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Abstract 

 

We have carried out experiments on both boron diffusion gettering (BDG) and 

phosphorus diffusion gettering (PDG) in n-type multicrystalline silicon. We have 

focused our research on the highly contaminated edge areas of the silicon ingot often 

referred to as the red zone. Due to poor carrier lifetime attributed to these areas, they 

induce a significant material loss in solar cell manufacturing. In our experiments, the 

red zone was found to disappear after a specific BDG treatment and a lifetime 

improvement from 5 µs up to 670 µs was achieved. Outside the red zone, lifetimes 

even up to 850 µs were measured after gettering. Against the common hypothesis, we 

found higher dopant in-diffusion temperature beneficial both for the red zone and the 

good grains making BDG more efficient than PDG. To explain the results we suggest 

that high temperature leads to more complete dissolution of metal precipitates, which 

enhances the diffusion gettering to the emitter. 

Keywords: n-type mc-Si, lifetime, gettering, red zone 
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1. Introduction 

 

Since the discovery of a bunch of superior characteristics (see e.g. [1, 2, 3]), the 

possibility of using n-type silicon as a base material for solar cells has attracted plenty 

of interest. Nevertheless, nearly all the recent studies related to n-type material have 

concentrated on monocrystalline silicon as it is often speculated that n-type 

multicrystalline silicon (mc-Si) is not a viable material for solar cell manufacturing. 

However, there is only very limited data in the literature regarding n-type mc-Si, and 

therefore, it may be too early to make such conclusions. 

 

One of the major benefits of n-type silicon is the insensitivity to some common metal 

impurities, such as iron. However, there are metal impurities which have been found 

to have a very strong recombination activity in n-type silicon. [4, 5] In addition, n-

type mc-Si ingots are well-known to suffer from the red zone area that results from 

crucible contamination and raises the need for metal gettering in n-type as well. The 

most common gettering method in the current solar cell industry is phosphorus 

diffusion gettering (PDG), which works also in mc-Si, e.g. [6, 7, 8]. In addition, PDG 

is well-known to improve further when using a so-called low-temperature tail after the 

phosphorus in-diffusion. [9, 10, 11] However, PDG in n-type mc-Si is covered only in 

a small number of studies [12, 13, 14, 15, 16], very few of which deal with the 

problematic red zone area. 

 

In an n-type silicon solar cell the formation of the emitter is often realized by boron 

diffusion. This conveniently opens the door for boron diffusion gettering (BDG). 
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However, typical temperature needed in boron diffusion is higher than for phosphorus 

and the gettering capability of the boron doped area is not considered to be as high as 

in PDG [17]. Thus there is an external contamination risk during the boron emitter 

formation. On the other hand, BDG is reported to be efficient when the boron 

concentration is high enough to form boron precipitates or boron rich layer. [18, 19, 

20, 21] Indeed, in n-type mc-Si, Libal et al. [18] observed more than a 30% increase 

in lifetime after boron diffusion, although they did not report any results on the red 

zone. As in the case of PDG, a low temperature tail is observed to improve the BDG 

efficiency further in monocrystalline silicon. [20] For n-type mc-Si there is no data on 

this. However, since chromium, cobalt and nickel are fast diffusers [22], similarly to 

iron, there is no specific reason why adding a low temperature tail after the diffusion 

should not work in BDG as well. 

 

In this paper we address the above issues by carrying out BDG and PDG experiments 

in n-type mc-Si with a specific emphasis on the reduction of the red zone area. In 

addition to comparing the minority carrier lifetime directly after the in-diffusion, we 

also study the effect of a low temperature anneal. The obtained results are discussed 

from the point-of-view of total metal concentration and the chemical state of the 

metals during and after the gettering treatments. We also examine the possibility of 

adding an optimized BDG or PDG step in a high efficiency n-type solar cell process. 

Finally the superiority of n-type silicon over p-type regarding the sensitivity to 

metallic impurities is discussed. 

 

 

 



 4 

2. Experimental 

 

Wafers used in this study were 200 µm thick 12.5 × 12.5 cm2 n-type multicrystalline 

silicon wafers cut in half. The wafer resistivity was 2 Ωcm. The wafers were taken 

from an edge position brick of the ingot at 30% brick height. Thereby, the wafers 

contained the red zone, i.e. the highly contaminated area at the wafer edge. All the 

wafers were so-called sister-wafers. 

 

At first, the wafers were cleaned in an SC1 solution and dipped in a diluted HF 

solution. Before the actual process, the wafers were divided into three groups: (i) 

wafers experiencing BDG, (ii) wafers experiencing PDG and (iii) reference wafers 

experiencing no diffusion gettering treatment. For boron and phosphorus diffusion the 

boron and phosphorus sources were Filmtronics B154 spin-on dopant and Filmtronics 

P509 spin-on dopant, respectively. 

 

The actual process began by a diffusion gettering treatment. Four different treatments 

were used, each consisting of a 60-min diffusion step followed by unloading to room 

temperature or an optional lower temperature tail. Boron and phosphorus diffusion 

times and temperatures were chosen in such a way that the resulting sheet resistances 

were comparable: approximately 40 Ω/sq in the case of boron and 25 Ω/sq in the case 

of phosphorus. As a summary, Table I presents the four different diffusion gettering 

treatments used in the experiments. 
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Table I. The diffusion gettering treatments used in the experiments. 

Treatment Temperature profile (and annealing ambient) 

BDG_S 
60 min at 930˚C (95 % N2, 5 % O2) + ramp down 4˚C/min (100 % 

N2) + pullout at 800˚C 

BDG_LT 
60 min at 930˚C (95 % N2, 5 % O2) + ramp down 4˚C/min (100 % 

N2) + 3 h at 700˚C (100 % N2) 

PDG_S 
60 min at 870˚C (100 % N2) + ramp down 4˚C/min (100 % N2) + 

pullout at 800˚C 

PDG_LT 
60 min at 870˚C (100 % N2) + ramp down 4˚C/min (100 % N2) + 3 

h at 700˚C (100 % N2) 

 

After diffusion the boron and phosphorus glasses were removed in an ammonium 

fluoride etching mixture and the wafers were again cleaned in an SC1 solution. The 

resulting boron and phosphorus doped silicon layers were then removed in order to 

get rid of the recombination in the heavily doped area that would disturb the bulk 

lifetime measurements. This silicon etching was done in a CH3COOH:HF:HNO3 

solution, the thickness of the etched layer was approximately 12 µm. Next the wafers 

were cleaned again in an SC1 solution and dipped in a diluted HF solution. Finally, 

the wafers were oxidized for 40 min in oxygen atmosphere and subsequently annealed 

for 20 min at 900 °C in nitrogen atmosphere to passivate the wafer surfaces. The 

reference samples were prepared by etching 12 µm from the sample surface and 

subsequently oxidizing the samples similarly as the boron and phosphorus diffused 

samples. The minority carrier lifetimes in all samples were measured with microwave 

detected photoconductance decay (µ-PCD) by Semilab. 

 

3. Results and discussion 

 

Figure 1 (a) presents the minority carrier lifetime map of the reference sample, i.e. just 

after the crystal growth followed by surface passivation. The lifetime map is rather 

typical showing separate regions of different qualities resulting from the crystal 
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growth and crucible contamination. Metal behavior during gettering is likely to differ 

from region to region and therefore, it makes sense to study the regions separately. 

We have marked the regions with dashed lines and numbers 1-3 in Fig. 1. Figure 2 

presents the response of various wafer regions to the different diffusion gettering 

treatments. The presented lifetime values are arithmetically averaged over the selected 

regions. Similar trends appear also in harmonically averaged lifetime values. 

 

 

Figure 1. The lifetime maps of the samples after various treatments: (a) reference 

sample, (b) BDG_S, (c) PDG_S, (d) BDG_LT, and (e) PDG_LT. The sample size is 

6.25 × 12.5 cm2. Notice the different scale in the lifetime maps. 
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Figure 2. The response of various wafer regions to the different diffusion gettering 

treatments. The presented lifetime values are arithmetically averaged over the selected 

regions. 

 

The lifetime in the reference sample (no diffusion gettering, Fig. 1 (a)) is quite low 

throughout the wafer and, as mentioned, a strong red zone (lifetime ~ 5 µs) is clearly 

visible. However, the lifetime can be seen to increase slightly at the outermost edge of 

the red zone (region 1). We attribute this increase in lifetime to the reduced 

concentration of dissolved metals through precipitation [23], i.e. to internal gettering. 

The total metal concentration increases towards the edge due to crucible 

contamination and thereby metals tend to precipitate in that area during the ingot 

cooling. Similar phenomenon has been observed earlier in p-type as-grown silicon, 

where iron has been shown to cause the red zone. [24, 25, 26] The possibility of 

trapping artifacts was ruled out by surface photovoltage measurements. 

 

Notice that our initial lifetime map (Fig. 1 (a)) is not actually the as-grown lifetime 

map since we have passivated the surfaces by thermal oxidation at 900˚C. During this 

high temperature step, as-grown metal precipitates are dissolved in the areas that 

contain metals less than their solubility at 900˚C. Presumably, as-grown metal 
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precipitates remain insoluble only at the edge of the wafer (region 1), where the metal 

concentration is high enough. During cooling down from 900˚C, internal gettering to 

the remaining precipitates takes place. Thereby, in our samples, the dissolved metal 

concentration is greatly reduced near the edge and the corresponding increase in 

lifetime is further enhanced. 

 

The open question is what metal is limiting the lifetime here. Recent analysis by 

Schmidt et al. suggests that cobalt, chromium and nickel are the most deleterious 

metals in n-type material. [5] Shabani et al. have shown that all of these metals, with 

concentrations increasing towards the edge of the wafer, can be found from 

commercial multicrystalline silicon. [27] Based on the diffusivities and the solubilities 

of these metals [22], cobalt and chromium are quite probable candidates for the 

contaminants here. The issue was studied further by deep level transient spectroscopy 

(DLTS) measurements. DLTS measurements revealed two peaks with a concentration 

of around 2×1012 cm-3 in the red zone before gettering. After both BDG and PDG no 

peaks were seen indicating that the concentrations were decreased below the detection 

limit. The peaks could explain the changes in lifetime, but a precise identification of 

the defects was impossible. 

 

Lifetime maps after boron and phosphorus diffusion gettering treatments (Fig. 1 (b) - 

(e)) show that both BDG and PDG are able to significantly increase the lifetime as 

expected. In the initially good region 3 BDG is slightly more effective than PDG: with 

the LT treatments the average lifetime is increased from 25 μs up to 195 μs and 250 

μs for phosphorus and boron respectively. In good grains lifetime values even up to 

650 μs and 850 μs are achieved correspondingly. 
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In the red zone, BDG is more clearly better than PDG, see Fig. 2 (regions 1 and 2). 

After BDG_LT the average lifetime in the red zone is increased from 5 μs up to 270 

μs and locally values even up to 670 µs are achieved (corresponding values after 

PDG_LT 180 µs and 400 µs). This is the result of two things. Firstly, here boron is 

most likely supersatured leading to a gettering capability comparable to PDG. 

Secondly, boron was diffused in at higher temperature (930˚C) than phosphorus 

(870˚C) (Table I). The higher temperature leads to faster dissolution of precipitated 

metals. [28] The dissolved metals move easily and thereby can be gettered by the 

boron layer. Consequently, the total metal concentration in the bulk is greatly reduced, 

which finally results in higher lifetime. 

 

The above phenomenon also supports our low temperature tail results. In general, the 

low temperature tail enhances the diffusion gettering of dissolved metals but has only 

a minor effect on the precipitated metals. [28] Thereby, at low temperature the metals 

approach the dynamic equilibrium between dissolution and segregation to the emitter. 

The amount of getterable metals through dissolution differs from region to region but 

also depends on the in-diffusion temperature. Therefore, in PDG samples LT tail has 

almost no impact on the red zone as the precipitates remain insoluble. In the good 

region 3 there are soluble metals to be gettered, so the benefit of using LT tail is clear. 

In the case of boron, the impact of the low temperature tail extends to the red zone. At 

region 1, not all precipitates are dissolved (but still significant amount) so the 

improvement is not as pronounced as in region 2, where the initial concentration of 

precipitated metals is lower and the improvement is higher due to the more complete 
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dissolution during in-diffusion. In region 3, the total amount of metals after BDG_S is 

already so low that the impact of LT is again reduced. 

 

It seems that our lifetime results from the red zone samples can be completely 

understood by utilizing the dissolution-gettering idea proposed by Plekhanov et al. 

[28]. However, all such experiments have been done on p-type only and, in addition 

the results are controversial regarding the general effectiveness and the benefits of 

such a high temperature process. For instance, Macdonald et al. [29] observed lifetime 

degradation due to generation of dislocations at high temperatures, when they applied 

the high-low temperature PDG process. Hartman et al. [30] obtained just the opposite 

result: in their experiments an extremely high temperature-anneal increased the 

quality of multicrystalline silicon by the reduction of dislocation density. However, 

they did not report any lifetime improvement. More promising results were obtained 

by Joshi et al., who observed an improvement in diffusion length, especially in areas 

with initially short diffusion length, after aluminum gettering at 1100˚C. [31] 

Recently, also Schön et al. [32] and Michl et al. [33] observed a better lifetime in a 

process containing a temperature peak at 900˚C before a standard PDG with 

multicrystalline silicon containing a total iron concentration of 3.5×1013 cm-3 and 

2×1014 cm-3. Schön et al. attributed the increase in lifetime to a reduced density of iron 

precipitates [32] while Michl et al. showed that a reduction of interstitial iron 

concentration takes place due to the dissolution peak [33]. These results are actually 

related to each other since the reduced density of iron precipitates leads to the lower 

final interstitial iron concentration. This effect was most pronounced after a firing step 

[33], i.e., after a similar albeit much shorter high temperature step as the surface 

passivation used here. What we observed here was that typically the lifetime after 
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BDG was higher than after PDG, also in the initially good region 3. Although the 

reduction of dislocations does not occur at temperatures used in this study, it might be 

that the recombination activity of dislocations or other as-grown defects (e.g. oxide 

precipitates [34]) can be reduced at our temperature range. This phenomenon might 

also be an alternative explanation for the free surface or oxide layer gettering that has 

been proposed as an explanation for the lifetime improvement observed just after 

annealing or oxidation. [35] 

 

In an n-type silicon solar cell, the emitter is usually formed by boron diffusion and the 

back surface field by phosphorus diffusion. Thus both BDG and PDG naturally occur 

in the fabrication process and, in theory the obtained gettering efficiency from both 

could be very high. However, the most optimal BDG or PDG treatments do not result 

in the most optimal emitter saturation current or back surface field operation. Thus 

trade-offs are necessary for directly diffused emitter or BSF profiles. One interesting 

option, especially in the case of high impurity concentrations, would be simultaneous 

boron and phosphorus diffusion gettering with a low temperature anneal. The time 

needed for an effective co-gettering could be noticeably reduced compared to plain 

BDG. [36] Obviously, if the etch back method [37] is used to form the emitter, it is 

possible to use high dopant concentrations and, in principal, separately optimize the 

gettering efficiency and the doping profile. 

 

Our results show that in n-type multicrystalline silicon similar advanced gettering is 

needed as in p-type to minimize the effect of the red zone. In this respect, n-type 

seems not to have a significant benefit over p-type. On the other hand, in wafers with 

initially high lifetime (e.g. no red zone), the final solar cell performance is limited by 
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the contamination resulting from the actual cell process. In that case the main question 

is what the most common metal contaminants are in the solar cell process. If the main 

contaminant during processing is iron, then n-type has a clear benefit compared to p-

type, but, e.g. in the case of chromium, the situation is different. 

 

4. Conclusions 

 

Our results clearly show that in n-type multicrystalline silicon both boron and 

phosphorus diffused layers can be used as effective sinks for impurities during 

gettering leading to a drastic increase in lifetime and a substantial reduction of the red 

zone area. We found BDG to be clearly more efficient due to the higher in-diffusion 

temperature. With the BDG_LT treatment the average lifetime in the red zone was 

increased from 5 μs up to 270 μs and locally values even up to 670 µs were achieved. 

Thus the formerly unusable ingot edge area was significantly reduced. Our results also 

indicate that n-type mc-Si could be a promising material for solar cell manufacturing 

even though the benefit of high tolerance to metal impurities (over p-type) is case 

sensitive. 
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