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We study here, within the density-functional theory, the magnetic anisotropy energy~MAE! in Ni2MnGa
which is a prototype of a magnetic shape-memory alloy. We calculate the MAE, which is a key property for the
magnetic shape-memory effect, for tetragonal structure with different ratios of thec and a lattice constants,
reproducing the experimental easy axes both in compression and elongation of the structure. Good agreement
between the theory and the experiments in the actual values of the MAE is also found when the nonstoichi-
ometry of the experimental samples is modeled with a simple rigid band approximation. In addition, we
estimate the magnetostriction coefficient, confirming the difference between the ordinary magnetostriction and
the magnetic shape-memory effect. Equally important, we study the microscopic origin of the MAE in
Ni2MnGa with the spin density and the orbital moment anisotropy and extend the analysis of the orbital
moment anisotropy to the ternary compounds. These results show that the largest contribution to the MAE
comes from Ni, in spite of the larger magnetic moment in the Mn sites.

DOI: 10.1103/PhysRevB.65.134422 PACS number~s!: 75.30.Gw

I. INTRODUCTION

Novel materials which can function as sensors as well as
actuators are attaining increasing interest from a technologi-
cal point of view. In this context, magnetic shape-memory
~MSM! alloys1 are promising. The magnetic control offers
fast response compared to the temperature-driven conven-
tional shape-memory alloys,2 and in addition, strains are
larger than in the ordinary magnetostrictive materials.3 In
fact, unusually large strains up to 6% under a magnetic field
have been observed in recently developed Ni-Mn-Ga alloys
close to the stoichiometric composition Ni2MnGa.4 The
MSM effect, which differs from the ordinary magnetostric-
tion also by its mechanism, is driven by the magnetic anisot-
ropy energy~MAE!. The purpose of this paper is to study the
MAE and its origins in the prototype MSM alloy Ni2MnGa
with first-principles calculations.

The MSM effect is based on the magnetic-field-induced
redistribution of twin variants in the martensitic phase.5

When Ni2MnGa alloy is cooled down, it undergoes a struc-
tural transformation from a cubic~austenitic phase! to a te-
tragonal structure~martensitic phase!. In the cubic structure
there are three crystallographically equivalent directions for
the tetragonal deformation. Therefore, the martensitic phase
consists of regions which have different deformation direc-
tions. These regions are called twin variants and they are
separated by well-defined boundaries. Naturally, the local
crystallographic structure determines the easy axis of mag-
netization, so that different variants have a different global
direction for the easy axes i.e., the local magnetic moments
in the different variants have different directions in the ab-
sence of an external magnetic field. Now, when an external
magnetic field is applied to the sample, the local magnetiza-

tions try to align with the external field. For fields below
saturation and with a large enough MAE, it will be energeti-
cally favorable to redistribute the twin variants: instead of
rotating the magnetizations with respect to their local crystal
structure, the twin boundaries move and the easy axes align
with the field. On the whole, this movement leads to the
large shape changes observed in the MSM alloys. Although
the MSM mechanism differs from ordinary magnetostriction,
the magnetostriction coefficient remains still a basic property
in the MSM materials. The crucial magnetic parameter is,
however, the MAE.

Apart from a large MAE, the MSM effect requires of
course the occurrence of both ferromagnetism and a marten-
sitic phase transformation. The martensitic transformation in
Ni2MnGa involves tetragonal distortions from the cubicL21
structure shown in Fig. 1. Both phases are ferromagnetic

FIG. 1. TheL21 structure.
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with the magnetic moment mainly on the Mn sites. These
have been studied experimentally with x-ray and neutron
diffraction6,7 and with theoretical calculations.8 While mag-
netization curve measurements9–12 showed that the martensi-
tic phase of Ni2MnGa has uniaxial magnetic anisotropy, the
microscopic origins of the MAE in this alloy have not been
studied. Our purpose is to investigate the role of the constitu-
ent atoms for the MAE and to sketch the composition depen-
dence of the MAE around the Ni2MnGa stoichiometry.

The two main sources of the MAE are the spin-orbit cou-
pling and the magnetic dipole-dipole interactions. The
dipole-dipole induced anisotropy depends on the shape of the
sample and in many cases it is small compared to the spin-
orbit coupling.13 The spin-orbit interactionHso5jL•S,
which has a relativistic origin, couples the spins to the un-
derlying crystal lattice, giving rise to an anisotropy.

As a ground-state property, the MAE can be calculated
via the density-functional theory. However, the smallness of
the MAE makes the calculation difficult. In transition metals,
the spin-orbit coupling strengthj is typically about 50 meV
and the MAE, as a fourth-order effect in the cubic symmetry,
is therefore of order ofmeV. Calculations within the density
functional theory have produced relatively good values for
Co and Fe,14 but for Ni even the correct easy axis is not
reproduced. In surfaces and in systems with a lower symme-
try the MAE is a second-order effect, making the calcula-
tions more tractable.15–17 Up to now, calculations have been
performed mostly for monoatomic or binary compounds. We
present here calculations for a ternary compound.

A deeper understanding of the physics behind the mag-
netic anisotropy is brought about by the connection between
the MAE and the anisotropy in the orbital magnetic moment.
In the absence of the spin-orbit coupling the orbital moment
is largely quenched by the crystal field. The spin-orbit cou-
pling induces some orbital moment, which in tetragonal
structures can be further enhanced due to a lowered symme-
try. Due to spin-orbit coupling, there is orbital moment an-
isotropy ~OMA! which was shown to be proportional to the
MAE in the cases with a single atom in the unit cell, assum-
ing that the majority band is completely filled and spin-flip
terms are neglected.18 As the spin-flip terms and contribu-
tions from the other spin subband can be important, this re-
lation was generalized, showing that in addition to the orbital
moments, the MAE contains contributions also from a mag-
netic dipole term.19 However, little research has been done
on the interpretation of this relation for compounds with sev-
eral atoms. The connection between the MAE and the OMA
has been formulated for these cases in Ref. 20 and we
present here the analysis for a ternary compound.

The calculations in this work are done using the full-
potential linearized augmented plane-wave~FLAPW!
method21 and the main aspects of the scheme are described
in Sec. II. Since the MSM effect takes place in the tetragonal
structure, we calculate the MAE for different tetragonal ge-
ometries in Sec. III A. We also discuss the composition de-
pendence of the MAE in terms of a simple rigid band model
and determine the magnetostriction coefficient from the cal-
culated MAE. Furthermore, we investigate the microscopic
origins of the MAE in Sec. III B with the spin density and

the OMA, where we extend the analysis of the relationship
between the MAE and the OMA to the tetragonal distortions
of this ternary alloy. Finally, we draw the conclusions in Sec.
IV.

II. COMPUTATIONAL DETAILS

A. Method

The calculations are done within the density-functional
theory using the FLAPW method as implemented in Ref. 22.
The generalized gradient approximation23~GGA! is used for
the exchange and correlation potentials. The spin-orbit cou-
pling is treated within the second-order variational method.24

The plane-wave cut-off for the scalar relativistic basis func-
tions isRMTKmax59, leading to;350 plane waves with the
smallest muffin-tin radiusRMT52.2 a.u. In the second varia-
tional step states up to 3.5 Ry are included in the basis. Since
the spin-orbit coupling is a local effect, it is included only
within the muffin-tin spheres. The sphere radii used are 2.4,
2.3, and 2.2 a.u. for Ga, Mn, and Ni, respectively. Only the
spherical part of the potential is used when calculating the
spin-orbit matrix elements. The effects of increasing the
sphere radii or the energy cutoff for the second variational
step were checked, neither of them changing the results.

The MAE can be calculated as a difference in the total
energy between the different magnetization directions. This
requires subtraction of two large numbers in order to obtain
one small number, and the total energy calculations must
therefore be converged extremely well. However, the fact
that the spin-orbit coupling is a small effect can be used to
simplify the calculation of the MAE. According to the force
theorem25,26 the energy differenceDE associated with the
MAE can be calculated as a difference in the band energies,

DE5(
i

e[110]2(
i

e[001] . ~1!

The eigenvaluesei are determined in the second variational
step, the subscripts@110# and @001# refer to the magnetiza-
tion direction, and the summation is over bands andk points.
The calculations are simplified considerably since only one
self-consistent scalar relativistic calculation is needed. The
convergence of the self-consistent calculation is also not so
crucial as when determining the MAE from total energies.
The validity of the force theorem is checked in the next
subsection.

The presence of spin-orbit coupling together with spin
polarization leads to a lowering of symmetry. Only the sym-
metry operations of the scalar relativistic system which leave
the spin quantization axis invariant remain when the spin-
orbit coupling is included. In the tetragonal structure with the
@001# magnetization the symmetry is not lowered, but when
the magnetization is rotated to the@110# direction only 8
symmetry operations from 16 remain. First, the scalar rela-
tivistic potential is calculated with the full~not lowered by
spin-orbit coupling! symmetry. Second, the scalar relativistic
wave functions and the spin-orbit Hamiltonian are calculated
in a k mesh in the first Brillouin zone, which is obtained
using only the 8 symmetry operations which are common for
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both spin quantization axes. In this way only one set of sca-
lar relativistic wave functions is needed.

B. Brillouin zone integrations

Within the force theorem, the MAE is determined solely
from band energies. Therefore, the Brillouin zone integration
is the dominant source of errors. As the MAE is a small
quantity and sensitive to the exact structure of the Fermi
surface, a very dense mesh ofk points is needed. Different
integration schemes have been used in the literature in order
to reduce the number ofk points. A possibility is to use some
broadening technique, such as Gaussian27 or Fermi28 broad-
ening, to smooth out the discontinuities at the Fermi level.
The problem is that the size of the appropriate broadening is
not known in advance: small broadening does not improve
the convergence, while too large broadening will affect the
results because these methods do averages over the Fermi
surface. Another technique for the Brillouin zone integra-
tions is provided by interpolation methods such as the linear
tetrahedron method29 and its modified version.30 The tetrahe-
dron method is free of adjustable parameters and it should
converge to the correct result in the limit of infinitely densek
mesh. However, the problem in the tetrahedron method is
that band crossings are not taken into account; i.e., the order-
ing of bands can be incorrect and errors arise when the band
crossings occur near the Fermi level. In this section we test
the convergence of some integration methods in the calcula-
tion of the MAE.

We use the tetragonal structure corresponding to the ex-
perimental one (c/a50.94). The self-consistent scalar rela-
tivistic calculation is done using the modified tetrahedron
method with 8000k points in the full Brillouin zone. The
eigenvalue sums of Eq.~1! are then calculated with different
k meshes and integration methods. All the subsequent MAE
values are given with respect to a formula unit. As shown in
Fig. 2, the Fermi broadening improves the convergence of
the corresponding MAE’s when increasing the width of the
broadening. However, the results also change and the MAE
which is obtained with large broadening is not necessarily
correct. Although the results with a small broadening agree
with those of the tetrahedron method, the convergence is
slower. Since the convergence behavior is not improved from
that of the tetrahedron method, there is no benefit using the
Fermi broadening method. We have therefore used the tetra-
hedron method with 33000k points, which gives a good
convergence, in all the following calculations.

Some total energy calculations are also performed to
check the validity of the force theorem. As also shown in
Fig. 2, the difference between the values obtained with the
force theorem and with the total energies is small so that the
use of the force theorem is justified.

III. RESULTS AND DISCUSSION

A. MAE and magnetostriction

The MAE is calculated for different tetragonal structures
while keeping the volume fixed to the theoretical volume of
the cubic structure.8 The calculated MAE as a function of the

tetragonal distortion is shown in Fig. 3. The values of the
MAE in tetragonal structures are about two orders of mag-
nitude larger than in the cubic structure, as is expected due to
a lower symmetry. Within the scope of this work the MAE in
the cubic structure is considered to be zero. In the tetragonal
structures~see Fig. 3! the @001# axis changes from easy to
hard whenc/a goes through 1. These calculations reproduce
the experimental easy axis both forc/a,1 ~Refs. 9–11! and
for c/a.1 ~Ref. 31!, but the theoretical value is about 2.5-
3.5 times higher compared with the experimental values
50-74meV for c/a50.94.

There are at least two important differences in the experi-
ments and in the theory which can explain the discrepancy in
the value of MAE. First, the measurements are done at room
temperature, while our calculations refer to zero temperature.
The overall temperature dependence of MAE is complex as
it includes effects from electronic states, magnons, and

FIG. 2. The MAE as a function of the inverse of the number of
k points. Some corresponding numbers ofk points,nk , in the full
Brillouin zone are also shown in the figure. (s) tetrahedron
method; Fermi broadening of (h) 27meV, (L)68 meV, and
(n)136 meV; (.) self-consistent. Lines are only guides for the
eyes.

FIG. 3. The MAE as a function of the tetragonal distortion. The
solid line is a fit to the linear part of the curve,c/a.0.96.
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phonons. The electronic contribution can be obtained from
the calculations with the Fermi broadening, Sec. II B, which
suggest that in Ni2MnGa the MAE increases with decreasing
temperature, althought one should remember that the tem-
peratures in Fig. 2 are very high. This trend is in agreement
with the case of tetragonal Ni,15 while for Ni2MnGa experi-
mental results have not been reported.

Another difference between the theory and the experiment
is that the experiments are done with nonstoichiometric com-
positions. From the several effects of nonstoichiometry we
consider here the change in the average number of valence
electrons within a simple rigid band approximation. The ei-
genvalues from a calculation with a stoichiometric composi-
tion are used, but the summation in Eq.~1! is done with a
varying band filling. The number of valence electrons is var-
ied, and the Fermi level is determined in accordance with the
new number of electrons. The results for the experimental
structure are shown in Fig. 4 along with some experimental
values for the MAE.

Already this simple approximation for the nonstoichiom-
etry brings the theoretical MAE in good agreement with the
experiment and reproduces correctly the experimental trend
about the composition dependence of the MAE. The remain-
ing discrepancies between calculated and experimental val-
ues of MAE could originate either from deficiencies of the
used approximations such as the GGA or from experimental
conditions such as the finite temperature, mentioned earlier,
and other alloying effects.

Next, the MAE is used to calculate the magnetostriction
coefficient of the cubicL21 structure. According to the linear
magnetoelastic theory the MAE depends linearly on the te-
tragonal strain. The total energy can be written as a sum of
magnetoelastic and elastic energy32:

Etot52aBe1Ce2, ~2!

wheree is the tetragonal distortion,e52/3(c/a21), a51
for magnetization parallel to tetragonal@001# axis, anda5
21/2 for magnetization perpendicular to that axis,B is the
magnetoelastic coupling constant andC is related to elastic

constantC8, C53V0C8/2, whereV0 is the volume of the
unit cell. The magnetostriction coefficientl001 is defined as
the strain that minimizes the total energy of Eq.~2!:

l00152
B

2C
. ~3!

The linear variation of the MAE with the small distor-
tions, Fig. 3, allows us to calculate the magnetostriction co-
efficient of the cubicL21 structure together with Eq.~3!. The
B constant is determined from the linear part of the MAE vs
c/a plot and the elastic constantC8 for the C coefficient is
obtained either from calculations or experiments. The theo-
retical value forC8 is 4.7 GPa~Ref. 33! while the experi-
mental values vary from 4.5 GPa~Ref. 34! to 22 GPa~Ref.
35! According to the value used forC8, the magnetostriction
coefficient varies then from;250031026 to ;2100
31026. The calculated magnetostriction coefficient has the
same order of magnitude as the experimental one which is
between;225031026 and;213031026 ~Refs. 1 and 9!
depending on the temperature and the composition. A direct
comparison of theoretical and experimental magnetostriction
is complicated because of the several sources for the differ-
ences: temperature, composition, the elastic constants, or the
coefficientB. The calculations reproduce, however, the cor-
rect order of magnitude.

Because the number of the data points is not enough to
describe the linear behavior of the MAE aroundc/a50.94,
Eq. ~3! cannot be applied directly for the martensitic phase.
However, some estimation of the magnetostriction coeffi-
cient in the martensitic phase can be done. The elastic con-
stant C8 of the tetragonal structure is 13.5 GPa,33 and the
slope of the MAE vsc/a curve nearc/a50.94 is around 3
times larger than near the cubic structure; see Fig. 3. There-
fore the magnetostriction for thec/a50.94 variant should be
of the same order of magnitude as for theL21 structure.
These findings confirm that the ordinary magnetostriction is
a minor effect in the MSM shape change of 6%.

B. Microscopic origin of the MAE

Some qualitative information about the contribution of
different atoms to the MAE can be obtained from the spin
density. Because the total energy is a functional of the spin
density, it is natural to assume that the spatial variation in the
difference of spin density with different spin quantization
axes gives information about the spatial contributions to the
MAE. The spin density~the component parallel to the quan-
tization axis! is calculated from the spin-orbit-perturbed
wave functions and the resulting difference in the spin den-
sity between the@110# and@001# magnetization directions is
shown in Fig. 5. It is interesting to note that for Ni the
difference is positive and is mainly due todz2 orbitals, while
for Mn the difference is negative and has mainlydxy charac-
ter. The directionality of the characters shows that the mag-
netic coupling is mainly between the atoms of the same spe-
cies. The most important fact in Fig. 5 is that the spin density

FIG. 4. The MAE as a function of the number of valence elec-
trons per formula unit,nv , for c/a50.94. Experimental values:
(h) Ref. 9, (L) Ref. 11,(¹) Ref. 12, and (n) Ref. 10.
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difference for Ni is around an order of magnitude larger than
for Mn. This suggests that the largest contribution to the
MAE comes from Ni.

More information about the importance of the constituent
atoms for the MAE can be obtained from the orbital mo-
ments. Both the OMA and the MAE originate from the spin-
orbit coupling so that a large OMA is indicative of a large
MAE in many cases. The orbital moments, which are
;0.025mB within the Ni spheres and;0.016mB within the
Mn spheres, are calculated using the spin-orbit-perturbed
wave functions. The resulting total and atomic-sphere-
decomposed OMA’s are shown in Fig. 6 as a function of the
distortion. It is seen that the OMA within the Ni sphere is
about 2 times larger than in the Mn sphere. The shape of the
curve is similar to the MAE as seen in Fig. 3, suggesting that
the two quantities are related also in Ni2MnGa. In other
words, the atomic-sphere-decomposed OMA reinforces the
argument that Ni has a larger contribution to the MAE than
Mn, in accordance with the spin density.

The above considerations about the relationship between
the MAE and the OMA can be put in a more quantitative
form using arguments from second-order perturbation theory.
In the cases with a single atom per unit cell the MAEDE
and the OMADm can be written as19

DE52j2@a↑↑1a↓↓2a↑↓2a↓↑# ~4!

and

Dm524j@a↑↑2a↓↓#. ~5!

The as1s2 indicate the terms coming from the couplings be-
tween different spins. When spin flips are neglected and the
majority band is assumed to be completely filled (a↓↓5a↑↓

5a↓↑50) these equations reduce to the linear relationship
between the MAE and the OMA as shown earlier in Ref. 18.
The above expressions can be further generalized to the case
with several atoms in the unit cell20:

DE52(
q

jq
2@aq

↑↑1aq
↓↓2aq

↑↓2aq
↓↑# ~6!

and

Dm524(
q

jq@aq
↑↑2aq

↓↓#. ~7!

The relationship between the MAE and the OMA as given by
Eqs.~6! and~7! is not necessarily linear even when spin flips
and other spin sub bands are neglected because the spin-orbit
coupling parametersjq are different for different atoms.

Under the assumption that only the Ni and Mn contribute
to the MAE and that spin flips and other spin subbands can
be neglected, Eq.~6! can be written as

DE5
jNi

4
DmNi1

jMn

4
DmMn . ~8!

Some estimates for thejq can be obtained from an atomic
program which givesjNi>121 meV andjMn>60 meV. If
these values are used in Eq.~8!, the resulting MAE’s are
larger than in Fig. 3. However, it is expected that in the
crystalline alloy thejq are reduced from their atomic values.
A relatively good fit between the MAE calculated from Eq.
~8! and the MAE calculated within the force theorem is ob-
tained by usingjNi560 meV andjMn530 meV as seen in
Fig. 7. Together with the atomic-sphere-decomposed OMA
~see Fig. 6! this suggests that Ni contributes to the MAE 4
times more than Mn. Although these fitted values forjq may
be an underestimation due to the neglect of the other spin

FIG. 5. Difference in spin density in (110̄) plane. Solid lines
denote positive values with 1023 e/Å3 spacing between contours,
dashed lines negative values with 1024 e/Å3 spacing.

FIG. 6. The OMA as a function of the tetragonal distortion. (s)
total, (h) Ni, and (L) Mn.

FIG. 7. MAE calculated with (s) force theorem, with (h) Eq.
~8!.
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sub-band in Eq.~6!, the importance of the Ni for the MAE is
well established. This observation is quite surprising because
the largest contribution for the magnetic moment comes from
Mn. Altogether, it is seen that different magnetic properties
originate from different atoms.

IV. CONCLUSIONS

The purpose of this research was to study the magnetic
properties of Ni2MnGa, which is an example of a magnetic
shape-memory alloy. We assume that the relevant quantity
for the MSM effect is the magnetic anisotropy energy. The
MAE is studied with density-functional calculations to ob-
tain insight into its distortion dependence and origins. Here,
the MAE is found to vary linearly with small tetragonal dis-
tortions. Clearly, our calculations reproduce the experimental
easy axis, which changes from@001# to @110# when changing
the tetragonality fromc/a,1 to c/a.1. In addition, the
magnetostriction coefficient of the cubicL21 structure is de-
termined to be in good agreement with the experiments. The
magnetostriction in the martensitic phase is estimated to
have the same order of magnitude as in theL21, corroborat-
ing the result that ordinary magnetostriction is a minor effect
in the MSM phenomenon.

Although the theoretical MAE is close to the experimental
values, we believe that a better fit can be obtained when the
composition dependence is taken into account. We have ac-
complished that with a simple rigid band model, which
shows that the MAE decreases about 50% with a small
change in the composition, consistent with the experimental
trend.

Microscopic origins of the MAE are studied first with the
difference in the spin density for the two magnetization di-
rections. This shows the orbital characters of the magnetic
coupling and that the coupling is mainly between atoms of
same species. The main finding of the current study is seen
also in the spin density: Ni is more important for the MAE
than Mn, and the role of Ga is negligible. More quantitative

information about the importance of the constituent atoms
for the MAE is obtained from the OMA. Detailed analysis of
the relationship between the MAE and the OMA allows us to
express the contribution of an atom to the MAE in terms of
its OMA. The calculated OMA’s show that the MAE results
from Ni and Mn, and that about 80% of the MAE comes
from Ni. Interesting in this result is that the situation is op-
posite for the magnetic moment, with;80% of the magnetic
moment coming from Mn.

The results presented show that the calculation of the
MAE is feasible also in ternary compounds. Furthermore, we
have shown how the OMA can be used in analyzing the
importance of the constituent atoms. Our calculated MAE
clarifies the origin of MAE expressions which could be used
as input for higher level models, such as micromagnetic
models. In view of these model calculations, more first-
principles calculations could be performed: for example, the
calculation of angular variation of the MAE or the OMA in
orthorhombic structures would be interesting. On the other
hand, as the MAE is important for the MSM effect, these
calculations suggest further ideas how the Ni-Mn-Ga alloys
should be optimized in order to maximize the MAE. We note
that Ni has the largest contribution to the MAE, but on the
other hand the MAE is sensitive to the band filling.
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