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jasmin.jelovica@tkk.fialan.klanac@tkk.fi

ABSTRACT

This paper presents two techniques, the ‘healing’‘eepairing’ that can reduce optimization time
when using genetic algorithm for structural optiatian. The techniques can be applied to: (a)
quickly find feasible designs from completely inddde set of alternatives, and (b) to make the
best infeasible designs feasible. These procedaresimplemented into a genetic algorithm
‘VOP'. The performance of the original and the niiedi version of the algorithm are compared
with the widespread genetic algorithm ‘NSGA-II' fthhe weight optimization of a 40 000 DWT
chemical tanker midship section. The results shbat these procedures can decrease the
optimization time by approximately half.

1 INTRODUCTION

Design of modern ships introduces new complex sirat solutions that must follow the
increasing demand for more reliable and safe pitsduddowever, the available time does not
follow the increasing complexity of design procegjuthus more advanced support systems are
required that can assist designers. Such a systald be based on the optimization process. The
intention of this study is to show how to enharigs process with respect to the increase of speed.

Complex ship structures involve large number ofaldes and even larger number of constraints.
Variables are in structural optimization reguladigcrete, whether they represent element size,
material type, stiffener spacing etc. Constraimgsreon-linear and non-convex, typically involving
yielding and buckling of structural elements. Thesasons confine the choice of possible
optimization algorithms to those that do not requgradient calculation of constraints and
objective functions. Evolutionary algorithms havewn capability to handle such problems and
provide sufficient benefits for the structure. Quofethem is the genetic algorithm (GA). Several
applications have shown that GA can be a successfufor practical problems in ship structural
design and optimization, see e.g. Romanoff and &af2007), Ehlers et al. (2007), Klanac and
Jelovica (2009), Klanaet al. (2009).

Genetic algorithm operates in the design spacehawng multiple design alternatives at hand
when deciding where to continue the search fromegsion to generation. This number of
available solutions is known as a population sizé should grow with the number of considered



variables. Literature suggests using populatioe Bizange from 50 to 500; see Deb (2001). This
lengthens the optimization time even for the simpigineering problem, since the number of
generated and evaluated design alternatives bedahing the optima can be more than several
thousands. Clearly, this can be rather costly whgtimizing large ship structures, especially if
Finite Element Methods applied for structural assessment. In any caggmization should be
short, and if it is time-consuming, it is ofteny fwonvenience, stopped prematurely, immediately
after noticing some improvements in objective valaed without attaining their optima. Making
relevant conclusions based on such results candieading and costly in the later stages.

Optimization in tightly-constrained design spacpidglly involves infeasible designs that do not
satisfy all requirements included in the probleracls designs are considered less valuable than
the feasible designs, and are suppressed or c@hypietglected as for example in NSGA-Il (Deb
et al.2002) ore-MOEA (Deb et al. 2003) genetic algorithms. Herevawer, a different approach

is suggested. Instead of rejection, infeasible giesian berepaired so that it hopefully yields
feasible design, partially maintaining the origisajood objective(s) value(s).

The two procedures that form this approach areemphted in a GA called VOP. The original
and the modified version of the algorithm are coragawith NSGA-II, a recognized genetic
algorithm that possesses several advanced feaflweemonstrate this comparison, a structure of
a 40 000 DWT and 180m long chemical tanker is ogtuh for the two objectives: minimum of
hull steel weight and minimum of duplex steel weigh

The following chapter describes heal and repaihngues and the way how they can be
implemented in the GA. Chapter 3 describes the \&@@rithm. Chapter 4 presents the test case
that is used for optimization in Chapter 5, wheealhand repair procedures are utilized and
validated with NSGA-II. The last chapter conclutles paper.

2 HEALING AND REPAIRING FOR FASTER OPTIMIZATION

Diverse set of designs in each generation allowsGA to select better-than-average individuals
that will be used for optimization continuationfdasible designs are in that sense considered less
valuable and completely rejected in the promindgorithms like NSGA-Il ore-MOEA once the
feasible space has been found. But oftentimes timdsasible designs are much better according
to objective(s) values(s). In the case where olve) depend on the numerous designs variables,
for example in the weight optimization of a compkxucture, changing few of them would not
significantly alter the performance of a designeitlit could be useful to alter such design alittl
as possible to make it feasible but to retainlifectives.

Various schemes have been reported on how to nnééasible designs feasible. Oftentimes they
are based on designer’s insights on the physicathl@m they are dealing with. Certain way is

observed how to satisfy a requirement and the desige composed to fulfill it; see for example

Todoroki and Haftka (1998), Liu et al. (2000), Chatual. (2001), Cheong and Lai (2000). Repair
technique is conceived here in a more generic mamesigns are not improved based on some
prior-knowledge specific to a problem at hand,eastthey benefit from other solutions present in
the current generation. However, there is one ¢mmdia sensitivity of the constraints to variables

should be knowny - g; , so that the variables that caused constrainatii can be identified.

This variable-constraint ‘link’ should be relatiyetasy to determine in optimization problem since
constraints are always functions of decision véeigbg=g(x ). At this point, the term ‘infeasible’
is extended beyond description of a particulargiesidentifying now a specific constraint that is
violated,g; <0, and associated variablg . If a design is infeasible, there exists at lease

broken constraint and corresponding infeasiblealdei The idea is then to replace that infeasible
variable with the variable from different desigmatlloes not violate the same constraint.



The proposed approach is divided in two procedtivascan be applied in the following cases: (a)
to quickly find feasible solutions from completehfeasible population and (b) to make the best
infeasible designs feasible, in the presence dilida designs in the population. The former is
named ‘heal’, and the later ‘repair’ procedure.lBate described in the sequel.

2.1 Healing

If all designs in the population are infeasibleddes not mean that all of their constraints ace to
When a particular constraint is observed, therstalasigns in the population which do and do not
break it, or even if they all break it, some dée#ts than the others. To make a design feasible, it
infeasible variables are identified and replacetth worresponding feasible variables from a design
that is best in objective(s) value(s). Besides lihgathe design, i.e. turning it into feasible eth
intention is to make it competitive objective-wiSéhere are two interesting categories of designs
in the population: those with the smallest ovetalhstraints violation and those with the best
objective(s) value(s). The former offers a graterbability to become feasible and requires fewer
variables to change. The latter group is temptingesdesigns with good objective(s) value(s) are
the goal of the optimization, but are likely to kawore infeasible variables that should be
healed.replaced. It would be quite useful to makemt feasible and simultaneously not
significantly deteriorate their objective value(®ftentimes these two features are contrary in
structural optimization where weight minimizationakes light designs violate many strength
constraints, while the feasible ones can in theérégg be quite heavy.

The suggested strategy is to hedl,, of the best designs that violate the least amaifint

constraints and alsdl,,, of the best designs according to objective(s) ef@ly starting with the

best design in each category. Regardless of tlegaoat, every design which undergoes healing
process gets its infeasible variables replaced avigasible value from the best performing design
for that variable.

To sort design alternatives according to their traist violation, the following expression is used:

J
Son(¥) =2 H[ g, (1)
j=1
whered is the number of constraints in the problem zkhEi]]is a Heaviside operator defined by
-g;(x),ifg;(x) <0
Hig (x)|=1 : 2
[g'( )J {O, otherwise @

Before using the Equation (1) infeasible constraaities are linearly normalized between 0 and 1.
The performance of the design in the normalizeéabje space is measured by

dogy (X) = {2[1 fm(X)]z} : ®)

The heal procedure is described below:

Step 1Rank the population according to the smallestal’eonstraint violation using Eq. (1).
Step 2 Rank the population according to the best obje¢s) value(s) using Eqg. (3).

Step 3 Determine infeasible variables to the békt,, designs that are ranked basedSg, and
the bestN,,, designs based od, .

Step 4 Starting from the besS.,, design, do for eadN_,: keep all feasible variables and
replace each infeasible with a feasible value fbast possible design accordingdg, .



If there is no feasible value from a particulariable in the population, take the one
from the bestS.,, design.

Step 5 Starting from the bestl;; design, do for eadN, : repeat the action from tt&tep 4
Population size must remain the same, tug, + Ngs, < N. Beside the designs selected for
healing, remaining designs are chosen in a standagd which can differ depending upon the

algorithm where the heal technique is implemenBemaining part of the population that is not
healed is important because it:

— ensures functionality of the GA in case that heahhique has no effect due to improper
variables-constraints connection,

— provides diversity in the population if the healiwgs unable to produce feasible designs,
so it can be applied again in the following itevati

— can be useful for the later stages of the optiroragfter finding the feasible design.

Crossing-over two designs can change them radicahgrefore, this operator is disabled when
using the heal technique in order to increase tlveess of producing a feasible design. For the
part of the population which is not healed, thessower is used in a standard way to ensure normal
GA process. Mutation operator is used on all desigithout any exception as it changes the
designs far less than the cross-over and doesesémt a big threat to their feasibility.

Heal technique is intended to create feasible dssig the first attempt, but even if it is
unsuccessful, it should considerably reduce theradveonstraint violation of the designs,
positioning them close to feasible space. It cangde iteratively until feasible designs are found.
Thereatfter, it is replaced with the repair procedur

2.2 Repairing

The repair procedure can be applied after obtairirey variable set that yields the feasible
solution. If there are several feasible alternativiae one with the best objective(s) value(s) is
taken as a reference. It can be used as a modsgpaa the infeasible variables from the infeasible
solutions, relying on the same variable-constraiapping that is used for the healing procedure.

Which designs will be repaired depends upon theirfgpmance in objective space that is
determined by Eg. (3). Only those infeasible desidpat are better in objective(s) value(s) than the
reference design will be repaired to make themiliégssimultaneously trying to avoid severe
performance deterioration. Obviously there is nipi repairing an infeasible solution which
originally performs worse than the reference desigrus one can apply the repair technique on

Ngep NumMber of infeasible designs in the populationaluhs automatically reduced if there is not
as many better than the reference.
Assuming the existence of infeasible designs inpbpulation which are performing better than

the best feasible design, the following repairieghinique can be applied to generate improved
designs:

Step 1 Rank the population according to the performasfodesigns in objective(s) space by using
Eg. (3).

Step 2 Detgrrﬁirze the value aofl, for the best feasible design and mark it as a eefer design.

Step 3 Check how many infeasible designs are better tharreference design. If there is less
than Npg, of them, assign that number My, rea - OtherwiseNgep gea = N gepe

Step 4 To the bestN, s, infeasible solutions identify infeasible variables

Step 5 Starting with the best infeasible design, dodachN.., r-,.: keep all feasible variables
and replace the infeasible with the correspondafigrence design’s variables.



Remaining N - Nqc, req, individuals are selected and processed followiegriormal procedure of

the used optimizer. Variables from those desigias #ine repaired get mutated, but cross-over is
disabled to prevent any possible performance degjad

Repair technique can be used repeatedly with eaehpopulation, if there is at least one feasible
solution present. If there is none, the heal teqpimiis re-activated to create it. Healing the desig

in such situation is much easier than in the begmmhen they are far from the feasible space.
Now only few variables are infeasible, so therefas greater chance of correcting them
successfully. Healed designs should not differ miacbbjective(s) value(s) from the original. So

throughout the optimization heal and repair stig®gare active to aid in more efficient

optimization.

3 ‘VOP’' GENETIC ALGORITHM

To implement heal and repair strategies (H&R) ap##mGA called VOP is used (Klanac and
Jelovica 2007). VOP is a binary coded algorithmsisting of: a) a fitness calculator, b) the
weighted roulette wheel selector operating on theihof computed fitness values, and c) a
subroutine executing the single-point cross-ovehaiprobability ofpc and the bit-wise mutation
with a probability ofpy. These are standard operators and are, excefiteditness calculator,
elaborated in Deb (2001).

VOP's fitness function is defined as:

d(x,i)
¢(x,|)—(rx7;3x[d(x,|)]—d(xJ)) (4)
where the distancel(x, i) of a designi from the origin of normalized objective space lisadined
as:

d(x,i):{%[ﬂ(x,i)]z}m,IZIkI][l,M+J]. 5)

and m is the number of constraints. Normalization of estive f, for designi is linearly
performed using

f, —min f,
fk(X,i)=%- (6)
Do T ™ D e

4  OPTIMIZATION OF A TANKER STRUCTURE

Optimization will be performed on the 40 000 DWTdah80m long chemical tanker's midship
section. Its main frame longitudinal elements gpénoized for the smallest allowed scantlings,
while keeping the topology of the structure unclahgrhe tank’s plating is built from duplex
steel to resist the aggressive chemicals whicttraresported and is the only part of the structure
with yield strength of 460 MPa. For the remainitisture, 355 MPa steel is used.

4.1 Problem description

Variables considered in the optimization are thetepthicknesses and stiffener sizes. Number of
stiffeners per each strake is depicted in Figureodether with scantlings of the transversal

structure. Considered variable values are discheteing the step for the plates of 1 mm, a value
in general appropriate for early design stage.ePlaitknesses in double bottom and double side



structure are assumed to be available from 8 ton23except of stringers whose range is the same
as for longitudinal bulkhead and the deck, 5 to 20r8tiffener sizes are taken as standwithnd
profiles.
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Figure 1. Half of the main frame section of a cdesed tanker and scantlings of the transversetates
(underlined)

The midship section is assumed to stretch betwednahd 3L/4 cross-sections, without the
change in scantlings. It is subjected to the hidtley loads, the cargo loads and the lateral
hydrostatic loads, while ballast tanks are assutods® empty. Pressure loads are calculated from
liquid density indicated in Figure 1. The sectisrekposed to four critical hull girder loads acting
on a section at two positions, L/4 and L/2. For fibvener, the shear force of 72 960 kN is applied
in hogging and -74 880 kN in sagging, while for theer, the total vertical bending moment of
2 933 000 kNm is assumed for hogging and -2 410kd08 for sagging.

The response under the hull girder loads is caedlapplying the numerical Coupled Beam
method of Naar et al. (2004). On top of that iseatithe response of the panel under the cargo and
hydrostatic loads, calculated with uniformly loadgehple beam.

Each strake is checked for eight failure constsaguncerning plate yield and buckling, stiffener
yield, lateral and torsional buckling, stiffenevi®b and flange buckling and crossing-over. These
criteria are taken from DNV (2005), Hughes (1988) aHughes et al. (2004). Altogether 376
failure criteria are calculated for each loadingdition. They are transformed into adequacies
which is a non-linear normalization function betwede structural capacity of some structural

element, a,(x), and a loading demand acting onkit(x):

3, (x) =y (x)|
a; (x)+[by (x)
Two objectives are considered in this study: miggerthe total weight of hull steel (abbreviated as
f)) and minimize the total weight of the duplex stéabbreviated a$;). Minimizing the hull

weight would increase the payload capacity, buucédn in duplex steel would be the most

significant for decrease in production costs sitiee material and labour costs for this steel are
tenfold to those of high tensile 355 MPa steel dsethe remaining structure.

g;(x) = 7



Both weights are calculated by extending the okthicross-sectional weight for the whole length
of the ship. For the hull steel weight, additio2dl.4t each 3.56m is added to account for the
weight of the web frames.

5 THE OPTIMIZATION PROCESS

The optimization is carried out with the followingarameters: population of 60 design
alternatives, crossover probability 0.8 and mutapoobability 0.003. Values are set based on the
literature (Deb 2001) and previous experiencet®fthse (Klanac et al. 2008).

Before allowing H&R to operate, a relation betweenstraints and variables is established: if any
of eight constraints from a strake is violated uass both strake variables to be responsible (plate
thickness and stiffener size). This is physicallgt rentirely correct since stiffener-related
limitations are not influenced by plate thicknessl avice-versa. To satisfy cross-over constraint
however it is better to change both variableshirule is for simplicity used for all constraints
Changing one part will influence the stress disttiitm throughout the structure and thus influence
all the constraints. Therefore creating a feastl@sign from the infeasible in the proposed way
cannot be guaranteed.

Random initial population is generated that will bsed for all the optimization runs. It is
completely infeasible, violating from 14 to 31 ctrafmts. This number is actually not that high
comparing to total 376 that need to be satisfiedafdesign to be feasible. Thus their constraints
are mostly fulfilled, and those that are not intkcan infeasible variables, following the simple
rule for their detection that was set.

5.1 Effects of healing the population

Optimizer starts to operate and determines thainitial population (P-A) is completely infeasible
So it activates the healing procedure. Healingsidufor 25 designs (41% of population) based on
the smallest overall constraint violation, (P-Bj% Based on the best performance, (P-C) and the
remaining 10 will be handled as usual with VOPD(P+igure 2 shows the change in number of
violated constraints after healing the first getiera according to defined population parts.

Originating from the solutions closest to the xsaki P-A, first 25 designs from the second
generation (P-B) are in average the heaviest desigihat generation as seen in Figure 3 and
Figure 4, showing the, fand §, respectively. Thicker plate or larger stiffenengrally cause
smaller violation of associated constraints, theavier structure is usually less infeasible. That i
why designs that are healed based on the smabestraint violation are heavier (or worse in
performance) than those healed based on objecfiveslatter are located in P-C in Figure 3 and
Figure 4. Table 1 shows that both feasible andasifde average design in P-B is heavier than in
P-C, in both objectives. Figure 3 and Figure 4 alize also the decrease of feasible solutions in P-
C compared to P-B. Contrary to first 25 designghi@ healed generation, second 25 originally
brake more constraints and are harder to makebleasiigure 2 and Table 1 confirm this reduced
feasibility in P-C. Majority of feasible solutiorseated using healing is present in the first balf
P-B and in the middle and second half of P-C phthe population — those having originally less
infeasible variables. Heal technique managed tater¢otally 18 feasible designs out of 50
attempts (36%), although the remaining designs as® competitive, braking up to four
constraints but mainly only one. A qualitative fiédes design can arise if those infeasible designs
are crossed-over in further stages of optimization.
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Remaining 10 designs for the second generation)(Br® selected and processed following the
normal VOP procedure. They can be seen in Figurgigyre 3 and Figure 4. We can see the
reduction in number of violated constraints whempared to first generation where they originate



from; see Figure 2. Obviously selection preferresstinfeasible designs having up to 20 broken
constraints (and one with 25), which is smallenttige 31 in the initial population.

Table 1. VOP — H&R: Performance of different popigia parts from the first three generations

Generation 1 2 3
Population part P-A P-B P-C P-D P-E P-F
Working mode normal | heal cons| heal objs | normal repair normal

Number of designs 60 25 25 10 6 54
Number of feasible designs| 0 11 7 0 3 16
) Avg. hull steel, t - 9686 9500 - 9113 9550
Feasible
Avg. duplex, t - 3483 3458 - 3317 3431
infeasible Avg. hull steel, t 8751 9451 9366 8685 9374 930(
Avg. duplex, t 2997 3441 3344 3086 3364 3299

Comparing designs in P-D to those in P-B and P-Eigare 3 and Figure 4 clarifies the reason for
not healing the whole second generation — thosetiens are much better in objective values.
Table 1 shows that average infeasible design freni®in fact 800 t lighter in;fand 300 t lighter

in f, than the average design from P-B and P-C. Thisprnolvide diversity for the continuation.

5.2 Effects of repairing the population

Continuing with the third generation, infeasiblesidms from part P-D are repaired since their
objective(s) value(s) are better than the bestifEaslesign. The best six of them will undergo
repairing (P-E). Six designs or 10% of the popolaiis the maximum amount of individuals that
is repaired during the optimization. This will thanot interfere much in normal GA operations in
case the repair is not effective.

The best feasible solution from the second germrasi selected as a ‘donor’ for repairing. Higher
competition among input feasible solutions willlgie better donor design, so it is preferable to
have more feasible individuals to choose from. &#signs from the second generation to be
repaired in the third are there the best infeasilgsign, likely from population part P-D. Their
infeasible variables are replaced with the feasdrles from the donor design. Repaired designs
are presented in P-E in Figure 2, Figure 3 andrEigu It can be seen that three of them are
repaired successfully while others are almost BesiThe first repaired solution is originally the
lightest in the second generation and thereforaires| replacing many infeasible variables. After
repairing, it stays infeasible and becomes quitaviie The following three designs are more
successful, turning into feasible and importantighter in both objectives than all feasible
solutions from the second generation. This is taeal in Table 1 where it can be seen that the
average feasible design in P-E is 4-500 t lightd than the average feasible design in P-B and P-
C. Weight of duplex steel is some 150 t smallethinsame comparison. These designs will surely
be selected in the following generation.

Remaining part of the population from the third gextion (P-F) is taken from parts P-B, P-C and
P-D and is processed normally. The weight of theilteng designs can be seen in Figure 3 and
Figure 4. Clearly among the feasible designs intReffe are no heavier designs from P-B. Having
low fitness, they were not selected for continuati of the average feasible design in P-F is 70 t
lighter than in combined P-B and P-C populationjlevthe £ is reduced by 35 t; see Table 1.
Infeasible designs are in P-F also lighter thanaies in P-B and P-C where they originate from.
They are not descendants from P-D since desigrig-Fnviolate up to four constraints, much
smaller than in P-D.



5.3 Comparing the performance of the algorithms

Optimization with VOP — H&R is continued until geaéon 350 when the progress became
negligible. Starting with the same initial poputetiand using the same parameters, normal VOP
and also NSGA-II algorithm was run to compare #suits but were both allowed continuing until
generation 600. NSGA-II is a widespread multi-objec GA that uses the following concepts:
elitism, non-dominated sorting of designs in ohbjerispace, crowding-distance operator, binary
tournament selection and constraint-domination.cBgson of these concepts and the algorithm
itself can be found in Deb et al. (2002).

Comparison of the optimization progress is tabdateTable 2. Comparing the objectives in the
given generations, clearly VOP - H&R surpasses rotfaeo algorithms. This is especially
expressed in the beginning since the heal procaddiged the search for feasible designs to only
one generation, for which NSGA-II spend 15 and radr¥OP 30 generations. The final design
with VOP - H&R is for f better by 90 t and 120 t from VOP and NSGA-Il pestively, while for

f, by 35 and 100 t in the same algorithm order algfothe last two algorithms were run almost
twice as long.

Table 2. Comparison of optimizers, presenting weddthull steel (f) and weight of duplex steebffor the
best designs of each objective in the given geleisat

Algorithm VOP VOP - H&R NSGA-II
Objective i, t fo, t fi, t fo, t f, t fo t
Generation 50 8835 3150 7825 2715 834 2796
Generation 100 8115 2835 7580 2680 7780 2760
Generation 200 7885 2795 7420 2645 754% 2735
Generation 300 7775 2745 7350 2645 752 2735
End 7440 2674 7348 2632 7467 2734

5.4 Optimization outcome

Figure 5 presents the best design alternative fhenthree optimization runs. Its scantlings are not
standardized, thus there can be significant diffees in plate thicknesses and stiffener sizes from
neighboring strakes. This design is compared wékigh of minimum rule scantlingebtained
from the calculation of the rules of Bureau Veri{a806). There is no corrosion addition in any of
the presented designs.

In this study high loads are imposed to act onntlaén frame, requiring that it is not only used in
L/2, where it has to deal with maximum vertical 8y moment, but also in L/4 and 3L/4 where
it is subdue to maximum shear force. Due to thisseovative consideration, the minimal rule
scantlings design shown in Figure 5, violates 3@staints, mostly plate and stiffener yielding
from the vertical strakes in longitudinal bulkheadere it does not account for high shear force,
but also plate yield in inner bottom. To account tlus, plates are in inner bottom and also in
bottom strakes for the optimized structuresigniftta thickened, however corresponding
stiffeners are reduced guided by weight reductilire optimized structure also has considerably
higher plate thicknesses but also bigger stiffenertongitudinal bulkhead. This is especially
expressed for the lowest strakes, who deal with lt@rgo pressure. Those plates are the main
reason for the increase of the weight of duplerlsi@s seen in Table 3. Outer strakes in double
side have generally smaller scantlings, while theer are similar to bottom strakes — thickened
plates and reduced stiffeners. Deck scantlingseaaced while the reduction in all stringers is
quite significant.
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Figure 5. Scantlings of the main-frame membergHerdesign of minimal rule requirements, shown abov
dimension lines, and for the desixjd ", shown below dimension lines

The optimized structure has approached many canistbaundaries, mainly plate yield, plate
buckling and stiffener yield from majority of stk in the main frame, except for stringers in
double side and cofferdam but also floors, whosestraint values are generally increased. That
design has in total 52 active constraints, as gedrable 3, where constraint is considered to be
active if stress exceeds 3/4 of critical value.

Table 3. Objective’s values for the best hull stEslign obtained in optimization, compared withiglesf
minimal rule requirements, and also the numberegfative and active constraints

Optimized structur¢ Min. rule req.
fi, t 7353 7550
fo t 2652 2270
Negative con. 0 32
Active con. 52 18

6 CONCLUSION

The ‘healing’ and ‘repairing’ techniques for thengéc algorithm can reduce the number of
evaluated designs needed to reach satisfactorynigation solutions. This allows resource and
time savings when used in the early design stageefts of these techniques have been shown on
example of the main frame of 40 000 DWT chemicak&. Optimization time was reduced by
approximately half when compared to the ‘normalrking mode of the algorithm and also when
compared to one well-established GA. Crucial detait to establish proper connection between
the constraints and the variables. This was doneihea rather crude manner, however, even with
that kind of mapping the results showed clear athges of using healing and repairing
techniques.



In general, it can be assumed that proper sengitdgtween variables and constraints ensures the
success of creating feasible designs. It also prably allows capturing the good objective(s)
values(s) in the later stages of the optimizatidmemv the repair technique is utilized. These
assumptions require more thorough investigation.

Objectives used in this study do not form well-deped Pareto frontier, thus the designs are
spaced rather condense in the objective spacet @dasy to rank them there. The question arises
on the proper selection scheme when dealing witieland dense frontier. This is definitely one
of the questions to be answered in the followingligs.
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