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Structure and electrical levels of point defects in monoclinic zirconia

A. S. Foster,1 V. B. Sulimov,2 F. Lopez Gejo,2 A. L. Shluger,2 and R. M. Nieminen1
1Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015, Finland

2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
~Received 2 July 2001; published 21 November 2001!

We performed plane wave density functional theory~DFT! calculations of formation energies, relaxed
structures, and electrical levels of oxygen vacancies and interstitial oxygen atoms in monoclinic zirconia. The
atomic structures of positively and negatively charged vacancies and interstitial oxygen atoms are also inves-
tigated. The ionization energies and electron affinities of interstitial oxygen atoms and oxygen vacancies in
different charge states are calculated with respect to the bottom of the zirconia conduction band. Using the
experimental band offset values at the interface of ZrO2 films grown on silicon, we have found the positions of
defect levels with respect to the bottom of silicon conduction band. The results demonstrate that interstitial
oxygen atoms and positively charged oxygen vacancies can trap electrons from the bottom of the zirconia
conduction band and from silicon. Neutral oxygen vacancy serves as a shallow hole trap for electrons injected
from the silicon valence band. The calculations predict negativeU for the O2 center and stability of V1 centers
with respect to disproportionation into V21 and V0 in monoclinic zirconia.

DOI: 10.1103/PhysRevB.64.224108 PACS number~s!: 61.72.2y, 71.20.2b, 85.50.2n, 77.84.2s

I. INTRODUCTION

Zirconia is one of the most important wide band-gap tran-
sition metal oxides. Its current applications range from jew-
elry, semiconductor substrates, fuel cells and oxygen sensors
to nuclear fuel rods.1 Zirconia displays three polymorphs2 at
atmospheric pressure: at low temperatures the monoclinic
C2h

5 phase~space groupP21 /c), above 1400 K the tetrago-
nal D4h

15 (P42 /nmc) phase, and above 2600 K the cubic
fluorite Oh

5 (Fm3m) phase. Both the monoclinic and tetrag-
onal phases can be obtained by distortion of the simple cubic
structure. In general, at room temperature crystalline zirconia
(ZrO2) exists in the monoclinic phase, however, the cubic
phase can be ‘‘stabilized’’ by the addition of substitutional
cations, such as Ca21, Mg21, and Y31.1 The stabilized zir-
conia has been extensively studied both theoretically and ex-
perimentally due to its wide technological applications.3,4

Recently, however, zirconia related research has received an
additional boost due to an intensive search for new dielectric
materials capable of substituting silicon dioxide in its role as
gate dielectric in many microelectronic devices.5 Thin ZrO2

films grown on silicon demonstrate favorable parameters,
such as high thermal stability and low leakage current.6,7

High resolution TEM indicated the presence of both tetrag-
onal and monoclinic phases in these films,7 and therefore
studies of defect properties in these zirconia phases have
become extremely topical.

The performance of thin zirconia films as gate dielectrics
is likely to be affected by various defects. In particular, film
growth involves oxygen diffusion through the already grown
oxide and the possible formation of interstitial oxygen de-
fects. Another important issue is related to oxygen stoichi-
ometry and formation of oxygen vacancies. Electron and
hole trapping by interstitial oxygen and oxygen vacancies
may affect leakage current through the oxide. These issues
are critical to the performance of thin zirconia films and have
yet to be studied in tetragonal or monoclinic zirconia. Some

basic defect properties in cubic and cubic stabilized zirconia
have been studied empirically,8,9 and using density functional
theory.4,10 An extensiveab-initio investigation has also been
performed for zircon (ZrSiO4).11

In this paper we present the results of the plane wave
density functional theory~DFT! calculations of oxygen va-
cancies and interstitial oxygen atoms in monoclinic zirconia.
After calculating the incorporation energies and structures of
interstitial oxygen atoms and formation energies of neutral
oxygen and zirconium vacancies, we consider the electron
affinities and ionization energies of these defects and their
structures in singly and doubly charged states. These proper-
ties are especially important at the interface with silicon as it
may serve as an electron and hole source. The results dem-
onstrate that interstitial oxygen atoms and positively charged
oxygen vacancies can trap electrons from the bottom of the
zirconia conduction band and from silicon.

The paper is organized as follows. In the next section we
discuss the details and justification of the method of calcula-
tion. In the third section we discuss the results for the two
classes of point defects, interstitials and vacancies, in the
fourth section we study the energy levels of the defects, and
then in the fifth section we discuss some possible reactions
between defects. Finally, we summarize the implications and
possible future directions of the study.

II. METHOD

All the calculations have been performed using the plane
wave basisVASP code,12,13 implementing spin-polarized den-
sity function theory and the generalized gradient approxima-
tion ~GGA! of Perdew and Wang14 known as GGA-II. We
have used ultrasoft Vanderbilt pseudopotentials15,16 to repre-
sent the core electrons. The pseudopotential for the zirco-
nium atom was generated in the electron configuration
@Kr#4d35s1 and that for the oxygen atom in@1s2#2s22p4,
where the core electron configurations are shown in square
brackets.
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In order to validate both the pseudopotentials and the
method itself, extensive calculations were performed on the
three dominant bulk phases of zirconia: cubic, tetragonal,
and monoclinic. For each system, total energy convergence
was tested within ak-point range between 1 and 60k points
and a plane wave cutoff energy range between 200 and 600
eV. Convergency to within 10 meV was achieved with 10k
points and a cutoff energy of 400 eV. The bulk unit cell
lattice vectors and atomic coordinates were then relaxed at a
series of fixed volumes. The obtained energies were fitted
with a Murnaghan equation of state17 to give the equilibrium
volume and the minimum energy. The final calculated cell
parameters are given in Table I, along with experimental val-
ues. In all cases the agreement between calculated and ex-
perimental values is excellent, demonstrating that both the
pseudopotentials and method are suitable for this study.

The electron density of states~DOS! for ideal monoclinic
zirconia is shown in Fig. 1~a!. For better presentation, each
of the discrete one-electron energies forming the spectrum
was broadened by a Gaussian with a smearing factor equal to

0.3 eV. Note that tails at the band edges are determined by
this factor and do not have a quantitative meaning. The DOS
for the monoclinic phase is very similar to the DOS obtained
for the cubic and tetragonal phases~not shown here! and has
three clear bands. A valence band of oxygen 2s character at
around215 eV, a valence band of oxygen 2p character at
around 0 eV and a conduction band of zirconium 4d charac-
ter at around 7 eV. There are a small number of states of Zr
4d character in the middle band, but it is dominated by the O
2p states. This is consistent with the picture of zirconia as an
ionic insulator, with limited covalent bonding between Zr
and O. The fact that the top of the Kohn-Sham O 2p valence
band states is located at about 1.6 eV is determined by the
pseudopotentials and by the way the Ewald summation is
done in the code.

The band gap calculated as the energy difference between
the highest occupied and lowest unoccupied one-electron
states in this method is 3.41 eV. This energy is very close to
that obtained in previous studies.18 Alternatively, it can be
estimated as a difference of the total energies of the system
with N, N11, andN21 electrons19

Eg~ theor!5E~per,21!1E~per,11!22•E~per,0!. ~1!

Here E(per,0) is the total energy of the perfect neutral su-
percell, andE(per,21) andE(per,11) are the total ener-
gies of the supercell with an electron or a hole. In both
charged states the electron and hole are completely delocal-
ized over the supercell. A neutralizing background was ap-
plied to the unit cell for calculations of charged systems. The
perfect crystal with an additional electron or hole becomes a
metal and therefore calculations of its electronic structure
may require a much larger number ofk points than for a wide
gap insulator. To investigate this issue we have calculated the
energiesE(per,61) with four and tenk points and have
found that the total energy changes only by about 0.003 eV.
The band gap calculated in this way is equal to 3.19 eV. The
gap values obtained using both methods are much smaller
than the experimental values obtained by UPS@5.83 eV~Ref.
20!#, EELS @4.2 eV ~Ref. 21!# and electron photoinjection
@5.4 eV~Ref. 22!#. The theoretical value calculated using the
local density approximation in DFT and the perturbation
theory on the GW level is equal to 5.4 eV.10

All defect calculations were made using a 96 atom unit
cell, which is generated by extending the 12 atom mono-
clinic unit cell by two in all three dimensions. For this cell,
the total energy was converged to better than 10 meV for a
plane wave cutoff of 500 eV and 2k points in the first Bril-
louin zone. One oxygen atom was added to or extracted from
this cell to model the interstitial and vacancy defects, respec-
tively. The large size of the cell separates the periodic defect
images by over 10 Å, greatly reducing the unphysical inter-
actions between them. For geometry relaxation we used a
combination of Conjugate Gradient energy minimization and
quasi-Newton force minimization. During defect calculations
the lattice vectors of the cell were frozen and all atoms were
allowed to relax until atomic forces were less than 0.05
eV/Å. A neutralizing background was applied to the unit cell
for calculations of charged defects. The Coulomb interaction

TABLE I. Comparison of calculated and experimental bulk unit
cell parameters for the cubic, tetragonal, and monoclinic phases of
zirconia.dz is the shift in fractional coordinates of oxygen atoms in
the tetragonal cell with respect to their ideal cubic positions,b is
the angle between lattice vectorsa andc in the monoclinic cell and
x,y,z are the fractional coordinates of the nonequivalent sites in the
m structure.

Property Calculated Experimentala

Cubic
Volume (Å3) 32.97 32.97
a ~Å! 5.090 5.090

Tetragonal
Volume (Å3) 34.55 34.07
a ~Å! 3.628 3.571
c/a 1.447 1.451
dz 0.049 0.057

Monoclinic
Volume (Å3) 36.05 35.22
a ~Å! 5.192 5.150
b/a 1.014 1.012
c/a 1.032 1.032
b (o) 99.81 99.23
xZr 0.277 0.275
yZr 0.044 0.040
zZr 0.209 0.208
xO1

0.072 0.070
yO1

0.338 0.332
zO1

0.341 0.345
xO2

0.447 0.450
yO2

0.758 0.757
zO2

0.479 0.479
Energy differences between phases (/ZrO2)

Et2c ~eV! 20.07 20.06
Em2c ~eV! 20.17 20.12

aReferences 37 and 38.
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between charged defects in different periodic cells is calcu-
lated as described in Refs. 23,24 using Madelung constant as
calculated inVASP.

The vacancy formation energies~or equivalently, the oxy-
gen atom incorporation energies! Efor(defect) were calcu-
lated as the energy difference between the fully relaxed de-
fected supercellE(defect) and the perfect monoclinic 96
atom unit cellE(per,0) and an isolated oxygen atomE(O)
according to

Efor~defect!5E~defect!2@E~per!6E~O!#. ~2!

Calculation of E(O) presents some problems and is dis-
cussed in detail in the next section.

III. POINT DEFECTS

A. Oxygen interstitials

In this study we have considered defects formed by an
interstitial oxygen atom in different charge statesX5O0,
O 2, O22. As discussed below, each interstitial can form a
stable defect pair with either a tetragonally~tetra! or triply
bonded~triple! lattice oxygen~see Fig. 2!. For ease of refer-
ence all values associated with a triply bonded oxygen will

be labeledX3 and all associated with a tetragonally bonded
oxygen will be labeledX4, whereX is the defect species.

The incorporation energy of atomic oxygen into zirconia
lattice can be calculated with respect to different gas species.
For example, an oxygen molecule in the lowest triplet state
has been used in many similar studies~see, for example,
Refs. 11,25,26!. The reason for choosing this reference state
is twofold: ~i! molecular oxygen is used in some oxidation
techniques and in this case provides the right reference for
the chemical potential~see discussion in Ref. 11! and~ii ! due
to degeneracy of the ground triplet state of the oxygen atom,
it is poorly described in DFT, especially in a periodic model.
This degeneracy is lifted in the O2 molecule, which provides
a much better description. Using half of the energy of an
isolated O2 molecule~equal in or calculations to 4.91 eV! as
a reference energyE(O) @see Eq.~2!# we obtained the incor-
poration energies11.4 eV for O3

0 and 12.2 eV for O4
0. A

positive value indicates an endothermic process, which in-
volves dissociation of the O2 molecule. However, to estimate
whether the incorporation from atomic gas is exothermic,
one should know the energy of an oxygen atom in the triplet
state. This is known to be a problem in plane wave DFT as
the result depends on the shape of the unit cell. Using a
series of expanding rectangular periodic cells with three dif-
ferent lattice constants exceeding 10 Å, we obtained a ‘‘bro-
ken symmetry’’ solution for the oxygen atom with a lowest
energyE(O)521.97 eV. This then gives the dissociation
energy of the O2 molecule in GGA-II as 5.88 eV, which is
higher than the experimental value of 5.2 eV. The electron
affinity of the oxygen atom calculated using the same ap-
proach is 1.7 eV, slightly higher than the experimental value
of 1.46 eV.

Using the atomicE(O) energy as a reference, we find that
a single O atom is incorporated in the monoclinic zirconia
lattice with an energy gain of21.6 eV (O3

0) and 20.8 eV
(O4

0). These values are close to those found for oxygen in-

FIG. 1. ~a! Total density of
states ~DOS! for ideal and de-
fected monoclinic zirconia. Note
that Gaussian smearing has been
applied to the DOS for clarity.~b!
A blow-up of the DOS around the
Fermi level (EF) of the ideal sys-
tem, at 1.6 eV. The arrows show
the one-electron positions of the
defect states in the gap O0 at 1.8
eV, O22 at 2.2 eV, and O2 at 2.3
eV.

FIG. 2. Diagram showing the tetragonal~left! and triple-planar
~right! bonding of the oxygen ions in the monoclinic phase of zir-
conia as calculated in this work. The numbers show interatomic
distances in Å.
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corporation in zircon.11 They can be also compared with val-
ues reported in the literature for the same process ina
quartz. Using a periodic LDA approach Hamann has found a
formation energy of20.86 eV;27 a similar value20.7 eV
has been reported from correlated cluster calculations,28 and
20.9 eV in recent DFT GGA-II calculations.25,26

Figure 3 shows the fully relaxed charge density and posi-
tion of ions near to a neutral oxygen interstitial in the (O3

0)
configuration in the lowest singlet state—the interstitial in
the triplet state is 1 eV higher in energy. The charge density
shows that the interstitial and lattice oxygen form a strong
covalent bond, and effectively become a ‘‘dumbbell’’ defect
pair within the lattice. This configuration is similar to previ-
ous calculations of neutral oxygen interstitials in zircon
(ZrSiO4),11 but differs from the ‘‘peroxy bridge’’ seen in
silica calculations.25,26 The lattice oxygen relaxes by up to
0.5 Å to accommodate the interstitial, distorting the original
triple planar O-Zr3 group ~see Fig. 2! into a slight pyramid
with its apex pointing away from the interstitial. The Zr sub-
lattice remains more or less undisturbed, with the nearest
zirconium (ZrA) to the pair only relaxing by around 0.05 Å.
Integration of the electron density around the oxygens within
equivalent spheres of different radii using theLEV00 code29

gives the same values for both the interstitial and the lattice
oxygen, indicating that significant charge has been trans-
ferred to the interstitial.

To study the possibility of one and two electron trapping
by the interstitial oxygen, we added extra electron~s! to the
system. We should note that for both singly and doubly
charged systems, the added electron initially went to the con-
duction band and did not localize fully on the defect until
after the system was relaxed. Moreover, when we investi-
gated the properties of theO4

0 site, we found that when one
or two extra electrons are added to this system, there is no
stable energy minimum for the oxygen interstitial near to the
tetragonal site. In fact the interstitial undergoes large dis-
placements and moves to the most easily available triple
oxygen site, forming anO3

2 defect. Due to this and since the
triple oxygen site (O3

0) in zirconia is energetically favored
for interstitial formation, we will now focus in detail on de-
fects incorporated at that site.

Figure 4 shows the charge density and positions of ions
near to a singly negatively charged oxygen interstitial. The
introduction of an extra electron causes the interstitial and
lattice oxygen to separate, both displacing by about 0.2 Å
and also causing a 0.1 Å displacement of the ZrA . The re-
laxation energy from the initialO3

0 configuration is equal to
1.7 eV. Overall this relaxation reduces the covalent bond
between them significantly, as can be seen in the charge den-
sity plot. However, they remain effectively identical, with
identical charge for a given radius. Calculation of the charge

FIG. 3. Charge density in the plane through ZrA , OA and Oi ,
and a schematic diagram of neutral oxygen interstitial~O i) near a
triply bonded oxygen (OA) in zirconia. Charge density is in 0.1 e/Å
and all distances are in Å.

FIG. 4. Charge density in the plane through ZrA , OA , and Oi ,
and schematic diagram of singly charged oxygen interstitial~O i)
near a triply bonded oxygen (OA) in zirconia. Charge density is in
0.1 e/Å and all distances are in Å.

FOSTER, SULIMOV, LOPEZ GEJO, SHLUGER, AND NIEMINEN PHYSICAL REVIEW B64 224108

224108-4



density difference between the system before and after the
introduction of an electron shows that the electron is com-
pletely localized on the defect pair.

For the final interstitial, the doubly charged oxygen inter-
stitial in Fig. 5, the charge density and positions differ sig-
nificantly to that demonstrated for the singly charged defect.
The interstitial displaces significantly~about 0.5 Å! to ac-
commodate an extra electron and the corresponding relax-
ation energy is equal to about 1.4 eV. It now occupies an
effective new triple site~see Fig. 5!, bonding with a third
zirconium ion. In the singly charged defect, the third zirco-
nium ion was over 2.5 Å from the interstitial and no bond
could be seen in the charge density. In this new configura-
tion, the interstitial forms slightly elongated bonds with the
zirconium ions compared to normal lattice triple site. The
defect remains in the singlet state, with equal spin compo-
nents. Again, calculation of the charge density difference be-
tween the systems before and after the introduction of the
electron shows that the second electron is completely local-

ized on Oi and OA . It also demonstrates a reduction of the
covalent bond between Oi and the nearest zirconium ions.

The changing nature of the defect pair can also be seen in
the evolution of the total density of states of the systems,
shown in Fig. 1~a!. On addition of the neutral oxygen inter-
stitial, the main band structure remains the same, but new
states can be seen. These are bonding and antibonding states
of the Oi-OA defect pair due to the extensive charge transfer
and formation of a strong covalent bond. They are located at
about219 and214 eV, and24 and 1.8 eV, correspond-
ingly. The highest occupied defect states are in the band gap
near the top of the valence band at 1.8 eV. They are masked
in the DOS tail and therefore indicated by the arrow in Fig.
1~b!. For the singly charged oxygen interstitial, the Oi-OA
bond is weaker and the DOS is even closer to the ideal bulk
DOS. The fact that the defect pair separates and becomes
much more ionic means that there are now no other clear
defect states in the DOS. Defect states which appear at the
top of the valence band in the gap at about 2.3 eV are again
indicated in Fig. 1~b!. The DOS for the doubly charged in-
terstitial is, again, very similar to that for the perfect lattice,
with Oi

22 related defect states at about 2.2 eV in the gap.
We also studied the positive interstitial in zirconia, how-

ever, the hole does not localize on the defect even after re-
laxation. The charge density maps show that the hole is de-
localized over the whole cell and the one-electron energy
spectrum is typical for a metallic state. This may represent a
well-known error in the kinetic energy calculated in Kohn-
Sham theory, which favors delocalized over localized defect
states30 and can also be seen for the V4

2 defect below. There-
fore this result may not be accurate and will not be discussed
in detail.

B. Vacancies

In respect of two types of oxygen atoms in monoclinic
zirconia we considered vacancies of fourfold and threefold
coordinated oxygen: V4 and V3. The main properties of both
types of vacancies are very similar and the discussion below
is presented in terms of fourfold coordinated vacancy V4.

We start our discussion from considering a neutral va-
cancy, which is formed by removing one neutral oxygen
atom from the 96 atom unit cell. Formation of the neutral
vacancy leads to a very small relaxation of the four neigh-
boring Zr ions with displacements of only about 0.01–0.02 Å
from their positions in the perfect crystal. The corresponding
relaxation energy is;0.11 eV. The vacancy formation en-
ergy is defined asEfor(V)5E(vacancy)1E(O)2E(per,0),
whereE(vacancy) andE(per,0) are the supercell energy for
the defective and the perfect systems, respectively, and
E(O)521.97 eV is the energy of the free oxygen atom in
the triplet state as used for the interstitial calculations. The
formation energies for fourfold and threefold coordinated
neutral oxygen vacancies are equal toEfor(V4)58.88 eV and
Efor(V3)58.90 eV, respectively. They are quite similar to
those obtained for MgO and silica~see, for example, Refs.
31,32!.

The neutral vacancy has a doubly occupied one-electron
energy level deep in the forbidden gap and is strongly local-

FIG. 5. Charge density in the plane through ZrA , OA , and Oi ,
and schematic diagram of doubly charged oxygen interstitial (Oi)
near a triply bonded oxygen (OA) in zirconia. Charge density is in
0.1 e/Å and all distances are in Å.
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ized. This energy level is situated;2.2 eV above the top of
the valence band. The defect charge density distribution is
qualitatively very similar to that for a neutral oxygen va-
cancy in cubic zirconia.10 It is strongly localized with a
maximum in the center of the vacancy and can be described
as a bonding combination of atomic orbitals of all four Zr
neighboring the vacant site. The first one-electron excited
state is situated very close to the conduction band edge and is
much less localized with the charge density having maxima
on all Zr ions beyond the first neighbors of the vacancy. The
energy of the vertical~i.e., for the fixed geometry of the
relaxed singlet state! singlet-to-triplet excitation~calculated
as the difference of total energies of the defective supercell
in the ground and excited triplet states! is equal toE(S0
→T1)51.2 eV. We note that this value is very close to the
energy difference between the corresponding occupied and
unoccupied one-electron states.

Ionization of the neutral oxygen vacancy results in the
creation of the positively charged defect V4

1 . The spin den-
sity map presented in Fig. 6 clearly shows that the remaining
electron is strongly localized in the vacancy. It also reflects
the bonding character of the charge density corresponding to
the singly occupied localized state and demonstrates strong
contributions of Zrd orbitals. The atomic relaxation in this
case is much stronger than for the neutral vacancy: all four
Zr neighbors move away from the vacant site by about 0.1 Å
and the relaxation energy amounts to 0.47 eV. Creation of the
doubly positively charged vacancy V4

21 is again accompa-
nied by further displacement of the surrounding four Zr ions
away from the vacant site by additional 0.1 Å. This leads to
the further energy decrease by 0.74 eV.

We should note that strong localization of the electron
density inside the vacancy and the behavior of the lattice

relaxation are qualitatively similar to that for neutral and
charged oxygen vacancies in MgO~Ref. 31! and in alkali
halide crystals.33 Therefore these defects in zirconia can be
attributed to the class ofF centers.

There have been suggestions that negatively charged va-
cancies (F8 centers34! can also exist in zirconia. Therefore
we considered trapping of an additional electron at the neu-
tral oxygen vacancy V4

0 and creation of the negatively
charged vacancy V4

2 . In this charged state the additional
electron is only weakly localized in the vicinity of the va-
cancy. The corresponding spin maps clearly show strong de-
localization of the spin over the whole supercell. Therefore
the atomic relaxation is very small: all four Zr neighbors
displace by less than 0.02 Å and the energy decreases by less
than 0.1 eV. The same conclusion can be made by analyzing
the one-electron states which demonstrate a clearly metallic
solution.

For completeness, we have also considered a neutral Zr
vacancy. This corresponds to removing a neutral zirconium
atom from a lattice site. The lattice relaxation in this case is
significantly stronger than in the case of the neutral oxygen
vacancy. The nearest oxygen ions surrounding the vacancy
are displaced outwards from the vacant site by about 0.1–0.2
Å and the relaxation energy is about 1.4 eV. The formation
energy of the neutral zirconium vacancy, determined in the
same way as that for the oxygen vacancy, is 24.2 eV. The
formation of the zirconium vacancy does not induce any ad-
ditional states in the band gap—all defect states are located
inside the valence band.

Finally, we can combine the results for oxygen interstitials
and vacancies, and calculate the formation energies of anion
Frenkel defect pairs. For a neutral vacancy-oxygen atom
Frenkel pair this energy is about 7.3 eV~with respect to the
oxygen atom in the triplet state!. This compares well with the
results for zircon,11 which also predict 7.3 eV. The energies
of charged defect pairs are lower and comprise 6.8 and 5.4
eV for the V1-O2 and V21-O22 pairs, respectively. This
stems from the lattice polarization which favors charged
states and also from the fact the electron affinity of the oxy-
gen interstitial atom/ion is very close or larger than the ion-
ization energy of the neutral/singly charged vacancy~see fur-
ther discussion in Secs. IV and V!. Therefore the electron
transfer from a vacancy to an oxygen interstitial is energeti-
cally favorable. It is interesting to note that the Frenkel en-
ergy for the fully separated pair of doubly charged defects
found in our study practically coincides with that predicted
using classical pair potentials and the shell model.9 However,
similar calculations using different interatomic potentials8

predict a Frenkel energy of 9.1 eV.

IV. DEFECT LEVELS

In order to study the possible role of defects in photostim-
ulated and thermostimulated processes, and in electronic de-
vices one needs to know the position of defect states with
respect to the bottom of the conduction band of zirconia or to
other electron or hole sources, such as silicon. In this section
we analyze the data obtained for the oxygen and vacancy
defects from this perspective.

FIG. 6. Spin density map, in the plane through three Zr ions, of
the positively charged vacancy V1. The vacancy position is at the
center~0,0! of the map. Spin density is in 0.1 e/Å and all distances
are in Å.
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This analysis requires comparing energies of defects in
different charge states. To achieve that we compare total en-
ergies of the systems with the same number of electrons. For
example, to calculate the vertical ionization energy of the
neutral vacancy one can take a difference between the ener-
gies of the final state~the sum of the total energies of the
perfect crystal with an additional electron and that for the
positively charged vacancy with the nuclei positions in the
neutral state! and the initial state~the sum of the total ener-
gies of the perfect crystal and that for the crystal with the
neutral vacancy!. The main inaccuracy of this approach is
related to the underestimated band gap in our DFT calcula-
tions. Below we use the difference

k5Eg~exp!2Eg~ theor!, ~3!

to correct the defect excitation energies, the ionizational po-
tentials and electron affinities. Assuming the experimental
value ofEg(exp)55.4 eV, this givesk55.423.1952.21 eV.

Defining the defect ionizational energyI p(D) as the ver-
tical excitation energy of an electron from the defect to the
bottom of the conduction band, we have

I p~D,q!5E~per,2 !1E~D,q11!2E~per,0!2E~D,q!1k,
~4!

whereE(per,2) andE(per,0) are the calculated energies of
the perfect supercell with charge21 and 0, respectively, and
E(D,q) is the energy of the defect with the chargeq ~in the
elementary charge unit!. In Eq. ~4! the valueE(D,q11)
must be calculated for the geometry of the relaxed defect
with the chargeq. We can define the electron affinity of the
defect xe(D) in exactly the same manner~noting that we
now consider an energy gain when the electron from the
bottom of the conduction band is trapped at the defect, rather
than an excitation energy to be paid! as follows:

xe~D,q!5E~per,2 !1E~D,q!2E~per,0!

2E~D,q21!1k. ~5!

Note that the one can consider both ‘‘vertical’’ and ‘‘re-
laxed’’ electron affinities. In the latter case the lattice relax-
ation after the electron trapping is included inE(D,q21).
We can also define a hole affinity of the defectxh(D), i.e.,
the energy gain when a free hole is trapped from the top of
the valence band to the defect as follows:

xh~D,q!5E~per,1 !1E~D,q!2E~per,0!2E~D,q11!.
~6!

Again, dependent on whether the lattice relaxation in the
final state is included or not, one will obtain different affini-
ties. Note that in calculating the hole affinityxh(D), we do
not use the correctionk, as we assume that the energy dif-
ferences between filled states are well reproduced in DFT.
From the definitions~5! and ~6! it is easy to obtain

xh~D,q!1xe~D,q11!5Eg~exp!. ~7!

This method is clearly approximate. However, fixing the
value ofk allows us to present the results of our calculations
in one scale. This scale can be changed if a more ‘‘accurate’’

or relevant value fork will be found. This will require only
a shift of our predicted values by a constant.

In further discussion we will consider two types of pro-
cesses:~i! vertical ~Franck-Condon! ionization of defect cen-
ters in different charge states into the conduction band and
~ii ! full ~i.e., relaxed! affinities of defect states with respect to
electrons from the bottom of the conduction band and holes
from the top of the valence band. The calculated values are
summarized in Table II and the electron affinities are also
shown in a schematic energy diagram in Fig. 7.

We can see that doubly and singly charged vacancies of
both types have positive electron affinities for electrons com-
ing from the bottom of the conduction band. The calculated
electron affinity for the neutral vacancy is very small and
cannot be accurately predicted because the corresponding
electron state is lying at the bottom of the conduction band
and depends on the accuracy of calculation of the conduction
band. The neutral and negatively charged interstitial oxygens
also have large electron affinities. The hole affinities for
charged oxygen species are large due to the strong defect
relaxation. The ‘‘vertical’’ values for these affinities are
about 0.2 eV, in line with what one would expect from the
DOS and vertical ionization energies.

Yet another relevant issue concerns the electron affinities
of these defects with respect to electrons from the bottom of
silicon conduction band at the Si/ZrO2 interface. This is par-

TABLE II. Ionizational potentialI p(D), electronxe(D), and
hole xh(D) affinities ~in eV! of defects in different charge states.

D V4
0 V4

1 V4
21 O3

0 O3
2 O3

22

I p(D) 3.80 3.98 5.39 5.19 5.19
xe(D) 3.33 3.54 3.73 4.62
xh(D) 2.07 1.86 0.07 1.67 0.78

FIG. 7. Energy level diagram showing the electron affinities for
various defects in monoclinic zirconia. All energies are in eV.
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ticularly relevant for thin oxide films where electrons can
tunnel from the interface into defect states.35 Again counting
from the top of the valence band~see Fig. 7!, we can use the
experimental values22 of the valence band offset~2.3 eV! at
the interface and the band gap of Si~1.1 eV!, and the posi-
tion of the top of the valence band of ZrO2 in our calcula-
tions to estimate the energy of an electron at the bottom of Si
conduction band with respect to the defect levels. As one can
see in Fig. 7, doubly and singly charged vacancies, and neu-
tral and singly charged oxygen interstitials can serve as traps
for electrons injected from the bottom of the silicon conduc-
tion band. Perhaps equally importantly, the top of silicon
valence band practically resonates with the neutral oxygen
vacancy~see Table II!. Therefore these states can serve as
shallow traps for holes injected from silicon and participate
in hopping hole conductance through oxide.

V. REACTIONS

The above calculations predict the existence of oxygen
vacancies and interstitials in different charge states. The
number and spatial distribution of defects in each charge
state will depend on the method of their creation, presence of
the electron source, applied voltage, temperature, and other
factors. Assuming a distribution of defects in different charge
states and electron transfer between defects, our results allow
us to predict the most stable state for each defect pair.

To address this question we compare the total energies for
defect pairs in the same total charge state using the total
energies of individual defects. The reactions are listed in
Table III. Note that we do not include O1 and V2defects
because we do not treat the results obtained for these defects
as reliable enough. As in simple alkali halides, the charge
transfer between oxygen vacancies and interstitial atoms is
energetically favorable and means that a pair of separated
doubly charged defects has about 1.9 eV lower energy than a
Frenkel pair of neutral defects.

It is interesting to note that our results predict~see the
third reaction in Table III! the decay of two isolated O2

species into the O22 center and a neutral O0 species. This
characteristic is known as ‘‘negativeU ’’ behavior. On the
other hand, the similar reaction between the two positively
charged vacancies~last line in Table III!, which was pre-
dicted to be an exothermic in yttrium stabilized zirconia,4 in
our calculations comes out endothermic. This reaction is
even less favorable for threefold coordinated vacancy: the
energy loss is about 0.4 eV. This discrepancy may result

from the presence of a charged yttrium impurity in the vicin-
ity of the F center in Ref. 4. However, we should note that
the repulsion between two positively charged oxygen vacan-
cies at short (;5 Å! distances can reverse this very delicate
balance.

VI. DISCUSSION

The results of the calculations demonstrate that oxygen
interstitials and vacancies in monoclinic zirconia are strongly
localized. O3

0 and O3
2 , V4

21 , and V4
1 can serve as electron

traps and V4
0 as a shallow hole trap. They have similar struc-

ture to analogous defects in cubic oxides. Application of
quantum-mechanical methods to study defect states proved
to be essential, since ZrO2 and some of the defect structures
are characterized by significant covalent bonding and at-
tempts to model them and the corresponding electrical levels
would be impossible in classical shell-model techniques.

However, some of the defect properties cannot be accu-
rately predicted. In particular, the neutral vacancy may have
positive electron affinity but it cannot be reliably established
in our calculations due to the strong admixture of its electron
state at the bottom of the conduction band. This results from
two inter-related factors:~i! the band gap is systematically
underestimated in plane wave DFT calculations with the
PW91 energy functional and~ii ! calculations in this method
tend to amplify the delocalization of electronic states in shal-
low energy wells.

The same factors affect the accuracy of our calculation of
the optical excitation energy of the neutral oxygen vacancy.
We have estimated this energy by the difference of the total
energies of the lowest singlet and triplet defect states and
obtained 1.2 eV. Since the excited state is very close to the
bottom of the conduction band, it is likely that the error is
close to that in the value of the band gap, as discussed above.
If for rough estimate of the optical absorption energy we
increase the calculated value by the same correctionk
52.21 eV used to correct the band-gap width, we obtain
about 3.4 eV. It is interesting to note that this value is very
close to the maximum of the broad band at about 3.4 eV
attributed to F centers~neutral vacancies in yttria-stabilized
zirconia34!.

Our results predict negativeU for the O2 center. In other
words two O2 centers are unstable with respect to dispropor-
tionation into O22 and O0 centers. They also predict stability
of V1 centers with respect to disproportionation into V21

and V0. The calculated reaction energies can be affected by
several factors. One is the Coulomb interaction between a
charged defect and its periodic images in the total energy
calculation for each such defect. It is included in calculations
of electron affinities, ionization energies and electron transfer
reactions using the technique described in Refs. 23,24. For a
well-localized single charged defect this correction is only
;0.1 eV due to the large size of the supercell (;10 Å! and
the large static dielectric constant of the material («;255!.
However, the dielectric constant of zirconia is not well de-
fined and will be certainly different in thin zirconia films on
silicon. Nevertheless, the large size of our unit cell means
that this uncertainty should not affect our qualitative conclu-

TABLE III. Defect reactions and associated energies. The values
in brackets show the energy difference between the formation en-
ergy of the defect pair and the formation energy of the neutral
Frenkel pair.

Reaction Energy~eV!

O01V0⇒O21V1 0.5
O21V1⇒O221V21 1.4
O221O0⇒2O2 20.9
V4

211V4
0⇒2V4

1 0.2
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sions. Another factor is the Coulomb interaction between
charged defects in each defect pair in Table III. In our cal-
culations this interaction is neglected. At short~less than
;10 Å! distances between charged defects it can affect our
predictions. Yet another factor is polarization of silicon by
charged defects~image interaction!, which can affect both
the defect formation energies and charge transfer reactions.
These effects should be studied in more detail for particular
cases.

The predicted possibility of electron transfer from silicon
into oxygen vacancies and interstitials may have different
consequences for the growth and properties of zirconia films
on silicon. In particular, the electron transfer from silicon
onto interstitial oxygen atoms will create charged oxygen
ions, which will become attracted to the interface by the
image interaction with silicon. This may affect diffusion of
these species and thus the kinetics of oxide growth. This
problem certainly requires a more detailed study, including
the mechanism of diffusion of oxygen species in zirconia.

Another issue concerns the role of defect species in oxide
charging and leakage current. The predicted electron affini-
ties of charged vacancies suggest that they can be neutralized
and will not facilitate oxide charging. However, if the neutral
vacancy can trap an extra electron in a shallow state, it can
serve as a transient state for an electron transfer through

oxide and thus will contribute to leakage current. Therefore
this problem also requires further study.

Our results also allow us to make some conclusions con-
cerning radiation stability of oxide. The anion Frenkel ener-
gies predicted in our calculations are all larger than the band
gap. Therefore Frenkel pairs cannot be formed as a result of
recombination of electron-hole pairs created by electron or
photon irradiation. This suggests that the excitonic mecha-
nism of radiation damage which is extremely effective in
alkali halides and in some oxides36 is most certainly ineffec-
tive in zirconia. This result agrees with the well-known ra-
diation stability of zirconia.
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