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Morphological analysis decomposes 
complex words into smaller constituents. It 
is an important problem in natural language 
processing, particularly for morphologically 
rich languages whose large vocabularies 
make statistical modeling difficult. 
Morphological analysis has traditionally 
been approached with rule-based methods 
that are accurate, but expensive to produce. 
Unsupervised machine learning methods 
provide an inexpensive alternative, but their 
analyses are typically limited to 
concatenative morphology and less accurate 
than those of rule-based methods. 
In this dissertation we study improvements 
to inexpensive methods for morphological 
analysis. We study extending the analysis of 
an unsupervised machine learning method 
to also include non-concatenative 
morphological phenomena. In addition, we 
examine if providing machine learning 
methods a small number of correctly 
analyzed examples improves accuracy 
enough to be cost-effective compared to 
developing better unsupervised models. 
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Abstract 
Morphological analysis provides a decomposition of words into smaller constituents. It is an 

important problem in natural language processing (NLP), particularly for morphologically rich 
languages whose large vocabularies make statistical modeling difficult. Morphological analysis 
has traditionally been approached with rule-based methods that yield accurate results, but are 
expensive to produce. More recently, unsupervised machine learning methods have been 
shown to perform sufficiently well to benefit applications such as speech recognition and  
machine translation. Unsupervised methods, however, do not typically model allomorphy, that 
is, non-concatenative structure, for example pretty/prettier. Moreover, the accuracy of 
unsupervised methods remains far behind rule-based methods with the best unsupervised 
methods yielding between 50-66% F-score in Morpho Challenge 2010. 

We examine these problems with two approaches that have not previously attracted much 
attention in the field. First, we propose a novel extension to the popular unsupervised 
morphological segmentation method Morfessor Baseline to model allomorphy via the use of 
string transformations. Second, we examine the effect of weak supervision on accuracy by 
training on a small annotated data set in addition to a large unannotated data set. We propose 
two novel semi-supervised morphological segmentation methods, namely a semi-supervised 
extension of Morfessor Baseline and morphological segmentation with conditional random 
fields (CRF). The methods are evaluated on several languages with different morphological 
characteristics, including English, Estonian, Finnish, German and Turkish. The proposed 
methods are compared empirically to recently proposed weakly supervised methods. 

For the non-concatenative extension, we find that, while the string transformations identified  
by the model have high precision, their recall is low. In the overall evaluation the non-
concatenative extension improves accuracy on English, but not on other languages. For the 
weak supervision we find that the semi-supervised extension of Morfessor Baseline improves 
the accuracy of segmentation markedly over the unsupervised baseline. We find, however, that 
the discriminatively trained CRFs perform even better. In the empirical comparison, the CRF 
approach outperforms all other approaches on all included languages. Error analysis reveals 
that the CRF excels especially on affix accuracy. 
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supervised learning 
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Sammandrag
Morfologisk analys delar upp ord i mindre, meningsfulla beståndsdelar. Det är ett viktigt pro-
blem inom språkteknologi, särskilt då man behandlar morfologiskt rika språk vars stora voka-
bulärer försvårar statistisk analys. Det traditionella sättet att framställa morfologiska analysa-
torer tillämpar regelbaserade metoder. Sådana analysatorer ger noggranna resultat, men är
kostsamma att producera. På senare tid har det påvisats att oövervakade maskininlärningsme-
toder kan ge tillräckligt noggranna resultat för att vara till nytta i språkteknologiska tillämp-
ningar, t.ex. taligenkänning och maskinöversättning. Oövervakade metoder brukar emellertid
inte beakta allomorfi, d.v.s. icke-konkatenativ morfologisk struktur som t.ex. pretty/prettier.
Vidare, är oövervakade metoders resultat betydligt mindre noggranna än regelbaserade meto-
ders. De bästa oövervakade metoderna uppnådde 50-66% F-mått i Morpho Challenge 2010.
  Vi undersökte dessa problem från två synvinklar som tidigare inte fått mycket uppmärksam-
het. För det första föreslog vi en ny extension till den populära oövervakade morfologiska seg-
menteringsmetoden Morfessor Baseline, för att modellera allomorfi m.h.a. strängtransformat-
ioner. För det andra undersökte vi hur svag övervakning påverkar noggrannheten genom att
träna maskininlärningsmetoder med en liten annoterad datamängd förutom den stora, icke-
annoterade datamängden. Vi föreslog två nya semiövervakade morfologiska segmenteringsme-
toder. En semiövervakad extension till Morfessor Baseline, och morfologisk segmentering med
conditional random fields (CRF). Vi evaluerar dessa metoder på olika språk med olika morfolo-
giska egenskaper, närmare bestämt på engelska, estniska, finska, tyska och turkiska. De före-
slagna metoderna jämförs empiriskt med nyligen framställda svagt övervakade metoder.
  För den non-konkatenativa extensionen fann vi att trots att strängtransformationerna som
modellen hittade hade hög precision så var deras recall låg. I helhetsevaluationen förbättrar den
non-konkatenative extensionen noggrannheten för engelska, men inte för de andra språken. An-
gående den svaga övervakningen fann vi att den semiövervakade extensionen av Morfessor Ba-
seline förbättrade noggranheten betydligt jämfört med den oövervakande motsvarigheten. Vi
fann emellertid också att den diskriminativt tränade CRF-modellen gav ännu bättre noggrann-
het. I den empiriska jämförelsen fann vi att för alla inkluderade språk fungerade CRF bäst av de
jämförda metoderna. Felanalys visade att CRF var särskilt noggrann då det gäller affix.

Nyckelord morfologi, allomorfi, maskininlärning, oövervakad inlärning, semiövervakad inlär-
ning
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1. Introduction

Morphology is the subfield of linguistics that studies how words are formed.

In abstract terms, morphology can be defined as the study of the system-

atic covariance between the forms of words and their meanings [Haspel-

math, 2002]. For example, the variation in form for the words car/cars

and door/doors expresses a corresponding variation in meaning; namely,

between singular and plural number. Morphological analysis utilizes such

systematicity by taking as input the form of a word and producing as out-

put a reading consisting of smaller constituent units that are related to

the meaning of the word.

Meanwhile, the field of natural language processing is concerned with

building computational systems that process natural language automati-

cally. Examples of such systems include information retrieval, to find doc-

uments based on search queries, speech recognition, to transcribe spoken

language into written language, and machine translation, to translate a

sentence from one language into another. In recent years, such systems

have been constructed increasingly with statistical methods [Manning

and Schütze, 1999, Manning et al., 2008]. In an abstract sense, statis-

tical methods reformulate these problems into one of estimating a prob-

abilistic mapping between two representations: for information retrieval

between queries and documents; for speech recognition between spoken

and written sentences, and; for machine translation between sentences in

different languages.

Typically, such statistical models utilize words as their basic units. For

many languages, including English, word-based models perform well. In

contrast, for languages with a rich morphology, word-based model suf-

fer from problems with data sparsity. This is because a rich morphology

produces so many different word-forms from a single root. For example, a

single Finnish verb can produce over 20,000 inflected forms [Arppe, 2005].

11



Introduction

Consequently, in morphologically rich languages, many of the words that

are encountered when applying the model were seen rarely, if at all, in the

data set used to estimate the model [Kneissler and Klakow, 2001, Kurimo

et al., 2006b].

As an alternative to word-based models, it is possible to utilize mor-

phological units. A morphological concept well suited for this purpose is

that of morphemes, defined as the smallest meaning bearing units in

language [Hockett, 1954, Matthews, 1991]. In this view, words are con-

structed out of one or more morphemes. For example, the word unlimited

can be segmented as un ◦ limit ◦ ed.

To utilize morphological units, automatic morphological analysis is re-

quired. Rule-based systems for morphological analysis have existed for a

long time, and provide accurate results [Koskenniemi, 1983, Kaplan and

Kay, 1994, Karttunen and Beesley, 2005]. Developing the required rule-

sets, however, is labor intensive, and consequently many languages lack

freely available, rule-based morphological analyzers.

An alternative approach that has become popular recently is to apply

unsupervised machine learning to learn morphology from a large list of

unannotated words in the target language (see e.g. Hammarström and

Borin [2011], Roark and Sproat [2007], Creutz and Lagus [2007], Gold-

smith [2001]). The benefit of unsupervised methods is that they are very

easy and inexpensive to apply to any language. The drawback is that their

accuracy is far behind that of rule-based methods. Despite lower accuracy,

the output of unsupervised methods has been found empirically useful

in a wide range of applications, including speech recognition [Hirsimäki

et al., 2006, Narasimhan et al., 2014], information retrieval [Turunen and

Kurimo, 2011], machine translation [de Gispert et al., 2009, Green and

DeNero, 2012], and word representation learning [Luong et al., 2013, Qiu

et al., 2014, Botha and Blunsom, 2014].

1.1 Machine Learning of Morphology – Allomorphy and Weak
Supervision

This work takes as a starting point the previous work on unsupervised

learning of morphology. Our goal is to improve the quality of morpholog-

ical analysis while preserving the inexpensive nature and ease in appli-

cation of the original unsupervised methods. To serve this goal we will

address two areas which have not received much attention in the past.

12
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First, we consider non-concatenative structure, that is, allomorphy

Most unsupervised methods are limited to producing a morphological seg-

mentation, that is, they segment words into morphological units. Mean-

while, language contains non-concatenative morphological structure that

cannot be modeled well by a segmentation alone. For example, for white–

whiter, there is no single segmentation that allows expressing that both

the segments white and er are present. Moreover, for prettier it is also

impossible to express the presence of a relation to pretty with a segmen-

tation, because of the letter-change. In morphology, such structures are

addressed by distinguishing between morphemes as abstract units and

their surface forms morphs. For example, pretty and pretti are said to be

allomorphs of the same abstract morpheme.

We approach this problem by proposing a novel extension to the Morfes-

sor Baseline-method [Creutz and Lagus, 2002, 2007], from segmentation

only, to also associating segments through string transformations. This

approach models latent morphemes that are then expressed as different

allomorphs.

Second, we address the accuracy of the previously proposed methods.

There are several potential approaches to improve performance. One ap-

proach is simply further model development. We will consider an alter-

native approach, namely annotating a small data set. Both further model

development and annotation are time-consuming. However, it is currently

not well known which approach is more cost-effective. We will address

this question by studying semi-supervised learning with a small amount

of annotated data. We refer to this setting as weakly supervised learn-

ing. We require the training sets to be small in order to keep the methods

easily applicable to new languages.

1.2 Contributions of this thesis

This thesis has the following contributions.

First, we develop a novel method for unsupervised learning of mor-

phological analysis in the presence of stem-allomorphy. The method ex-

tends the generative probabilistic model of Morfessor Baseline [Creutz

and Lagus, 2002, Creutz et al., 2007], and enables the learning of non-

concatenative variation in stems by adding string transformations to the

generative model. This model is detailed in Publication I and Publica-

tion II. The method was applied and evaluated empirically in the Morpho

13
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Challenge competitions 2008 and 2009 on five different languages [Ku-

rimo et al., 2009a,b].

Second, we develop novel methods for weakly supervised learning of

morphological segmentation, in particular for a semi-supervised learning

setting with a small number of annotated words and a vast amount of

unannotated words. In Publication III we develop a hyperparameter for-

mulation for the unsupervised Morfessor Baseline method [Creutz and

Lagus, 2002, Creutz et al., 2007] that allows employing labeled data to

control how much the method segments on average. This formulation

is expressed through a weight in the objective function. In Publication

IV we develop a novel extension of the generative probabilistic model of

Morfessor Baseline [Creutz and Lagus, 2002, Creutz et al., 2007] to semi-

supervised learning by further extending the weighted objective function.

The novel method outperforms its unsupervised baseline by a wide mar-

gin. In Publication V and Publication VI we present a novel application

of structured classification methodology to the problem. In particular, we

apply conditional random fields (CRF) [Lafferty et al., 2001], first in a su-

pervised fashion in Publication V, and then in Publication VI we extend

to semi-supervised learning. The semi-supervised extension is based on

augmenting the feature set of the supervised classifier with the output of

unsupervised morphological segmentation methods. We find that surpris-

ingly small annotated sets are sufficient for the semi-supervised struc-

tured classifier to yield superior performance over the generative models

proposed in Publication IV.

Finally, Publication VII provides a systematization of the current state

of art approaches to weakly supervised morphological segmentation. Pub-

lication VII includes a detailed empirical comparison on four languages

between the methods of Publication IV, Publication V, Publication VI, as

well as other recently proposed methods, including two methods from the

Adaptor Grammar framework [Sirts and Goldwater, 2013] and Morfessor

FlatCat [Grönroos et al., 2014]. We find that, for all languages and data

sizes at the minimum of 100 annotated words, the best performance is

achieved with the structured classification approach proposed in Publica-

tion VI.

1.3 Thesis Outline

The remaining part of this dissertation is structured as follows:

14
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Chapter 2, Morphological Analysis In this background chapter, we dis-

cuss the linguistic theory of morphology and review computational tasks

related to morphological analysis.

Chapter 3, Machine Learning Preliminaries We then discuss machine learn-

ing methodology to the extent that will be required in later chapters.

Chapter 4, Related Segmentation Methods This chapter describes the seg-

mentation methods that are either extended or applied in this work. We

review the unsupervised morphological segmentation method Morfessor,

in particular, the variant that Creutz et al. [2007] refer to as Morfes-

sor Baseline. This Morfessor variant is extended in the later chapters

to the learning of allomorphy and to semi-supervised learning. We also

review segmentation with the sequence labeling method conditional ran-

dom fields [Lafferty et al., 2001].

Chapter 5, Unsupervised Learning of Allomorphy In this chapter we re-

view the problem of learning allomorphy and our proposed extension of

Morfessor Baseline [Creutz and Lagus, 2002, Creutz et al., 2007] to al-

low allomorphic variation through string transformations, as introduced

in publications Publication I and Publication II. We also review empirical

results and discuss implications of the work.

Chapter 6, Semi-Supervised Learning of Morphological Segmentation This

chapter discusses the weakly supervised learning of morphological seg-

mentation in a semi-supervised setting with a small annotated data set

and a large set of unannotated words. We begin, following Publication

III and Publication IV, to extend Morfessor Baseline [Creutz and Lagus,

2002, Creutz et al., 2007] to semi-supervised learning. We then apply

conditional random fields (CRFs) to morphological segmentation, follow-

ing Publication V and Publication VI. Finally, following Publication VII,

we review an empirical comparison of the methods introduced in this the-

sis, as well as comparison to other recently proposed methods [Sirts and

Goldwater, 2013, Grönroos et al., 2014].

Chapter 7, Conclusions In this chapter we draw conclusions from the

results and review their implications.
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2. Morphological Analysis

In this chapter we discuss morphology as a linguistic phenomenon and the

corresponding computational problems related to morphological analysis.

We start by discussing morphology, including its concepts and terminol-

ogy, in Section 2.1. We then turn to describe automatic morphological

analysis tasks in natural language processing as well as the evaluation of

such systems in Section 2.2.

2.1 Morphology

Morphology is concerned with the grammatical structure of words. It is

situated between syntax that focuses on the structure of sentences, and

phonology which is related to the sound-structure of language. While

these are traditionally separate areas of linguistic study, they do often

interact in practice. We will try to cover the interactions to the extent

it is necessary for the discussion, nevertheless, focusing on the morpho-

logical aspects. Morphology can be studied both for spoken and written

language. The spoken form can be considered primary, since learning

spoken language happens naturally while learning written language re-

quires explicit teaching which can only take place after spoken language

is already established. Nevertheless, because we are primarily focused on

automatic processing of texts, that is written language, we will focus the

presentation below on written language. However, it is usually possible to

substitute the written form, that is the orthography, for corresponding

spoken form, the phonology.

Morphology can be more precisely characterized following the concise

definition of Haspelmath and Sims [2010]:

Morphology is the study of systematic covariation in the form and meaning of
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words

As an example of covariation, consider that the words car and cars are

similar both in the form, sharing the substring car, and their meaning as

both invoke the same class of entities in the world. In contrast, the words

car and care are similar in their form but not in their meaning and are,

therefore, not morphologically related.

Morphology is a diverse field of study and we will here briefly describe

some aspects relevant to the machine learning problems in the later chap-

ters. We begin by describing the basic terminology, then review different

morphological models, then how morphological systems vary across lan-

guages, and finally we discuss motivations for the definitions as well as

some alternative ideas. For a more detailed treatment, see [Hockett, 1954,

Matthews, 1991, Karlsson, 2002, Manning and Schütze, 1999, Roark and

Sproat, 2007, Haspelmath and Sims, 2010].

Morphology - Basic Terms

As in many other linguistic fields, morphology employs the distinction be-

tween surface forms that we may encounter in a text and abstract units

that are part of the language system but require language-specific knowl-

edge to observe. We will write abstract units in upper case in contrast to

concrete units, that is surface forms, that are written in lowercase.

Before examining smaller constituents of words, we need to define some

basic terminology on the word level. First, we define some terms related

to observing words in a text. Word tokens are words that we encounter

in a text, whereas word types are unique word strings. For example, the

sentence “The car is in the parking lot”, contains two tokens of the word

type the. If the language marks word boundaries, as is the case with the

space character used in most Western languages, word tokens and word

types are easily identified programmatically on the computer. Second,

we discuss some word terminology that is not simply calculated from the

surface form but, rather, requires detailed knowledge of the language.

Words can be grouped by lexeme, that is, the same word in the abstract

or dictionary sense. The lexeme then occurs in different word-forms.

For example lives, living, and lived are word forms of the lexeme LIVE.

Typically, one represents the lexeme by choosing a particular word-form,

for example live. This representative form is referred to as the lemma,

basic form, or base form.
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Because morphology and syntax interact to some degree, we must also

discuss the syntactic notion of part of speech which concerns the func-

tion of a word in a sentence. Examples of parts of speech categories in-

clude nouns, verbs and adjectives. Parts of speech are context-dependent

and the same word type can take on different parts-of-speech in different

contexts. The reason for this is that word-forms may be homonymous.

Different word-forms of the same lexeme or word-forms of two different

lexemes look identical. Consequently, there are typically fewer word types

than the number of lexemes and word-forms would imply. For example,

the English word type trying may be either a word-form of the adjective

TRYING, such as in “This was a trying walk”, or a word-form of the verb

TRY, as in “He is trying to learn the banjo”. When there is homonymy be-

tween different forms of the same lexeme it is referred to as syncretism.

A homonymous word type implies that there are several different paths

through which it can be produced. In other words, its analysis is ambigu-

ous.

Word-forms are typically constructed by adding material to another word-

form. We can classify parts of words based on whether the part is free to

occur by itself, in which case it is called a stem, or must always be bound

to some other part of the word, referred to as an affix. A stem can it-

self have further morphological structure, consisting of further stems and

affixes, or it may be minimal, in which case it is called a root. Affixes

attaching at the end of a stem are called suffixes; at the beginning of the

stem prefixes; in the middle of the stem infixes; and at both ends of the

stem circumfixes. Stems and affixes do not combine arbitrarily, but ex-

hibit selectional preferences, such that only some kinds of stems com-

bine with particular affixes. For example, the English verb stems combine

with verb affixes, but not noun affixes. Although the division into stems

and affixes is applicable to many languages, there are also different mor-

phological systems. For example, Semitic languages encode lexemes with

consonant patterns and the different word-forms of the lexeme are iden-

tified by the vowels between the consonants.

Morphological Segmentation

As a first level of morphological analysis we can perform morphologi-

cal segmentation and segment words into their stems and affixes. For

example car ◦ s, live ◦ s, liv ◦ ing. From the previous examples we can

see that the two first forms separate nicely into stem and affix, but for
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liv ◦ ing, some material is lost from the lexeme LIVE. When a word can

be formed from stems and affixes without changes, the structure is called

concatenative or agglutinative. In contrast, when the stems and af-

fixes are not combined by simple concatenation the structure is called

non-concatenative or fusional. Generally, non-concatenative structure

includes irregular structures, such as go/went. Often despite a structure

being non-concatenative, there is, nevertheless, a morphological pat-

tern that is at least partially regular. For instance sing/sang/sung and

fling/flang/flung. A common regularity is the alternation, where two

different variants of a unit occur in complementary distribution, that is,

in a particular word-form you see either one variant or the other. For in-

stance the Finnish plural alternates between being marked by i or j: talo

◦ ja (houses), talo ◦ j ◦ en (houses’), talo ◦ i ◦ ssa (in houses), and talo ◦ i ◦
tta (without houses).

Morphological Differences between Languages

The morphological systems vary widely between languages. There are

two central dimensions of variation among languages that are of partic-

ular interest to our discussion: First, different languages employ varying

degrees of morphological richness. Languages that infrequently employ

morphological structure are referred to as isolating, and languages with

a rich morphology as synthetic. Another dimension of variation among

the morphology of languages is between agglutinative languages, where

the stems and affixes are combined concatenatively, and fusional lan-

guages where non-concatenative fusion is common. Languages typically

employ a mix of both agglutination and fusion, but vary in how often these

are employed. Therefore, the characteristics of a particular language can

be characterized on a continuum of these characteristics, referred to as

the degree of syntheticity and the degree of fusion [Sapir, 1921, Karlsson,

2002].

Morphological Processes

Words are formed through different processes. Inflection forms the dif-

ferent word-forms of the same lexeme. In contrast, word formation pro-

duces new lexemes from existing ones. There are two different mecha-

nisms for word formation: derivation takes one lexeme and produces

another, modified lexeme; compounding, takes two lexemes and joins

them together as a new lexeme. To relate these processes to the previ-

ously defined terms, we can note that stems express lexemes, whereas
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affixes are utilized for both inflection and derivation.

The inflections forming the word-forms of a single lexeme are called a

paradigm. Inflections are typically related to the syntactic function of

the word in the sentence. For example, in English, when combining a

verb in present tense with a pronoun in the third person singular the

verb takes on a suffix, for instance in He eats. Such structure is called

agreement. Therefore, the forms in a paradigm are usually organized

according to their function in the sentence, encoded by morphosyntactic

features, for example person and number.

Morphological processes are productive to a varying degree. Inflec-

tional processes are typically completely productive such that a given form

in a paradigm can be formed for any lexeme belonging to its correspond-

ing class. This extends even to new words. Berko [1958] demonstrated

that even young children have the ability to construct different forms of

newly invented words. For example, the children were shown pictures of

a creature and were told it was a ‘wug’. They were then shown a picture

of two of the creatures and asked to fill in the sentence “two ____”, where

the correct answer was ‘wugs’. In contrast to the productivity of inflec-

tional processes, word formation processes are productive only to varying

degrees. Some word formation processes are applicable to many words,

whereas others can be applied only to a small number of and words, or

even not applied at all outside archaic forms.

Morphological Models

Morphology is an active area of research, and there are many different

morphological models. We cover some classical work and discussion that

are central to our methods and data sets. We begin by reviewing the

two models identified by Hockett [1954], namely the item-and-process

and the item-and-arrangement models. We will then proceed to discuss

some more recent developments.

Item-and-process model The item-and-process model centers around the

lexeme and describes the process by which the inflected forms are pro-

duced. The item-and-process model then describes the formation of the

word-forms by listing processes that operate on a basic form. This pro-

cess may be one of adding affixes, however in the item-and-process model

the affixes are not considered their own units, merely operations on the

basic form, and other, non-concatenative, operations are also possible. The

item-and-process model describes also the phonological contexts in which
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a particular variant is chosen.

Item-and-arrangement model The item-and-arrangement model centers

around the notion of a morpheme, defined as the smallest meaning-

bearing unit in language. Words are thought to be constructed by com-

bining a sequence of morphemes. The morphemes are abstract units,

and their surface realizations are referred to as morphs. When the mor-

phological structure is concatenative the morphemes can be found with

morphological segmentation. For non-concatenative structure, we need

to identify the abstract morphemes. For example, for car ◦ ing we have

two morphemes: the lexeme CARE and the present participle suffix mor-

pheme. In such non-concatenative cases the same morpheme CARE has

more than one surface realization, for example care and car. These are

called allomorphs. The non-concatenative allomorphic relations can fur-

ther be divided into phonological allomorphs that are phonologically

similar, such as the above example, and suppletive allomorphs that

are not, for example go/went. Furthermore, suppletion exists on a con-

tinuum, where some instances still maintain some similarity, such as

catch/caught.

Discussion

When there are several distinct morphological models available, a central

question is which model to choose in a given situation. The item-and-

process model is well suited for teaching the classical languages, such as

Latin, to which it was first applied. Agglutinative languages, however,

are problematic for such word-based models. For example, describing all

the 20,000 verb forms in Finnish [Arppe, 2005] with the item-and-process

model would be very tedious. For that task, however, morpheme-based

models, such as item-and-arrangement, are well suited.

Meanwhile, morpheme-based models also have a number of problems

[Haspelmath and Sims, 2010]. First, fusional characteristics create a

large number of allomorphs, despite the morphological patterns being

quite regular. An example of such patterns are vowel-changes. Another

related problem with fusional languages is that when the affixes of mor-

phosyntactic features are combined, a single affix expresses more than

one feature. Therefore, a single morpheme for the morphosyntactic fea-

ture cannot be established. Second, morpheme-based theories typically

assume that if the morphemes are the smallest meaning bearing units,

then the meaning of a combination of morphemes should be composi-
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tional, that is, predictable from the meanings of the individual mor-

phemes. In practice, not all meanings of word-forms can be predicted

from the meanings of their parts. This is especially true for derivations.

For example, a read ◦ er is not just a person who reads, but also an aca-

demic title and, in the case of e-book reader, a device on which to read.

Finally, there is psycholinguistic evidence that when people process reg-

ular word-forms, they react faster to frequent ones [Baayen et al., 1997].

This implies that the brain stores not only the irregular forms but also

the regular forms that could be constructed using rules.

Combining Storage of Word-Forms and Productivity To address the prob-

lems of the item-and-process model and the item-and-arrangement mod-

els, alternative models have been proposed. Haspelmath and Sims [2010]

discuss a different kind of word-based model of morphology that includes

productive patterns. In contrast to the item-and-arrangement model, the

combined word and pattern model stores many regular word-forms in the

lexicon despite their being possible to construct from rules. This resolves

problems with non-compositionality of meaning. To resolve the problems

for agglutinative languages, this morphological model stores morpholog-

ical patterns as well. This enables the construction of new forms when

needed.

2.2 Computational Morphology and Natural Language Processing

Having reviewed the linguistic aspects of morphology we now turn to com-

putational tasks in morphology. We will focus, especially, on morpholog-

ical analysis and morphological segmentation as this dissertation is con-

cerned with machine learning models for these tasks. Finally, we will

discuss different methods for evaluating morphological analyses

2.2.1 Tasks in Computational Morphology

A central distinction between different morphological analysis tasks is

whether the input of the analyzer is an isolated word type or a word to-

ken in sentence context. The former is more commonplace, but has the

downside that, due to homonymy, the analysis is often ambiguous. We

will review three approaches of this kind: stemming, morphological seg-

mentation, and morphological analysis. The experimental work in later

chapter will focus on the two latter tasks. We will also briefly review a
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task in sentence context, namely morphological tagging.

We denote the input x, and it is a word string, such as techniques or

music. The word string x ∈ Σ∗, that is, it is an arbitrary-length string of

characters from the alphabet Σ of the language under study. We denote

the correct analysis y.

Stemming and Lemmatization

Stemming is a simplistic form of morphological analysis that strives to

normalize words, such that all word-forms of the same lexeme would yield

the same stem. For English, the Porter stemmer is well-known and per-

forms rather well [Porter, 1980]. It requires only a small number of rules

that identify common suffixes and remove them. It also contains simple

rules to handle common alternation patterns in English. For instance, be-

tween y/i in words such as pretty/prettier. In general, building the stem-

ming rules becomes complicated for morphologically rich languages. For

example a stemmer for Slovene utilizes a suffix list of over 5000 suffixes

[Popovič and Willett, 1992].

Lemmatization strives to also identify the lexeme, but does this by map-

ping the observed word-form to its representative lemma. Lemmatization

generally requires detailed knowledge of the lexicon. For morphologically

rich languages lemmatization requires so much morphological knowledge

that it is typically performed as a subtask of morphological analysis.

Morphological Segmentation

In morphological segmentation the word x ∈ Σ∗ is segmented such that

each segment is a morph, the surface form of a morpheme. The true se-

quence of morphs y consists of one or more sequences of morphs, since the

segmentation may be ambiguous. Each alternative, correct segmentation

yk = yk1, . . . ,ykn consists of a sequence of morphs, and since they are seg-

mentations their concatenation produces the input word yk1◦· · ·◦ykn = x.

A convenient property of segmentation is that an unsupervised algorithm

can return a segmentation and, therefore, unsupervised and supervised

algorithms can be evaluated head-to-head using identical evaluation pro-

cedures.

Morphological Analysis

In morphological analysis the task is to find the morphological units of the

word. The chosen unit depends on the underlying morphological theory

that is being employed. Common alternatives are morphemes and mor-
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morphological morphological

word analysis segmentation

auto (car) auto+N+Sg+Nom auto

autossa (in car) auto+N+Sg+Ine auto ◦ ssa

autoilta (from cars) auto+N+Pl+Abl auto ◦ i ◦ lta

autoilta (car evening) auto+N+Sg+Nom+# ilta+N+Sg+Nom auto ◦ ilta

maantie (highway) maantie+N+Sg+Nom maantie

maa+N+Sg+Gen+# tie+N+Sg+Nom maa ◦ n ◦ tie

maanteiden maantie+N+Pl+Gen maanteide ◦ n

(of highways) maa+N+Sg+Gen+# tie+N+Pl+Gen maa ◦ n ◦ teide ◦ n

sähköauto sähköauto+N+Sg+Nom sähköauto

(electric car) sähkö+N+Sg+Nom+# auto+N+Sg+Nom sähkö ◦ auto

Table 2.1. Morphological segmentation versus morphological analysis for exemplar
Finnish words. The full analysis consists of word lemma (basic form),
part-of-speech, and fine-grained labels. The form maanteiden employs non-
concatenative structure with the lexeme TIE (road) appearing as the allo-
morphs tie and teide.

phosyntactic tags. The formalization is similar to that of morphological

segmentation, but now the yij are not strings, but are instead morpho-

logical tags generated from the set Y. The tagset consists of lexeme and

affix tags. It can be noted that this formalization is very similar to a

multi-label classification problem [Tsoumakas and Katakis, 2007]. Mor-

phological analysis differs from multi-label classification in that the cor-

rect morpheme sequence y is often ambiguous and the correct analysis is

a sequence rather than a set. Moreover, an unusual property is that the

set of morphological tags Y is generally open, that is new tags are added

to it over time as new words are formed. A simplification that is taken in

most practical systems is to assume a fixed, but large set of morphemes.

A central difference when applying morphosyntactic tags rather than

morphemes is that the morphosyntactic tags will be applied even in the

absence of any surface form of a morpheme. For example car would only

contain one morpheme tag CAR-N, with -N denoting a noun, but would

be assigned the morphosyntactic tags CAR-N + Sg, for singular number.

In contrast to morphological segmentation, an unsupervised algorithm

cannot return morphological analysis in the correct tagset Y, as the learner

receives as input only a set of words x. Instead, the learner must pro-

duce a set of arbitrarily named tags for each proposed morpheme. Conse-

quently, although evaluating supervised morphological analysis is straight-

forward, evaluating unsupervised morphological analysis is non-trivial.

A rule-based morphological analyzer returns all correct morphological
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analyses of a given word. Often the same word type can be produced

from several different lexemes, in which case the analyzer returns all of

them. Some examples of morphological analysis produced by a recent

rule-based analyzer [Pirinen, 2008] employing morphosyntactic tagging

are shown in Table 2.1 and contrasted with corresponding morphologi-

cal segmentations. It can be seen that both the analysis and the seg-

mentation are occasionally ambiguous. Moreover it can be seen that the

analysis is much more detailed, returning the lemma of each stem, its

part-of-speech tag and also grammatical categories that correspond to the

absence rather than presence of a morph. For example maa+N+Sg+Gen

for the observed morphs maa+n in the word maantie. Here maa is the

lemma, N the part-of-speech, Sg denotes singular number which is not

morphologically marked (plural would be), and finally Gen denotes Geni-

tive and corresponds to the morph +n.

Morphological Tagging

The task of determining the correct alternative analysis of a word token

in context is known as morphological tagging [Hajič, 2000]. Morpho-

logical tagging typically ignores determining the correct lexeme, and con-

centrates on merely identifying the correct morphosyntactic tags for each

word. The task is often approached with similar statistical methods as

part-of-speech tagging [Müller et al., 2013, Silfverberg et al., 2014].

Evidently, morphological tagging is also closely related to syntactic anal-

ysis of the sentence, and is therefore employed when performing pars-

ing and developing training data for syntactic analysis [Haverinen et al.,

2014, Bohnet et al., 2013].

2.2.2 Evaluation

Assuming that we have some automatic method for producing a morpho-

logical representation from input words, we need to consider how the per-

formance of such a system can be evaluated. There are two main options.

We can either evaluate our model by comparing it to some analysis that

we assume is correct, or we can apply our analysis in some task and eval-

uate the task-specific results. The former is known as intrinsic and the

latter extrinsic evaluation. The characteristics of the two are somewhat

different. Next we review two central intrinsic evaluation measures and

then return briefly to extrinsic evaluation.
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Morphological Analysis

Boundary F1-score

Morphological segmentations can be evaluated by an intrinsic comparison

with reference segmentations using boundary precision, boundary re-

call, and boundary F1-score. The boundary F1-score, or F1-score for

short, equals the harmonic mean of precision, the percentage of correctly

assigned boundaries with respect to all assigned boundaries, and recall,

the percentage of correctly assigned boundaries with respect to the refer-

ence boundaries:

Precision =
C(correct)

C(proposed)
(2.1)

Recall =
C(correct)

C(reference)
(2.2)

The Expressions 2.1 and 2.2 for different words can be combined into a

single value utilizing either micro or macro averages, that is either giving

each segment, or each word, equal weight in the combined score.

The Morpho Challenge measure

The Morpho Challenge competitions [Kurimo et al., 2009b] employ a mea-

sure for intrinsic evaluation of morphological analyses. It is intended for

comparison to a morpheme-based gold standard, as employed in the com-

petitions. The measure is designed to evaluate an unsupervised method

compared to a morpheme-based gold standard, assuming that the unsu-

pervised method does not know the true label set.

The evaluation measure randomly samples a number of focus words

from the test set. The sampled focus words are then compared with refer-

ence words such that if two words share a morpheme in the reference, they

should also share a morpheme in the analysis proposed by the method

being evaluated. Precision measures whether the word types that share

morphemes in the proposed analysis have common morphemes also in the

gold standard. Recall is calculated analogously by swapping the roles pro-

posed and gold standard analyses. The final score is the F-measure, the

harmonic mean of precision and recall.

It has been shown that the scores of the MC metric can be artificially

elevated by manipulation of the proposed analyses [Spiegler and Monson,

2010]. Other methods have been proposed for evaluating morphological

analysis, and such methods are extensively reviewed by [Virpioja et al.,

2011].
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Extrinsic Evaluation

If the ultimate purpose of the morphological representation is some par-

ticular application then evaluating directly in that application is natural.

Interestingly, the optimal morphological representations can, however, be

task-specific.

For example, Pirkola [2001] discusses utilizing morphological analysis

in information retrieval, and suggests that inflections, derivations and

compounding need to be considered separately. It is often the case that

the derived or compound meaning is not compositional, and therefore,

including them as wholes may be preferable.

In machine translation different language pairs may require a differ-

ent level of detail from the morphological analysis. For example, German

frequently employs compound words which translate into several words

in English, and this property can be problematic for translation systems.

Consequently, determining the optimal granularity of morphological anal-

ysis has been attempted by several authors [Koehn and Knight, 2003,

Goldwater and McClosky, 2005, Habash and Sadat, 2006, Dyer, 2009].

The task-specific nature of extrinsic evaluation is problematic for mor-

phological analyzer development as a method may perform well in one

application and badly in another. This property, however, also opens up

the possibility to construct adaptive methods with parameters that enable

quick adaptation to different tasks.
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3. Machine Learning Preliminaries

The field of machine learning studies the modeling of patterns and the

discovery of generalizable properties from data. Typically, this means

that we can learn some model from a training data set and then apply

that model to data that we have not seen at training time, test data, and

get some kind of analysis of it. If the generalization is successful, then

the analysis should correspond to the correct analysis, where correctness

is task-specific. For example, if the task is morphological analysis, then

the correct analysis would correspond to a correct morphological analysis

of the words in the test set.

In this section we review machine learning concepts, especially from the

perspective of probabilistic modeling. Because of the generality of the con-

tents, we do not refer to the literature for each claim, but the presentation

is based on [Manning and Schütze, 1999, Jaynes, 2003, Alpaydin, 2004,

Bishop, 2006, Sutton and McCallum, 2006, 2012]. We will begin by dis-

cussing different learning setups in Section 3.1, where we will also define

weakly supervised learning, the focus of this work. Next, in Section 3.2,

we will discuss probabilistic modeling. We will then describe graphical

models in Section 3.3. Finally, we discuss model selection in Section 3.4.

3.1 Learning Setups

Learning setups and methods can be classified based on what data is

available at training time. We will review these below. Methods can also

be classified based on how they operate at test time: transductive meth-

ods can only be applied to data seen at training time, while inductive

methods can be applied to any data. All methods we employ are induc-

tive. Although the learning settings are general, we will here focus on the

morphology learning tasks, and therefore refer to the data as words and
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annotation.

3.1.1 Unsupervised Learning

In unsupervised learning the system receives at training time only an

unannotated set of data, which we denote U = {x(1),x(2), . . . ,x(N)} =

{x(i)}Ni=1, where x(i) denotes the ith sample in the set. Since there is

no target defined in the input data, very different unsupervised learning

tasks can be performed on the same input data. Unsupervised learning

can therefore be exploratory in nature, seeking interesting properties of a

data set, rather than attempting to solve a particular task. It is, however,

also possible to employ unsupervised techniques to a particular task, such

as morphological segmentation.

3.1.2 Supervised Learning

In supervised learning the system receives pairs of input observations and

their corresponding annotation. Therefore, the training data set may be

written as D = {(x(i),y(i))}Ni=1. For example, in the case of morphological

segmentation, the data contains word strings, such as x(i) = preheated,

and the annotation contains their correct segmentations, y(i) = pre ◦ heat

◦ ed. The task is to learn to predict the annotation from the input obser-

vations, such that this prediction generalizes to data that the system has

not seen at training time.

3.1.3 Semi-Supervised Learning

With semi-supervised learning we refer to a setting where we have both

annotated data D and unannotated data U [Zhu, 2006, Zhu and Goldberg,

2009]. The tasks are generally similar to supervised prediction tasks, and

the unannotated data is employed to improve results over purely super-

vised training on D alone.

3.1.4 Weakly Supervised Learning

Weak supervision is a term that is used in different senses by different

authors. First, the term is used to describe a situation where the labeled

data is somehow insufficient. For example, insufficiently small or lack-

ing some of the required classes (see e.g. Ng and Cardie [2003], Zhang

[2004], Paşca [2007]). Second, the term is applied when utilizing some
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supervision that is not precisely the annotation for the current task, but

something related to it (see e.g. [Klementiev and Roth, 2006]).

In this dissertation, we define weakly supervised learning simply as pro-

viding only a small amount of labeled data in a semi-supervised setting.

In other words, we follow the first definition above. We consider this su-

pervision weak because small annotated sets cannot provide good cover-

age of the morphological phenomena in the language. For example, it has

been suggested that for a good coverage of an English language model

50,000 words are required [Kurimo et al., 2006a]. If the training data

contains only 1,000 words, then by necessity many of the stems will be

unseen in the data.

A term related to weakly supervised learning employed by several au-

thors is minimally-supervised learning [Yarowsky and Wicentowski, 2000,

Wicentowski and Yarowsky, 2003, Riesa and Yarowsky, 2006, Monson

et al., 2007, Sirts and Goldwater, 2013] and Publication VII. Unfortu-

nately, that term is also used in several different senses. Generally, the

term refers to providing supervision that is easy and inexpensive to col-

lect, similar to the second definition of weak supervision above [Yarowsky

and Wicentowski, 2000, Wicentowski and Yarowsky, 2003]. The term has,

however, also been used merely for hyperparameter adjustment [Monson

et al., 2007]. It has also been utilized to describe what is referred to as the

weakly supervised setting in this dissertation. In particular, that usage

is employed by Sirts and Goldwater [2013] and in Publication VII.

In this dissertation, we will favor the term weakly supervised, since the

term minimally-supervised implies the supervision is minimal in some

well-defined sense, whereas our training sets are merely small.

3.2 Probabilistic Modeling

Probabilistic modeling provides a mathematical framework within which

machine learning methods can be developed and analyzed. Compared to

earlier machine learning methods based on learning rules and objective

functions, the probabilistic framework makes it explicit what kind of as-

sumptions about the data are being made when formulating the model. In

this section we discuss the basic terminology and concepts of probabilistic

modeling.
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3.2.1 Random Variables and Probability Distributions

A central abstraction when operating under uncertainty is the random

variable, that is, a variable whose value is subject to variations caused

by randomness. In machine learning we observe a sample, that is some

number of values of a random variable, and we would like to reason about

the variable based on these observed values. Because of randomness we

cannot know the particular value a random variable takes at any one

time. Instead we attempt to express how likely it is for a particular value

to occur by utilizing a probability distribution.

We employ the following notation. Random variables are written with

capital Latin or Greek letters, for example X. Values that random vari-

ables take are written with lowercase Latin or Greek letters. Vectors,

strings and lists are written in bold face. The set of values the random

variable X takes is written as X , and the set of values may be continu-

ous or discrete. Samples are denoted by superscripts, such as x(i) which

denotes the ith sample value of the random variable X.

The probability distribution can be defined in several ways. In this dis-

sertation we employ exclusively the probability density function, denoted

p(X = x), that defines the relative likelihood for the random variable X

to take the value x. We use the shorthand notation p(x) if there is no

ambiguity.

For a continuous probability density function it holds:

p(x) ≥ 0 (3.1)∫
X
p(x) dx = 1 (3.2)

For a discrete random variable, the integral in Expression (3.1) is re-

placed by a sum: ∑
x∈X

p(x) = 1 (3.3)

3.2.2 Parametric Models

A convenient way to define a probability distribution p(x), is to use a

parametric model, that is a family of probability functions p(x|θ) that

define a probability distribution of the random variable X taking the

value x given some parameter value θ. It is then assumed that each x

is chosen randomly in a fashion that depends only on θ, and not, for ex-

ample, on the previously generated x. This assumption is referred to as

independent, identically distributed or i.i.d.
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The parameters θ are typically estimated from some sample of values

{x(i)}Ni=1. This can be performed in different fashions, and we will review

different options in detail in Section 3.2.4. For now, we introduce one of

the basic options, namely selecting the parameters such that the probabil-

ity of the data is maximized given the parameters. Since p(x|θ) is known

as the likelihood, this method is called maximum likelihood (ML):

θ̂ML = argmax
θ

p(x|θ) (3.4)

Next, we review the parametric models employed in this dissertation.

The Geometric Distribution The geometric distribution is a discrete dis-

tribution defined on the natural numbers 0, 1, 2, . . . . It has a single pa-

rameter θ ∈ [0, 1], the probability of success. The geometric distribution

can be interpreted as performing repeated Bernoulli-trial, that is tossing

an unfair coin, until one gets the successful outcome on the xth trial. The

output distribution is then defined over the number of required trials. The

probability density function is given by:

p(x|θ) = (1− θ)x−1θ (3.5)

The Gamma Distribution The Gamma distribution is a continuous distri-

bution defined on the non-negative real axis. It has two parameters a and

b. Its probability density function is generally asymmetric and it is bell-

shaped if a > 1 and L-shaped otherwise. The probability density function

is given by:

p(x|a, b) = baxa−1e−bx

Γ(a)
, (3.6)

where Γ(a) is the Gamma-function Γ(a) =
∫∞
0 ua−1e−udu

The Categorical Distribution The categorical distribution is defined over

some discrete event-space. For example, one may define a probability

distribution over a set of words, and assume a we observe the sample

[the, the, a, the, car, the]. For notational convenience, we assume that each

event is mapped to its corresponding natural number j. The previous

example can then be mapped to [1, 1, 2, 1, 3, 1].

The categorical distribution employs a parameter vector θ where the

element θj defines the probability of event j:

p(X = j) = θj (3.7)

The probability of the sequence U = {x(i)}Ni=1 is given by:

p(U|θ) =
N∏
i=1

θx(i) =

K∏
j=1

θ
C(x(i)=j)
j , (3.8)
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where C(a) denotes a function that counts the number of entries for which

its argument function a is true, and K is the number of distinct events

that can occur.

For the categorical distribution the maximum likelihood parameters are

given by:

θ̂ML
j =

C(x(i) = j)

N
(3.9)

The Multinomial Distribution Closely related to the categorical distribu-

tion is the multinomial distribution, and the two are at times conflated in

the natural language processing literature. The only difference is that in

the categorical distribution the observation sequence is important, whereas

in the multinomial distribution the order does not matter, and only the

resulting event counts are modeled. This requires the addition of a nor-

malizing constant:

p(U|θ) =
(

N

C(x = 1)C(x = 2) . . . C(x = K)

) K∏
j=1

θ
C(x(i)=j)
j (3.10)

3.2.3 Probability Distributions of Several Random Variables

To model dependencies between several random variables X1, X2, . . . , Xn,

we can define a probability distribution for the combined values of the

variables, known as the joint distribution p(x1, x2, . . . , xn).

We can also define conditional distributions p(x1, . . . , xk|xk+1, . . . , xn),

that is the joint distribution of the variables x1, . . . , xk given that we know

the values of the variables xk+1, . . . , xn.

The relation between the joint and the conditional distributions is given

by:

p(x1, . . . , xk|xk+1, . . . , xn) =
p(x1, . . . , xn)

p(xk, . . . , xn)
(3.11)

The Product rule We can decompose a joint distribution into a sequence

of products using the product rule. The product rule can be applied to

any of the random variables Xi. The expressions are analogous for each

variable. The factoring w.r.t. the variable X1 is given by:

p(x1, x2, . . . , xn) = p(x1|x2, . . . , xn)p(x2, . . . , xn) (3.12)

The rule can be applied recursively, for example:

p(x2, . . . , xn) = p(x2|x3, . . . , xn)p(x3, . . . , xn) (3.13)
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The Sum rule We can marginalize away a variable Xk, by summing the

joint distribution over all its possible values.

p(x1, . . . , xk−1, xk+1, . . . , xn) =
∑
xk

p(x1, . . . , xn) (3.14)

The distribution of a single variable p(xi) is called the marginal distri-

bution of Xi, and it can be interpreted as the distribution for Xi when we

do not know the values of the other variables.

Bayes’ rule Central to probabilistic modeling is the ability to relate prob-

ability distributions from one variable to another. This is made possible

by Bayes’ rule:

p(x1|x2) = p(x1)p(x2|x1)
p(x2)

(3.15)

Independence If two random variables x1 and x2 are independent, then

the value of one does not affect the other. Consequently the joint distribu-

tion can be factored as follows:

p(x1, x2) = p(x1)p(x2) (3.16)

Often, independence holds only in a weaker form, such that if we know

the value of some particular variable, then the remaining variables do not

depend on one another. This is known as conditional independence. If

x1 and x2 are conditionally independent given x3 then:

p(x1, x2|x3) = p(x1|x3)p(x2|x3) (3.17)

3.2.4 Probabilistic Inference

Random variables for which we directly observe a sample are called ob-

served variables. For example, words in a training data set. Variables

that we do not observe are called latent variables, and their values

must be reasoned about based on their relations to the observed variables.

Probabilistic inference is based on utilizing the previously presented rules

of probability distributions to infer what can be known about the variables

we are interested in. In particular, we can also consider model parame-

ters θ as random variables with a probability distribution and therefore

the rules of probabilistic inference can be applied to them as to any other

random variable.

In a typical machine learning setting we are interested in taking some

training data D, learn generalizations from it that can be applied to some
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new data point x∗ which we have not observed in the data set, and com-

pute some corresponding variable of interest y∗. From the perspective of

probabilistic inference we are therefore interested in p(y∗|x∗,D). This dis-

tribution is the posterior distribution of y∗, that is the distribution after

having observed the training data. This formulation can be compared to

the learning setups presented in Section 3.1. It is easy to see the com-

monalities with supervised learning, as x and y map directly to the input

and output variables in the training set D = {(x(i),y(i))}Ni=1. In the case

of unsupervised learning problems, the training set merely contains the

input variables U = {x(i)}Ni=1. Therefore, the training set does not deter-

mine the target variable y, but there are many valid possibilities. Many

unsupervised problems can, nevertheless, also be considered as modeling

p(y∗|x∗,U). When there is a target task defined in advance, we can think

of the task as defining the output variable y. The morphological tasks

described in Section 2.2 are examples of such tasks, where the correct

morphological analysis takes the role of the variable y.

Regardless of the learning setup being used there are a few typical as-

sumptions employed in the probabilistic modeling. To model p(y∗|x∗,D),
the relations between the variables must be defined. A typical assump-

tion is that y∗ and x∗ are produced by the same process that produced

each sample in the training data, and that we can store that knowledge

in a set of model parameters θ. In other words, we assume a conditional

independence from the training data. We can then write:

p(y∗|x∗,D) =
∑
Θ

p(y∗,θ|x∗,D) (3.18)

=
∑
Θ

p(y∗|θ,x∗,D)p(θ|x∗,D) (3.19)

=
∑
Θ

p(y∗|x∗,θ)p(θ|D), (3.20)

where the first step introduces the model parameters θ by applying the

sum rule, the second step applies the product rule, and finally the third

step follows from conditional independence.

Moreover, typically the i.i.d. assumption is applied, that is each sam-

ple (x(i),y(i))N is generated independently and is identically distributed:

p(D|θ) = ∏N
i=1 p(y

(i),x(i)|θ). Similar reasoning can be employed to derive

analogous expressions for the unsupervised case.

For some models, a simple form of p(y∗|x∗,θ), can be found by analytic

techniques. When this is not the case there are strategies for finding it

approximately. A popular approach is based on drawing samples from the
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distribution, which is often possible whether the distribution has a simple

analytic form or not. Sampling methods can, however, be computationally

demanding. An alternative approach is to assume that we do not need to

marginalize over the space of model parameters Θ but that we should in-

stead find a single value for the model parameters θ. This is referred to as

finding a point estimate since we are approximating a distribution with

a single point. The benefit is simpler and faster computational method

while the downside is that the resulting estimate tends to underestimate

the possible variability of the parameters. Since the choice of parameters

θ is crucial for the success of the point estimation approach, one strives to

choose parameters that are optimal in some sense. In this approach, we

will first calculate the optimal parameter θ from p(θ|D). This phase is re-

ferred to as parameter estimation or training. Then we can calculate

values for y∗ from p(y∗|x∗,θ). This is generally referred to as inference

or applying the model to new data. We can either calculate the full dis-

tribution or alternatively, just calculate the most probable value y∗, that

is

ŷ∗ = argmax
y′∈Y

p(y′|x∗,θ) (3.21)

The parameter estimation is based on the posterior distribution p(θ|D).
An application of Bayes’ rule gives us the following:

θ̂OPTGEN
= argmax

θ
p(θ|D) (3.22)

= argmax
θ

p(D|θ)p(θ) (3.23)

= argmax
θ

N∏
i=1

p(y(i),x(i),θ)p(θ) (3.24)

There are now two alternative ways to proceed. We can either build a

generative model, which means that we choose an appropriate model

for the joint likelihood p(y,x|θ). This approach can be used in both the

supervised and unsupervised case. Alternatively, it can be noted that we

can factor the expression further with the product rule:

θ̂OPTGEN
= argmax

θ
p(D|θ)p(θ) (3.25)

= argmax
θ

N∏
i=1

p(y(i)|x(i),θ)p(x(i)|θ)p(θ) (3.26)

(3.27)

From this expression we can notice that we are solving two separate

problems: First generating the input data via p(x|θ) and then mapping
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the input to the output with p(y|x,θ), that is the conditional likelihood.

In many machine learning problems the input x is always observed, so

modeling its generation is, in practice, unnecessary. Furthermore, if the

input p(x|θ) has complicated structure, modeling its generation may in-

troduce unnecessary complexity. Instead, we may ignore p(x|θ) and only

focus on merely learning the conditional p(y|x,θ). This approach is known

as a discriminative modeling, and it is applicable only in the super-

vised case, since we need observations of y. The optimized expression is

given by:

θ̂OPTDISC
= argmax

θ

N∏
i=1

p(y(i)|x(i),θ)p(θ) (3.28)

The supervised learning setup is straightforward, whether generative

or discriminative. In contrast, for unsupervised learning, the output vari-

able y is an unobserved, latent variable. To proceed, more assumptions

are required. One possibility is to formulate a generative model p(y,x|θ)
and find the parameters based on the (marginal) likelihood

θ̂OPTUNS
= argmax

θ
p(θ|U) = argmax

θ
p(U|θ)p(θ) (3.29)

p(U|θ) =
N∏
i=1

∑
y∈Y

p(y,x(i)|θ) (3.30)

The parameter prior distribution The distribution p(θ) appears in the ex-

pressions for supervised generative and discriminative learning, as well

as unsupervised generative learning. It is known as the prior distribu-

tion for the parameters. It encodes degrees of belief in what the parame-

ters are likely to be, before observing the training data, and can be used

to guide the training based on prior knowledge. If we have no particular

knowledge we can ignore the prior or use a non-informative prior that af-

fects the result as little as possible. When seeking a point estimate we

can either ignore the prior and only maximize the likelihood function or

include the prior in the maximization. The former estimation technique

is called maximum likelihood (ML) and the latter maximum a poste-

riori (MAP). Both ML and MAP estimation can be employed regardless

of whether one performs generative or discriminative training, but the ex-

act details of the procedures differ because generative and discriminative

models estimate different distributions. The main drawback of maximum

likelihood is that if the parametric model is too expressive compared to

the number of samples available during parameter estimation, the maxi-

mum likelihood estimate will overfit. This tendency can be controlled by

using a prior.
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The Expectation-Maximization (EM) algorithm As described above, an un-

supervised model that defines a joint distribution p(y,x|θ) can be trained

by maximizing the marginal likelihood p(x|θ). Such a model then has

two latent variables, Y and θ. Since they depend on one another it is

not straightforward to find the optimal parameters θ. The Expectation-

Maximization algorithm is an iterative method that can be applied to

models with this kind of interconnected latent variables, and it is appli-

cable to both unsupervised learning and supervised learning with some

missing data [Dempster et al., 1977, Bishop, 2006]. It can also be ap-

plied to semi-supervised learning by considering the annotation y(i) for

the unannotated data U as missing data. The EM algorithm finds a point

estimate θ̂ for the parameters that corresponds to a local maximum of the

marginal likelihood p(U|θ) or posterior p(θ|U) = p(U|θ)p(θ). It can be de-

rived for a model for which we have defined the joint distribution p(x,y|θ).
The algorithm has two steps known as the Expectation step (E-step) and

the Maximization step (M-step).

The E-step and M-step are repeated iteratively, updating the parameter

value until convergence. We denote the parameter value at iteration n

as θ̂n. In the E-step, one calculates the posterior probability of the latent

variables for each training sample given the current model parameters

p(y(i)|x(i), θ̂n) In the M-step, one maximizes the expected joint likelihood

or posterior, with the expectation taken over the distribution calculated in

the E-step: θ̂
(n+1)

= argmaxθ
∏N

i=1

∑
y′∈Y p(x(i),y′|θ)p(θ)p(y′|x(i), θ̂n). The

algorithm is written in pseudo code in Algorithm 1.

Algorithm 1 The Expectation-Maximization algorithm
Initialize θ̂0

while p(U|θ) increases sufficiently do

E-step: For each i, calculate p(y(i)|x(i), θ̂n)

M-step: θ̂n+1 = argmaxθ
∏N

i=1

∑
y′∈Y p(x(i),y′|θ)p(θ)p(y′|x(i), θ̂n)

end while

3.3 Graphical Models

With the terminology defined so far we can describe more precisely how to

handle uncertainty in practice. In general, we handle uncertainty by for-

mulating a model that encodes the probabilistic dependencies by utilizing

an appropriate joint or conditional distribution of the relevant variables.
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Let X = X1, X2, . . . , Xn and Y = Y1, Y2, . . . , Yn be a set of random variables

that we refer to as the input and output variables, respectively. Let, the

observed training data be denoted D and model parameters θ. Typically,

the model parameters are latent and must be inferred from the observed

data. In addition, the model may also contain additional latent variables

Z = Z1, Z2, . . . , Zn.

With a larger number of variables in the model, it becomes increasingly

difficult to calculate. This is because the number of value combinations

grow exponentially with the number of variables. For example, assuming

for simplicity binary-valued variables, n variables can take 2n possible

values. Calculating over such large sets quickly becomes intractable. If,

however, some of the variables are conditionally independent, efficient

calculation may be possible.

Graphical models provide a framework for expressing the dependencies

and independencies between random variables. The dependencies can be

expressed as a graph, and this is the reason for the name graphical mod-

els. The framework enables the construction of arbitrarily large proba-

bilistic models such that the same probabilistic inference principles can

be applied.

There are two kinds of graphical models: directed and undirected ones.

In both cases, the graph expresses how the joint distribution of the ran-

dom variables is factored. The factorization implies a set of conditional

independence conditions between the random variables.

3.3.1 Directed Models

Directed graphical models are based on factoring the joint distribution

using the product rule, and then choosing appropriate expressions for the

resulting conditional distributions. Examples of directed models include

the widely used Hidden Markov Model which we will present next.

Hidden Markov Models

Hidden Markov Models (HMM) are directed graphical models of sequences,

and they are used extensively in natural language processing [Rabiner,

1989, Manning and Schütze, 1999]. We focus here on the HMM with

discrete observations. A HMM generates an observation sequence x =

x1, x2, . . . , xn from a state sequence y = y1, y2, . . . , yn. The state and obser-

vation sequences can be, for example, the part-of-speech tags and words

in a sentence, respectively. Generally, all yi take values from the same set
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...

...

Figure 3.1. Directed graph corresponding to the Hidden Markov Model. White and gray
circles denote latent and observed variables, respectively.

yi ∈ Y, and analogously xi ∈ X .

The joint distribution is factored such that the states are conditionally

independent of everything given the previous state, and similarly the cur-

rent observation only depends on the current state:

p(x,y) =
n∏

t=1

p(yt|yt−1)p(xt|yt), (3.31)

where we define a special start tag for y0 such that p(y1|y0) = p(y1). The

corresponding graph is shown in Figure 3.1 The distributions p(yt|yt−1)

and p(xt|yt) are separate categorical distributions for each value of yt−1

and yt, respectively.

Parameter Estimation Parameter estimation in hidden Markov models

can be solved analytically in a supervised setting where we observe (x,y)-

pairs. We can first note that p(yt|yt−1) = p(yt, yt−1)/p(yt−1) and p(xt|yt) =
p(xt, yt)/p(yt). From the training data we get counts of the occurrences

of each state and observation. Let the HMM be parameterized by θ =

{θt,θe}, such that we utilize parametric models p(yt|yt−1,θt) and p(xt|yt,θe).

We can compute the maximum likelihood parameters for the parametric

models in question from the counts observed in the training data. For ex-

ample, when utilizing a categorical distribution, its maximum likelihood

is calculated with Expression (3.9).

In the unsupervised setting, the state sequence y is latent. Parameter

estimation can be performed to find a local optimum of p(x|θ) with the

Expectation-Maximization algorithm (Section 3.2.4), which in this con-

text is known as the Baum-Welch algorithm or the Forward-Backward al-

gorithm [Baum et al., 1970, Rabiner, 1989, Manning and Schütze, 1999].

In the E-step we need to calculate the probability of the latent state

sequence given the current parameters θ(n):

p(y|x,θ(n)) =
p(y,x|θ(n))

p(x|θ(n))
=

p(y,x|θ(n))∑
y p(y,x|θ(n))

(3.32)
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The M-step is then simply a question of updating the categorical distribu-

tions in the HMM given the distribution calculated in the E-step.

Calculating p(y|x,θ(n)) is complicated by the fact that the observation

space y is exponential in size since each position can be occupied by one of

the states in Y. The expression can, however, be calculated efficiently with

dynamic programming using the forward-backward factoring, as follows.

Let y<1..t> denote the values of the random variables Y1, Y2, . . . Yt. We can

efficiently sum over all assignments to y<1..t> with the assignment Yt = j

if we know the corresponding sums at time t−1. This leads to the forward

iteration:

αt(j) =
∑

y<1..t−1>

p(y<1..t−1>, Yt = j,x<1..t>|θ(n)) (3.33)

=
∑
i∈Y

p(Yt = j|Yt−1 = i)p(xt|Yt = j)αt−1(i) (3.34)

Similarly, for the backwards iteration we have:

βt(i) =
∑

y<t+1..n>

p(Yt = i,y<t+1..n>,x<t+1..n>|θ(n)) (3.35)

=
∑
j∈Y

p(Yt+1 = j|Yt = i)p(xt+1|Yt+1 = j)βt+1(j), (3.36)

where the sequence is initialized with βn(i) = 1.

Finally, the marginals of each state can be calculated as p(Yt = i,x|θ(n)) =

αt(i)βt(i). For the conditional in Expression (3.32) we get p(x|θ(n)) from

either
∑

i∈Y αn(i) or β0(i).

Inference A common inference problem is to calculate the most probable

assignment to y given an observation x and the model parameters θ:

y∗ = argmax
y′

p(y′|x,θ) = argmax
y′

p(y′,x|θ)
p(x|θ) (3.37)

= argmax
y′

n∏
t=1

p(y′t|y′t−1)p(xt|y′t) (3.38)

Since x does not vary, it can be ignored.

Here we can utilize an iteration similar to the forward-backward algo-

rithm to efficiently calculate the maximum, since the best sequence that

ends in state j at time t can be calculated by considering all states at po-

sition t−1 and the corresponding best sequence that ended there [Viterbi,

1967]. This iteration is known as the Viterbi-algorithm:

δt(j) = max
i∈Y

p(Yt = j|p(Yt−1 = i)p(xt|Yt = j)δt−1(i), (3.39)
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where δ0(i) = 1. After computing the δ we can recover the best assignment

through a backward recursion:

ŷ∗n = argmax
i∈Y

δn(i)

ŷ∗t = argmax
i∈Y

p(ŷ∗t+1|Yt = i)p(xt+1|ŷ∗t+1)δt(i) for t < n (3.40)

3.3.2 Undirected Models

Undirected models decompose a joint or conditional distribution of vari-

ables X = X1, X2, . . . , Xn into a product of factors Ψa(Xa), where Xa de-

notes some subset of the random variables X and a is an integer index that

varies 1 . . . na. Unlike the conditional probabilities employed in directed

models, the factors are not normalized to sum to 1, but are only required

to be non-negative. Normalization is performed globally. An undirected

model can be written as:

p(x) =
1

Z

na∏
a=1

Ψa(xa), (3.41)

where Z is the normalizing factor that is required to make the expression

sum to 1:

Z =
∑
x

na∏
a=1

Ψa(xa) (3.42)

Generally, calculating Z may be demanding as it may require summing

over a set of values for x that is exponential in size, w.r.t. the number of

random variables in the model.

Conditional Random Fields

Conditional Random Fields (CRF) are an undirected graphical model that

relate the input variables X and the output variables Y which can both

be structured variables, such as sequences, trees or graphs. Unlike gen-

erative models, CRFs model the conditional distribution p(y|x,θ), and do,

therefore, not depend on the distribution of the input variables p(x). Ex-

pression (3.42) for general undirected models then becomes:

p(y|x) = 1

Z(x)

na∏
a=1

Ψa(ya,xa) (3.43)

It is typical to further assume that the log of the conditional likelihood is

a linear function. We can then write the CRF as:

p(y|x,θ) = 1

Z(x)

na∏
a=1

exp{
ka∑
k=1

θakfak(ya,xa)}, (3.44)
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where for each factor a we have ka feature functions fak. The feature

functions can be chosen on a case by case basis. Typically, however, they

are chosen such that there is a feature function that activates for each

combination of the output variables ya = y′, and a particular variant of

the input variable xa = x′. A common choice is an indicator function, such

as:

fak(ya,xa) =

⎧⎨
⎩

1 if ya = y′ and xa = x′

0 otherwise
(3.45)

However, the feature function may also return a continuous value. A ben-

efit of the feature-function notation is that the parameters θ can all be

stored in a single parameter vector, rather than having separate storage

for each combination of ya

We will consider concrete examples of CRFs including parameter es-

timation and inference, in Section 4.2 when we review the linear-chain

CRF in detail.

3.4 Model Selection and Regularization

Many of the machine learning problems that we will encounter in this

dissertation are ill-posed and, if naively formulated, lack unique optimal

solutions. In particular, we must avoid overfitting which means that the

model manages to fit the particular properties of the training sample very

well, but does not generalize to unseen data. Model selection is a gen-

eral term for diverse techniques that are used for choosing a model that

will generalize well. An alternative approach is regularization, that is,

modifying the objective function in such a way as to avoid known bad pa-

rameter values. We discussed utilizing prior probabilities to similar ends

in Section 3.2.4. Regularization does often corresponds to formulating a

prior probability over the space of possible parameter values, but this is

not universally true. A general introduction to model selection and regu-

larization can be found in [Alpaydin, 2004]

Next we review model selection with Minimum Description Length [Ris-

sanen, 1989], and then we discuss L1 and L2 regularization.

3.4.1 Minimum Description Length (MDL)

The Minimum Description Length principle [Rissanen, 1987, 1989] ar-

gues that the useful information of a data set is achieved by a model that

can maximally compress its description length. The description length
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is a concept from information theory, related to how to communicate in-

formation over some channel and then reproduce it exactly at the other

end [Shannon, 1948, McEliece, 2004]. Intuitively, one can think of MDL

as a formalization of the idea of Occam’s razor: Choose the simplest pos-

sible explanation for a given data set [Grünwald, 2005]. MDL then for-

malizes the notion of simplicity. MDL is closely related to the notion of

Kolmogorov complexity [Kolmogorov, 1965] which defines the complexity

of an object as the length of the minimal program that produces it as out-

put. Kolmogorov complexity is, however, generally uncomputable while

MDL is often efficiently computable.

MDL has been applied in several instances for unsupervised learning

of morphology [Brent, 1993, de Marcken, 1996, Goldsmith, 2001, Creutz

and Lagus, 2002, 2005a, 2007, Poon et al., 2009], usually by employing

the two-part code [Grünwald, 2005]. The two-part code is characterized

as a “crude” MDL by Grünwald [2005]. Since the later, more “refined”

approaches have not been applied to learn morphology, we present here

only the two-part code variant.

Minimum Description Length with Two-part Code

The goal of minimum description length with a two-part code is to choose

the most appropriate model from a class of alternative models. MDL the-

ory suggests that the best model p(x|θ), where θ are the model param-

eters, is the one for which the combined description length of the model

and the data given the model is minimized:

θMDL = argmin
θ

L(θ) + L(x|θ) (3.46)

We need to define the code-length functions L() for both the model and

the data given the model.

Following the presentation by Grünwald [2005], given a random vari-

able X with the distribution p(x) it is possible to construct a prefix-code

whose code-length is − log p(x). Analogously, given some model p(x|θ)
with the parameters θ, we can encode observations of X with the coding-

length − log p(x|θ). This latter expression assumes that both the sender

and receiver know the model class and the parameters θ. Minimum

description length theory suggests that when employing two-part codes

one should metaphorically start by sending the encoded model, expressed

with some appropriate code. The code-length of the model is given by

− log p(θ), where the distribution of the parameters p(θ) is formulated

by the modeller, however, with the general aim of expressing the model
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parameters as densely as possible. For example, encoding a categorical

distribution (Section 3.2.2) is a question of encoding the number of dis-

tinct outcomes (and their labels if that is important) as well as the counts

for each outcome. With these numbers transmitted the receiver can re-

construct the model and then employ it in decoding the data.

Relation of the Two-part Coding MDL and Maximum a Posteriori
Estimation

To summarize the previous section we can see that the objective optimized

in minimum description length with a two-part code is the combined code-

length of the model and the data encoded with the model:

L(θ) = − log p(θ)− log p(x|θ) (3.47)

Minimizing the objective function in Expression (3.47) w.r.t. the param-

eters θ is equivalent to maximizing − exp(L(θ)), since the exponential

function is monotonic. We can, therefore, see that minimizing Expression

(3.47) above is equivalent to a maximum a posteriori (MAP) estimation

problem:

θ̂MAP = argmax
θ

p(θ)p(x|θ) = argmax
θ

p(θ|x) (3.48)

The second equivalence follows since by Bayes’rule p(θ|x) = p(θ)p(x|θ)
p(x) , and

the normalization with p(x) is unaffected by θ.

In other words, the two-part code minimum description length optimiza-

tion problem is equivalent to a Maximum a Posteriori estimation problem

with a particular prior p(θ) that is derived from a coding scheme for the

model parameters θ.

3.4.2 Regularization

Regularization refers for a collection of techniques that control overfitting

by favoring certain parameter values over others. The origins of regular-

ization are in numerical problems but particular regularizers can also be

given a probabilistic interpretation and be utilized in probabilistic models

(see e.g. Tibshirani [1996]).

Regularization modifies the optimization problem of a parameter es-

timation method, such that if the unregularized method optimizes the

function l(D,θ), where D is a supervised or unsupervised data set. The

regularized objective is then:

f(D,θ) = l(D,θ) + λr(θ), (3.49)
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where λ is a scalar the controls the regularization cost, and r(θ) is a

function of the parameters. Two common ones are L1 regularization,

r(θ) =
∑

j |θj |, and L2 regularization, r(θ) =
∑

j θ
2
j . These regularizers

can be given a probabilistic interpretation if l(D,θ) is a likelihood func-

tion and r() can be interpreted as defining a prior p(θ) over the parameter

values. In that case, regularization corresponds to Maximum a Posteri-

ori estimation. In particular, the L1 and L2 regularizers correspond to

double exponential and Gaussian prior distributions, respectively [Tib-

shirani, 1996].

3.5 Levenshtein distance

Levenshtein distance is a metric that measures the distance between two

strings s and t by the amount of edit operations needed to change one

string into another [Levenshtein, 1966]. Originally, the strings considered

were binary, but the algorithm can be generalized to arbitrary character

sets.

Levenshtein distance can be calculated efficiently using a dynamic pro-

gramming algorithm and the edit operations are insertion, deletion and

substitution. The algorithm constructs a two-dimensional matrix C, such

that:

Ci,0 = i (3.50)

C0,j = j (3.51)

Ci,j =

⎧⎨
⎩

Ci−1,j−1 if si = tj

1 +min(Ci−1,j , Ci,j−1, Ci−1,j−1) otherwise
, (3.52)

where the first two steps initialize the cost based on using only insertions

or deletions, respectively. The final step then recurses over the strings

and either notices that the strings are equivalent, and if they are not it

chooses greedily the cheapest edit in the current position (see e.g. Navarro

[2001], section 5.1.1 and 5.1.3).

It is straightforward to add a weight to the different operations. In the

initialization steps, the cost of insertion and deletion are multiplied. In

the recursion step, the addition with 1 is replaced with the cost of the

locally least expensive operation.
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4. Related Segmentation Methods

This section presents two central segmentation methods that will be ap-

plied or extended in the later chapters. First, we present Morfessor, an

unsupervised method for morphological segmentation in Section 4.1. In

Section 4.2 we then present linear-chain conditional random fields [Laf-

ferty et al., 2001] for segmentation problems.

4.1 Morfessor

Morfessor is a family of methods for morphological segmentation. A com-

prehensive overview of all the methods within the same framework, as

well as their coherent naming, is presented by Creutz and Lagus [2007].

A key property of Morfessor is the modeling of full concatenative morphol-

ogy, in contrast to much of the previous unsupervised work that focused

on only on affixing (see e.g. [Déjean, 1998, Schone and Jurafsky, 2000,

Goldsmith, 2001]). For this reason, Morfessor is well suited to morpholog-

ically rich, highly agglutinative languages, such as Finnish or Turkish.

Generally, the Morfessor methods employ generative probabilistic models

that generate an observed corpus of words from a morph lexicon, that is

a lexicon of stored morphological units. The methods produce the desired

morphological segmentation by formulating the problem in such a way

that the model generates the observed corpus through a latent morpholog-

ical analysis variable that can trivially be converted into a segmentation.

The Morfessor variants employ different parameter estimation methods;

however, as is typical for latent variable models, they must all infer both

a morphological analysis of the corpus and the model parameters.

In this dissertation we will work extensively with the earliest Morfessor

variant, namely Morfessor Baseline [Creutz and Lagus, 2002] and, there-

fore, it will be the focus of the presentation in this chapter. We also em-
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ploy Morfessor Categories-MAP [Creutz and Lagus, 2005a] as a reference

method and for feature extraction. The other Morfessor variants, namely

Baseline-Length [Creutz, 2003] and Categories-ML [Creutz and Lagus,

2004] are not employed in our work. Consequently, our presentation will

begin in Section 4.1.1 from Morfessor Baseline, which will be presented in

detail. Then, in Section 4.1.2 we will present Morfessor Categories-MAP

by contrasting it to Morfessor Baseline.

Morfessor Baseline and Morfessor Categories-MAP are both formulated

as a maximum a posteriori (MAP) optimization problem. Because of our

focus on Morfessor Baseline, and to state explicitly which variables are

observed and which are latent we will employ a different notation than

Creutz and Lagus [2007]. We denote the observed training data consisting

of words as U = {x(i)}Ni=1, the latent morphological analysis of each word

string as Z = {z(i)}Ni=1, and the model parameters as θ. The training

data words are strings, such that x(i) ∈ Σ∗. In this notation the problem

can be formulated as follows. First, each training word is assumed to be

generated independently:

p(U ,Z,θ) =
N∏
i=1

p(x(i), z(i),θ) (4.1)

Then, the joint distribution is factored as follows:

p(x(i), z(i),θ) = p(x(i)|z(i),θ)p(z(i))p(θ), (4.2)

where we first factor using the product rule, and then assume that the

latent analysis z and model parameters θ are independent. Parameter

estimation is then based on maximum a posteriori inference:

θ̂MAP = argmax
θ

p(θ|U) (4.3)

By Bayes’ rule we get:

p(θ|U) ∝ p(U|θ)p(θ) (4.4)

It can be noted that the normalization is irrelevant for the maximization

in Expression (4.3).

4.1.1 Morfessor Baseline

In this section we discuss Morfessor Baseline [Creutz and Lagus, 2002,

2007]. The presentation follows Creutz and Lagus [2007], since some

model components were improved upon and some of the details missing

in the original publication [Creutz and Lagus, 2002].
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The Morfessor Baseline model consists of a single categorical distribu-

tion1 over morphs P (m|θ), where m and θ denote a morph string and

the parameters defining the probabilities for each morph, respectively. In

Morfessor Baseline, the latent morphological analysis z(i) of each word

x(i) is simply a segmentation. For example, for the word x(i) = ’coffee’,

the corresponding variable z(i) ranges over all segmentations, encoded as

a list of substrings of arbitrary length z(i) whose concatenation produces

x(i), where n = |z(i)| ≥ 1:

x(i) = z
(i)
1 ◦ z(i)2 ◦ · · · ◦ z(i)n , (4.5)

where ◦ denotes concatenation. Example segmentations include, [’cof’, ’fe’,

’e’], [’coffee’], and [’c’, ’offee’].2

Morfessor Baseline Likelihood

The likelihood assumes each word x(i) ∈ U is generated independently.

p(U|θ) =
N∏
i=1

p(x(i)|θ) (4.6)

Moreover, given a word x(i) with a segmentation z(i), the likelihood as-

sumes that each morph z
(i)
j is generated independently. However, the seg-

mentation z(i) is a latent variable and, therefore, needs to be marginalized

over to get the (marginal) likelihood:

p(x(i)|θ) = ∑
z(i)∈SEG(x(i)) p(x

(i)|θ, z(i))p(z(i)) (4.7)

p(x(i)|θ, z(i)) = ∏|z(i)|
j=1 p(M = z

(i)
j |θ), (4.8)

where SEG(x(i)) denotes the set of possible segmentations for the word

x(i). Generally, a uniform distribution is assumed for p(z). Consequently,

it will not affect subsequent optimization. In the next section we will

specify the details of the model parameters θ. Here, it is sufficient to

state that θ contains the parameters necessary to encode the categorical

distribution p(m|θ) over the set of all strings m ∈ Σ∗.

1Several of the publications refer to the distribution as multinomial. This is ap-
proximately true, but since the multinomial coefficient is not employed, strictly
speaking, a categorical distribution is employed
2For comparison to the notation in [Creutz and Lagus, 2007]: our segmentation
variable z(i) defines the sequence of morphs z

(i)
j corresponding to the original μi,

the string value of the variable z
(i)
j corresponds to form(μi), and our θ has no

exact correspondence but contains form(μi) as well as a parameter vector that
can be calculated from freq(μi).
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It can be noted that Expression (4.8) is non-normalized, as the varying

number of morphs |z(i)| in each analysis z(i) needs to be modeled for the

expression to sum to 1 (this is also pointed out by Virpioja [2012, Section

6.4.1.4]). In practice, this non-normalized expression has been employed

in Morfessor Baseline implementations.

Morfessor Baseline Prior

The Morfessor Baseline prior distribution is derived from the minimum

description length principle by utilizing the two-part code approach de-

scribed in Section 3.4.1. Intuitively, the prior is defined based on the idea

that one needs to transfer the observed corpus U as compactly as possible

to a receiver. To enable compression one first transmits a model p(x|θ) to

the receiver and then one transmits the data U = {x(i)}Ni=1 encoded with

the model. In practice, we are only interested in the code length and it

is defined by negative logarithm of a distribution p(θ). In two-part code

MDL the definition of p(θ) is for the modeller to decide, but it needs to be

defined in such a way that all the necessary parameters are included and

to produce as compact a code for the set of parameters as possible.

In the previous section we merely stated that θ defines the distribution

p(m|θ) over the set of all strings. However, this set is infinite and, there-

fore, not compact as well as impractical to work with. In Morfessor it is as-

sumed that p(m|θ) is sparse, such that for many substrings s it holds that

p(m = s|θ) = 0. Let m be the set of substrings s for which p(m = s|θ) > 0.

These are referred to as stored morphs, and together with their proba-

bility weight they form the morph-lexicon. Consequently, the distribution

can be represented by listing the set of substrings mk ∈M with a nonzero

probability and their probability weight φk. Then the model parameters

can be defined as θ = {M,φ}. The categorical distribution is given by:

p(m = s|θ) =
⎧⎨
⎩

φk if ∃mk ∈M s.t. mk = s

0 otherwise
(4.9)

It follows that the model becomes variable-length, depending on the num-

ber of morphs with nonzero probability. We now proceed to discuss the

details of the prior. To transfer the model we need to encode:

1. The number of morphs M = |M|, because the model is variable-length

2. For each stored morph mk, its string
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3. The probability values φk of each stored morph mk

For all these we must define a probability distribution from which we

can derive the code length as the negative logarithm of the probability.

Morfessor Baseline employs the following expression:

p(θ) = p(M)p(φ)
M∏
k=1

p(mk|c, l)M !, (4.10)

where it is assumed that each morph string is encoded independently,

whereas the probability weights φ are encoded jointly. The factorial of M

compensates for the fact that the same lexicon can be encoded in arbitrary

order, and the number of such orders is M !, and an efficient code can

utilize this fact. The effect of encoding the number of morphs M is very

small, so in practice it is ignored [Creutz and Lagus, 2007, Chapter 3.2].

The morph strings are transferred by first transferring the length of the

morph in characters, and then the characters themselves according to the

probability distribution:

p(mk|c, l) = p(l = |mk|)
|mk|∏
i=1

p(c = mki), (4.11)

where the length-distribution l and character probabilities c are hyper-

parameters that are thought to be known. The length-distribution p(l =

|mk|) can either be defined explicitly, for example by applying a gamma

distribution, or implicitly by adding an end of morph-character and gener-

ate it from p(c) [Creutz, 2003, Creutz and Lagus, 2005b]. The parameters

of p(c) are in practice estimated from the empirical character distribution

in the training set.

Next, the probability weights φk of each morph must be transferred.

Any distribution over the space of real numbers could be employed. Mor-

fessor takes an alternative approach. Firstly, this is because formulating

a distribution over real numbers is non-trivial.3 Secondly, a distribution

over real numbers does not utilize the specific properties of categorical

probability weigths 0 ≤ φk ≤ 1 and
∑K

k=1 φk = 1 to produce a maximally

compact code. In addition to utilizing these properties of φk, Morfessor

employs the further constraint that the probability weights φ will always

be Maximum Likelihood parameters corresponding to some latent seg-

mentation {z(i)}Ni=1. For a categorical distribution the Maximum Likeli-

hood parameters are given by the count nk/Nk for each event k, where

3Rissanen’s universal for positive numbers is one well-known alternative [Rissa-
nen, 1989]
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Nk =
∑K

k=1 nk. Note, that the counts of each morph can simply be counted

from a known {z(i)}Ni=1. Therefore, a prior distribution can be defined for

such counts rather than for the vector of real event probabilities φ. The

number of combinations of Mk numbers that add up to Nk is
(
Mk−1
Nk−1

)
. We

can thus define a distribution for the counts nk as:

p(φ) = p(n1, . . . , nM |Mk, Nk) = 1/

(
Nk − 1

Mk − 1

)
(4.12)

Finally, we discuss some properties of the presented prior. The effect

of this prior intuitively is to penalize lexicons that store many and long

strings. In practice, the generation of morph strings from p(mk|c, l) has

the largest effect on the objective function, thus favoring small lexicons

with short morphs. Similarly, coding of the probability weights φ in-

creases with growing morph token count Nk. The effect of the morph

lexicon size Mk is non-trivial. Expression (4.12) favors either small values

of Mk, that is close to 1; or large values of Mk, that is close to Nk. In sum-

mary, the prior will assign a penalty for adding morphs with nonzero prob-

ability to the model – adding parameters to the model and this penalty is

most strongly affected by the string length of the added morph.

Parameter Estimation

As presented in the previous section we have a maximum a posteriori es-

timation problem for a latent variable model with a prior that promotes

simplicity in the model. Generally, the standard choice for estimating

the MAP model of a latent variable model would be the Expectation-

Maximization (EM) algorithm (Section 3.2.4). For Morfessor Baseline,

EM cannot be applied in a straightforward fashion because the MDL-

based prior is non-continuous. In particular, the prior is only affected

by whether the probability p(m = s|θ) of a morph s is nonzero or exactly

zero.

Consequently, Morfessor Baseline employs a heuristic training algorithm

that greedily optimizes an approximation of the MAP objective. The al-

gorithm is shown as pseudocode in Algorithm 2, which is a more abstract

presentation of the one provided in [Creutz and Lagus, 2005b]. Although

not discussed in the original publications [Creutz and Lagus, 2002, 2007],

it is evident that this parameter estimation procedure does not optimize

the MAP objective in Expression (4.3) exactly. Instead, it optimizes a re-

lated objective function that is more amenable to local search. The opti-

mized objective function is based on the simplification that all probabil-

ity mass is focused in a single segmentation for each word Ẑ = {ẑ(i)}Ni=1.
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Given this assumption, the summing over all latent segmentations in Ex-

pression (4.8) reduces to merely summing over the single segmentation Ẑ,

and (4.8) reduces to:

θ̂BL = argmax
θ,Ẑ

N∏
i=1

p(x(i)|θ, ẑ(i))p(θ) (4.13)

This objective is then optimized in an iterative fashion. For each word

x(i) different segmentations ẑ(i) are attempted, and for each value of the

ẑ(i) the parameters θ are updated to their ML estimate given the cur-

rent segmentation Ẑ. Since ẑ(i) defines a segmentation of the input words

x(i), we can calculate the ML estimate for θ simply by counting the num-

ber of occurrences of each morph m in the segmentation ẑ(i). The local

search procedure chooses the segmentation z(i) such that it results in the

highest posterior probability and then the same procedure is applied to

the next word. All words are processed in random order. The procedure

is repeated for all words until the posterior probability given Ẑ, that is,∏N
i=1 p(x

(i)|θ̂, ẑ(i))p(θ̂) grows less than a pre-set threshold.

The training algorithm employs a parameter-binding approach that is

useful to avoid getting stuck in bad local optima. As stated previously,

the prior probability is only affected when the probability of a morph m

is set to exactly zero. This requires that the segmentation Ẑ does not con-

tain any instance of m. Discovering such analyses by processing one word

at a time is inefficient. Therefore, the analyses are bound together with

a hierarchical decomposition. Each word is either not split at all, or is

split in two parts. The two parts are then recursively either not split, or

split in two smaller parts, until further splits no longer produce a better

segmentation. During parameter estimation the segmentations ẑ(i) are

bound in such a way that when modifying the analysis of morph mk in

word x(i) all other analyses that contain mk at any level of the hierarchi-

cal decomposition are modified simultaneously. Consider, for example a

training set U = [’woodworker’, ’woodworkers’, ’wood’], and a current seg-

mentation where we have only split the second word Ẑ = [[’woodworker’],

[’woodworker’, ’s’], [’wood’]]. It is easy to see that such a segmentation can

be better than a no-split segmentation, as it allows for elimination of the

string ’woodworkers’ from the morph lexicon, and thereby increasing the

prior probability of the parameter values θ̂. In contrast, if we indepen-

dently split up the first word into [’wood’, ’worker’], then while we can

reuse the morph ’wood’ in two forms we, nevertheless, need to introduce

the previously unneeded morph ’worker’ into the lexicon. Depending on
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the exact word lengths and current model parameters, this may or may

not be a better analysis. Note, however, that when employing the param-

eter binding we would simultaneously split up also the other the instance

of ’woodworker’ in the second word. This latter approach allows for the

elimination of the morph ’woodworker’ from the lexicon, and therefore the

prior probability is improved. This parameter binding is achieved in Al-

gorithm 2 by the function call update_segmentations(Ẑ,m ← ẑmk) which

is interpreted such that the current segmentation of all words Ẑ is modi-

fied by replacing all instances of the morph m with ẑmk at any level of the

hierarchy.

The notation m<k..l> denotes the substring of m from character index k

to l.

Algorithm 2 The learning algorithm
Initialize segmentation Ẑ = {ẑ(i)}Ni=1 and model parameters θ̂

while
∏N

i=1 p(x
(i)|θ̂, ẑ(i))p(θ̂) increases sufficiently do

for x(i) ∈ U in random order do optimize(x(i))

end while

function optimize(m)

Zm ←
[
m
] ∪ [

(m<1..l>,m<(l+1)..|m|>) : l ∈ 1, ..., |m| − 1
]

for k = 1 . . . |Zm|
let ẑmk be the kth alternative segmentation in Zm

Ẑmk ← update_segmentations(Ẑ,m← ẑmk)

θ̂Ẑmk
← argmaxθ p(U|θ, Ẑmk) (ML estimate for θ given Ẑmk)

kbest ← argmaxk=1...|Zm|
∏

i=1 p(x
(i)|θ̂Ẑmk

, ẑ
(i)
mk)p(θ̂Ẑmk

)

Ẑ← Ẑkbest

θ̂ ← θ̂Ẑmkbest

if ẑmkbest involved a split at l then optimize(m<1..l>);

optimize(m<(l+1)..|m|>)

As the algorithm considers, in the worst case, |x(i)| − 1 potential splits

for each form, its worst case time complexity per batch is O(E(i){|x(i)|}2N).

The worst case is realized when each subsequent split for each word oc-

curs at either end of the word, such that recursive reanalysis is applied to

a morph whose length is only one character shorter than at the previous

level. The number of batch passes over the data is typically between 3

and 11.
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Inference

Subsequent to training, the model can be applied to analyze new word

forms x∗. By utilizing a variant of the Viterbi algorithm, we can find the

most probable segmentation for a word efficiently by utilizing dynamic

programming.

ẑ∗ = argmax
z∈SEG(x∗)

p(z|x∗,θ) = argmax
z∈SEG(x∗)

p(x∗|z,θ), (4.14)

where the latter equivalence is derived using Bayes’ rule: p(z|x∗,θ) =

p(x∗|z,θ)p(x∗)/p(z), and p(x∗) does not vary with z, and we assume p(z) is

non-informative (uniform).

For inference, the Morfessor Baseline model is equivalent with a Hid-

den Markov Model where each state (morph) has a variable length. Such

a model is a special case of a semi-Markov model (see e.g. [Yu, 2010]).

Here, the observation is the sequence of |x∗| letters that form the word

x∗ and the states are the morphemes of the word. As the states can emit

observations of different lengths, a grid g of length |x∗| is required to fill

with the best unnormalized probability values α(gi) and paths. As the

morphs are generated independently, the model is 0th order semi-Markov

model and the grid is a one-dimensional table. The grid position gi indi-

cates that the first i letters are observed. At each time step, we proceed

with one letter and insert the value α(gl) = maxk α(gk)P (m = x∗
<k..l>|θ)

and path indicator ψ(gl) = argmaxk α(gk)P (m = x∗
<k..l>|θ) to the grid. We

can arrive at gl from any of the positions gk between g1 and gl−1: The let-

ters between k and l form the next morph x∗
<k..l>. For the substrings that

are not part of the lexicon, we allow for adding them by assigning a proba-

bility comparable to what would result from adding them into the lexicon.

The length of the final grid position is, therefore, |x∗|, and consequently

the resulting time complexity is O(|x∗|2) for the algorithm.

Discussion

The benefit of the heuristic algorithm is that it optimizes the likelihood

and prior part of the objective function in parallel. The downside is that

although the algorithm obviously converges to a local optimum of the mod-

ified objective function in Expression (4.13) it has not been shown how

closely related this is to a local optimum of the original MAP objective in

Expression (4.3). Intuitively, with the prior chosen, words tend to have

few segmentations with high probability, and therefore, the approxima-

tion may be fairly close to the original objective. However, regardless

of the intrinsic properties of the approximation, the performance in the
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actual morphological segmentation task has, nevertheless, been demon-

strated empirically in the original publications [Creutz and Lagus, 2002,

2007].

A key aspect of the Morfessor Baseline method are the roles played by

the prior and the likelihood in the decision to segment or not to segment.

Generally, it can be seen that the likelihood prefers to store whole words

rather than splitting them up, as the pieces need to be generated inde-

pendently, and that is costly in general. In contrast, the prior prefers to

store as few morphs as possible, especially longer ones. The method will

segment to an amount that is a compromise between these two factors.

We can also make a connection between Morfessor Baseline and the clas-

sical method of Harris [1955] for morphological segmentation, based on

local maxima in letter successor variety. On an abstract level this corre-

sponds to splitting words at positions of high uncertainty. If we consider

the Morfessor Baseline method we can see that we ask the method to find

a sequence of independent morphs and force some amount of splitting by

assigning a cost for each stored morph. Despite looking different on the

surface, it can be noted that this is essentially a latent variable version of

a very similar idea. Instead of finding positions of high uncertainty we ask

for morphs with strong internal dependence, because morphs are forced

to be generated independently, and therefore the only remaining strategy

for modeling dependence is to avoid segmenting strings with high internal

dependence.

A further connection can be made to the morphological segmentation

methods in the adaptor grammar framework (see e.g [Goldwater, 2006,

Johnson et al., 2007]). Adaptor grammars define a two-step process for

the generation of discrete variables. The first step, known as the gener-

ator, produces the entities under study - words, morphemes, syllables or

some other suitable unit. The second step, the adaptor, then produces a

power-law distribution over the units by either generating a new sample

from the generator, or generating a previously generated entity with a

probability proportional to how many times said entity was produced in

the past. The correspondence is not exact mathematically, but the units

stored in the adaptor are similar to the stored morphs in the Morfessor

Baseline lexicon, and the generator is similar to the generation of the

units from letters in the Morfessor Baseline prior. Unlike Morfessor, how-

ever, the adapted units can be easily combined into probabilistic gram-

mars, and there is no requirement that the generator needs to operate on
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letters, but a wide range of probabilistic processes can be utilized. Conse-

quently, adaptor grammar models are typically more detailed than those

employed in the Morfessor-framework. This flexibility is enabled by utiliz-

ing general inference procedures, particularly Bayesian model averaging

techniques, such as Gibbs sampling. The general inference algorithms

can be adapted to different models without requiring parameter estima-

tion and inference procedures to be redeveloped completely.

4.1.2 Morfessor Categories-MAP

In this section we review Morfessor Categories-MAP and contrast it to

Morfessor Baseline [Creutz and Lagus, 2002, 2007]. Morfessor Categories-

ML Creutz and Lagus [2004] and Categories-MAP [Creutz and Lagus,

2005a] differ from Baseline in several fashions. Firstly, rather than the

unlabeled segmentation of Morfessor Baseline, the latent analysis z(i) is

a labeled segmentation where each segment belongs to one of three mor-

photactic categories: prefix, stem, and suffix (tagged as PRE, STM, SUF,

respectively). For example consider the analysis of unavoidable:

PRE STM SUF

un avoid able

The observed words are produced by a hidden Markov model with states

corresponding to these categories. Unlike Morfessor Baseline, in Categories-

ML the model complexity is controlled heuristically. In contrast, and

similarly to Morfessor Baseline, Categories-MAP employs a formulation

where the model complexity is managed by employing a minimum de-

scription length prior over a morph lexicon. However, the details of this

lexicon differ from Morfessor Baseline. Whereas Morfessor Baseline em-

ploys a hierarchical decomposition of the training words only for parameter-

binding during parameter estimation, Morfessor Categories-MAP employs

hierarchical decomposition also in the prior distribution, that is a morph

can be stored by referring to smaller morphs.

Finally, the parameter estimation method employed is different from

Morfessor Baseline. Similarly to the greedy optimization method pre-

sented in Section 4.1.1 Categories-MAP employs a heuristic algorithm

which optimizes the objective function utilizing a single analysis Ẑ of the

training data. There are several differences between the training algo-

rithms, which we will, however, not discuss in more detail as they are not

relevant for the purposes of this dissertation.
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...

...

Figure 4.1. Factor graph corresponding to the linear-chain CRF Model. White and gray
circles denote output and input variable, respectively

4.2 Segmentation with Linear-Chain Conditional Random Fields

In this section we present linear-chain conditional random fields (CRF),

a framework of probabilistic models for segmentation and sequence label-

ing. We will later apply linear-chain CRFs to morphological segmentation

in Section 6.5.

As presented in Section 3.3.2, conditional random fields are a framework

for conditional probabilistic models where a set of task-specific feature

functions are used to define a conditional probability distribution between

structured input and output variables.

Linear-chain CRFs are conditional models of sequences, and the out-

put variables Y form a linear-chain, similarly to the state sequence in

a hidden Markov model (Section 3.3.1). The factor-graph for the linear-

chain CRF is shown in Figure 4.1. As the dependencies between the input

variables x are not modeled by the CRF, the factors can depend on any

position in the input. The relation to HMM is not only superficial, but it

turns out that the inference algorithms used for the HMM, the Viterbi al-

gorithm and the Forward-Backward iteration, are applicable also for the

linear-chain CRF.

The linear-chain CRF models the dependencies between the label se-

quence y = (y1, y2, . . . , yT ) and an input sequence x = (x1, x2, . . . , xT ).

Each output variable yt takes values from the same set yt ∈ Y; anal-

ogously xt ∈ X . Consequently, Expression (3.44) for the general CRF

simplifies into:

p (y |x,θ) = 1

Z(x)

|x|∏
t=2

exp
K∑
k=1

(
θk

�fk(yt−1, yt,x, t)
)
, (4.15)

Z(x) =
∑
y

|x|∏
t=2

exp
K∑
k=1

(
θk

�fk(yt−1, yt,x, t)
)
, (4.16)

where t indexes the position in the sequence, θ denotes the model pa-

rameter vector, and fk is a vector-valued feature function. The model

parameter vector θ is estimated discriminatively based on a training set
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of exemplar input-output pairs D = {(x(i),y(i))}Ni=1.

In order to perform segmentation the label set Y must be chosen, such

that the labeling specifies a segmentation. There are several possible la-

bel sets that can be employed, as long as they are isomorphic to a seg-

mentation. This is necessary, since we must be able to transform the

segmentations in the annotated training data into the sequence-labeling

format, and vice versa when applying the method to new data.

The minimal labeling choice for segmentation is marking the begin-

ning of segment B and the middle of segment M (often also called In-

side). An example segmentation of the Finnish word autoilta (from cars)

(auto+i+lta) is given by:

a u t o i l t a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
B M M M B B M M

One can define more fine-grained labels, for example assigning a spe-

cial label for the second position in a segment B2, or a special label S

for segments of length 1. A more detailed label set captures increasingly

detailed structure at the cost of potentially overfitting the model to the

training data, as statistics become sparser with larger label sets. Con-

sequently, the optimal label set is task specific, depending on which po-

sitions in the segmentation differ in a predictable fashion, and data-set

specific, as small data sets can be insufficient to learn detailed statistics.

4.2.1 Inference

The conditional random field defines a probability distribution for the la-

bel sequence conditioned on the input sequence. The most probable se-

quence can be calculated as:

ŷ∗ = argmax
y′

p(y′|x∗,θ) = argmax
y′

1

Z(x∗)

|x|∏
t=2

exp
K∑
k=1

(
θk

�fk(y′t−1, y
′
t,x

∗, t)
)
,

(4.17)

where we can once again ignore the normalizing constant Z(x∗) as it does

not affect maximization. It can be seen that regarding the y variables this

expression is structured in the same way as Expression (3.38) for hidden

Markov models. Consequently, this expression can also be calculated effi-

ciently with the Viterbi algorithm, utilizing the following iteration:

δt(j) = max
i∈Y

exp
K∑
k=1

(
θk

�fk(i, j,x∗, t)
)
δt−1(i), (4.18)
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where δ0(i) = 1. The backward iteration is then equivalent to the one for

HMMs, presented in Section 3.3.1.

4.2.2 Parameter Estimation

The optimal parameters for linear-chain conditional random fields cannot

be calculated in closed form for a given data set D = {x(i), y(i)}Ni=1, in con-

trast to the HMM. Instead, numerical optimization methods are utilized.

Parameter estimation can be performed by maximizing the conditional

likelihood or alternatively by classification-based methods, such as the

averaged perceptron algorithm [Collins, 2002].

Maximum Likelihood The function l(θ) to be optimized is the conditional

log likelihood combined with a regularization term. This can be seen as

performing Maximum a Posteriori inference with a prior p(θ):

l(θ) =
N∑
i=1

log p(y(i)|x(i),θ) + log p(θ) (4.19)

=

N∑
i=1

|x(i)|∑
t=1

K∑
k=1

(
θk

�fk(y
(i)
t−1, y

(i)
t ,x(i), t)

)
−

N∑
i=1

logZ(x(i))− log p(θ)

(4.20)

A particularly attractive property of the CRF model is that the objective

function is convex, and therefore every local optimum is also a global

optimum (see e.g. Sutton and McCallum [2006]). Gradient-based methods

are often employed, including stochastic gradient descent. Assuming L2-

regularization with a Gaussian prior and a free parameter σ2 to control

the regularization, the gradient is given by:

δl

δθk
=

N∑
i=1

|x(i)|∑
t=1

(
f(y

(i)
t−1, y

(i)
t ,x(i), t)

)

−
N∑
i=1

|x(i)|∑
t=1

∑
y,y′

fk(y, y
′,x(i)

t , t)p(y, y′|x(i)
t ,θ)

−
K∑
k=1

θk

σ2
(4.21)

The first and the third terms are easy to compute. To calculate the

marginal p(y, y′|x(i)
t ,θ) in the second term requires a summation over

all sequences y. This summation can, however, be performed with the

forward-backward iteration explained for hidden Markov models in Sec-

tion 3.3.1. For linear-chain CRFs the forward and backward iterations
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become

αt(j) =
∑
l∈Y

f(l, j,x
(i)
t , t)αt−1(l) (4.22)

βt(j) =
∑
l∈Y

f(j, l,x
(i)
t , t)βt+1(l) (4.23)

The normalizing constant Z(x), required to compute the likelihood is

given by
∑

l∈Y α|x(i)|(l) or β0(l). The marginal required for the gradient

can then be calculated from the forward and backward variables:

p(yt, yt−1|xt,θ) ∝ αt−1(yt−1)f(yt, yt−1,x
(i)
t , t)βt(yt) (4.24)

Several gradient methods have been proposed for CRFs, including stochas-

tic gradient descent and batch gradient. It is also popular to improve con-

vergence speed by utilizing Newton’s method that also takes into account

the Hessian, that is, the matrix of second-order derivatives. Since the

size of the Hessian is quadratic in the number of parameters in θ it, how-

ever, becomes infeasible to calculate it for a larger number of parameters.

Since CRFs often utilize many features this is a problem in practice. The

problem can be resolved by employing approximate second order methods,

such as limited-memory BFGS [Byrd et al., 1994].

Averaged Perceptron The averaged perceptron method for CRFs is an

adaptation of the averaged perceptron algorithm in classification [Rosen-

blatt, 1958, Freund and Schapire, 1999]. The averaged perceptron calcu-

lates the most probable analysis ẑ(i) for the ith training sample (x(i),y(i))

in the training data with the Viterbi algorithm. In case the model pro-

duces an error, that is, when ẑ(i) does not match the training data analysis

y(i), the parameters are updated:

θs = θs +

|x(i)|∑
t=1

fs(y
(i)
t+1, y

(i)
t ,x

(i)
t , t)−

|x(i)|∑
t=1

fs(ẑ
(i)
t+1, ẑ

(i)
t ,x

(i)
t , t), (4.25)

where θs is a single parameter in the parameter vector θ, and fs its cor-

responding feature function. This algorithm can be shown to converge to

zero training errors when a parameter vector allowing this exists. The

theoretical results for generalization error can be improved by averaging

θs between iterations [Freund and Schapire, 1999, Collins, 2002]. Conse-

quently, the resulting method is known as the averaged perceptron.

Benefits of the averaged perceptron compared to gradient-based meth-

ods to calculate maximum likelihood is that it only requires Viterbi it-

eration over the data. This results in a fast algorithm that is easy to
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implement. Moreover, it does not employ any hyperparameters, except

the number of passes over the training data.
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5. Unsupervised Learning of
Allomorphy

Morphological segmentation is well-suited for modeling agglutinative struc-

ture in word formation, where forms are constructed by concatenating

morphs. Examples of concatenative structure in English include learn–

learning where the present participle formed by adding an ing-suffix, as

well as strong–stronger where the comparative form is constructed by

adding an er-suffix. However, even languages that are mainly charac-

terized as agglutinative, often also contain fusional characteristics where

morphemes undergo non-concatenative changes in particular contexts.

Allomorphy refers to cases where an underlying morpheme-level unit has

two or more morph-level surface realizations. Consider these other com-

parative forms which contain non-concatenative structure, pretty–prettier,

white–whiter, and hot–hotter. Such fusional phenomena are problematic

for morphological segmentation. In particular, the segmentation is in-

capable of preserving all relevant information about the word. In the

segmentation hot+ter the connection to the lemma hot is preserved while

the connection to the affix er is lost, and vice versa for the segmenta-

tion hott+er. In principle, one could preserve both with the segmentation

hot+t+er, but this is unintuitive as it seems natural to think that the word

has two morphemes: one for the lemma hot and one for the comparative

form. Moreover, it is difficult to see what independent meaning the addi-

tional segment t would convey. In the presence of deletions, segmentation

becomes even less appealing. For instance, should the word whiter be

segmented as white+r or whit+er? Neither alternative preserves both the

stem and the suffix.

Generally, allomorphic variation ranges from minor changes to the al-

lomorphs, as in the above examples, to more severely non-concatenative

phenomena. For example, consider the inflection of strong verbs such as

bring–brought, or take-took for which no sensible segmentation can main-

65



Unsupervised Learning of Allomorphy

tain the connection between the instances of the stem. In extreme cases,

different word-forms of the same lexeme are entirely dissimilar, such as go

– went. Such suppletive cases are impossible to infer from orthographic

properties. In contrast, at the other end of the spectrum, there is allo-

morphic variation that despite being non-concatenative is, nevertheless,

somewhat regular. For example, the alternation between y and i is found

widely. Consider that fly–flier and pretty–prettier both employ it, despite

being different parts-of-speech. Such regularity is not unusual, perhaps

because the allomorphic variation is often influenced by factors that are

not morphological but, nevertheless, systematic, such as phonological or

orthographic regularities.

In this chapter, we discuss Allomorfessor, our novel extension that adds

non-concatenative modeling capabilities to Morfessor Baseline [Creutz

and Lagus, 2002, Creutz et al., 2007]. Allomorfessor was originally pro-

posed in Publication I and Publication II. Furthermore, we review litera-

ture related to the learning of non-concatenative morphological structure.

In particular, we focus on unsupervised learning in the presence of allo-

morphy, although some of the techniques may be applicable to the mod-

eling of other non-concatenative structure. Allomorfessor extends Mor-

fessor Baseline with string transformations to model stem allomorphy in

addition to concatenative structure.1

This chapter is structured as follows. In Section 5.1 we define the learn-

ing task. Then in Section 5.2 we review the literature on morphology

learning in the presence of allomorphy. In Section 5.3 we review the Allo-

morfessor extension following Publication I and Publication II. In Section

5.4 we review the empirical results of Allomorfessor. Finally, in Section

5.5 we discuss the implications of the work and possible future directions.

5.1 Learning Task

In Section 2.2.1 we defined morphological analysis as the task of mapping

a surface word to a sequence of morphological tags, either morphemes or

tags based on morphosyntactic categories. This entails lemmatization and

the identification of affixes with the same grammatical function. Here, we

consider the role of allomorphy in the task of morphological analysis. Be-

cause an unsupervised method does not know the set of morphological

1Publication I and Publication II use the term mutation for string transforma-
tions. We change the terminology here in the interest of accuracy.
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morphemes

morphs

string transforms

pretti+er ypretty i+er

PRETTY +ER FLY PLY

ply

(y|i) (y|i)

Figure 5.1. Illustration of non-concatenative morphological analysis with string trans-
formations utilized to join allomorphs together. The string transformations
follow the format presented in Section 5.3.1.

tags, that is lemmas and affix tags, it cannot return these directly. In-

stead the task becomes to identify latent morphs, the surface forms of

morphemes, and grouping together all morphs that are allomorphs of the

same morpheme. For example, we need to discover that the morph fli

in the segmented word fli+er refers to the same morpheme as the single

morph in the word fly. In contrast to the segmentation part that has been

studied widely, the grouping of allomorphs has received less attention.

Consequently, in this chapter, we will mainly focus on this latter part.

It can be noted that there is a considerable overlap with this learning

problem and the task of stemming which does not identify the true lemma

of a word but returns a stem that is shared among word-forms of the

lexeme.

The central task of learning allomorphy is to identify a similarity or

pairwise relation that holds for all allomorphs of the same morpheme, but

not for other morphs. In other words, for stems, rather than finding the

true lemma of a derived form we need to identify features that relate the

word-forms of the same lexeme. In principle, the relation can be identified

by several methods. We will employ string transformations t(x) which re-

late forms by transforming them into one another. In this framework, two

words x1 and x2 can be related with a transformation for which x2 = t(x1).

Unless the class of transformations is constrained in some fashion, how-

ever, a transformations exist between any pair of strings (x1,x2), and

therefore the selection of an appropriate class of transformations is a cen-

tral modeling decision.

The task, as illustrated in Figure 5.1, is then to find a graph of units,

such that the units are morphs and they are related by transformations

if and only if they are allomorphs of the same morpheme. Consequently,

the abstract morphemes can be recovered by replacing all morphs in the

graph with a single, shared tag.
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This approach addresses some of the most frequent failings of morpho-

logical segmentation. However, it does not address all aspects of morpho-

logical analysis. What is left out of scope is syncretism, where the same

surface morph can be produced by more than one morpheme, as well as

the more exotic situation where a single morph is produced by more than

one abstract morpheme. For example, the plural form men is analyzed

as manN +PL despite not containing more than one morph. This latter

case, however, is quite rare in the languages we will study, and it is not

merely a problem for the presented string transformation model, but also

for morphemic modeling in general.

5.2 Literature Review

In this section we review literature related to the unsupervised learning

of morphology in the presence of allomorphy. As discussed in Section 2.1,

allomorphy entails that the same abstract morpheme is realized as sev-

eral distinct surface morphs. Meanwhile, a segmentation model is based

on the simplifying assumption that a surface morph maps one-to-one to

abstract units. Although it is well known that this is merely an approxi-

mation, it can be a reasonable starting point, especially if the language

in question mostly employs concatenative structure [Goldsmith, 2001].

When moving beyond segmentation it becomes necessary to address the

mapping between abstract and surface units in some way.

It turns out most work on this problem can be seen operating in a frame-

work where there are two separate sub-problems: unit-identification and

relating the units. We will review these approaches in Section 5.2.1. Then,

in Section 5.2.2 we review alternative approaches. Finally, in Section 5.2.4

we present a concluding discussion of the the presented literature.

5.2.1 The Two-Step Approach

Most work in the literature on unsupervised learning of morphology in

the presence of allomorphy follows the following schema:

1. Identify morphological units, e.g. morphs, stems, or base forms

2. Identify morphologically related units
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We can see that step 1 can be implemented with similar or even iden-

tical techniques as morphological segmentation and, therefore, its algo-

rithmic characteristics are familiar. In contrast, step 2 requires the as-

sociation between units. Naively implemented, one would then consider

the relation of every segment with every other segment. If V is the num-

ber of distinct units, then there are V (V − 1)/2 pairs of these units and,

consequently, naive processing of them requires computation time O(V 2).

Moreover, for a single unit only a handful of the other units are truly re-

lated. Although the truly related ones are usually orthographically simi-

lar, the converse is not always true, and unrelated forms can also display

orthographic similarity. For example, consider the forms pretty, prettier

and pretend, where the third form is quite similar orthographically de-

spite not being related. Therefore, a central problem is deciding whether

two orthographically similar forms are truly morphologically related, or

whether the similarity is merely spurious.

The early work on learning allomorphy [Yarowsky and Wicentowski,

2000, Schone and Jurafsky, 2000, 2001, Baroni et al., 2002] focuses on

the problem of identifying morphologically related word pairs. To this

end, they utilize word features including orthographic similarity, word

contexts, and word frequencies. Such an approach can be seen as by-

passing step 1, operating directly on word forms, and focusing on step 2.

Although, for example, Yarowsky and Wicentowski [2000] report impres-

sive accuracies for English, applying these methods to languages with

richer morphologies is nontrivial.2 The applicability of these methods de-

pends crucially on the assumption that the words under study are fre-

quent enough to enable the calculation of the employed statistics. For

morphologically rich languages, however, the central problem for statis-

tical modeling in general is precisely that one cannot observe all forms

even in a very large corpus. Furthermore, they assume a single related-

ness when a complex compound may very well have several, one for each

morph in the compound.

Later work also includes step 1 and instead of operating directly on the

input words they, rather, try to relate latent morphs or stems [Goldwater

and Johnson, 2004, Goldsmith, 2006, Demberg, 2007, Dasgupta and Ng,

2007, Naradowsky and Goldwater, 2009, Lignos et al., 2010, Lignos, 2010].

We follow this line of work in Publication I and Publication II. Operating

2It should also be noted that the approach by Yarowsky and Wicentowski [2000]
is not unsupervised, but employs several dictionary-based sources of supervision
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on the morph level, however, makes the problem much more challenging.

Not only must we identify relations between observed words, but between

latent morphs. In other words, we must both segment each word form

correctly and then for the correct morph identify its related morphs. A

limitation in most of the suggested methods for this task is that they do

not model general concatenative morphology, including, e.g., compound

words. Goldwater and Johnson [2004], Goldsmith [2006], Naradowsky

and Goldwater [2009] focus on stem–suffix morphology. Some approaches

move beyond stem–suffix morphology, but are still more constrained than

full concatenative morphology. Bernhard [2009], Lignos et al. [2010] al-

low multiple suffixes but only one stem, whereas Dasgupta and Ng [2007]

allow also several stems, but not affixes between stems.

When working with morphologically rich languages and full concatena-

tive morphology, the sparse statistics are a key part of the problem. As an

illustration we can take the work in Lignos [2010] that extends [Lignos

et al., 2010] to allow for missing intermediate forms of a compound. The

results are mixed, giving increased scores for Finnish and Turkish, but

reduced scores for English and German.

5.2.2 Alternative Approaches

Before we review in more detail the work closest to ours we will dis-

cuss some alternative approaches. Some authors have suggested that

only step 2 is important and one should forgo abstract morphemes and

only model the morphological relations between words [Neuvel and Fu-

lop, 2002]. A benefit of this view is conceptual elegance. Allomorphy is

not an additional phenomenon to model, but both concatenative and non-

concatenative structure is modeled by transformations. However, we note

that the abstract morphemes can also be interpreted as defining a relation

graph with the words as nodes and edges defined by shared morphemes.

Furthermore, learning the concatenative structure has received more at-

tention and is therefore more mature. An interesting intermediate case is

the method presented by Bernhard [2009] which takes the observed rela-

tions between words as the starting point but in the end learns a repre-

sentation that can be output as abstract units. In contrast to the two-step

approach where morphs and their relations are latent, Bernhard [2009]

considers the relations between word strings as observed data, allowing

all transformations except the very least frequent ones. The problem of

discovering latent morphemes is then performed by clustering the graph
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defined by the relations, assuming that word-forms of lexemes should

form densely connected components.

Another alternative approach is to not depend on exact string matches

when identifying units in step 1. Many allomorphs are similar if not iden-

tical, such as hot and hott. As a further example, consider the Finnish

inessive suffix ssA, where the A is realized by different vowels to main-

tain vowel harmony within the word, for instance auto+ssa (in car) and

kylä+ssä (in village). The suffix could elegantly be modeled by a unit that

matches two s-characters followed by either a or ä. Such an approach is

taken by Demberg [2007] who explicitly learns character classes to model

umlauts. A different approach to learning non-exact orthographic fea-

tures is employed by De Pauw and Wagacha [2007] who apply a feature-

based classifier to learn discriminative word features. The classifier is

trained in such a way that the target class is the word identity and the

input features are word substring-features. The output probabilities of

the classifier for a given input word can then be interpreted as express-

ing word similarity. They report results on a small data set where the

method manages to find meaningful connections between words that are

related but quite distant orthographically. Although learning word fea-

tures based on an auxiliary prediction task has recently been successful

in several other natural language processing tasks [Turian et al., 2010,

Collobert et al., 2011, Al-Rfou et al., 2013], in this context the approach

has, however, not been developed further.

Recently, Botha and Blunsom [2013] proposed a model based on Adaptor

Grammars for non-concatenative morphology. The modeled structure is,

however, related to templatic morphology as found in, for example Arabic,

rather than allomorphic variation.

A recent related line of work is the supervised and semi-supervised

learning full morphological paradigms from online dictionaries and pre-

dicting all the morphological form of unseen lexemes [Dreyer and Eisner,

2011, Durrett and DeNero, 2013, Ahlberg et al., 2014]. The key differ-

ence to our work is that here it is assumed that the morphosyntactic cat-

egories, such as 1st person plural, are known a priori, and that all forms

of a particular word are observed at training time. What is, however, sim-

ilar with unsupervised learning of allomorphy is the modeling of related

forms by utilizing string transformations [Dreyer and Eisner, 2011]. In-

teresting departures from string transformations that could be applied to

unsupervised learning of allomorphy as well includes the application of

71



Unsupervised Learning of Allomorphy

log-linear modeling for the dependency between word forms [Dreyer and

Eisner, 2011] as well as modeling all forms using a generic schema ex-

tracted from the data [Ahlberg et al., 2014]. In the work by Dreyer and

Eisner [2011], rather than relating words by explicit transformations, a

model of the joint distribution between words is constructed. The joint

distributions is defined over string pairs, where the strings are of two

particular forms of the same verb. The model is based on a log-linear

model that allows the utilization of rich features that operate on the two

aligned strings. The joint distribution is then formed by marginalizing

over alignments.

5.2.3 Differences in Methods Identifying Latent Relations
Between Latent Units

We will now review in more detail the work employing the two steps in-

troduced in Section 5.2.1. The methods can be categorized based on the

following distinctions.

Procedural or Model-based Most methods for morphological learning of

allomorphy are procedural rather than employing an explicit model or ob-

jective function. Procedural methods include [Demberg, 2007, Dasgupta

and Ng, 2007, Lignos et al., 2010, Lignos, 2010]. Explicitly model-based

approaches include our work in Publication I and Publication II as well as

[Goldwater and Johnson, 2004, Goldsmith, 2006, Naradowsky and Gold-

water, 2009]. Bernhard [2009] employs an explicit objective function for

the intermediate graph clustering, but not when deriving the final output

representation.

Extension of Segmentation or Purely Transformation-Based Most work

on unsupervised learning of morphology in the presence of allomorphy is

based on extending an existing method for unsupervised learning of mor-

phological segmentation. Goldwater and Johnson [2004] and Goldsmith

[2006] extend Linguistica [Goldsmith, 2001], Demberg [2007], Dasgupta

and Ng [2007] extend the segmentation model by Keshava and Pitler

[2006], and Naradowsky and Goldwater [2009] extend the segmentation

model of Goldwater et al. [2006]. Similarly, our work in Publication I

and Publication II extends Morfessor [Creutz and Lagus, 2002, Creutz

et al., 2007]. In contrast, Bernhard [2009], Lignos et al. [2010], Lignos

[2010] are entirely based on string transformations and model concatena-

tive structure merely as a special case.

72



Unsupervised Learning of Allomorphy

String Transformations Class Levenshtein (edit) distance is employed to

calculate the information required to derive the string transformations

by Publication I, Publication II, Demberg [2007], and Bernhard [2009].

All mentioned authors then develop their own format for the transforma-

tion. In addition, Demberg [2007] learns character equivalence classes to

model umlauting. In our work, string transformations are constrained to

disallow insertions, such that the string transformations are only applied

for non-concatenative structure and not, for instance, suffixing. Demberg

[2007] employs similar operations, but allows insertions as well. As Bern-

hard [2009] merely employs the string transformations as evidence of con-

nectedness, the transformations allow for very general changes. Goldwa-

ter and Johnson [2004], Naradowsky and Goldwater [2009] employ string

transformations that occur at the morpheme boundaries (stem–suffix).

The transformations consist of a single insertion, substitution or dele-

tion operation. A key difference to other approaches suggested in the

literature, Goldwater and Johnson [2004], Naradowsky and Goldwater

[2009] employ context descriptors that encode when a particular transfor-

mation is applicable. The contexts consist of the characters surrounding

the morph boundary, following the ideas developed by Chomsky and Halle

[1968] that have been widely applied in rule-based morphological analy-

sis (see e.g. Karttunen and Beesley [2005]). In contrast to the approaches

based on the Levenshtein edit operations, Goldsmith [2006] considers only

single character deletions. Similarly, Dasgupta and Ng [2007] considers

single substring differences. Lignos et al. [2010], Lignos [2010] employs a

straightforward scheme where the string transformation consists of two

character lists: the substring deleted from and the substring added to

the base form, respectively. For example, make–making becomes (e, ing).

The benefit of this approach is that concatenative and non-concatenative

structure alike can be modeled.

Distinguishing true Morphological Relations from Spurious Relations The

early work [Yarowsky and Wicentowski, 2000, Schone and Jurafsky, 2000,

2001, Baroni et al., 2002] employ a combination of word context, fre-

quency and orthographic features. However, the later work [Goldwater

and Johnson, 2004, Goldsmith, 2006, Demberg, 2007, Dasgupta and Ng,

2007, Naradowsky and Goldwater, 2009, Lignos et al., 2010, Lignos, 2010]

and Publication I and Publication II only employ orthography through

string transformations and their frequency. Perhaps, this is motivated by

sparse statistics, but potentially word context features could, neverthe-
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less, be of utility. Especially, as such features have been found beneficial

to the accuracy of unsupervised morphological segmentation [Lee et al.,

2011].

As most methods are procedural, they employ specific heuristics. In con-

trast, our work in Publication I and Publication II as well as [Goldwater

and Johnson, 2004, Goldsmith, 2006] are based on the minimum descrip-

tion length-principle [Rissanen, 1989]: if a string transformation enables

compact storage of the observed forms, then it is applied. This is primarily

related to the frequency of the string transformation, but other consider-

ations, such as string lengths of the transformation and the morphs that

can be left out of the lexicon affect the result as well. Naradowsky and

Goldwater [2009] similarly employ model-based criteria. In contrast to

previous work, they employ a prior that is not derived from minimum

description length.

The procedural work employs several different heuristics. Demberg

[2007] searches for stem candidates as strings which combine with fre-

quent suffixes. Allomorphic variation is identified by examining suffix

groups that share prefixes. Edit-distance is calculated on the groups. Real

transformation rules are then identified by frequency of the rule. Das-

gupta and Ng [2007] identify candidate allomorphs by identifying words

that vary only by a single substring and a suffix. A rule is then induced

to change the varying substring. To filter out bad candidates, frequency

is employed, as well as a specificity measure for the rule which favors

rule sets that consistently substitute one character for another, rather

than having several alternative rules for the same character. Lignos et al.

[2010] discovers transformations based on the most frequent suffix sub-

strings which are then filtered based on how many base–derived pairs

can be constructed. To limit the search space, transformations are con-

strained to operate on maximally 5 character suffixes and transforming

only between frequent ones.

5.2.4 Discussion

In the previous sections, we have discussed the literature on unsupervised

learning of morphology in the presence of allomorphy. We identified sev-

eral different approaches to the problem. In general, however, none of the

presented methods have reached the popularity enjoyed by unsupervised

segmentation methods [Harris, 1955, Goldsmith, 2001, Creutz and La-

gus, 2007, Roark and Sproat, 2007, Hammarström and Borin, 2011], but
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rather represent a small niche in the morphology learning literature. This

is somewhat surprising, since several of the presented methods report

improved empirical performance compared to unsupervised methods for

morphological segmentation. Generally, many of the reviewed methods

have not participated in systematic evaluations such as the Morpho Chal-

lenge competitions [Kurimo et al., 2010], and such comparisons would

be needed to provide more insight on the relative performance difference

compared to state-of-art unsupervised morphological segmentation meth-

ods. In Morpho Challenge 2010, the best performing unsupervised mor-

phological analysis method was the method by Lignos [2010]. It demon-

strated improved performance over state-of-art unsupervised morpholog-

ical segmentation methods for English and Finnish, but not for German

and Turkish.

5.3 Allomorfessor

In this section we present Allomorfessor, the unsupervised method for

learning morphology presented first introduced in Publication I and later

adapted in Publication II. The presentation will follow the version pre-

sented in Publication II, to which we will refer to as Allomorfessor, as the

version presented in Publication I (Allomorfessor Alpha) is conceptually

very similar, but does not perform nearly as well. Allomorfessor extends

Morfessor Baseline [Creutz and Lagus, 2002, Creutz et al., 2007] from

morphological segmentation to morphological analysis by adding string

transformations to the generative model. Allomorfessor connects allo-

morphs by mapping morphs to one another with string transformations.

In the learning problem under study, the morphs and the string trans-

formations are both latent and must, consequently, be inferred from the

data. Its objective function is similar to that of Morfessor Baseline and is

based on the minimum description length principle [Rissanen, 1989]. The

intuition behind the model formulation is that when introducing string

transformations into a minimum description length model, it will favor

true allomorphic relations over spurious ones, because a compactness cri-

terion will prefer transformations that occur systematically. For exam-

ple, when storing the morphs pretty, pretti, happy, happi a transforma-

tion that substitutes y with i can improve compactness by eliminating the

need for storing two of the above four forms. Allomorfessor does not em-

ploy any other form of information source to guide its learning except this
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orthography-based compression objective.

In addition, Allomorfessor has two design goals: First, it should be appli-

cable to large word lists. Second, it should generalize to infrequent forms,

as detailed models of words are most useful for infrequent forms, whereas

downstream models can infer the properties of frequent words directly in

a task-specific fashion. The choices made in Allomorfessor reflect these

goals. The first design goal indirectly implies that quadratic algorithms,

such as naively comparing all pairs of words are out of the question. The

second design goal precludes depending on statistics that are only avail-

able for frequent words, such as word contexts, instead concentrating on

string transformations that can be inferred for frequent and infrequent

forms alike, and even applied to unseen words.

Next, we present how words are produced from a lexicon of morphs and

string transformations. Then, we present how this process is modeled

probabilistically as well as how model parameters are estimated during

training, and how the model is applied to the new words. Finally we re-

view some experiments and discuss the implications of the work.

5.3.1 Generating Words with String Transformations

Allomorfessor extends the generative process of Morfessor Baseline [Creutz

and Lagus, 2002, Creutz et al., 2007]. As presented in Section 4.1.1, Mor-

fessor Baseline generates a word x by concatenating an arbitrary num-

ber of morphs zj , following Expression 4.5. In addition, to model non-

concatenative structure, the Allomorfessor model introduces string trans-

formations t that operate on the morphs. Consequently, the analysis z

of the word x consists of an arbitrary number of pairs of morphs m and

string transformations t such that zj = (mj , tj). The model considers two

morphs to be allomorphs of the same morpheme if one is generated as a

transformation of the other. The analysis is visualized by placing a string

transformation between each morph, where the transformation operates

on the morph to its left: m1 + t1 +m2 + t2 . . .mn−1 + tn−1 +mn. The word

x is then produced as:

x = t1(m1) ◦ t2(m2) ◦ · · · ◦ tn−1(mn−1) ◦mn (5.1)

In other words, all morphs except the final one will be affected by some

transformation. The final morph is exempt because the focus is on stem

allomorphy rather than suffix allomorphy. Concatenative structure is

modeled with the empty transformation tid which is an identity mapping
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tid(m) = m.

We will now discuss the choice of the class of string transformations.

The following aspects need consideration:

1. As a consequence of how we have defined the generation of words, it

is necessary for the string transformation to be executable. That is, we

should be able to take any morph m and apply any transformation t to

it with a well-defined result.

2. The string transformation should not interfere with the generation

of concatenative structure. For example, suffixation can in principle

be modeled both as a concatenation fast ◦ er or via a transformation

t+er(fast), where t+er refers to a hypothetical transformation that adds

er at the end of the input morph.

3. Because of the minimum description length objective function, it is im-

portant that what we intuitively consider the same transformation is

also realized in practice with the same string transformation for differ-

ent stems. If this is not true, compactness is not achieved and the model

will not prefer such transformations. This implies that trivial aspects,

such as word length, should not affect the transformation.

4. The string transformations that occur in true allomorphic variation

(pretty – prettier) should generally tend to be shorter in code length than

string transformations corresponding to spurious relations (ply – fly), or

at least the spurious transformations should tend to be infrequent.

These aspects have been approached in Allomorfessor by defining a cus-

tom executable string transformation class. Similarly to [Yarowsky and

Wicentowski, 2000, Goldwater and Johnson, 2004, Demberg, 2007, Bern-

hard, 2009, Naradowsky and Goldwater, 2009] the string transformations

are based on the edit operations employed in Levenshtein (edit) distance,

insertion, substitution, and deletion (see section 3.5). We utilize the prop-

erty of Levenshtein distance that its calculation, as a side product, effi-

ciently computes the minimal edit operations required to transform one

string into another. Of these edit-operations we employ substitution and

deletion. We do not allow insertion in order to ensure that the string

transformations cannot be used to model concatenative structure. This
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implies that not all morphs can be transformed into one another. Rather

than disallowing insertions, Chan [2008], Lignos et al. [2010], Lignos

[2010] model all morphological operations, including concatenative struc-

ture, with string transformations. This approach is conceptually elegant;

however, unlike allomorphic variation, learning of the concatenative struc-

ture has been studied extensively within unsupervised learning of mor-

phological segmentation. To leverage this previous work we, therefore,

attempt to extend a segmentation model, rather than redefining the task

to one of pure string transformations [Chan, 2008, Lignos et al., 2010,

Lignos, 2010], or a purely relational one [Neuvel and Fulop, 2002].

Table 5.1. The string transformation operations and some examples in Finnish. Note
that the operations are applied from right to left.

Operation Notation Description

substitution kx|y Substitute k:th character x with y

deletion -kx Remove k:th x character

(k is omitted when k = 1)

String

Source transformation Target

kenkä (shoe) (k|g) kengä (e.g. kengä+ssä, in a shoe)

tanko (pole) (k|g) tango (e.g. tango+t, poles)

ranta (shore) (-a t|n) rann (e.g. rann+oi+lla, on shores)

ihminen (human) (2n|s) ihmisen (human’s)

The string transformations employed in Allomorfessor are defined as fol-

lows. The transformations t consist of a sequence of position independent

substitution and deletion operations. Position independence is desirable

as we want to apply the same string transformation to morphs of dif-

ferent lengths (fly–flier, amplify–amplifier). However, the edit-operations

resulting from the calculation of Levenshtein-distance are position depen-

dent. We calculate position independent string transformations as fol-

lows: First, we note that in the studied languages, allomorphic variation

is more common towards the end of a morph. Consequently, the string

transformation proceeds from right to left. Second, to achieve position

independence, the target position of the operation is identified by specify-

ing which character the operation should target. Since several instances

of the same character may occur, we additionally specify which one of

the repeating characters to target. The notation employed for the string
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transformation operations is shown in Table 5.1 together with some ex-

amples. Several operations can be combined in sequence, in which case

the target character matching proceeds from the position where the pre-

vious operation ended. The analysis of a whole word is then written by

placing the transformation between each morph. For example, prettier

would be correctly analyzed as pretty + (y|i) + er. For concatenative struc-

ture, the empty transformation tid is denoted with empty parentheses:

For instance, fast + () + er.

5.3.2 Generative Model

As described in Section 4.1.1, the Morfessor Baseline model generates

each word by concatenating morphs, that is substrings, that are drawn

independently from the morph lexicon. In Allomorfessor this process is

extended in such a way that in addition to morphs, the lexicon also con-

tains string transformations. There is an empty transformation for con-

catenative structure. The model constructs the word x(i) by independently

generating morphs m, and then, conditioned on the previously generated

morph, samples a string transformation t. The string transformation op-

erates on the morph on its left. In contrast, the probabilistic model gen-

erates the string transformation conditioned on the morph to the right of

the string transformation. The generative process proceeds over the word

x(i) in reverse. It begins by generating the final, rightmost, morph in the

word and then proceeds from the right to the left. The model generates a

morph mj and then conditioned on mj it generates a string transforma-

tion tj . It should be noted that tj operates not on mj , but rather on the

previous morph mj−1 generated in the next generation step. Conditioning

on the right morph, rather than the left one, is based on the intuition that

suffix morphs tend to be more frequent, leading to less sparse statistics

for estimating the conditional distribution. In Allomorfessor we extend

the analyses zj such that it contains pairs of morphs and string trans-

formations. For example, if the word x(i) is prettier, a possible analysis

is zj = [(tid, pretty), ((y|i), er)]. The first string transformation has no

morph on its left, and is therefore an empty transform by definition. This
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results in the optimization problem:

θ̂MAP = argmax
θ

p(U|θ)p(θ) (5.2)

p(U|θ)p(θ) = p(θ)
N∏
i=1

∑
z(i)∈SEG-TR(x(i))

p(x(i)|θ, z(i))p(z(i)) (5.3)

p(x(i)|θ, z(i)) =
∏

(tj ,mj)∈ z(i)

p(tj |mj ,θ)p(mj |θ), (5.4)

(5.5)

where we can see that Expression (5.2) is equivalent to the one of Mor-

fessor Baseline in Section 4.1.1. Expression (5.3) differs only in that the

latent analysis z(i) varies over the set SEG-TR(x(i)) of all the combina-

tions of morph strings and string transformations that produce the word

x(i) , rather than merely the set of all segmentations SEG(x(i)). In addi-

tion, the generation of words in Expression 5.4 is adapted to add string

transformations.

The prior p(θ), described in detail in [Virpioja and Kohonen, 2009], is

very similar to that of Morfessor Baseline. For string transformations,

the prior follows an MDL-based derivation similar to that of morphs. In-

formally, the fewer different morph or string transformation types there

are, the higher the prior probability is. Moreover, shorter morphs and

string transformations have higher probabilities than longer ones.

We will now briefly discuss properties of the model. Generally, most

aspects are straightforward extensions of Morfessor Baseline. However,

the conditional generation of the string transformation t is less straight-

forward than independent generation. In fact, independent generation

of transformations was attempted in early work [Kohonen et al., 2009].

It turned out to result in severe under-segmentation and, consequently,

much worse performance than Morfessor Baseline. It can be noted that

when employing the conditional distribution as in Allomorfessor, the model

reduces exactly to Morfessor Baseline if all string transformations are

clamped to the empty transformation. Therefore, it can be argued that

the conditional generation of string transformations is an extension closer

to the original Morfessor Baseline method.

5.3.3 Parameter Estimation

For learning the model parameters, we apply an iterative greedy algo-

rithm similar to the one used by Morfessor Baseline which we reviewed

in Section 4.1.1. The algorithm finds an approximate solution for the
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MAP problem in Equation (5.2). The Allomorfessor parameter estima-

tion method, shown in Algorithm 3, is equivalent to that of Morfessor

Baseline with a few exceptions: First, the latent analysis z is extended to

allow for string transformations. Second, the set of considered analyses

Zm for each morph m now, in addition to two-way splits, also contain anal-

yses with string transformations. Third, the ML update of the parameters

θ̂ now includes also the string transformation parameters.

Algorithm 3 The learning algorithm
Initialize analysis Ẑ = {z(1), z(2), . . . z(N)} and model parameters θ̂

while
∏N

i=1 p(x
(i)|θ̂, ẑ(i))p(θ̂) increases sufficiently do

for x(i) ∈ U in random order do optimize(x(i))

end while

function optimize(m)

Zm ←
[
m
] ∪ [

(m<1..l>,m<(l+1)..|m|>) : l ∈ 1, ..., |m| − 1
]

∪ transformed_analyses(m)

for k = 1 . . .K

let ẑmk be the kth element of Zm

Ẑk ← update_analyses(Ẑ,m← ẑmk)

θ̂Ẑmk
← argmaxθ p(U|θ, Ẑmk) (ML estimate for θ given Ẑmk)

kbest ← argmaxk=1...|Zm|
∏

i=1 p(x
(i)|θ̂Ẑmk

, ẑ
(i)
mk)p(θ̂Ẑmk

)

Ẑ← Ẑkbest

θ̂ ← θ̂Ẑmkbest

if ẑmkbest involved a split at l then optimize(m<1..l>);

optimize(m<(l+1)..|m|>)

Algorithm 4 transformed_analyses(m)
Initialize analysis set Z =

for l ∈ 1, ..., |m| − 1 do

if |m| >= 4 ∧ |m<(l+1)..|m|>| <= 5 ∧ p(m<(l+1)..|m|>|θ) > 0 then

if |m| > 6 then difflen ← 4 else difflen ← 3

baseforms ← {v(k) ∈ U : v
(k)
<1..(|m|−difflen)> = m<1..(|m|−difflen)>}

Calculate transformation t(k) from each v(k) ∈ baseforms to m

Z ← Z ∪ [
(v(k),m<(|v(k)|+1)..|m|>, t

(k))
]

end if

end for

return Z sorted by l and descending |v(k)|

Compared to Morfessor Baseline, the set of considered analyses Zm for
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each morph m is now potentially very large, as any morph of adequate

length can be transformed into another one with a sufficiently complex

string transformation. However, morphs related by complex string trans-

formations are unlikely to correspond to true allomorphic relations. For

computational reasons, the parameter estimation method cannot consider

too large a set of analyses for each morph. Therefore, a set of heuristic re-

strictions are employed to limit the search, as shown in Algorithm 4. The

restrictions are as follows: The morph and its potential base form have

to begin with a shared substring, the base form has to occur as a word in

the training set, and the suffix has to be present in the lexicon. Finally,

only K analyses per morph are tested, which results in time complexity

O(K2N) for one epoch of the.

5.3.4 Inference

The inference algorithm finds the best analysis z∗ = argmaxz p(z|x, θ̂)
for new words using a similar algorithm as the extended Viterbi algo-

rithm that Morfessor Baseline employs, described in Section 4.1.1. With

string transformations, the inference algorithm requires further exten-

sion. As string transformations are conditioned on the suffixes, it is easier

to run the algorithm from right to left. A two-dimensional grid is required

as there can now be several morphemes that produce the same surface

string. The rule for updating the grid value for si is

α(si, m̂ij) = max
j∈[i+1,|w|]

{
max
m∈sj

{
max
t∈Δ

{
α(sj ,m)P (t|m,θ)P (m̂ij |θ)

}}}
, (5.6)

where m̂ij is a morpheme that produces the letters between i and j when

modified by the string transformation t. Only those string transforma-

tions Δ that are observed before m need to be tested, otherwise P (t|m,θ) =

0. For the morphemes that are not observed before, we use an approxi-

mate cost of adding them into the lexicon. The worst case time complexity

for the algorithm is O(MD|w|2). In practice, however, the number of mor-

phemes M and string transformations D tested in each position is quite

limited.

5.4 Experiments

The method was evaluated in Morpho Challenge 2009 [Kurimo et al.,

2009b] which included three competitions: Competition 1, comparison

to a linguistic gold standard on English, Finnish, German, Turkish and
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Arabic data; Competitions 2 and 3, application evaluations in informa-

tion retrieval and machine translation, respectively. The information re-

trieval data sets are in English, Finnish and German whereas the ma-

chine translation data is Finnish-English and German-English parallel

text. All three evaluations measure the overall performance of the pro-

posed analysis without directly measuring the effects of the string trans-

formations. This is, however, compensated for by employing Morfessor

Baseline as a reference method, as it is a very similar method except for

the string transformations.

For Competitions 1 and 2 we trained the model with the Competition 1

data. We filtered out all words that occurred fewer than T = 2 times in

the corpus to shorten training times and remove noise such as misspelled

words, where T denotes the cutoff threshold below which frequency a word

is excluded from the training set. The training algorithm converged in 5–

8 epochs and the total training time varied from hours up to one week

(Finnish). After training the model, we analyzed all the words with the

Viterbi algorithm. For Competition 3, we used the provided data sets for

training without any filtering and then applied the Viterbi algorithm.

We compare Allomorfessor as presented here, following Publication II,

to reference methods, namely its earlier version from Publication I Allo-

morfessor Alpha as well as Morfessor Baseline. We train Morfessor Base-

line both with and without the filtering of the words, such that only words

occurring at least T = 2 are included.

In all models, the following priors and parameter settings were used:

Morpheme length distribution was geometric with the parameter p =

nW /(nW + nC), where nW is the number of words and nC is the number

of characters in the training corpus. As the string transformation length

prior we used a gamma distribution with both the scale and shape param-

eters set to one. The number of candidate analyses K considered for each

morph during the training was 20.

In Competition 1, the algorithms were compared to a linguistic gold

standard analysis and scored according to the Morpho Challenge metric

(Section 2.2.2). Competition 2 compared the methods in an information

retrieval system for English, Finnish and German and measure the Mean

Average Precision of the resulting system. In Competition 3, the algo-

rithms were applied in Finnish-to-English and German-to-English ma-

chine translation systems and BLEU scores [Papineni et al., 2002] were

measured.
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Table 5.2. Evaluation results for different versions of Allomorfessor and Morfessor. For
Competition 1 results (C1), precision, recall and F-measure are given. Compe-
tition 2 (C2) is scored with mean average precision (MAP) and Competition 3
(C3) with BLEU-score. The row T denotes the cutoff threshold for how often
words must occur in the training corpus in order to be included when training.

Allomorfessor Morfessor Morfessor Allomorfessor

Alpha (-08) Baseline Baseline

T 1 1 2 2

English
C1 precision 83.31% 74.93% 68.43% 68.98%

C1 recall 15.84% 49.81% 56.19% 56.82%

C1 F-measure 26.61% 59.84% 61.71% 62.31%
C2 MAP - 38.61% 38.73% 38.52%

Finnish
C1 precision 92.64% 89.41% 86.07% 86.51%

C1 recall 8.65% 15.73% 20.33% 19.96%

C1 F-measure 15.83% 26.75% 32.88% 32.44%

C2 MAP - 44.25% 44.75% 46.01%
C3 BLEU - 28.61% - 28.56%

German
C1 precision 87.82% 81.70% 76.47% 77.78%

C1 recall 8.54% 22.98% 30.49% 28.83%

C1 F-measure 15.57% 35.87% 43.60% 42.07%

C2 MAP - 46.56% 47.28% 43.88%

C3 BLEU - 31.19% - 31.14%

Turkish
C1 precision 93.16% 89.68% 85.43% 85.89%

C1 recall 9.56% 17.78% 20.03% 19.53%

C1 F-measure 17.35% 29.67% 32.45% 31.82%

5.4.1 Results

The results are shown in Table 5.2.3 From the results of Competition

1, that is the linguistic evaluation, we can note the following: The cur-

rent Allomorfessor version clearly outperforms the old one which tends to

under-segment. It also outperforms Morfessor Baseline without the data

filtering T = 1. When comparing to the Morfessor Baseline with the same

data filtering applied, however, the results are inconclusive. Both Allo-

morfessor and Morfessor clearly benefit from the exclusion of rare words.

3We omit here the Arabic results, as the data sets seemed to be of questionable
quality; no participating method outperformed the letters-baseline which splits
each word into its constituent letters [Kurimo et al., 2009b].
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With the filtering applied, Allomorfessor has higher precision and lower

recall for all languages. For English, the increase in precision is suffi-

ciently large to result in improved F-scores. In contrast, for the other lan-

guages, Allomorfessor has a lower F-score than Morfessor Baseline. All

differences in F-scores for this method pair are statistically significant.

In Competitions 2 and 3 Allomorfessor and Morfessor had no statisti-

cally significant differences.

The amounts of string transformations employed by Allomorfessor are

shown in Table 5.3. Generally, string transformations are used much

more rarely compared to the amount of non-concatenative structure in

the linguistic gold standard. The method, for example, stores the morph

pretti instead of deriving it as pretty (y|i). Some string transforma-

tions from the English and Finnish results are shown in Tables 5.4 and

5.5. To summarize, a large part of the string transformations correspond

to a linguistic analysis. It is common, especially for Finnish, that a de-

rived form functions as the base form. If the forms are derived from

the same lexeme, however, this is not to be considered an error, since

two related forms are joined together. Errors include not finding the lin-

guistically correct suffix, using a more complex string transformation and

suffix combination than necessary, and using a semantically unrelated

base form. String transformations are also used commonly on misspelled

words. Overall, the application of string transforms suffered mainly from

low recall rather than low precision.

Table 5.3. The number of non-empty string transformations applied by Allomorfessor af-
ter the Viterbi analysis. String transformation usage is the number of non-
empty string transformation tokens divided by the number of morph tokens.

Language English Finnish German Turkish

Transformation types 15 66 26 55

Transformation usage 0.18% 0.44% 0.17% 0.12%

5.5 Discussion

The presented extension from Morfessor Baseline to Allomorfessor was

mostly straightforward. However, a key difference is the conditional rather

than independent generation of the transformation given the morph on

the right. Publication I introduced the method we have here referred to as

Allomorfessor Alpha, in which the transformation was indeed generated
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Table 5.4. String transformation types with example usage for English.

String

transf. Count Examples Notes

(-e) 1182 adhering: adhere (-e) ing

(-y) 300 vulnerabilities: vulnerability (-y) ies

temporarily: temporary (-y) ily

(-t) 120 affluence: affluent (-t) ce

bankrupcy: bankrupt (-t) cy misspelled

(-a) 66 encyclopedic: encyclopedia (-a) c

hemophilic: hemophilia (-a) c

(-i) 41 publshed: publish (-i) ed misspelled

(-s) 35 euripidean: euripides (-s) a () n

diocletian: diocles (-s) tian

(-o) 27 aspirating: aspiration (-o) g suffix ing not found

(-n) 27 proletariat: proletarian (-n) t

restauration: restaurant (-n) ion

(-c) 20 paraplegia: paraplegic (-c) a

(t|c) 8 excellencies: excellent (t|c) ies adj as base form

(a|s) 2 ljubljanska: ljubljana (a|s) ka foreign

(-g) 1 licensintorg: licensing (-g) torg oversegmented

(s|n) 1 sclerosing: sclerosis (s|n) g suffix ing not found

(-h) 1 thorougbred: thorough (-h) bred misspelled

(-a -y) 1 bulathkopitiya: bulathkopitya (-a -y) iya foreign

independently. Generally, Allomorfessor Alpha under-segmented severely.

The reason for this is that the independent generation makes substruc-

ture more expensive. In Morfessor Baseline, substructure implies that

a single string is replaced by two shorter strings. However, in Allomor-

fessor Alpha, there are not two, but three units for each split; the string

transformation must also be accounted for. It turns out that the encod-

ing of the third unit increases the cost sufficiently to cause severe under-

segmentation. The utilization of the conditional distribution resolves this

issue, because for right hand morphs that only combine with the empty

transformation, conditional generation yields no extra coding length cost.

This can be seen for a right hand morph mr that has only combined with

the empty transformation tid, the ML parameters concentrate all prob-

ability mass to the empty transformation p(tid|mr, θ̂ML) = 1. Therefore,

with conditional generation, the model reduces exactly to Morfessor Base-

line if all string transformations are fixed to the empty transformation.

We found, however, that in practice Allomorfessor yielded higher preci-

sion and lower recall than Morfessor Baseline. This could be caused by

the extra cost of substructure from the conditional distributions in the
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case where more than a single string transformation is generated in the

context of a suffix.

This phenomenon raises the question of how well the MDL-prior is ca-

pable of determining the desired amount of segmentation automatically.

Such questions will be discussed in Section 6.2.

Allomorfessor seems to perform very similarly to Morfessor Baseline

when evaluating against linguistic analysis. Moreover, it was noted that

the string transformations were not used nearly as often as in the gold

standard analysis. The string transformations that the model did discover

were, however, mostly regarded as correct ones. This would support the

idea that the MDL-model can indeed select correct transformations over

spurious ones, at least while the recall is low. However, when increasing

recall, it may become more difficult to avoid spurious ones.

Finally, the question that should be asked is what the main purpose

of the current task is. At the very least, one can think of 1) Improving

application performance 2) Evaluating learning algorithms on a well un-

derstood task.

Regarding improving application performance, the achieved results are

quite far from state-of-art rule-based methods. This is, to some extent, to

be expected, as the learning algorithm is performing a quite difficult task

that shares more with a linguist surveying a new language from texts

alone, than with human language acquisition, since the latter happens

in the presence of context that allows reasoning based on the meaning

of words. Therefore, based on the current results, from a purely prag-

matic perspective, learning morphology in an unsupervised fashion is not

a good alternative to a good rule-based system. However, should the lan-

guage under study lack such a system, or if such a system exists but is

too expensive for the project in question, then unsupervised learning can

provide an inexpensive alternative. In the context of Allomorfessor, the

question remains whether one should apply segmentation or attempt to

learn also non-concatenative structure. The current literature and the

experiments presented in this dissertation cannot provide a conclusive

answer, but further research is needed.

From an academic point of view, the current task provides a well-defined

but exotic task for which to develop better machine learning methods. The

introduction of relations between morphs, in the form of string transfor-

mations or otherwise, results in a much more challenging learning prob-

lem compared to the well-known segmentation problem. Furthermore,
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the current state-of-art approaches are quite far from 100% accuracy ac-

cording to the gold standard. This leaves an excellent potential for future

progress.
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Table 5.5. String transformation types with example usage for Finnish.

String

transf. Count Examples Notes

(-n) 7771 ahdingolla: ahdingon (-n) lla

aikojemme: aikojen (-n) mme

(-i) 4096 anakronismeille:

anakronismi (-i) e () ille (i|e) preferable

desibelejä: desibeli (-i) ejä (i|e) preferable

(-a) 2598 diakonissoja: diakonissa (-a) oja (a|o) preferable

eufemismi: eufemia (-a) smi

(-t) 2507 fagotisti: fagotti (-t) sti

haltuunoton: haltuunotto (-t) n

(-s) 1114 harvennuksen: harvennus (-s) ksen

yliherkkyydet: yliherkkyys (-s) det

(-e) 939 vuosituhantista: vuosituhantiset (-e) a

viikattein: viikate (-e) tein

(i|e) 675 videoprojektoreina:

video () projektori (i|e) ina

transistoreita: transistori (i|e) ita

(-ä) 532 tulennielijöitä: tulennielijä (-ä) öitä

tulokertymien: tulokertymä (-ä) ien

(a|i) 430 kaavailemia: kaavailema (a|i) a

juurevia: juureva (a|i) a

(n|s) 428 hankkeeseesi: hankkeeseen (n|s) i undersegmented

diabeteksesi: diabeteksen (n|s) i undersegmented

(a|e) 322 emigranttien: emigranttia (a|e) n

hajuharhojen: haju () harhoja (a|e) n

(-k) 311 agnostikoksi: agnostikko (-k) ksi

(-a -t) 232 murhissa: murhista (-a -t) sa

(-n -i) 183 barrikadeja: barrikadin (-n -i) eja

kursseihen: kursseihin (-n -i) en misspelled

(n|i -e) 143 aivotärähdyksiä:

aivo () tärähdyksen (n|i -e) ä

hoplofoobisia: hoplofoobisen (n|i -e) a

(-n n|s) 138 aivokurkiaisen: aivokurkiainen (-n n|s) n

(t|d) 97 häädöt: häätö (t|d) t

(a|s -t) 83 amppeleissa: amppeleita (a|s -t) sa

(ä|t -l) 82 näöltään: näöllä (ä|t -l) ään

(-e -s) 77 esoteerinen: esoteerisen (-e -s) en “inverse” of

(t|n) 75 abstrahoinnin: abstrahointi (t|n) n

(a|t -l) 75 matkapuhelimeltaan:

matka () puhelimella (a|t -l) aan
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6. Semi-Supervised Learning of
Morphological Analysis

In computational morphology, two starkly different approaches are well

known, namely rule-based ones and methods based on unsupervised ma-

chine learning. The former approach produces output of excellent accu-

racy, but at a high cost of language-specific manual labor. In contrast,

the unsupervised approach produces analyses whose quality are sufficient

only in some applications, but once the method has been developed, adapt-

ing it to a new language requires a very limited manual effort. An open

question for machine learning based approaches is: Given the existing

methods, is it more cost-effective to develop better unsupervised meth-

ods or to annotate some amount of data and then employ it for training?

We will attempt to answer this question by developing semi-supervised

methods for morphological segmentation.

Formulating the problem in this fashion places certain constraints on

the learning setting. In particular, we assume that manually annotated

training sets will be small, since producing large, high-quality annota-

tion is labor intensive. The learning method must, therefore, be able to

derive as much benefit as possible from the little annotated data that is

available. A similar focus on improving performance with a small amount

of annotation effort have been explored for other natural language pro-

cessing problems. For example, Garrette and Baldridge [2013] develop as

good a part-of-speech tagger as possible given only two hours of annota-

tion effort. In practice we will employ annotated sets on the order of 100 to

1, 000 word forms. If the annotation is given in the form of segmentation,

annotating 100 words manually is a small effort, certainly requiring less

than an hour for a native speaker.

Next, we specify our learning setting in more detail. The studied set-

ting is a particular form of weakly supervised learning for morphological

analysis. The learning system has at its disposal:
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1. A small annotated training set typically containing no more than 1, 000

word types. The annotation is given in the form of a segmentation, and,

in some cases, a full morphological analysis

2. A small annotated development set for hyperparameter optimization

whose size is measured in the hundreds.

3. A large unannotated training set of words, containing hundreds of thou-

sands or millions of word types

It is assumed that the supervision is provided only in the form of an-

notated words and no other sources of supervision are employed. This

setting, therefore, differs from work employing alternative forms of su-

pervision [Yarowsky and Wicentowski, 2000, Wicentowski and Yarowsky,

2003, Snyder and Barzilay, 2008b].

In this chapter, we will focus mainly on morphological segmentation, as

developing and evaluating weakly supervised morphological segmenta-

tion methods is straightforward compared to what would be required for

morphological analysis. In particular, even an unsupervised method can

produce segmentations as output, and segmentations can be directly com-

pared for accuracy. In contrast, the set of lemma and affix tags employed

in morphological analysis cause problems both in training and evalua-

tion. In particular, a machine-learning-based morphological analyzer can

only assign the lemma and affix tags that occur in its training set. As-

suming that the full set of lemmas and affixes must be seen in a small

annotated set we study here is unrealistic. Alternatively, the morpho-

logical analysis task can be reformulated in some fashion that does not

require the knowledge of the true lemma and affix set. An example of

such a reformulation is the two-step approach presented in the context of

modeling allomorphy in Section 5.2.1 which sidesteps the true lemma and

affix set by focusing on the morphological relations between word-forms.

Even this reformulated task, however, performs morphological segmen-

tation in its first step, and is consequently more complicated. Moreover,

evaluating the accuracy of a system that produces output in the correct

tagset is straightforward, whereas evaluating any alternative output re-

quires more complicated evaluation procedures. Although, several such

evaluation methods exist, they are known to have different strengths and

weaknesses [Virpioja et al., 2011]. This makes the evaluation a problem
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in itself.

This chapter is structured as follows: We begin by reviewing the litera-

ture on semi-supervised morphological analysis in Section 6.1. In Section

6.2 we then discuss the work in Publication III where varying preprocess-

ing decisions for word counts are evaluated in the context of unsupervised

morphological segmentation. This work turns out to lead to an efficient

hyperparameter formulation for controlling how much a Morfessor Base-

line model segments. Then in Section 6.3 we present Semi-Supervised

Morfessor, the morphological segmentation method originally introduced

in Publication IV which builds on the hyperparameter optimization tech-

niques in Publication III, extending them to the full semi-supervised set-

ting. We then, in Section 6.4, depart into the study of semi-supervised

morpheme labeling based on a morphological segmentation, following the

work started in Publication IV, and further compare the performance of

Semi-Supervised Morfessor to the state of art in the Morpho Challenge

2010 Competition 1 [Kurimo et al., 2010]. After this detour, we return

to morphological segmentation in Section 6.5 where we change machine

learning tools and switch mainly unsupervised techniques based on gen-

erative probabilistic models for supervised techniques and discriminative

training. In particular we employ Conditional Random Fields [Lafferty

et al., 2001], following Publication V and Publication VI. Finally, in Sec-

tion 6.6 we provide a detailed empirical comparison of semi-supervised

morphological methods following Publication VII.

6.1 Literature Review

In general, semi-supervised learning can be approached from two direc-

tions: On the one hand, one may improve an unsupervised method by

adding some annotated data, or, on the other hand, improve a super-

vised method by leveraging the unannotated data. In morphological anal-

ysis, both approaches are possible. The techniques involved are, however,

rather different [Zhu, 2006, Zhu and Goldberg, 2009, Daumé III, 2009].

In simplified terms, when there is very little annotated data, techniques

based on unsupervised learning tend to perform best, as supervised tech-

niques will only lead to overfitting. However, as the amount of annotated

data increases, techniques based on supervised learning tend to surpass

the unsupervised ones. The key question is at what number of annotated

words this will occur. Intuitively, a morphological analyzer needs to be
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able to segment many words containing morphs that cannot possibly be

present in a small training set, and therefore unsupervised methods could

be hypothesized to have an advantage in this task.

6.1.1 Weakly Supervised Training Setups

As discussed in the previous sections, we discuss the problem of morpho-

logical analysis in a setting where we have small annotated training and

development sets, in addition to a large unannotated training set. Since

the manual annotation effort required is small, we refer to this setting

as weakly supervised. This setting excludes work where the supervision

is extracted from some auxiliary source, such as a parallel corpus [Sny-

der and Barzilay, 2008a,b, Chahuneau et al., 2013]. Since these methods

require a different experimental setting to evaluate, they will not be in-

cluded in the further classification in this chapter.

In the studied weakly supervised setting, the supervision in the anno-

tated training sets can be employed in several fashions. First, unsuper-

vised methods may employ the annotated data to adjust some of their hy-

perparameters. While the term unsupervised learning itself suggests that

such adjusting is infeasible, this type of tuning is nevertheless common

[Creutz and Lagus, 2007, Çöltekin, 2010, Monson et al., 2010, Spiegler

and Flach, 2010, Sirts and Goldwater, 2013]. In this chapter we will refer

to unsupervised methods that do not adjust hyperparameters from anno-

tated data as unsupervised (USV) methods. Meanwhile, we will refer to

methods that do employ the annotated data to optimize their hyperpa-

rameters as unsupervised methods with hyperparameter tuning (PSV). It

should be noted that the boundary between these method categories is not

always clear, as several unsupervised methods employ internal hyperpa-

rameters whose values were originally set by the method authors based on

the output of the algorithm. In that case, no explicit annotated data was

used for hyperparameter tuning, but implicitly the linguistic knowledge

of the authors was, nevertheless, employed. Second, the annotated data

sets can be applied for training while ignoring the unannotated words.

We will refer to this as supervised (SV) learning. Third, methods that uti-

lize both the annotated data sets as well as the unannotated data sets are

referred to as semi-supervised (SSV) methods.
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6.1.2 Classification of Weakly Supervised Morphological
Segmentation Methods

In this section, we characterize semi-supervised methods proposed in the

literature. As unsupervised methods are well-known and have been re-

viewed by several authors [Hammarström and Borin, 2011, Creutz and

Lagus, 2007, Goldsmith, 2001], we will not discuss these in much detail.

It should be mentioned, however, that most unsupervised methods can

easily employ annotated data for hyperparameter optimization. In Sec-

tion 6.2 we further show that a method with no explicit hyperparameters

can instead utilize data selection schemes to similar effect. Therefore, in

principle, any unsupervised method can benefit from annotated data.

An alternative approach is to employ only the annotated data in a su-

pervised setting. Such work includes the method of Eger [2013] who per-

forms supervised segmentation by exhaustive enumeration with a gen-

erative Markov model on morphs. Similarly, our work in Publication V

evaluates the segmentation performance of a Conditional Random Field

trained solely on the annotated data. Supervised approaches are, how-

ever, limited to generalizing the phenomena in the annotated data. We

assume that the annotated training data is small and this implies that

many of the morphs we would like to analyze will be unknown to any

purely supervised model.

We now discuss specifically methods that employ the annotated data in

a semi-supervised fashion. Such methods have been devised starting from

either an unsupervised or a supervised method. Methods that begin from

an unsupervised model and are then extended to semi-supervised learn-

ing include the log-linear model of Poon et al. [2009], semi-supervised

Morfessor introduced in Publication IV, the generative model Promodes

for letter transitions and boundaries [Spiegler and Flach, 2010], the Hid-

den Markov Model approach of Kılıç and Bozsahin [2012], the extension of

Adaptor Grammars (AG) [Johnson et al., 2007] to semi-supervised learn-

ing [Sirts and Goldwater, 2013], and, finally, Morfessor FlatCat by Grön-

roos et al. [2014]. In contrast, methods approaching from the supervised

direction includes our work in Publication V and Publication VI (Section

6.5). We will now characterize these methods according to their similari-

ties and differences.

Learning Lexicons versus Detecting Boundaries We begin by dividing the

methods described above into two categories: lexicon-based [Poon et al.,

95



Semi-Supervised Learning of Morphological Analysis

2009, Kılıç and Bozsahin, 2012, Eger, 2013, Sirts and Goldwater, 2013,

Grönroos et al., 2014], including Publication IV, and boundary detec-

tion [Harris, 1955, Spiegler and Flach, 2010] as well as Publication V. In

the former, the model learns lexical units, whereas in the latter the model

learns properties of morph boundaries. For example, in the case of Mor-

fessor [Creutz et al., 2007] the lexical units correspond to morphs while

in AGs [Sirts and Goldwater, 2013] the units are parse-trees. Meanwhile,

consider the CRF approach of Publication V, Publication VI, as well as the

classical approach of Harris [1955] which do not store explicit morph-like

units, but instead identify morph boundary positions utilizing substring

contexts and letter successor varieties, respectively. In general, whether

it is easier to discover morphs or morph boundaries is largely an empiri-

cal question. So far there have been no models that would combine both

approaches, but this could be an interesting future development.

Generative versus Discriminative Learning The second main distinction

divides the models into generative and discriminative approaches. The

generative approaches [Poon et al., 2009, Spiegler and Flach, 2010, Kılıç

and Bozsahin, 2012, Eger, 2013, Sirts and Goldwater, 2013, Grönroos

et al., 2014] and Publication IV model the joint distribution of words and

their corresponding segmentations, whereas discriminative approaches,

including that of Harris [1955], Publication V, and Publication VI, di-

rectly estimate a conditional distribution of segmentation given a word.

In other words, whereas generative methods generate both words and

segmentations, the discriminative methods generate only segmentations

given words. The generative models are naturally applicable for unsu-

pervised learning. Meanwhile, discriminative modeling always requires

some annotated data. Lastly, it appears that most lexicon-based methods

are generative and most boundary detection methods are discriminative.

However, it should be pointed out that this is a trend rather than a rule,

as exemplified by generative boundary detection method of Spiegler and

Flach [2010].

Semi-Supervised Learning Approaches Both generative and discrimina-

tive models can be extended to utilize annotated as well as unannotated

data in a semi-supervised manner. The applicable techniques, however,

differ. For generative models, semi-supervised learning is in principle

trivial: for the labeled words, the segmentation is fixed to its correct value,

as exemplified by the approaches of Poon et al. [2009], Spiegler and Flach

[2010], Sirts and Goldwater [2013]. Meanwhile, the semi-supervised set-
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ting also makes it possible to apply discriminative techniques to gener-

ative models. In particular, model hyper-parameters can be selected to

optimize segmentation performance rather than some generative objec-

tive, such as likelihood. Special cases of hyper-parameter selection in-

clude the weighted objective function in Publication IV and [Grönroos

et al., 2014], data selection in Publication III and by Sirts and Goldwa-

ter [2013], as well as grammar template selection [Sirts and Goldwater,

2013]. As for the weighted objective function and grammar template se-

lection, the weights and templates are optimized to maximize segmenta-

tion accuracy on a held out development set. Meanwhile, data selection

is based on the observation that omitting some of the training data can

improve segmentation accuracy.

For discriminative models, a straightforward semi-supervised learning

technique is adding features derived from the unlabeled data, as exem-

plified by the CRF approach in Publication VI. However, discriminative

semi-supervised learning is in general a much researched field with nu-

merous, diverse techniques [Zhu and Goldberg, 2009]. For example, for

the CRF model alone, there exist several proposed semi-supervised learn-

ing approaches [Jiao et al., 2006, Mann and McCallum, 2008, Wang et al.,

2009].

On Local Search In what follows, we will discuss a potential pitfall of

some algorithms which utilize local search procedures in the parameter

estimation process, as exemplified by the Morfessor model family [Creutz

et al., 2007]. As discussed in Section 4.1.1, the Morfessor algorithm finds a

local optimum of its objective function using a local search procedure. This

complicates model development because if two model variants perform

differently empirically, it is uncertain whether the difference is caused

by the model or the estimation method, as discussed also by Goldwater

[2006, Section 4.2.2.3]. Therefore, in contrast, within the adaptor gram-

mar framework [Johnson et al., 2007, Sirts and Goldwater, 2013], the fo-

cus has not been on finding a single best model, but rather to marginalize

over model parameters to find the posterior distribution over segmenta-

tions of the words. Another approach to the problem of bad local optima

is to start a local search near some known good solution. This approach

is taken in Morfessor FlatCat, for which it was found that initializing

the model with the segmentations produced by the supervised CRF model

(with a convex objective function) yields improved results [Grönroos et al.,

2014].
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6.2 Utilizing Training Set Word Frequencies as Implicit
Hyperparameters

In this section we will begin the exploration of generative models for

semi-supervised morphological segmentation, following Publication III.

The purpose is two-fold. First, to examine properties of unsupervised

models. Second, to discover efficient implicit hyperparameters for semi-

supervised learning. As reviewed in Section 6.1.1, hyperparameter ad-

justment adapts the inductive bias of an unsupervised method which can

yield improvements in performance. All models do not have appropriate

hyperparameters, however.

Despite the overarching theme of semi-supervised learning, the main

focus of this section is to understand unsupervised learning and how to

preprocess the training data appropriately. An important property of nat-

ural language is the power-law distribution of words [Zipf, 1932]. This

very skewed distribution affects the training of probabilistic models and,

consequently, when training an unsupervised model, one needs to decide

how to preprocess these word frequencies. First, one must decide whether

training is based purely on types, that is disregarding the word counts,

or on tokens, that is employing the word counts directly. We will also

examine a variant in between these extremes, namely employing the log-

arithm of the token count. Second, we will examine the effect of filtering

out words that occur rarely. When discussing the results of Allomorfes-

sor in Chapter 5.4.1, a small side observation was that the morphological

segmentation performance of Morfessor Baseline improved with the elim-

ination of words occurring only once in the training corpus. In this section,

we will experiment with this issue in more detail.

Previous work report that training on tokens and types can affect the

segmentation results [Creutz and Lagus, 2004, 2005b, Goldwater et al.,

2006, Poon et al., 2009]. Creutz and Lagus [2004, 2005b, 2007] report

that Morfessor Baseline tends to under-segment, that is, segment much

less than the gold standard, when trained on tokens. However, training on

word types alleviates the problem. This is less of a problem for Morfessor

Categories-MAP, however, for English, Creutz and Lagus [2007] report

that recall is lowered with increasing training data. Such results may

be caused by increasing amount of noise, such as misspellings and for-

eign words, in the larger word lists. However, there may also be other,

model-internal reasons. Poon et al. [2009] report better results when
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training their log-linear model on types rather than tokens. Goldwater

et al. [2006] demonstrate that, for a certain class of models, the genera-

tion of the token frequencies can be separated into a separate second-level

model component, such that, depending on a hyper parameter, the first-

level model is trained on what can be seen as a continuum between tokens

and types. They find experimentally that their morphological segmenta-

tion model performs best when the parameter value is closer to utilizing

types, whereas utilizing tokens leads to under-segmentation.

In summary, there are several reports of different models performing

better on types than tokens. Moreover, there are also reports where larger

training sets cause reduced performance. Naturally, one would expect

that with more data the performance should converge towards some asymp-

totic upper bound, and, therefore, this behavior is surprising. The models

that behave in this fashion have in common that they apply automatic

model selection techniques to determine how much the method should

segment, based on the training data. An open question is how this mech-

anism interacts with the choice of types or tokens. A further question is

why the filtering of rare words helped Morfessor Baseline in the previous

chapter. It could be hypothesized that employing tokens for training as

well as filtering the least frequent forms in the corpus would be an effi-

cient manner of filtering out the effect of noise words, such as misspellings

and foreign words, as these would tend to be infrequent, and could, there-

fore, be overemphasized by training based on types. When considering

semi-supervised learning, a downside to Morfessor Baseline is that it does

not have any hyperparameters that could be adjusted based on annotated

training data. In this section, we will develop a hyperparameter that ex-

plicitly controls the amount of segmentation that the method performs.

Here, we will do this in the interest of controlling the experimentation,

but in Section 6.3 we will employ it in the full semi-supervised setting.

6.2.1 Analysis of the Effects of Frequency

Consider a generative latent variable model that generates words inde-

pendently. Assume we are looking for maximum posterior (MAP) param-

eters. Such models include Morfessor Baseline [Creutz and Lagus, 2002,

2007] and Morfessor Categories-MAP [Creutz and Lagus, 2005a]. We can

write the optimization problem as follows:

θ̂MAP = argmax
θ

p(U|θ)p(θ) =
W∏
j=1

p(x(i)|θ)p(θ) (6.1)
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If we train on tokens, then U contains the same word type sj repeatedly.

Let Cj denote the number of times the word sj occurs in U . Because of the

independent generation of words the marginal likelihood for all instances

of the word sj is the same. Consequently, the likelihood can be factored by

word type sj as:

θ̂MAP = argmax
θ

V∏
j=1

p(x(i) = sj |θ)Cjp(θ), (6.2)

where V is the number of word types in U . Based on this factorization,

we can create different experimental conditions by defining a transform

f(Cj) on the word counts. For example, f(Cj) = 1 and f(Cj) = Cj corre-

spond to training with types and tokens, respectively. Generally, we will

experiment with transforms of the following form:

f(Cj) =

⎧⎨
⎩

0 if Cj < T

αg(Cj) otherwise
(6.3)

where T is a frequency cutoff threshold and g(Cj) is a function that trans-

forms the counts. If α = 1 and g(Cj) = 1 we train on word types; if α = 1

and g(Cj) = Cj , we train on tokens. In addition, we will employ the log-

arithmic function g(Cj) = ln(1 + Cj). The frequency threshold T can be

used for pruning rare words from the training data.

With this parameterization, we can rewrite the optimization problem

into the form:

θ̂wMAP = argmax
θ

V∏
j=1

p(x(i) = sj |θ)f(Cj)p(θ), (6.4)

where wMAP indicates that this is not the true MAP-estimate, but rather

one which has been modified by weighting.

Since the logarithm is a monotonic function, we can equivalently opti-

mize the logarithm:

θ̂wMAP = argmax
θ

log p(θ) +
V∑
j=1

f(Cj) log p(x
(i) = sj |θ) (6.5)

= argmax
θ

log p(θ) +
∑

j∈{Cj≥T}
αg(Cj) log p(x

(i) = sj |θ) (6.6)

= argmax
θ

log p(θ) + α
∑

j∈{Cj≥T}
g(Cj) log p(x

(i) = sj |θ) (6.7)

The other parts of this expression are previously suggested manipula-

tions of the word counts, but not the parameter α, which we introduce in

order to control the experimental setting. It can be seen that the param-

eter α operates as a global weight between the likelihood and the prior.
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As discussed in Section 4.1.1, for Morfessor Baseline the likelihood term

prefers analyses with few morphs, whereas the prior term prefers lexi-

cons with few morphemes. These opposing terms then balance each other

and produce a compromise. The parameter α then affects this balance,

and can intuitively be thought of as a lever that controls how much the

model segments. In the next section we will demonstrate this behavior

experimentally. One can further notice that the transformed counts g(Cj)

affect the likelihood but not the prior. Therefore, when employing token-

based training, the balance between the two will be different than when

training with types. With the introduction of the parameter α we can ad-

just the amount of segmentation separately, and, therefore, learn whether

the previously reported superiority of type-based training, or merely, by

its effect on the balance between prior and likelihood. Finally, it can be

seen that the threshold T also affects the balance between prior and like-

lihood by filtering out words on the likelihood side. This leads to more

segmentation as a result of filtering out words from the data set.

6.2.2 Experiments

We perform experiments on the English and Finnish parts of the Morpho

Challenge 2009 data set [Kurimo et al., 2009c], and we apply the Mor-

pho Challenge Competition 1 evaluation measure, presented in Section

2.2.2. For tuning the parameters of the weight function, we sampled a

development set that did not contain any of the words in the final test set.

The development set included 2, 000 words for English and 8, 000 words for

Finnish. The languages were selected based on their different morpholog-

ical characteristics. The experiment setup is as follows: We consider the

following set of functions of the counts g(Ci): constant (types), linear (to-

kens), and logarithmic. To control for the effect of the balance between the

prior and likelihood we optimized the cutoff threshold T and the weight

parameter α by choosing values that gave the optimal F-measure on the

development set.

We apply our own re-implementation of Morfessor Baseline which is

based on the Morfessor 1.0 software [Creutz and Lagus, 2005b]. The for-

mat of the input data is a list of words and their counts, so the function

f(Ci) is, in principle, trivial to apply as preprocessing. However, because

the Morfessor prior assumes integer counts, the parameter α was imple-

mented as a global weight for the likelihood. Otherwise, the training data

was modified according to the respective function before training. The re-
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sult of the logarithmic function was rounded to the nearest integer. In

the prior p(θ), we apply implicit morph length and frequency priors. The

model parameters are then estimated with the standard parameter esti-

mation algorithm, presented in Section 4.1.1. Subsequent to training, the

segmentations for the development and test set were found by calculating

the best segmentation according to the model parameters, allowing new

morphs with the approximate cost of adding them into the morph lexicon,

as described in more detail in Section 4.1.1.

6.2.3 Results

We trained Morfessor Baseline with the frequencies modified according to

the constant, linear, and logarithmic function, where the two former ones

correspond to training on word types and tokens, respectively, while the

third is an intermediate form of the first two. We applied grid search to

optimize the cutoff threshold parameter T and the weight parameter α,

selecting as optimal the values that yield the highest F-measure on the

development set. When α = 1.0 and T = 1, the training corresponds to

standard Morfessor Baseline.

Figures 6.1 and 6.2 show the precision-recall curves when varying only

one of the parameters separately for English and Finnish, respectively.

Varying only T removes infrequent words. Meanwhile, varying α keeps

the training set word list unchanged while adjusting the weight on the

prior. It can be seen that reducing α increases recall regardless of how

the word frequencies have been preprocessed. Interestingly, increasing T

improves recall to a similar degree for the constant function, but not for

the logarithmic and linear functions.

Table 6.1 compares the results when optimizing both T and α to a base-

line where neither is optimized. It can be seen universally that the base-

line suffers from under-segmentation which is further worsened when ap-

plying the logarithmic or linear counts. For the case where the param-

eters are optimized we can note that there are large improvements over

baseline. Furthermore, precision and recall are more evenly balanced, in-

dicating that the optimization of the parameters balances precision and

recall. Next, we consider the relative performance of the count modify-

ing functions. For English, logarithmic counts produced the highest F-

measure, but the difference to that of the constant function was not sta-

tistically significant according to the Wilcoxon signed-rank test. Linear

counts produced clearly inferior results. For Finnish, the constant func-
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Figure 6.1. Precision-recall curves for English with constant (const), logarithmic (log),
and linear frequency function types and varying function parameters α or T .
Solid lines, α = 1 and T varied; dashed lines, T = 1 and α varied. F-scores
improve towards top-right.

Figure 6.2. Precision-recall curves for Finnish with constant (const), logarithmic (log),
and linear frequency function types and varying function parameters α or T .
Solid lines, α = 1 and T varied; dashed lines, T = 1 and α varied. F-scores
improve towards top-right.

103



Semi-Supervised Learning of Morphological Analysis

tion was slightly but significantly better than the logarithmic and linear

functions.

The optimal parameter values can be analyzed as follows: Regarding

the weight parameter α, the constant function prefers values close to the

default value 1 for English. However, for Finnish this is not the case, and

all functions benefit from α < 1. Generally, the linear function requires

the smallest α. Meanwhile, the cutoff thresholds T > 1 are beneficial for

English, except in combination with the linear function. In contrast, for

Finnish the optimal threshold is invariably T = 1.

Function Optimized T α Pre Rec F-m

English

constant no 1 1 76.13 48.97 59.60

logarithmic no 1 1 87.76 31.77 46.65

linear no 1 1 84.93 12.00 21.03

constant yes 10 1.1 62.04 62.27 62.16

logarithmic yes 20 0.2 57.85 67.62 62.35

linear yes 1 0.01 53.96 56.42 55.16

Finnish

constant no 1 1 89.50 15.70 26.72

logarithmic no 1 1 91.24 11.95 21.13

linear no 1 1 91.82 6.75 12.57

constant yes 1 0.01 53.77 45.16 49.09

logarithmic yes 1 0.01 57.87 42.06 48.72

linear yes 1 0.001 48.86 47.37 48.10

Table 6.1. Precision (pre), recall (rec) and F-measure (F-m) on the final test set with the
different function types for word frequencies. In optimized cases (opt), T and
α are selected according to the best F-measure for the development set.

6.2.4 Discussion

Previous results indicate that training Morfessor Baseline on word types

yields better performance than utilizing word tokens [Creutz and Lagus,

2004, 2005b, 2007], with similar results reported for other models [Gold-

water et al., 2006, Poon et al., 2009]. It is, however, not clear from pre-

vious work what causes the deterioration in performance when training

on tokens. Intuitively, when utilizing word frequency information, the

learning method has more information at its disposal and should, conse-
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quently, be able to perform better. The previous results can be interpreted

either as the word frequency being inherently of little benefit for this task,

or alternatively, the deterioration in performance is caused by some par-

ticular properties of the employed models. Given the presented analysis

of how the word frequencies affect Morfessor Baseline, we can hypothe-

size, that previous results were merely a result of under-segmentation,

because training on tokens tends to produce more sparse segmentation

than the linguistic analysis would prefer. If this is the case, and frequency

information is inherently useful, we would expect to see improvement in

performance for the linear and logarithmic function over the constant one

when the weight α and the threshold T are optimal. The results indicate

that this is not the case for Morfessor Baseline. In the results by Goldwa-

ter et al. [2006] it was found that the optimal interpolation between types

and tokens employed mostly types, but also tokens to a smaller extent.

Therefore, it may be the case that performance benefits could be found

with some other intermediate form of types and tokens than the logarith-

mic function. However, discovering such an intermediate form requires

further work. Both our work and the work by Goldwater et al. [2006],

Poon et al. [2009] suggest that training on word types is a good pragmatic

default option.

From a pragmatic perspective, optimizing the weight parameter α and

cutoff threshold parameter T yielded large performance improvements.

They are, therefore, promising hyperparameters to employ in the case

where one has some annotated data for hyperparameter tuning. Several

other hyperparameters have been suggested in the literature [Creutz and

Lagus, 2007, Çöltekin, 2010, Spiegler and Flach, 2010, Sirts and Goldwa-

ter, 2013]. Such techniques are discussed in more detail in Sections 6.1

and 6.3. The cutoff threshold parameter T did improve performance for

English, indicating that there is indeed a benefit to removing infrequent

forms. Therefore, it may be the case that the infrequent words in the En-

glish training set are mostly noise, for example, misspellings or foreign

words that do not convey useful information about the morphology of the

language. However, for Finnish, removing infrequent forms was not ben-

eficial. A possible reason is that in an agglutinative language, such as

Finnish, many valid inflected forms are very rare and, therefore, these

valid words may make up a considerable part of the removed infrequent

words. It can be concluded that whether optimizing the cutoff threshold

T is beneficial is language specific. In contrast, optimizing the weight
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pattern α improved performance for all frequency functions and both lan-

guages.

6.3 Semi-Supervised Morfessor

In the previous section it was found that Morfessor Baseline results can

be improved greatly by adjusting hyperparameters that affect how much

the model segments. In this Section, we formulate a further extension of

Morfessor Baseline to semi-supervised learning. Particularly, in addition

to the unannotated data, we have a small annotated data set that we

utilize for training.

6.3.1 Semi-Supervised Training of Morfessor Baseline

Morfessor Baseline is a generative probabilistic model with a latent seg-

mentation variable. In principle, semi-supervised training for such a

model is straightforward: The segmentations of the annotated training

examples are fixed to their correct values, and standard latent variable

training, usually Expectation-Maximization (EM) is employed on the unan-

notated data.

In the semi-supervised setting we train on both the unannotated data

U and the annotated data D. We index the data set, such that the unan-

notated data is given by U = {x(i)}Wi=1, and the annotated data occupies

different indices, D = {(x(i),y(i))}W+L
i=W+1. We can then write the optimiza-

tion problem as follows:

θ̂MAP = argmax
θ

log p(θ) +
W∑
i=1

log
∑

z(i)∈SEG(x(i))

p(x(i)|θ, z(i))p(z(i))

+

W+L∑
i=W+1

log p(x(i)|z(i) = y(i),θ) (6.8)

We already noted in Section 4.1.1 that applying EM cannot be applied

to Morfessor Baseline. Instead, one could fix the annotated examples,

and then employ the standard Morfessor Baseline parameter estimation

method. This corresponds to concentrating all the mass of p(z) to a single

segmentation Ẑ, and optimizing to find the best segmentation of the input
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data set. The optimization problem is given by:

θ̂BLF
= argmax

θ,Ẑ

log p(θ) +
W∑
i=1

log p(x(i)|θ, ẑ(i))

+

W+L∑
i=W+1

log p(x(i)|z(i) = y(i),θ) (6.9)

Preliminary results, however, indicated that this approach leads to very

small or nonexistent improvements. Analyzing Expression 6.9 reveals

that if L << W , then the annotated data has very little effect on the ob-

jective function. As we assume a setting with a large unannotated word

list and a small annotated set, the above holds. To correct for this we in-

troduce a new weight parameter β to increase the effect of the annotated

set. This parameter is to be adjusted based on development set perfor-

mance. Moreover, in Section 6.2, we found that adjusting hyperparam-

eters related to how much the model segments on average, namely the

weight parameter α and the frequency cutoff threshold T , yielded large

performance improvements. Because of the language specificity of the

frequency cutoff threshold T , we choose to only include the weight param-

eter α to form a new objective function. This results in what we refer to

as Semi-Supervised Morfessor with the following optimization problem:

θ̂BLαβ = argmax
θ,Ẑ

log p(θ) + α

W∑
i=1

log p(x(i)|θ, ẑ(i))

+ β
W+L∑
i=W+1

log p(x(i)|z(i) = y(i),θ) (6.10)

It should be noted that this weighted objective function no longer cor-

responds to a generative model. The training procedure is therefore a

mixture of generative training and discriminative training. In practice,

a grid search is performed where α and β are optimized for development

set performance. For each value of (α, β) the standard Morfessor Base-

line parameter estimation method is employed, together with fixing the

segmentations of the annotated data to their known values. Since the

training data we employ contains several alternative segmentations for

some word forms, in practice the algorithm also updates its current seg-

mentation z(i) for the annotated examples, however, only among the alter-

native segmentations y(i) ∈ Y(i), where Y(i) denotes the set of alternative

segmentations given in the annotated training data for word x(i).
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6.3.2 Experiments

We employ the same data set as in Section 6.2.2, and apply the novel

methods to the English and Finnish parts of the Morpho Challenge 2009

data set. We evaluate with the Morpho Challenge Competition 1 evalua-

tion measure, presented in Section 2.2.2. We independently sample from

the Morpho Challenge evaluation data a training, development and test

set. The training set contains 100 to 10 000 words, the development set

has 500 words and the test set contains 10,000 words for English and

200,000 words for Finnish.1 Following the results in Section 6.2 we train

on word types, ignoring word counts in the training data, and setting the

word count to 1 for each training set word.

We compare the semi-supervised Morfessor method with the following

baselines: Unsupervised Morfessor Baseline and Unsupervised Morfes-

sor Baseline with the weight parameter α optimized. We report semi-

supervised results for the data set sizes 100, 1,000, and 10,000. We also

report the results when weighting is not employed, but the latent segmen-

tations are fixed the to the training data as in Expression (6.9). This is

equivalent to setting α = β = 1 in Expression (6.10). Finally, we report

the results when optimizing both α and β.

6.3.3 Results

The experimental results with Morpho Challenge Competition 1 evalu-

ation metric’s precision, recall and F1 are shown in Table 6.2 together

with the optimal hyperparameter values for Semi-Supervised Morfessor

compared with the standard unsupervised Morfessor Baseline. Despite a

much smaller development set, we can see that, similarly to the results

in Section 6.2, the optimization of the weight parameter α brings a small

performance improvement for English, and a very large one for Finnish.

Employing semi-supervised learning by merely fixing the annotated data

segmentations without adjusting the hyperparameters α and β improves

the F1-score to a small degree. In contrast, when optimizing both hyper-

1Publication IV describes the procedure such that there would be no overlap
between the training and test set. Because of a programming error discovered
at the time of writing this, the sets were independently sampled with overlap.
The biggest training set and the test set contain 16% overlap for English, and
1.6% for Finnish. This does, however, not invalidate the relative results, since
the overlap is partial. Moreover, we will evaluate this algorithm thoroughly in
Sections 6.4 and 6.6.

108



Semi-Supervised Learning of Morphological Analysis

Method Opt α β Train (ann.) Pre. Rec. F1

English

MORFESSOR BL (USV) no 1 - 0 74.63 50.08 59.94

MORFESSOR BL (PSV) α 0.75 - 0 68.48 55.07 61.04

MORFESSOR BL (SSV) no 1 1 100 74.59 50.01 59.88

MORFESSOR BL (SSV) no 1 1 1,000 75.13 50.37 60.31

MORFESSOR BL (SSV) no 1 1 10,000 79.12 50.61 61.73

MORFESSOR BL (SSV) α, β 0.75 750 100 67.82 62.74 65.18

MORFESSOR BL (SSV) α, β 1 500 1,000 69.72 66.92 68.29

MORFESSOR BL (SSV) α, β 1.75 175 10,000 77.35 68.85 72.86

Finnish

MORFESSOR BL (USV) no 1 - 0 89.52 15.7 26.72

MORFESSOR BL (PSV) α 0.01 - 0 53.72 45.16 49.07

MORFESSOR BL (SSV) no 1 1 100 89.56 15.69 26.70

MORFESSOR BL (SSV) no 1 1 1,000 89.56 15.7 26.72

MORFESSOR BL (SSV) no 1 1 10,000 89.74 15.68 26.70

MORFESSOR BL (SSV) α, β 0.01 500 100 50.67 54.81 52.66

MORFESSOR BL (SSV) α, β 0.05 2,500 1,000 61.03 52.38 56.38

MORFESSOR BL (SSV) α, β 0.1 500 10,000 69.14 53.4 60.26

Table 6.2. Results of the Semi-Supervised Morfessor for Morpho Challenge 2009 data
on English and Finnish with various amounts of training data and training
protocols. The field Opt denotes whether, and which hyperparameters were
adjusted – no corresponds to the standard unsupervised Morfessor Baseline, α
to optimizing only the hyperparameter α, and α, β to the full Semi-Supervised
Morfessor.
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parameters the performance improves considerably for both languages.

6.3.4 Discussion

The presented experiments show considerable improvements for both lan-

guages. However, the large relative improvements for Finnish are mainly

explained by the standard Morfessor Baseline method segmenting too

sparsely for Finnish and the adjustment of the weight hyperparameter α

correcting for this. Meanwhile, the standard approach to semi-supervised

learning for generative models, merely fixing the segmentations of the an-

notated data, performed disappointingly. In contrast, when placing more

weight on the annotated data via the parameter β, the performance im-

proves considerably. It appears that the studied setting, where the num-

ber of annotated words is a very small fraction of the number of unanno-

tated words, is challenging for generative training. In the absence of the

weight parameter β on the annotated data, the unsupervised part of the

data dominates the outcome of training.

The employed α weighting is in principle not specific to Morfessor Base-

line, but can be employed for any model where the prior penalizes exces-

sive segmentation. The β weighting is even more generally applicable,

as it only requires that the likelihood can be factored into separate parts

for the annotated and unannotated training data. Interestingly, it turned

out that while Morfessor Categories-MAP employs a similar model struc-

ture to Morfessor Baseline, its hierarchical lexicon is problematic for the

α weighting. The problems are detailed in [Grönroos et al., 2014] who

propose removing the hierarchical lexicon from Categories-MAP and em-

ploying the α and β weighting to the resulting model, which is known as

Morfessor FlatCat.

6.4 Semi-Supervised Morfessor in Morpho Challenge 2010

The experiments in the previous section show that supervision can im-

prove results considerably. However, the results have not yet been com-

pared to the state of the art. We noted that the experiments presented in

the previous section, unfortunately, contained a mistake in the training

data generation, such that training and test data partially overlapped.

The results can, therefore, be suspected to be optimistic. To better assess

the method’s performance, we discuss the results of Semi-Supervised Mor-
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fessor in the Morpho Challenge 2010 competition [Kurimo et al., 2010].

In these experiments the output of semi-supervised Morfessor was fur-

ther augmented by a labeling phase. The annotated data was utilized to

learn a hidden Markov model that annotates the segmentation into a la-

beling. The details of the labeling procedure are given in [Kohonen et al.,

2010].

Morpho Challenge 2010 provides an annotated training set of 1, 000

words. We include only English, Finnish, and Turkish for for which gold

standard segmentations are available. The development set sizes are 694,

835, and 763 for English, Finnish, and Turkish, respectively.

We gather the results of the top 5 methods in Competition 1, where per-

formance is measured by the similarity to a linguistic gold standard anal-

ysis. For comparison, we also extract the result of Semi-Supervised Mor-

fessor when only adapting the weight parameter α, that is only employing

the development set for hyperparameter optimization while ignoring the

training set. We collect the results from the tables containing all Mor-

pho Challenges from 2007-2010.2 The methods have been trained on the

data from the year of their submission, but have all been re-evaluated

utilizing the evaluation of Morpho Challenge 2010. We omit methods

that submit alternative analyses, as it was demonstrated by Spiegler and

Monson [2010] that the Morpho Challenge evaluation measure is unreli-

able when providing alternative analyses. Table 6.3 shows the collected

results. The methods include Semi-Supervised Morfessor with α and β

adjusted (MORFESSOR BL (SSV)), as well as in combination with the la-

beling scheme on top as presented in [Kohonen et al., 2010] (MORFESSOR

BL+LAB (SSV))). The methods BERNHARD 1 (USV) and BERNHARD 2

(USV) are presented in [Bernhard, 2008]; LIGNOS BASE INF. (USV) in

[Lignos, 2010]; and PARAMOR-MORF. UNION (USV), PARAMOR-MORF.

MIMIC (USV), and PARAMOR MIMIC (USV) in [Monson et al., 2010].

From the results in Table 6.3 it can be seen that Semi-Supervised Mor-

fessor performs better than any proposed unsupervised methods, as is to

be expected. However, the difference to the best unsupervised methods is

not very large.

2Available at: http://research.ics.aalto.fi/events/morphochallenge/
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# Method Type Train (ann.) Pre. Rec. F1

English

1. MORFESSOR BL (SSV) seg 1,000 65.62 69.28 67.40

2. MORFESSOR BL+LAB (SSV) lab 1,000 67.87 66.43 67.14

3. BERNHARD 2 (USV) lab 0 67.42 65.11 66.24

4. BERNHARD 1 (USV) lab 0 75.61 57.87 65.56

5. LIGNOS BASE INF. (USV) lab 0 80.77 53.76 64.55

. . .

10. MORFESSOR BL (PSV) seg 0 60.33 59.55 59.94

Finnish

1. MORFESSOR BL+LAB (SSV) lab 1,000 58.38 63.35 60.76

2. MORFESSOR BL (SSV) seg 1,000 57.59 55.21 56.38

3. BERNHARD 2 (USV) lab 0 63.92 44.48 52.45

4. PARAMOR-MORF. UNION (USV) seg 0 47.89 50.98 49.39

5. MORFESSOR BL (PSV) seg 0 56.97 42.98 49.00

Turkish

1. MORFESSOR BL+LAB (SSV) lab 1,000 71.69 59.97 65.31

2. MORFESSOR BL (SSV) seg 1,000 65.71 47.15 54.90

3. PARAMOR-MORF. MIMIC (USV) seg 0 48.07 60.39 53.53

4. PARAMOR-MORF. UNION (USV) seg 0 47.25 60.01 52.88

5. PARAMOR MIMIC (USV) seg 0 49.54 54.77 52.02

. . .

10. MORFESSOR BL (PSV) seg 0 40.71 46.76 43.52

Table 6.3. Morpho Challenge 2010 top methods according to Competition 1 after omitting
competitors that submit alternative analyses. The column Type shows the
output type of the method, where seg is segmentation and lab is labeling.
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6.4.1 Discussion

Finally, we can return to the question at the beginning of this chapter: If

we want to improve performance, is it more cost effective to devise better

unsupervised methods or should we rather annotate some data? First, we

must consider how large an annotated set can be considered cost effec-

tive. Since manually segmenting 1, 000 words can be done in a matter of

hours, it appears to be both feasible and cost effective. The Morpho Chal-

lenge 2010 comparison in the previous setting can then give us some idea

of whether it is better to annotate data, rather than improve an unsuper-

vised method. It can be seen that Semi-Supervised Morfessor outperforms

the best unsupervised methods. However, the margin is not very large. A

big confounding factor in the comparison is whether the method outputs a

segmentation or a morph labeling. Generally, however, we may conclude

that semi-supervised learning enables a simple model, such as Morfessor

Baseline, to perform very well, given on the order of 1, 000 training words.

6.5 Morphological Segmentation with Conditional Random Fields

In the previous sections, we have discussed generative probabilistic mod-

els created for the purpose of morphological segmentation. In general,

many other segmentation tasks also exist within natural language pro-

cessing. As a result, general methods for segmentation problems have

been developed, in addition to task-specific methods developed for par-

ticular tasks, such as the morphological segmentation methods we have

described so far. In this section, we will apply one such standard method,

namely conditional random fields [Lafferty et al., 2001] to morphological

segmentation, following Publication V and Publication VI. In Section 4.2

we reviewed how segmentation can be performed with a linear-chain con-

ditional random field and discussed its parameter estimation and infer-

ence methods. As a generic method, condition random fields do not spec-

ify the exact details of how to perform segmentation, particularly what

label set and feature set to apply. In this section, we will describe those

in detail. Experimental results, however, will be deferred to Section 6.6,

where we will compare all proposed methods.

A key difference between Morfessor and the CRF based approach is that

Morfessor learns a morph lexicon, that is, it identifies the morphological

units. In contrast, the key idea of the CRF approach is to focus the mod-
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eling effort on morph boundaries instead of the whole segments. This

is reflected in that the output variables of the CRF are labels that en-

code where the boundaries are, whereas for Morfessor the segmentation

is encoded by sequence of morph strings.

We apply linear-chain conditional random fields to morphological seg-

mentation by utilizing the averaged perceptron algorithm for parameter

estimation [Collins, 2002] and Viterbi search to find the best segmenta-

tion for new words. The details of these procedures have been presented

in Section 4.2. Next, we define the employed label and feature sets.

6.5.1 Label Set

The morphological segmentation task can be represented as a sequence

labeling problem by assigning each character in a word to one of three

classes, namely:

B beginning of a multi-character morph

M middle of a multi-character morph

S single-character morph

Using this label set, one can represent the segmentation of the Finnish

word autoilta (from cars) (auto+i+lta) as:

a u t o i l t a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
B M M M S B M M

It can be noted that the minimal sufficient label set for segmentation

would contain merely the labels B and M (see Section 4.2). The intro-

duction of the label S enables modeling the particular properties of single

character morphs. Preliminary experiments suggested that the presented

label set provides an adequate trade-off for our learning setting which

presupposes a small annotated data set.

6.5.2 Feature Set

The feature extraction function f captures the co-occurrence behavior of

the label transitions (yt−1, yt) and a set of features describing character

position t of word x. We employ binary indicator functions that describe

the position t of word x using all left and right substrings up to a maxi-

mum length δ.

We first define non-transition features, which associate the left and right
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substrings with label at position t, for example

fi(yt−1, yt,x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1 if yt = l and

(xt, xt+1) = ’ed’

0 otherwise

, (6.11)

for each label l ∈ {B,M,S}. The longest substring length δ is considered

a hyper-parameter optimized on the development set. Second, we define

transition features, which capture the transitional behavior between ad-

jacent label positions:

fj(yt−1, yt,x, t) =

⎧⎨
⎩

1 if (yt−1, yt) = (l, l′)

0 otherwise
(6.12)

6.5.3 Leveraging Unannotated Data

In order to utilize unannotated data, we explore a straightforward ap-

proach based on feature set augmentation, introduced in Publication VI.

We exploit predictions of unsupervised segmentation algorithms by defin-

ing variants of the features described in Section 6.5.2. The idea is to com-

pensate the weaknesses of the CRF model trained on the small annotated

data set using the strengths of the unsupervised methods that learn from

large amounts of unannotated data.

For example, consider utilizing predictions of the unsupervised Morfes-

sor algorithm [Creutz and Lagus, 2007] in the CRF model. In order to

accomplish this, we first learn the Morfessor model from the unannotated

training data, and then apply the learned model on the words in the an-

notated training set. Assuming the annotated training data includes the

English word drivers, the Morfessor algorithm might, for instance, return

a (partially correct) segmentation driv + ers. We present this segmenta-

tion to the CRF by defining a function M(t), which returns 0 or 1, if the

position t is in the middle of a segment or in the beginning of a segment,

respectively, as in

t 1 2 3 4 5 6 7

xt d r i v e r s

M(t) 1 0 0 0 1 0 0

Now, given the function M(t), we define variants of the features in Ex-

pressions 6.11 and 6.12 by substituting the activation values of each fea-

ture function with the output of the functionM(t). For example, we would

115



Semi-Supervised Learning of Morphological Analysis

define a variant of the feature function fi in (6.11) as

fk(yt−1, yt, x, t) =

⎧⎪⎪⎨
⎪⎪⎩
M(t) if yt = l and

(xt, xt+1) = ’ed’

0 otherwise

(6.13)

Using this approach, the CRF model learns to associate the output of the

Morfessor algorithm in relation to the surrounding substring context. Af-

ter defining the augmented feature set, the CRF model parameters can

be estimated in a standard manner on the small, annotated training data

set. Subsequent to CRF training, the Morfessor model is applied on the

test instances in order to allow the feature set augmentation and stan-

dard decoding with the estimated CRF model. We expect the Morfessor

features to specifically improve segmentation of compound words (for ex-

ample, brain+storm), which are modeled with high accuracy by the un-

supervised Morfessor algorithm [Creutz and Lagus, 2007], but are not

present in the small annotated training set available for the supervised

CRF training.

As another example of a means to augment the feature set, we make use

of the fact that the output of the unsupervised algorithms, such as M(t),

does not have to be binary (zeros and ones). To this end, we employ the

classic letter successor variety (LSV) scores presented originally by Har-

ris [1955].3 The LSV scores utilize the insight that the predictability of

successive letters should be high within morph segments, and low at the

boundaries. Consequently, a high variety of letters following a prefix indi-

cates a high probability of a boundary. We use a variant of the LSV values

presented by Çöltekin [2010], in which we first normalize the scores by

the average score at each position t, and subsequently logarithmize the

normalized value. While LSV score tracks predictability given prefixes,

the same idea can be utilized for suffixes, providing the letter predecessor

variety (LPV). Subsequent to augmenting the feature set using the func-

tions LSV (t) and LPV (t), the CRF model learns to associate high suc-

cessor and predecessor values (low predictability) to high probability of a

segment boundary. Appealingly, the Harris features can be obtained in

a computationally inexpensive manner, as they merely require counting

statistics from the unannotated data.

The feature set augmentation approach described above is computation-

3We also experimented on modifying the output of the Morfessor algorithm from
binary to probabilistic, but these soft cues provided no consistent advantage over
the standard binary output.
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ally efficient if the computational overhead from the unsupervised meth-

ods is small. This is because the CRF parameter estimation is still based

on the small amount of labeled examples. Meanwhile, the number of fea-

tures incorporated in the CRF model (equal to the number of parameters)

grows linearly in the number of exploited unsupervised algorithms. In

other words, if the original number of CRF parameters is K, adding U

unsupervised methods will result in a set of (U + 1)K parameters. There-

fore, augmenting the CRF model using, for example, the M(t), LSV (t),

and LPV (t) functions as described above would result in 4K parameters,

which does not dramatically increase the cost of training.

6.6 Empirical Comparison of Semi-Supervised Methods for
Morphological Segmentation

In this section we will summarize the work in semi-supervised learning of

morphological analysis by comparing empirically the presented methods

with other recent methods. The experiment includes data in four lan-

guages. Here, we will focus on morphological segmentation rather than

analysis. As discussed in Section 2.2.2, direct evaluation of segmentation

accuracy should be favored over the Morpho Challenge metric, as the lat-

ter has known weaknesses. Therefore, we will here employ the Boundary

F1-score instead.

6.6.1 Experiments

In this section, we perform an empirical comparison of the Morfessor al-

gorithms [Creutz and Lagus, 2002, 2005b, 2007], Publication IV, [Grön-

roos et al., 2014], the semi-supervised variant from adaptor grammar

framework [Sirts and Goldwater, 2013], and the conditional random fields

from Publication V and Publication VI all of which have freely available

implementations for research purposes. The comparison was originally

presented in Publication VII to extend the current literature on weakly

supervised morphological segmentation by considering a wider range of

methods and languages compared to previous work, and by providing an

in-depth error analysis.

Data

We perform the experiments on four languages, namely, English, Esto-

nian, Finnish, and Turkish. The English, Finnish, and Turkish data
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English Estonian Finnish Turkish

train (unann.) 384,903 3,908,820 2,206,719 617,298

train (ann.) 1,000 1,000 1,000 1,000

devel. 694 800 835 763

test 10×1,000 10×1,000 10×1,000 10×1,000

Table 6.4. Number of word types in the data sets.

are from the Morpho Challenge 2009/2010 data set [Kurimo et al., 2009b,

2010]. The annotated Estonian data set is acquired from a manually an-

notated, morphologically disambiguated corpus.4 Meanwhile, the unan-

notated words are gathered from the Estonian Reference Corpus [Kaalep

et al., 2010]. Table 6.4 shows the total number of instances available for

model estimation and testing.

Evaluation

For the overall evaluation we employ Boundary F1-score as described in

Section 2.2.2. We employ type-based macro-averages and evaluate alter-

native analyses by choosing the best matching one.

Because we apply a different treatment of alternative analyses, the re-

sults reported in are not directly comparable to the boundary F1-scores

reported for the Morpho Challenge competitions [Kurimo et al., 2009b,

2010]. A limited comparison can be made by noting that the best bound-

ary F1-scores for all languages reported in Morpho Challenge 2007-2010

have been achieved with the semi-supervised Morfessor algorithm, and it

is included in the current experiments.

Model Learning and Implementation Specifics

Here, we discuss the experimental setup and training regimes for the dif-

ferent algorithms. We defer the exact details of the training procedures

to the presentation in Publication VII, but here we report on aspects rele-

vant to the discussion.

Unsupervised Training Morfessor Baseline and Adaptor Grammars were

trained in an unsupervised fashion following the data selection scheme

employed by Sirts and Goldwater [2013]. Training is performed on data

sets with only the most frequent words. The training set sizes are: 10k,

20k, 30k, 40k, 50k, 100k, 200k, 400k, . . . , as well as the full set. The

model with the best development set scores is then chosen. For AG the

4Available at http://www.cl.ut.ee/korpused/morfkorpus/index.php?lang=en
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search is terminated at 50k. For Morfessor Baseline this scheme affects

precision and recall similarly to the frequency cutoff discussed in Section

6.2.1. This training can be seen as unsupervised training with hyperpa-

rameter adjustment.

Semi-Supervised Morfessors We employ a recently released Python im-

plementation of the Morfessor method [Virpioja et al., 2013, Smit et al.,

2014].5 The package implements both the unsupervised [Creutz and La-

gus, 2002, 2007] and the semi-supervised Morfessor Baseline introduced

in Publication IV. For Morfessor FlatCat we apply the Python implemen-

tation by Grönroos et al. [2014].6 For both methods their hyperparame-

ters α and β are optimized with grid search. Importantly, the Morfessor

FlatCat segmentations are initialized with the output of the supervised

CRF, as this was shown to be beneficial in experiments by Grönroos et al.

[2014].

Adaptor Grammars For unsupervised AG learning we used the freely

available implementation.7 The metagrammar for AG Select is the same

as in [Sirts and Goldwater, 2013]. Inductive learning with posterior gram-

mar was done with a freely available CKY parser.8 For unsupervised and

semi-supervised AG, we used a three-level collocation-submorph gram-

mar in which the final segmentation is parsed out as a sequence of Morphs:

Word → Colloc+

Colloc → Morph+

Morph → SubMorph+

SubMorph → Char+

The AG models have a set of hyperparameters and these were all in-

ferred automatically as described by Johnson and Goldwater [2009]. The

semi-supervised AGs are also optimized for the amount of data as was

described for the unsupervised training. The AG model is stochastic and

each segmentation result is just a single sample from the posterior. As the

preliminary experiments revealed a low variance between different sam-

ples, we report the results based on a single sample taken after running

the sampler for 1000 Gibbs iterations and table label resampling turned

on.
5Available at https://github.com/aalto-speech/morfessor
6Available at https://github.com/aalto-speech/flatcat
7Available at http://web.science.mq.edu.au/~mjohnson/Software.htm
8Also obtained from http://web.science.mq.edu.au/~mjohnson/Software.htm
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Method Train (ann.) Train (unann.) Pre. Rec. F1

English

MORFESSOR BASELINE (PSV) 0 384,903 76.3 76.3 76.3

AG (PSV) 0 384,903 62.1 84.5 71.6

CRF (SV) 100 0 86.0 72.7 78.8

MORFESSOR BASELINE (SSV) 100 384,903 81.7 82.8 82.2

MORFESSOR FLATCAT (SSV) 100 384,903 83.6 83.0 83.3

AG (SSV) 100 384,903 66.0 87.0 75.0

AG SELECT (SSV) 100 384,903 75.9 79.4 77.6

CRF (SSV) 100 384,903 87.6 81.0 84.2

CRF (SV) 1,000 0 91.6 81.2 86.1

MORFESSOR BASELINE (SSV) 1,000 384,903 84.4 83.9 84.1

MORFESSOR FLATCAT (SSV) 1,000 384,903 86.9 85.2 86.0

AG (SSV) 1,000 384,903 72.1 85.0 78.0

AG SELECT (SSV) 1,000 384,903 76.7 82.3 79.4

CRF (SSV) 1,000 384,903 89.3 87.0 88.1

Table 6.5. Precision, recall, and F1-scores for the English data. The columns titled Train
(unann.) denote the number of unannotated words utilized in learning. Mean-
while, the columns titled Train (ann.) denote the number of annotated words.

CRFs The employed Python implementation of the CRF model is based

on the presentation of Publication V and Publication VI, as reviewed in

Section 6.5.9 For semi-supervised learning, we utilize log-normalized suc-

cessor and predecessor variety scores and binary features extracted from

the unsupervised Morfessor Baseline and AG described above.

6.6.2 Results

Segmentation accuracies for English, Estonian, Finnish, and Turkish are

shown in Tables 6.5, 6.6, 6.7, and 6.8, respectively. First, we can contrast

the supervised CRF with the unsupervised methods. Using merely 100

annotated instances, the supervised CRF achieves higher accuracies for

English and Turkish compared to the unsupervised methods. With 1,000

annotated words the supervised CRF performs at a substantially higher

segmentation accuracy compared to the unsupervised methods for all lan-

guages. This success of the supervised method is surprising given that

the annotated training set contains a very small subset of the vocabulary.

When comparing the supervised CRF to the generative semi-supervised

methods at 100 annotated words the semi-supervised Morfessors outper-

9Available at http://users.ics.aalto.fi/tpruokol/
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Method Train (ann.) Train (unann.) Pre. Rec. F1

Estonian

MORFESSOR BASELINE (PSV) 0 3,908,820 76.4 70.4 73.3

AG (PSV) 0 3,908,820 59.3 86.4 70.3

CRF (SV) 100 0 79.2 59.1 67.7

MORFESSOR BASELINE (SSV) 100 3,908,820 77.0 76.1 76.5

MORFESSOR FLATCAT (SSV) 100 3,908,820 81.8 74.5 77.9

AG (SSV) 100 3,908,820 60.8 86.9 71.5

AG SELECT (SSV) 100 3,908,820 60.9 90.4 72.8

CRF (SSV) 100 3,908,820 81.5 82.1 81.8

CRF (SV) 1,000 0 88.4 76.7 82.1

MORFESSOR BASELINE (SSV) 1,000 3,908,820 80.6 80.7 80.7

MORFESSOR FLATCAT (SSV) 1,000 3,908,820 84.7 82.0 83.3

AG (SSV) 1,000 3,908,820 66.8 86.5 75.4

AG SELECT (SSV) 1,000 3,908,820 62.8 90.3 74.1

CRF (SSV) 1,000 3,908,820 90.2 86.3 88.2

Table 6.6. Precision, recall, and F1-scores for the Estonian data. The columns titled
Train (unann.) denote the number of unannotated words utilized in learning.
Meanwhile, the columns titled Train (ann.) denote the number of annotated
words.

Method Train (ann.) Train (unann.) Pre. Rec. F1

Finnish

MORFESSOR BASELINE (PSV) 0 2,206,719 70.2 51.9 59.7

AG (PSV) 0 2,206,719 66.9 67.9 67.4

CRF (SV) 100 0 73.0 59.4 65.5

MORFESSOR BASELINE (SSV) 100 2,206,719 69.8 70.8 70.3

MORFESSOR FLATCAT (SSV) 100 2,206,719 77.6 73.6 75.5

AG (SSV) 100 2,206,719 69.2 69.3 69.3

AG SELECT (SSV) 100 2,206,719 66.8 73.6 70.0

CRF (SSV) 100 2,206,719 80.0 77.4 78.7

CRF (SV) 1,000 0 88.3 79.7 83.8

MORFESSOR BASELINE (SSV) 1,000 2,206,719 76.0 78.0 77.0

MORFESSOR FLATCAT (SSV) 1,000 2,206,719 81.6 80.2 80.9

AG (SSV) 1,000 2,206,719 73.4 73.6 73.5

AG SELECT (SSV) 1,000 2,206,719 69.4 74.3 71.8

CRF (SSV) 1,000 2,206,719 89.3 87.9 88.6

Table 6.7. Precision, recall, and F1-scores for the Finnish data. The columns titled Train
(unann.) denote the number of unannotated words utilized in learning. Mean-
while, the columns titled Train (ann.) denote the number of annotated words.
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Method Train (ann.) Train (unann.) Pre. Rec. F1

Turkish

MORFESSOR BASELINE (PSV) 0 617,298 67.9 65.8 66.8

AG (PSV) 0 617,298 72.0 76.0 74.0

CRF (SV) 100 0 84.6 71.8 77.7

MORFESSOR BASELINE (SSV) 100 617,298 76.6 80.5 78.5

MORFESSOR FLATCAT (SSV) 100 617,298 80.2 83.9 82.0

AG (SSV) 100 617,298 74.5 79.6 77.0

AG SELECT (SSV) 100 617,298 69.0 82.3 75.0

CRF (SSV) 100 617,298 81.3 86.0 83.5

CRF (SV) 1,000 0 90.0 87.3 88.6

MORFESSOR BASELINE (SSV) 1,000 617,298 85.1 89.4 87.2

MORFESSOR FLATCAT (SSV) 1,000 617,298 84.9 92.2 88.4

AG (SSV) 1,000 617,298 79.4 87.1 83.1

AG SELECT (SSV) 1,000 617,298 70.5 80.4 75.1

CRF (SSV) 1,000 617,298 89.3 92.0 90.7

Table 6.8. Precision, recall, and F1-scores for the Turkish data. The columns titled Train
(unann.) denote the number of unannotated words utilized in learning. Mean-
while, the columns titled Train (ann.) denote the number of annotated words.

form the supervised CRF for all languages, and the AGs outperform the

CRF for Estonian and Finnish. At 1,000 annotated words, the supervised

CRF has surpassed all semi-supervised generative methods except for

Morfessor FlatCat. Here, it should be noted that Morfessor FlatCat was

initialized with the output of the supervised CRF. Therefore, the question

is if the generative training from that starting point improves or reduces

performance. For 1, 000 annotated instances, only the score for Estonian

in improved.

Finally, for all tested languages and for both 100 and 1,000 annotated

words, the semi-supervised CRF performs the best. For 1,000 annotated

words, the margin to the second best is often quite large.

6.6.3 Error Analysis

The results given in the previous section raises questions that require

some further analysis. First, the supervised CRF performs quite well de-

spite operating based on a very limited part of the vocabulary. One can

ask if the errors performed by the supervised CRF are different from those

of the other methods that utilize the large unannotated training set. Sec-

ond, since the performance of the semi-supervised CRF is far better than
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its competition, what kind of errors does it manage to avoid?

To characterize the errors made by each method, we employ a catego-

rization of morphs into the categories PREFIX, STEM, and SUFFIX, in addi-

tion defining a separate category for DASH. For the English and Finnish

sections of the Morpho Challenge data set, the segmentation gold stan-

dard annotation contain additional information for each morph, such as

part-of-speech for stems and morphological categories for affixes, that al-

low us to assign each morph into one of the morph type categories. In some

rare cases the tagging is not specific enough, and we choose to assign the

tag UNKNOWN. In particular, as we are evaluating segmentations, we lack

the morph category information for the proposed analyses. Consequently,

we cannot apply a straightforward category evaluation metric, such as

category F1-score. In what follows, we instead show how to use the cat-

egorization on the gold standard side to characterize the segmentation

errors.

We first observe that errors come in two kinds, over-segmentation

and under-segmentation. In over-segmentation, boundaries are incor-

rectly assigned within morph segments, while in under-segmentation, the

segmentation fails to uncover correct morph boundaries. For example,

consider the English compound word girlfriend with a correct analysis

girl+friend. Then, an under-segmentation error occurs in case the model

fails to assign a boundary between the segments girl and friend. Mean-

while, over-segmentation errors take place if any boundaries are assigned

within the two compound segments girl and friend, such as g+irl or fri+end.

As for the relationship between these two error types and the preci-

sion and recall measures in Equations (2.1) and (2.2), we note that over-

segmentation solely affects precision, whereas under-segmentation only

affects recall. This is evident as the measures can be written equivalently

as:

Precision =
C(proposed)− C(over-segm.)

C(proposed)
= 1− C(over-segm.)

C(proposed)
(6.14)

Recall =
C(reference)− C(under-segm.)

C(reference)
= 1− C(under-segm.)

C(reference)
(6.15)

In the error analysis, we employ these equivalent expressions as they al-

low us to examine the effect of reduction in precision and recall caused by

over-segmentation and under-segmentation, respectively.

The over-segmentation errors occur when a segment that should remain

intact is split. Thus, these errors can be assigned into categories c ac-

cording to the morph tags PREFIX, STEM, SUFFIX, and UNKNOWN. The
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segments in the category DASH cannot be segmented and do, therefore,

not contribute to over-segmentation errors. Under-segmentation errors

occur when the proposed analysis lacks a boundary that exists in the gold

standard segmentation. Their error categories are, therefore, given by the

segment boundary categories in the gold standard segmentation, such as

STEM-SUFFIX, STEM-STEM, and PREFIX-STEM. To simplify analysis, we

have grouped all segment boundaries, in which either the left or right

segment category is DASH into the CONTAINS DASH category. Boundary

types that occur less than 100 times in the test data are merged into the

OTHER category.

We decompose the precision and recall reductions in Equations (6.14)

and (6.15) into those caused by errors in each category indexed by c and

d:

Precision = 1−
∑
c

C(over-segm.(c))

C(proposed)
(6.16)

Recall = 1−
∑
d

C(under-segm.(d))

C(reference)
(6.17)

where c and d index the error categories for over-segmentation and under-

segmentation, respectively.

Table 6.9 shows the occurrence frequency of each boundary category, av-

eraged over alternative analyses. Evidently, we expect the total precision

scores to be most influenced by over-segmentation of STEM and SUFFIX

segment types because of their high frequencies. Similarly, the overall

recall scores are expected to be most impacted by under-segmentation of

STEM-SUFFIX and SUFFIX-SUFFIX boundaries. Finnish is also substan-

tially influenced by the STEM-STEM boundary indicating that Finnish em-

ploys compounding frequently.

For simplicity, we employ a slightly different setup than is used for cal-

culating the overall F1-score and, therefore, the numbers do not match

exactly 10

Next, we examine how different error types contribute to the obtained

precision and recall measures, and consequently, the overall F1-scores. To

this end, we discuss the error analyses for English and Finnish presented

in Tables 6.10 and 6.11, respectively.

10When calculating the error analysis, we forgo the sampling procedure of taking
10×1000 words from the test set, employed for the overall F1-score for statistical
significance testing, following Virpioja et al. [2011]. Rather, we calculate the
error analysis on the union of these sampled sets.
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Category English Finnish

STEM 38608.8 (82.2%) 72666.0 (81.3%)

SUFFIX 7172.9 (15.3%) 15384.9 (17.2%)

PREFIX 1152.8 (2.5%) 946.5 (1.1%)

UNKNOWN 54.5 (0.1%) 414.0 (0.5%)

STEM-SUFFIX 5349.2 (62.6%) 9889.9 (45.8%)

SUFFIX-SUFFIX 1481.0 (17.3%) 5917.5 (27.4%)

STEM-STEM 613.4 (7.2%) 3538.0 (16.4%)

SUFFIX-STEM n/a n/a 1501.0 (6.9%)

CONTAINS DASH 458.0 (6.5%) 426.0 (2.0%)

PREFIX-STEM 554.3 (5.4%) 235.2 (1.1%)

OTHER 91.0 (1.1%) 105.4 (0.5%)

Table 6.9. Absolute and relative frequencies of the boundary categories in the error anal-
ysis. The numbers are averaged over the alternative analyses in the reference
annotation.

Baselines The first two lines in Tables 6.10 and 6.11 present the base-

line models WORDS and LETTERS. The WORDS model corresponds to an

approach, in which no segmentation is performed, that is, all the words

are kept intact. Meanwhile, the LETTERS approach assigns a segment

boundary between all adjacent letters. These approaches maximize pre-

cision (WORDS) and recall (LETTERS) at the cost of the other. In other

words, no model can produce more over-segmentation errors compared to

LETTERS, whereas no model can produce more under-segmentation errors

compared to WORDS.11

Morfessor Similarly to the baseline (WORDS and LETTERS) results, the

majority of over-segmentation errors yielded by the Morfessor variants

take place within the STEM and SUFFIX segments, while most under-

segmentation errors occur at the STEM-SUFFIX and SUFFIX-SUFFIX bound-

aries. When shifting from unsupervised learning with MORF.BL (PSV)

to semi-supervised learning with MORF.BL (SSV) and MORF.FC (SSV),

the over-segmentation problems are alleviated rather substantially, re-

sulting in higher overall precision scores. One also observes a dramatic

increase in the overall recall scores indicating a smaller amount of under-

segmentation taking place. However, the under-segmentation errors do

11Intuitively, WORDS should yield zero recall. However, when applying macro
averaging, a word having a gold standard analysis with no boundaries yields a
zero denominator and is therefore undefined. To correct for this, we interpret
such words as having recall 1 which explains the non-zero recall for WORDS.
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not decrease consistently: while the STEM-SUFFIX and SUFFIX-SUFFIX er-

rors are decreased substantially, one additionally observes a decline or no

change in the model’s ability to uncover STEM-STEM and PREFIX-STEM

boundaries.

Adaptor Grammars Similarly to the baselines and Morfessor results, the

majority of over-segmentation errors yielded by the AG variants occur

within the STEM and SUFFIX segments. Compared to the unsupervised

AG (PSV), the first semi-supervised extension AG (SSV) manages to re-

duce over-segmentation of the STEM segments slightly and SUFFIX seg-

ments substantially, thus resulting in overall higher precision. Mean-

while, the second extension AG SELECT (SSV) also achieves overall higher

precision by reducing over-segmentation of STEM segments substantially

and SUFFIX segments slightly. Although both AG (SSV) and AG SELECT

(SSV) improve recall on Finnish compared to AG (PSV), neither succeed in

improving recall for English. Moreover, similarly to the Morfessor model

family, one additionally observes a decline in the model’s ability to capture

STEM-STEM boundaries (AG (SSV)) and STEM-STEM and PREFIX-STEM

boundaries (AG (SSV) and AG SELECT (SSV)).

Conditional Random Fields In contrast to the Morfessor and AG frame-

works, the error patterns produced by the CRF approach do not directly

follow the baseline approaches. Particularly, we note that supervised CRF

(SV) approach successfully captures SUFFIX-SUFFIX boundaries and fails

to find STEM-STEM boundaries, that is, behaves in opposite manner to the

baseline results. CRF (SV) also under-segments the less frequent PREFIX-

STEM and STEM-SUFFIX boundaries for English and Finnish, respectively.

Meanwhile, the semi-supervised extension CRF (SSV) alleviates the prob-

lem of finding STEM-STEM boundaries substantially, resulting in improve-

ment in overall recall. Note that improving recall means that CRF (SSV)

is required to segment more compared to CRF (SV). For English, this in-

creased segmentation results in a slight increase in over-segmentation of

STEM, that is, the model trades off the increase in recall for precision.

6.6.4 Discussion

The most surprising result is the good performance of the supervised CRF.

The error analysis showed that this good performance does not carry

over to all classes of boundaries. This can be interpreted as the super-

vised training being very good at identifying frequent affixes and per-

126



Semi-Supervised Learning of Morphological Analysis

Over-Segmentation Under-Segmentation
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WORDS 0.0 0.0 0.0 0.0 100.0 55.1 8.6 5.9 4.4 2.5 0.6 23.1

LETTERS 71.1 11.8 1.7 0.3 15.1 0.0 0.0 0.0 0.0 0.0 0.0 100.0

MORF.BL (PSV) 20.6 2.9 0.0 0.1 76.4 17.0 4.7 0.6 1.1 0.0 0.2 76.4

MORF.BL (SSV) 14.3 1.3 0.1 0.0 84.4 9.8 0.6 2.8 2.1 0.0 0.4 84.3

MORF.FC (SSV) 11.2 1.7 0.0 0.1 87.1 8.6 0.5 2.2 2.5 0.1 0.4 85.5

AG (PSV) 31.9 5.6 0.1 0.1 62.3 10.7 3.5 0.1 0.7 0.2 0.1 84.7

AG (SSV) 26.2 1.4 0.1 0.1 72.3 11.5 0.9 0.7 1.2 0.3 0.3 85.0

AG SELECT (SSV) 18.4 4.8 0.0 0.1 76.6 8.2 1.4 2.2 4.1 1.5 0.4 82.2

CRF (SV) 7.3 0.9 0.1 0.0 91.8 10.4 0.5 4.2 2.9 0.1 0.4 81.5

CRF (SSV) 9.6 0.8 0.0 0.1 89.5 8.4 0.5 1.4 1.9 0.0 0.4 87.4

Table 6.10. Error analysis for English. Over-segmentation and under-segmentation er-
rors reduce precision and recall, respectively. For example, the total precision
of MORF. BL (PSV) is obtained as 100.0−20.6−2.9−0.0−0.1 = 76.4. The lines
MORF. BL (PSV), MORF. BL (SSV), and MORF. FC (SSV) correspond to the
unsupervised Morfessor Baseline, semi-supervised Morfessor Baseline, and
semi-supervised Morfessor FlatCat models, respectively.

forming worse on the less frequent morphs. For applications where com-

pound splitting is required, this means that the unsupervised and semi-

supervised generative models clearly have a place in addition to the su-

pervised CRF.

The semi-supervised CRF, however, performs better than its competi-

tion for both suffixes and less frequent structure. Consequently, from a

pragmatic point of view, that approach should be favored in the studied

setting.
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Over-Segmentation Under-Segmentation
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WORDS 0.0 0.0 0.0 0.0 100.0 49.2 21.8 17.2 4.8 1.4 1.0 0.6 4.1

LETTERS 65.2 13.8 0.7 0.6 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

MORF.BL (PSV) 26.6 3.4 0.0 0.2 69.7 28.8 17.1 1.7 0.5 0.0 0.1 0.2 51.6

MORF.BL (SSV) 20.8 2.9 0.0 0.2 76.1 13.6 5.9 1.9 0.5 0.0 0.1 0.1 78.0

MORF.FC (SSV) 15.3 2.9 0.0 0.1 81.7 12.2 5.2 1.5 0.6 0.1 0.1 0.1 80.2

AG (PSV) 29.5 3.3 0.1 0.2 66.8 18.7 11.6 0.9 0.2 0.3 0.1 0.2 67.9

AG (SSV) 23.4 2.9 0.1 0.2 73.4 17.7 5.7 2.2 0.4 0.1 0.2 0.2 73.6

AG SELECT (SSV) 24.2 6.1 0.0 0.1 69.5 13.2 7.8 2.4 1.1 0.8 0.2 0.1 74.4

CRF (SV) 9.3 2.3 0.0 0.0 88.3 10.7 2.2 5.8 1.1 0.1 0.3 0.2 79.7

CRF (SSV) 9.2 1.4 0.0 0.1 89.3 8.0 2.3 1.2 0.4 0.1 0.1 0.2 87.8

Table 6.11. Error analysis for Finnish. Over-segmentation and under-segmentation
errors reduce precision and recall, respectively. The lines MORF. BL
(PSV), MORF. BL (SSV), and MORF. FC (SSV) correspond to the unsuper-
vised Morfessor Baseline, the semi-supervised Morfessor Baseline, and semi-
supervised Morfessor FlatCat models, respectively.
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7. Conclusions

Learning morphology in an unsupervised fashion has been a popular prob-

lem in the past [Hammarström and Borin, 2011, Roark and Sproat, 2007,

Creutz and Lagus, 2007, Goldsmith, 2001]. We have studied two novel

approaches that improve over this work.

First, modeling allomorphy, that is, non-concatenative structure in mor-

phology with string transformations. Second, utilizing weak supervision

in the learning of morphology. The weak supervision was given in the

form of annotated words and was provided in a semi-supervised setting in

addition to an abundance of unannotated words.

From an algorithmic point of view we have presented extensions to

the popular unsupervised morphological segmentation method Morfessor

Baseline [Creutz and Lagus, 2002, 2007]. Our first extension, Allomor-

fessor, presented in Publication I and Publication II, extends the segmen-

tation based model of Morfessor Baseline with string transformations, in

order to model non-concatenative structure. We present experiments on

four different languages and find empirically that the performance of the

Allomorfessor method is very similar to the original Morfessor Baseline.

We do, however, find a small but significant performance improvement for

English and a small but significant performance reduction for Finnish,

German, and Turkish. Moreover, we find that the model does not employ

string transformations nearly to the extent suggested by the linguistic

gold standard analysis, resulting in low recall. It appears, however, that

the precision of the proposed string transformations is quite high, only

rarely containing spurious analyses.

Regarding weak supervision we first developed efficient methods for hy-

perparameter adjustment for Morfessor Baseline in Publication III. Then

in Publication IV we extended Morfessor Baseline to full semi-supervised

learning. A contender for this generative modeling approach was devel-
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oped in Publication V and Publication VI in the form of morphological

segmentation with conditional random fields. We developed label sets and

features sets, as well as semi-supervised training by augmenting the fea-

ture set with the output from unsupervised methods. In Publication VII

we then compared the proposed methods to other recently proposed semi-

supervised methods.

The empirical comparison shows that the semi-supervised CRF approach

outperforms all other methods by a clear margin on all languages. Our

goal was to improve the quality of morphological analysis over the un-

supervised work while preserving the inexpensive nature of the original

methods. In particular, we considered whether it is more cost effective

to annotate data to provide weak supervision compared to further devel-

opment of unsupervised methods. The empirical results show large im-

provements in accuracy over the unsupervised methods. When training

with 1,000 annotated words, the improvements were 11.8, 14.9, 21.2, and

16.7 percentage points F1-score over the best unsupervised method for

English, Estonian, Finnish, and Turkish, respectively. The method pro-

duces results with an F1-score in the range of 88-91% for all languages.

Since annotating 1,000 words is not very time consuming, requiring at

most some hours of effort, the results indicate that such weak supervision

is very valuable. In contrast, improving a unsupervised model to a similar

extent is likely to be quite demanding.

Furthermore, the error analysis performed provides insight into the rel-

ative strengths and weaknesses of the compared methods. Its results

indicate that when the annotated data is employed only in a purely su-

pervised way the overall accuracy can be quite high, but the accuracy for

compound words and on prefixes is, nevertheless, worse than for methods

that additionally utilize the unannotated data. We hypothesize that this

is caused by stems and prefixes being open-class and, therefore, requiring

large training data sets to be observed and, consequently also, learned.

It appears, however, that the unannotated data can provide the required

information to a large degree. For generative models, semi-supervised

training appears to degrade performance for some error categories. In

contrast, the semi-supervised CRF performs best overall without any un-

derperforming error categories.
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Jan Hajič. Morphological tagging: Data vs. dictionaries. In Proceedings of the
1st North American chapter of the Association for Computational Linguistics
conference, pages 94–101. Association for Computational Linguistics, 2000.

Harald Hammarström and Lars Borin. Unsupervised learning of morphology.
Computational Linguistics, 37(2):309–350, June 2011.

Zellig S. Harris. From phoneme to morpheme. Language, 31(2):190–222, 1955.

Martin Haspelmath. Understanding morphology. Arnold, London, 2002.

Martin Haspelmath and Andrea D. Sims. Understanding morphology. Hodder
Education, 2nd edition edition, 2010.

Katri Haverinen, Jenna Nyblom, Timo Viljanen, Veronika Laippala, Samuel Ko-
honen, Anna Missilä, Stina Ojala, Tapio Salakoski, and Filip Ginter. Building
the essential resources for finnish: the turku dependency treebank. Language
Resources and Evaluation, 48(3):493–531, 2014.

Teemu Hirsimäki, Mathias Creutz, Vesa Siivola, Mikko Kurimo, Sami Virpioja,
and Janne Pylkkönen. Unlimited vocabulary speech recognition with morph
language models applied to Finnish. Computer Speech and Language, 20(4):
515–541, October 2006.

Charles F. Hockett. Two models of grammatical description. Morphology: Criti-
cal Concepts in Linguistics, 1:110–138, 1954.

Edwin T. Jaynes. Probability Theory: The Logic of Science. Cambridge University
Press, 2003. ISBN 9780521592710.

Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner, and Dale Schuurmans.
Semi-supervised conditional random fields for improved sequence segmenta-
tion and labeling. In Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting of the Association for Com-
putational Linguistics, pages 209–216. Association for Computational Linguis-
tics, 2006.

Mark Johnson and Sharon Goldwater. Improving nonparameteric Bayesian in-
ference: experiments on unsupervised word segmentation with adaptor gram-
mars. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computa-
tional Linguistics, pages 317–325. Association for Computational Linguistics,
2009.

Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater. Adaptor grammars:
a framework for specifying compositional nonparametric Bayesian models. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 641–648, Cambridge, MA, 2007. MIT Press.

Heiki-Jaan Kaalep, Kadri Muischnek, Kristel Uiboaed, and Kaarel Veskis. The
Estonian reference corpus: Its composition and morphology-aware user inter-
face. In Proceedings of the 2010 Conference on Human Language Technologies

135



Bibliography

– The Baltic Perspective: Proceedings of the Fourth International Conference
Baltic HLT 2010, pages 143–146. IOS Press, 2010.

Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems.
Computational linguistics, 20(3):331–378, 1994.

Fred Karlsson. Yleinen Kielitiede. Helsinki University Press, 2002.

Lauri Karttunen and Kenneth R. Beesley. Twenty-five years of finite-state mor-
phology. Inquiries Into Words, a Festschrift for Kimmo Koskenniemi on his 60th
Birthday, pages 71–83, 2005.

Samarth Keshava and Emily Pitler. A simpler, intuitive approach to morpheme
induction. In Proceedings of 2nd Pascal Challenges Workshop, pages 31–35,
2006.

Özkan Kılıç and Cem Bozsahin. Semi-supervised morpheme segmentation with-
out morphological analysis. In Proceedings of the LREC 2012 Workshop on
Language Resources and Technologies for Turkic Languages, Istanbul, Turkey,
2012.

Alexandre Klementiev and Dan Roth. Weakly supervised named entity translit-
eration and discovery from multilingual comparable corpora. In Proceedings of
the 21st International Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational Linguistics, pages 817–
824. Association for Computational Linguistics, 2006.

Jan Kneissler and Dietrich Klakow. Speech recognition for huge vocabularies by
using optimized sub-word units. In INTERSPEECH, pages 69–72, 2001.

Philipp Koehn and Kevin Knight. Empirical methods for compound splitting. In
Proceedings of the tenth conference on European chapter of the Association for
Computational Linguistics-Volume 1, pages 187–193. Association for Compu-
tational Linguistics, 2003.

Oskar Kohonen, Sami Virpioja, and Mikaela Klami. Allomorfessor: Towards un-
supervised morpheme analysis. In Evaluating Systems for Multilingual and
Multimodal Information Access: 9th Workshop of the Cross-Language Evalu-
ation Forum, CLEF 2008, Aarhus, Denmark, September 17-19, 2008, Revised
Selected Papers, volume 5706 of Lecture Notes in Computer Science, pages 975–
982. Springer, 2009.

Oskar Kohonen, Sami Virpioja, Laura Leppänen, and Krista Lagus. Semi-
supervised extensions to morfessor baseline. In Proceedings of the Morpho
Challenge 2010 Workshop. Aalto University School of Science and Technology
Faculty of Information and Natural Sciences Department of Information and
Computer Science, Espoo, Finland, September 2010.

Andrei N. Kolmogorov. Three approaches to the quantitative definition ofinfor-
mation’. Problems of information transmission, 1(1):1–7, 1965.

Kimmo Koskenniemi. Two-level morphology: A general computational model
for word-form recognition and production. Technical Report Publication 11,
University of Helsinki, Department of General Linguistics, Helsinki, 1983.

136



Bibliography

Mikko Kurimo, Mathias Creutz, Matti Varjokallio, Ebru Arisoy, and Murat Sar-
aclar. Unsupervised segmentation of words into morphemes – challenge 2005,
an introduction and evaluation report. In Proceedings of the 2nd Pascal Chal-
lenges Workshop, Italy, 2006a.

Mikko Kurimo, Antti Puurula, Ebru Arisoy, Vesa Siivola, Teemu Hirsimäki,
Janne Pylkkönen, Tanel Alumäe, and Murat Saraclar. Unlimited vocabulary
speech recognition for agglutinative languages. In Proceedings of the Main
Conference on Human Language Technology Conference of the North Ameri-
can Chapter of the Association of Computational Linguistics, HLT-NAACL ’06,
pages 487–494, Stroudsburg, PA, USA, 2006b. Association for Computational
Linguistics.

Mikko Kurimo, Ville Turunen, and Matti Varjokallio. Overview of Morpho Chal-
lenge 2008. In Evaluating Systems for Multilingual and Multimodal Infor-
mation Access: 9th Workshop of the Cross-Language Evaluation Forum, CLEF
2008, Aarhus, Denmark, September 17-19, 2008, Revised Selected Papers, vol-
ume 5706 of Lecture Notes in Computer Science, pages 951–966. Springer,
2009a.

Mikko Kurimo, Sami Virpioja, Ville Turunen, Graeme W. Blackwood, and
William Byrne. Overview and results of Morpho Challenge 2009. In Work-
ing Notes for the CLEF 2009 Workshop, Corfu, Greece, September 2009b.

Mikko Kurimo, Sami Virpioja, Ville T. Turunen, Graeme W. Blackwood, and
William Byrne. Overview and results of Morpho Challenge 2009. In Work-
ing Notes for the CLEF 2009 Workshop, Corfu, Greece, September 2009c.

Mikko Kurimo, Sami Virpioja, and Ville Turunen. Overview and results of Mor-
pho Challenge 2010. In Proceedings of the Morpho Challenge 2010 Workshop,
pages 7–24, Espoo, Finland, September 2010. Aalto University School of Sci-
ence and Technology, Department of Information and Computer Science. Tech-
nical Report TKK-ICS-R37.

John Lafferty, Andrew McCallum, and Fernando C.N. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence data. In
Proceedings of the Eighteenth International Conference on Machine Learning,
pages 282–289, 2001.

Yoong Keok Lee, Aria Haghighi, and Regina Barzilay. Modeling syntactic con-
text improves morphological segmentation. In Proceedings of the Fifteenth
Conference on Computational Natural Language Learning (CoNLL), pages 1–
9, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.
ISBN 978-1-932432-92-3.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. In Soviet physics doklady, volume 10, page 707, 1966.

Constantine Lignos. Learning from unseen data. In Mikko Kurimo, Sami Virpi-
oja, and Ville T. Turunen, editors, Proceedings of the Morpho Challenge 2010
Workshop, pages 35–38, Helsinki, Finland, September 2–3 2010. Aalto Univer-
sity School of Science and Technology.

Constantine Lignos, Erwin Chan, Mitchell P. Marcus, and Charles Yang. A rule-
based acquisition model adapted for morphological analysis. In Multilingual

137



Bibliography

Information Access Evaluation Vol. I: 10th Workshop of the Cross-Language
Evaluation Forum, CLEF 2009, Corfu, Greece, September 30 - October 2, 2009,
Revised Selected Papers, Lecture Notes in Computer Science, pages 658–665.
Springer, 2010.

Minh-Thang Luong, Richard Socher, and Christopher D. Manning. Better word
representations with recursive neural networks for morphology. In Pro-
ceedings of the Seventeenth Conference on Computational Natural Language
Learning (CoNLL), pages 29–37. Association for Computational Linguistics,
August 2013.

Gideon S. Mann and Andrew McCallum. Generalized expectation criteria for
semi-supervised learning of conditional random fields. In Proceedings of ACL-
08: HLT, pages 870–878. Association for Computational Linguistics, 2008.

Christoph D. Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA, 1999.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to information retrieval, volume 1. Cambridge university press Cam-
bridge, 2008.

Peter H. Matthews. Morphology. Cambridge University Press„ 1991. ISBN 0-
521-41043-6.

Robert McEliece. The theory of information and coding. Cambridge University
Press, student edition edition, 2004.

Christian Monson, Jaime Carbonell, Alon Lavie, and Lori Levin. Paramor: Mini-
mally supervised induction of paradigm structure and morphological analysis.
In Proceedings of Ninth Meeting of the ACL Special Interest Group in Compu-
tational Morphology and Phonology, pages 117–125. Association for Computa-
tional Linguistics, 2007.

Christian Monson, Kristy Hollingshead, and Brian Roark. Simulating morpho-
logical analyzers with stochastic taggers for confidence estimation. In Multi-
lingual Information Access Evaluation I - Text Retrieval Experiments, volume
6241 of Lecture Notes in Computer Science. Springer, 2010.

Thomas Müller, Helmut Schmid, and Hinrich Schütze. Efficient higher-order crfs
for morphological tagging. In In Proceedings of EMNLP, 2013.

Jason Naradowsky and Sharon Goldwater. Improving morphology induction by
learning spelling rules. In IJCAI, pages 1531–1536, 2009.

Karthik Narasimhan, Damianos Karakos, Richard Schwartz, Stavros Tsakalidis,
and Regina Barzilay. Morphological segmentation for keyword spotting. In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), Doha, Qatar, 2014.

Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput-
ing Surveys, 33(1):31–88, 2001.

Sylvain Neuvel and Sean A. Fulop. Unsupervised learning of morphology with-
out morphemes. In Proceedings of the ACL-02 workshop on Morphological and
phonological learning-Volume 6, pages 31–40. Association for Computational
Linguistics, 2002.

138



Bibliography

Vincent Ng and Claire Cardie. Weakly supervised natural language learning
without redundant views. In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on Human
Language Technology-Volume 1, pages 94–101. Association for Computational
Linguistics, 2003.
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Errata

Publication II

In Table 3, the C2 MAP numbers for Morfessor Baseline for English and

Finnish are interchanged. The correct numbers are shown in the intro-

ductory part of this dissertation in Table 5.2. Moreover, the time complex-

ity in Chapter 3.1 should be O(K2W ) instead of O(KW log(W )).

Publication IV

First, in Section 4 it was claimed that the semi-supervised extension could

be easily applied to Morfessor Categories-MAP [Creutz and Lagus, 2005a,

2007]. This turned out not to be the case. For more discussion see Section

6.3.4. Second, it was claimed that there is no overlap between training

and test set. Because of a programming error, discovered at the time

of writing this, the sets were independently sampled with overlap. The

biggest training set and the test set contain 16% overlap for English, and

1.6% for Finnish. This does, however, not invalidate the relative results,

since the overlap is partial.
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