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Influence of weld stiffness on buckling strength of laser-welded web-core 

sandwich plates 

J. Jelovica1*, J. Romanoff1, S. Ehlers2, P. Varsta1 

1 Department of Applied Mechanics / Marine Technology, Aalto University School of 

Engineering, P.O. Box 15300, 00076 Aalto, Finland 

2 Department of Marine Technology, Norwegian University of Science and Technology, 7491 

Trondheim, Norway 

Abstract 

This paper investigates the influence of weld rotation stiffness on the global bifurcation 

buckling strength of laser-welded web-core sandwich plates. The study is carried out using two 

methods, the first is the equivalent single-layer theory approach solved analytically for simply 

supported plates and numerically for clamped plates. First-order shear deformation theory is used. 

The second method is the three-dimensional model of a sandwich plate solved with finite element 

method. Both approaches consider the weld through its rotation stiffness. The weld rotation 

stiffness affects the transverse shear stiffness. Plates are loaded in the web plate direction. Four 

different cross-sections are considered. Weld stiffness is taken from experimental results presented 

in the literature. The results show a maximum of 24% decrease in buckling strength. The strength 

was affected more in plates with high reduction of transverse shear stiffness and high bending 

stiffness. Furthermore, clamped plates were influenced more than simply supported. The 

intersection between buckling modes shifted towards higher aspect ratios, in the maximum case by 

24%. The results show the importance of considering the deforming weld in buckling analysis. 

Keywords: bifurcation buckling strength; global buckling; laser weld; rotation stiffness; shear 

stiffness; web core; sandwich plate. 

List of symbols 

a Length of the sandwich plate (m) 

b Width of the sandwich plate (m) 

d Distance between neutral axes of the face plates (mm) 

tt Thickness of top face plate (mm) 

tb Thickness of bottom face plate (mm) 

tf Thickness of face plate (mm) 

tw Thickness of web plate (mm) 

s Spacing of the web plates (mm) 

hc Height of the sandwich plate core (mm) 

m Number of buckling half-waves in x-direction 

n Number of buckling half-waves in y-direction 

kθ Rotation stiffness of laser weld (kN) 
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u Displacement component in x-direction (m) 

v Displacement component in y-direction (m) 

w Deflection of the plate (m) 

D Bending stiffness of isotropic steel plate (Nm) 

Dij Bending stiffness of sandwich plate, i,j = 1,2,3. (Nm) 

Df Bending stiffness of face plate (Nm) 

DQx Transverse shear stiffness in x-direction (Nm) 

DQy Transverse shear stiffness in y-direction (Nm) 

Dw Bending stiffness of web plate (Nm) 

E Young’s modulus (Pa) 

G Shear modulus (Pa) 

M Moment acting on laser weld (Nm) 

N0 Buckling load per unit width (N) 

 Poisson’s ratio 

x Rotation around y-axis 

y Rotation around x-axis 

w Rotation of the web plate around laser weld 

c Deviation from the 90 angle at the T-joint 

1 Introduction 

Steel sandwich plates are light-weight structures which can save space and improve safety; 

see Okazaki et al. [1]. They possess a high stiffness-to-weight and strength-to-weight ratio 

compared to conventional structures. This study concentrates on sandwich plates which consist of 

two face plates separated by web plates see Fig. 1(a). The connection between the web plates and 

face plates is achieved by laser stake welding which forms the T-joint. The thickness of the laser 

weld is typically less than that of the face plates and web plates; see Roland and Reinert [2]. This 

allows the ideally right angle of the T-joint to change when the sandwich plate is deformed 

transverse to the web plate direction. Therefore, the connection is not perfectly rigid, which results 

in the sandwich plate having a lower transverse shear stiffness. This has been found to have a high 

impact on the bending response, as presented in Romanoff et al. [3] for beams and Romanoff and 

Varsta [4] for plates. 

The bending of a ship hull girder or bridge girder causes compression of its flanges; see Fig. 

1(b). Buckling strength of the sandwich plate used at that location must be known due to in-plane 

loading. The laser-welded web-core sandwich plate may buckle in a local, global, or combined 

fashion. Up to now, the local buckling of the face plates has only been studied in a few studies; see 

Kolsters and Zenkert [5], Kolsters and Zenkert [6], and Kolsters [7]. Global buckling may become 

important for a slender sandwich plate; see Kozak [8]. However, none of these studies considered 

the actual laser weld rotation stiffness and its statistical variation. Haj-Ali et al. [9] and Rahman 

and Abubakr [10] showed for corrugated core plates that the connection between the face and the 

core has significant influence on buckling strength. Their investigation was based on three-

dimensional (3-D) finite element method (FEM). In their work, they did not relate the resulting 
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buckling strength to the transverse shear stiffness, even though Nordstrand [11] has shown that the 

buckling strength depends on the transverse shear stiffness of the corrugated plate. 

The aim of this study is to investigate the influence of weld rotation stiffness on global 

buckling strength of web-core sandwich plates. Global buckling is in focus since it is dominant for 

a slender plate, for example when used in a ship or a bridge deck. Bifurcation buckling is studied 

since it fundamentally describes the buckling phenomenon and is part of structural design rules, 

e.g. DNV rules for ship classification [12]. Plate global buckling experiments do not exist that 

would validate the findings and thus the investigation is carried out with two theoretical methods 

that have different kinematical assumptions. The first is the equivalent single-layer (ESL) theory 

approach solved analytically for simply supported plates and numerically for clamped plates. First-

order shear deformation theory is used. The second method is a 3-D FEM with shell elements for 

plates and spring elements for welds. Plates are loaded in their main load-carrying direction, i.e. 

parallel to the web plates. Four cross-sections of different properties are considered.  

a) 

 

b) 

 

Fig. 1. Laser-welded web-core sandwich plate (a) with the weld detail and (b) as a part of the ship hull 

girder. 

2 Analysis methods 

2.1 Equivalent single-layer theory approach 

The orthotropic sandwich plate is described through a single layer in its geometrical mid-

plane. Equivalent stiffness properties for extension, coupling, bending and shear are described 

through ABD- and DQ –matrices, respectively; see Appendix. Laser weld rotation stiffness k  

affects the transverse shear stiffness opposite to web-plate direction, which is given as [3]: 
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for which different stiffness parameters and kQ are presented in the Appendix. The laser weld 

rotation stiffness k is defined as the ratio of the moment M to the rotation angle c at the weld; see 
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From Eq. (1) it is seen that the reduction of weld stiffness reduces the transverse shear 

stiffness. 

 

Fig. 2. The angles around the weld [3]; the final deformed shape is shown with thick lines. 

2.1.1 Analytical solution for simply supported plates 

Symmetric laser-welded web-core sandwich plate is a special type of orthotropic plate where 

stiffness coefficients A13, A23, D13, D23 and Bij are equal to zero. The exact buckling load N0 per 

unit width of a simply supported plate that follows the first-order shear deformation theory is given 

by Reddy [13] and Robinson [14]. The expression is presented in closed form: 
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The coefficients are: 

;m a    

;n b    

 4 2 2 4

33 11 12 33 222 2 ;c D D D D       
 

 
2

1 2 3 4 ;c c c c  
 

2 2

2 11 33 ;c D D    
 

2 2

3 33 22 ;c D D    
 

 4 12 33 .c D D       

Setting the shear stiffness to infinity, number of buckling half-waves in y-direction to one, and 

minimizing Eq. (3) with respect to m, gives the expression for isotropic steel plate buckling: 
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which is used in typical rules for ship structural design, additionally simplified for high aspect 

ratios, a/b, to 
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2.1.2 2-D FEM model 

The model consists of shell elements and presents the geometrical mid-plane of the plate, 

where also the loads and boundary conditions are described. The analyses are carried out using 

Abaqus software, version 6.6.1. Shell elements with four nodes (S4) are used.  

Simply supported boundary condition is achieved by preventing the deflection w and the 

rotation at a supported edge. Restrained rotation along x-axis is θx = dw/dx and similar notation is 

used for y-axis; see Fig. 3. Additional restraining of the rotation around the edge results in the 

clamped boundary condition. Symmetry conditions are not used since they would prevent certain 

buckling modes. 

Plate width is divided in 100 elements. The element aspect ratio is close to unity. This was 

found to be sufficient in the initial study, because doubling it resulted in only a 0.2% difference in 

the buckling strength. 

 

Fig. 3. Boundary conditions for the 2-D model. 

2.2 3-D FEM model 

Face and web plates are modelled with shell elements to form an actual topology of the 

sandwich plate. The welds are modelled with spring elements which connect the face and web 

plates at their apparent intersection; see Fig. 4. The analyses are carried out using Ansys software, 

version 11.0. Shell element type 181 is used. For spring element, Combin 14 element is used. 

Concentrated nodal forces act on the nodes in the geometrical mid-plane. 

To simply support or clamp the 3-D sandwich plate edge a different approach is required than 

for the 2-D mesh. This is due to the existence of the actual out-of-plane dimension. Therefore, the 

deflection restraint for the simply supported boundary condition is set only on the nodes at the 

geometrical mid-plane. This allows the rotation of the plate around the mid-plane edge. 

Furthermore, the vertical nodes along the edge are displaced equally in the edge direction to 
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prevent the rotation of the in-plane axis orthogonal to the edge. For example, all the nodes at a 

certain web plate have the same displacement in the y-direction, v; see Fig. 4. To clamp the 

sandwich plate edge, vertical nodes at the edge displace equally parallel to the edge. 

Four shell elements per web plate height and face plate width are used. The resulting mesh 

size for the studied cases was the maximum that could be solved with the available computing 

resources. 

  

Fig. 4. FE mesh and boundary conditions for 3-D model of a sandwich plate: a) simply supported and b) 

clamped. 

3 Case studies 

3.1 Description of the studied plates 

The rotation stiffness of the laser weld was experimentally measured and presented by 

Romanoff et al. [3]. Their measurements were normally distributed with the average equal to kθ = 

107 kN and a standard deviation of 21 kN. The measured weld stiffness is used in buckling 

analysis in comparison to the case where the weld stiffness is not considered, i.e. it is infinite. 

Four different cross-sections are studied. The notation used to identify the plates is the 

following: thickness of face plates  core height / web plate spacing. Thickness of the web plates 

is 4 mm for all plates. Case A (2.540/120) represents the standard sandwich configuration used in 

marine and civil applications. Case B (420/80) is a sandwich plate with thick face plates and 

small core height. Therefore, it is suitable for limited space requirements and high local loads e.g. 

from car tyres. Furthermore, it has high reduction of the transverse shear stiffness; see Eq. 1 and 

Table 1. In case C (480/80) the height of the core is increased, which results in considerable 

higher bending stiffnesses. In case D (180/80) the thickness of face plates has been reduced. 

Owing to this, the shear stiffness is decreased only by 6% when considering the average measured 

and infinite rotation stiffness. The properties of the cross-sections are given in Table 1. It can be 

seen that the transverse shear stiffness is a few orders of magnitude smaller than the longitudinal. 

The influence of weld rotation stiffness on transverse shear stiffness of the plates is presented in 

Fig. 5. 
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Table 1. Properties of the plates. The ratio of D22 to D11 is shown in square brackets. The ratio of DQy with 

finite and infinite k  is shown in round brackets. 

Case 
tf   hc / s 

[mm] 
D11 [kNm] D22 [kNm] DQx [kNm] 

DQy [kNm] 

k = 65 kN k = 107 kN k = 149 kN k = ∞ kN 

A 2.540/120 548 511 [0.93] 68·103 236 (0.56) 285 (0.68) 313 (0.75) 419 

B 420/80 268 261 [0.97] 62·103 631 (0.22) 908 (0.32) 1123 (0.40) 2830 

C 480/80 3634 3195 [0.88] 292·103 522 (0.36) 698 (0.48) 819 (0.56) 1460 

D 180/80 1182 743 [0.62] 251·103 63 (0.91) 65 (0.94) 66 (0.96) 69 

 

Aspect ratios from 0.4 to 2.0 are studied. Plate width b is fixed around seven metres and a 

maximum length a restricted by current production capabilities to 14 m. The exact breadth of each 

sandwich plate is based on its web plate spacing s. The resulting dimensions are typical for ship 

structures. The material behaviour is described by a Young’s modulus E = 206 GPa and Poisson’s 

ratio  = 0.3. The lowest eigenvalue is considered in analysis. 

 

Fig. 5. Transverse shear stiffness of plates vs. weld rotation stiffness. 

3.2 Results 

Results of the buckling analysis are presented in Fig. 6. The load was multiplied with 

b2/(D11·2) to obtain a nondimensionalised form, called buckling coefficient k. The correspondence 

between ESL theory approach and 3-D FEM is excellent with both boundary conditions. 3-D FEM 

simulations are carried out for a/b = 0.75, 1.00 and 1.50. Numerical solution with ESL theory 

approach is validated with the analytical expression. 
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All the plates show a reduction in buckling strength when the weld deformation is considered 

in analysis; see Fig. 6. The reduction is the smallest for the lowest aspect ratio and the largest at 

the point of buckling mode intersections. In that manner, the buckling strength for simply 

supported plate A (2.540/120) is reduced from 3% at a/b = 0.4 to 8% at a/b = 1.5 and it remains 

close to that value for higher aspect ratios. The most severe reduction was observed for case C 

(480/80), ranging from 5% for the smallest aspect ratio to 22% at a/b = 1.5. In the case of 

sandwich plates B (420/80) and D (180/80) it is reduced by, on average, 3.5% and 1.5%, 

respectively. 

The clamped plate shows a more severe reduction of buckling strength when compared to the 

simply supported plate. For case B, the difference is increased from 3.5% with simply supported to 

11% with clamped edges. In the case of sandwich plate C, the difference ranges up to 24% (22% 

with simply supported edges) and for case A up to 12% (8%). 

Furthermore, the intersection between the buckling modes has shifted towards higher aspect 

ratios. The shift is especially pronounced for clamped plates, where in case C the intersection 

between the first and the second buckling mode is moved from a/b = 1.45 to a/b = 1.8 (24%). 

a) b) 

  

c) d) 

  

Fig. 6. (a) – (d) Buckling coefficient versus plate aspect ratio, with and without taking joint stiffness into 

account. 
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3.2.1 Variation of rotation stiffness 

An additional decrease in the buckling strength for all the cross-sections occurs for k = 65 

kN, which is the value of the average rotation stiffness minus two standard deviations. This is the 

lower bound of the weld stiffness measurements with the confidence of 95%. Fig. 7(a) presents the 

reduction for the simply supported plate C, which is affected the most. The differences in buckling 

strength between cases k =  kN and k = 65 kN are from 7% to 30%. 

Exposure of the plates to sea water could lead to weld thickness reduction due to corrosion; 

see Jelovica et al. [15] and Aromaa et al. [16]. The weld stiffness would decrease from 

experimentally measured values. The shift of buckling mode intersections is in that case so 

significant that the first half-wave dominates even at high aspect ratios. Fig. 7(b) presents the 

buckling coefficient for the simply supported plates with a = 14 m and b = 4 m, thus a/b= 3.5. 

Plate production favours such dimensions. It can be seen from the figure that the plates buckle in 

single-half wave mode for very low weld rotation stiffness, respectively the shear stiffness. The 

buckling strength is severely decreased. 

a) b) 

 

 

Fig. 7. (a) Buckling coefficient for simply supported plate C with k = ∞, 149, 107, and 65 kN; (b) Buckling 

coefficient versus weld rotation stiffness for simply supported plates of aspect ratio 3.5. 

4 Discussion and conclusions 

The weld rotation stiffness was found to have significant influence on the buckling strength. 

For case C (480/80), where the reduction in transverse shear stiffness is second highest and the 

bending stiffness is the highest, the reduction of the buckling strength was 22% and 24% at 

maximum for simply supported and clamped edges. This reduction was obtained by lowering the 

weld stiffness from infinite to the average measured value from Romanoff et al. [3]. This finding is 
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For the same weld stiffness variation, plates showed different buckling strength reduction. 

The reduction of strength cannot be solely attributed to the transverse shear stiffness decrease. This 

can be concluded from comparison of cases B and C. The transverse shear stiffness was reduced 

the most in case B, however, the buckling strength was decreased by only 3.5% for simply 

supported edges. On the other hand, case C features second highest reduction of transverse shear 

stiffness, however, the buckling strength was decreased by 22%. Buckling strength in case B is 

governed by c33 term in Eq. (1) and thus the changes in DQy do not have significant effect. On the 

other hand, in case C the c1 and c3 coefficients increase and it results in higher influence of 

transverse shear stiffness. This effect is due to the higher sandwich plate bending stiffness in case 

C, i.e. increased core height. Thus, the strength is affected more in plates with high transverse 

shear stiffness reduction and high bending stiffness. 

In general, clamped plate edges resulted in more severe decrease of buckling strength, due to 

larger effect of shear deformation. Thus, the weakness of the connection between the face plate 

and the web plate became more evident. For case B, the reduction in strength is increased from 

3.5% for simply supported edges to 11% for clamped edges. 

Furthermore, it was found that a reduction in the weld stiffness shifts the intersections of 

buckling modes towards higher aspect ratios. This is in line with the findings from Nordstrand [11] 

for corrugated plates. Additionally, in the case of very low weld stiffness the sandwich plate 

buckled in a single half-wave mode even at high plate aspect ratios. The buckling strength was 

severely decreased. Such case could occur for plates with decreased weld thickness due to 

corrosion; see Jelovica et al. [15] and Aromaa et al [16], and due to fatigue; see Frank [17]. 

Shift of buckling mode intersections could be important for practical design where the spans 

between the plate supports are fixed and the aspect ratio is in the range 1-3. Because of typically 

small aspect ratios, the design of sandwich plate cannot be simplified by using the buckling 

coefficient, such as for isotropic steel plate, where it equals 4 for long plates. The results of this 

study show the importance of considering the weld in buckling analysis. Further investigation 

should include more realistic material properties. Based on these investigations, buckling 

experiments can be planned and carried out for sandwich plates in the future. 

Appendix – Stiffness properties 

The extensional, extensional-bending, and bending stiffness matrices respectively are (see 

Romanoff and Varsta [4]) 
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and the local bending stiffness of the face plates is 
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where the distance from the mid-plane of the plate is 
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The elasticity matrix [E] of the face plates is 
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while the core has the elasticity matrix  
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The shear stiffness in the longitudinal direction is 
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The shear stiffness in the transverse direction DQy is given by Eq. (1). 
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