish to summarize the benefits of the LAMC
method. The scheme does not require assumption about the
underlying lattice structure or a list of possible chemical re-
actions. It is easy to parallelize since atomic jumps are as-
sumed to occur in an uncorrelated manner and, hence, the
determination of atomic escape rates can be done separately
for each mover and every global search direction.

Within this technique the time scale of a simulation is
spread so that a much longer process time can be achieved
compared to ordinary MD. The increase of time scales de-
pends only on the height of the true energy barriers of the
system under consideration and there is no uncertain param-
eters such as boosting potentials or artificial activation ener-
gies needed to evolve a system.

We illustrated the method by a simple investigation of
hydrogen diffusion in a diamond lattice. The relevant stable
~BC! and metastable (T,AB) states have been found. Addi-
tionally, we determined the antibonding monatomic state to
be metastable which has not to our knowledge been dis-
cussed prior to this work to be present in diamond and com-
petitive with theT site. We determined the diffusion paths
(BC-to-T, T-to-BC, and an antibonding pathway! and calcu-
lated the diffusion constant for H diffusion in diamond in
two ways@Eqs.~6! and ~7!#.

The major limitation of the method is the underlying tran-
sition state theory assumption that atomic jumps occur infre-
quently and uncorrelated, i.e., a moving atom does not di-
rectly feel the dynamics of other jumps. Hence, collective
transitions are unlikely to occur. However, since LAMC af-
ter picking a transition state from the pool of saddle points
utilizes a CG relaxation to reoptimize the local geometries
immediately after a successful atom jump, many-atom jumps
can be induced. To directly treat the many-atom jumps in-
creases the number of diffusion events dramatically and
complicates the saddle point search enormously. However,
by coupling LAMC with an augmented Lagrangian penalty
method48 this is in principle possible.

A secondary but minor deficiency is the need to define a
suitable energy window for the saddle points. This depends
largely on the application. The lower limit for the saddle
points to become relevant inside LAMC determines whether
short term processes will dominate the evolution of the struc-
ture. If this limit is too high essential physical information
may be lost. The upper limit rules out processes taking place
in a too long time scale. We strongly suggest to combine
LAMC responsible for slow transitions with the MD tech-
nique which handles the faster motion of the atoms in a
deterministic way. During growth simulations, for example,
collision events and short time evolution due to subsequent
relaxations may be done by MD. The long time scale relax-
ations between two deposition events after the short MD pe-
riod may be investigated by LAMC.

A standard problem of transition state theory based simu-

FIG. 3. The square of the displacement of the hydrogen atom in
diamond; only BC sites are included.
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lations is the uncertainty about the number of relevant saddle
points when calculating escape rates. Within LAMC the
number of saddle points considered simply depends on the
number of global search directions and the predefined energy
window. Hence, it is only a question of the available com-
puter resources to sample the realistic distribution of escape
rates for a given mover.

Finally we would like to remark that the computational
efforts of the LAMC method can be dramatically reduced
due to a smart choice of the set of the diffusing atoms. While
in studies of disordered materials every single atom needs to
be handled by LAMC, this is not very useful when the ap-
plication itself provides reasons to restrict the number of dif-
fusing species such as on surfaces. If LAMC would work on

all atoms in the latter case those of the bulk material due to
the higher energy barriers would influence the long time
scale behavior of the system and the surface reactions of
interest. In contrast, mixing of time scales may be important
for studying processes at interface structures or in heteroge-
neous systems where different atom types can cause a super-
position of quite different time scales.
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