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ABSTRACT 

This paper presents two techniques, the ‘healing’ and ‘repairing’ that can reduce optimization time 
when using genetic algorithm for structural optimization. The techniques can be applied to: (a) 
quickly find feasible designs from completely infeasible set of alternatives, and (b) to make the 
best infeasible designs feasible. These procedures are implemented into a genetic algorithm 
‘VOP’. The performance of the original and the modified version of the algorithm are compared 
with the widespread genetic algorithm ‘NSGA-II’ for the weight optimization of a 40 000 DWT 
chemical tanker midship section. The results show that these procedures can decrease the 
optimization time by approximately half. 

1 INTRODUCTION 

Design of modern ships introduces new complex structural solutions that must follow the 
increasing demand for more reliable and safe products. However, the available time does not 
follow the increasing complexity of design procedure, thus more advanced support systems are 
required that can assist designers. Such a system could be based on the optimization process. The 
intention of this study is to show how to enhance this process with respect to the increase of speed. 

Complex ship structures involve large number of variables and even larger number of constraints. 
Variables are in structural optimization regularly discrete, whether they represent element size, 
material type, stiffener spacing etc. Constraints are non-linear and non-convex, typically involving 
yielding and buckling of structural elements. These reasons confine the choice of possible 
optimization algorithms to those that do not require gradient calculation of constraints and 
objective functions. Evolutionary algorithms have shown capability to handle such problems and 
provide sufficient benefits for the structure. One of them is the genetic algorithm (GA). Several 
applications have shown that GA can be a successful tool for practical problems in ship structural 
design and optimization, see e.g. Romanoff and Klanac (2007), Ehlers et al. (2007), Klanac and 
Jelovica (2009), Klanac et al. (2009). 

Genetic algorithm operates in the design space, by having multiple design alternatives at hand 
when deciding where to continue the search from generation to generation. This number of 
available solutions is known as a population size and should grow with the number of considered 



variables. Literature suggests using population size in range from 50 to 500; see Deb (2001). This 
lengthens the optimization time even for the simple engineering problem, since the number of 
generated and evaluated design alternatives before reaching the optima can be more than several 
thousands. Clearly, this can be rather costly when optimizing large ship structures, especially if 
Finite Element Method is applied for structural assessment. In any case, optimization should be 
short, and if it is time-consuming, it is often, for convenience, stopped prematurely, immediately 
after noticing some improvements in objective values and without attaining their optima. Making 
relevant conclusions based on such results can be misleading and costly in the later stages. 

Optimization in tightly-constrained design space typically involves infeasible designs that do not 
satisfy all requirements included in the problem. Such designs are considered less valuable than 
the feasible designs, and are suppressed or completely neglected as for example in NSGA-II (Deb 
et al. 2002) or ε-MOEA (Deb et al. 2003) genetic algorithms. Here however, a different approach 
is suggested. Instead of rejection, infeasible design can be repaired so that it hopefully yields 
feasible design, partially maintaining the original’s good objective(s) value(s). 

The two procedures that form this approach are implemented in a GA called VOP. The original 
and the modified version of the algorithm are compared with NSGA-II, a recognized genetic 
algorithm that possesses several advanced features. To demonstrate this comparison, a structure of 
a 40 000 DWT and 180m long chemical tanker is optimized for the two objectives: minimum of 
hull steel weight and minimum of duplex steel weight. 

The following chapter describes heal and repair techniques and the way how they can be 
implemented in the GA. Chapter 3 describes the VOP algorithm. Chapter 4 presents the test case 
that is used for optimization in Chapter 5, where heal and repair procedures are utilized and 
validated with NSGA-II. The last chapter concludes the paper. 

2 HEALING AND REPAIRING FOR FASTER OPTIMIZATION  

Diverse set of designs in each generation allows the GA to select better-than-average individuals 
that will be used for optimization continuation. Infeasible designs are in that sense considered less 
valuable and completely rejected in the prominent algorithms like NSGA-II or ε-MOEA once the 
feasible space has been found. But oftentimes those infeasible designs are much better according 
to objective(s) values(s). In the case where objective(s) depend on the numerous designs variables, 
for example in the weight optimization of a complex structure, changing few of them would not 
significantly alter the performance of a design. Then it could be useful to alter such design as little 
as possible to make it feasible but to retain its objectives. 

Various schemes have been reported on how to make infeasible designs feasible. Oftentimes they 
are based on designer’s insights on the physical problem they are dealing with. Certain way is 
observed how to satisfy a requirement and the designs are composed to fulfill it; see for example 
Todoroki and Haftka (1998), Liu et al. (2000), Chou et al. (2001), Cheong and Lai (2000). Repair 
technique is conceived here in a more generic manner. Designs are not improved based on some 
prior-knowledge specific to a problem at hand, instead they benefit from other solutions present in 
the current generation. However, there is one condition: a sensitivity of the constraints to variables 
should be known, l jx g→ , so that the variables that caused constraint violation can be identified. 

This variable-constraint ‘link’ should be relatively easy to determine in optimization problem since 
constraints are always functions of decision variables, g=g( )x . At this point, the term ‘infeasible’ 

is extended beyond description of a particular design, identifying now a specific constraint that is 
violated, 0jg < , and associated variable lx . If a design is infeasible, there exists at least one 

broken constraint and corresponding infeasible variable. The idea is then to replace that infeasible 
variable with the variable from different design that does not violate the same constraint. 



The proposed approach is divided in two procedures that can be applied in the following cases: (a) 
to quickly find feasible solutions from completely infeasible population and (b) to make the best 
infeasible designs feasible, in the presence of feasible designs in the population. The former is 
named ‘heal’, and the later ‘repair’ procedure. Both are described in the sequel. 

2.1 Healing 

If all designs in the population are infeasible, it does not mean that all of their constraints are too. 
When a particular constraint is observed, there exist designs in the population which do and do not 
break it, or even if they all break it, some do it less than the others. To make a design feasible, its 
infeasible variables are identified and replaced with corresponding feasible variables from a design 
that is best in objective(s) value(s). Besides ‘healing’ the design, i.e. turning it into feasible, the 
intention is to make it competitive objective-wise. There are two interesting categories of designs 
in the population: those with the smallest overall constraints violation and those with the best 
objective(s) value(s). The former offers a grater probability to become feasible and requires fewer 
variables to change. The latter group is tempting since designs with good objective(s) value(s) are 
the goal of the optimization, but are likely to have more infeasible variables that should be 
healed.replaced. It would be quite useful to make them feasible and simultaneously not 
significantly deteriorate their objective value(s). Oftentimes these two features are contrary in 
structural optimization where weight minimization makes light designs violate many strength 
constraints, while the feasible ones can in the beginning be quite heavy. 

The suggested strategy is to heal CONN  of the best designs that violate the least amount of 

constraints and also OBJN  of the best designs according to objective(s) value(s), starting with the 

best design in each category. Regardless of the category, every design which undergoes healing 
process gets its infeasible variables replaced with a feasible value from the best performing design 
for that variable. 

To sort design alternatives according to their constraint violation, the following expression is used: 
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Before using the Equation (1) infeasible constraint values are linearly normalized between 0 and 1.  

The performance of the design in the normalized objective space is measured by 
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The heal procedure is described below: 

Step 1: Rank the population according to the smallest overall constraint violation using Eq. (1). 
Step 2: Rank the population according to the best objective(s) value(s) using Eq. (3). 
Step 3: Determine infeasible variables to the best CONN  designs that are ranked based on CONS  and 

the best OBJN  designs based on OBJd . 

Step 4: Starting from the best CONS  design, do for eachCONN : keep all feasible variables and 

replace each infeasible with a feasible value from best possible design according to OBJd . 



If there is no feasible value from a particular variable in the population, take the one 
from the best CONS  design. 

Step 5: Starting from the best OBJd  design, do for eachOBJN : repeat the action from the Step 4. 

Population size must remain the same, thusCON OBJN N N+ ≤ . Beside the designs selected for 

healing, remaining designs are chosen in a standard way, which can differ depending upon the 
algorithm where the heal technique is implemented. Remaining part of the population that is not 
healed is important because it: 

− ensures functionality of the GA in case that heal technique has no effect due to improper 
variables-constraints connection, 

− provides diversity in the population if the healing was unable to produce feasible designs, 
so it can be applied again in the following iteration, 

− can be useful for the later stages of the optimization, after finding the feasible design. 

Crossing-over two designs can change them radically. Therefore, this operator is disabled when 
using the heal technique in order to increase the success of producing a feasible design. For the 
part of the population which is not healed, the crossover is used in a standard way to ensure normal 
GA process. Mutation operator is used on all designs without any exception as it changes the 
designs far less than the cross-over and does not present a big threat to their feasibility. 

Heal technique is intended to create feasible designs in the first attempt, but even if it is 
unsuccessful, it should considerably reduce the overall constraint violation of the designs, 
positioning them close to feasible space. It can be used iteratively until feasible designs are found. 
Thereafter, it is replaced with the repair procedure. 

2.2 Repairing 

The repair procedure can be applied after obtaining the variable set that yields the feasible 
solution. If there are several feasible alternatives, the one with the best objective(s) value(s) is 
taken as a reference. It can be used as a model to repair the infeasible variables from the infeasible 
solutions, relying on the same variable-constraint mapping that is used for the healing procedure. 

Which designs will be repaired depends upon their performance in objective space that is 
determined by Eq. (3). Only those infeasible designs that are better in objective(s) value(s) than the 
reference design will be repaired to make them feasible, simultaneously trying to avoid severe 
performance deterioration. Obviously there is no point in repairing an infeasible solution which 
originally performs worse than the reference design. Thus one can apply the repair technique on 

REPN  number of infeasible designs in the population which is automatically reduced if there is not 

as many better than the reference. 

Assuming the existence of infeasible designs in the population which are performing better than 
the best feasible design, the following repairing technique can be applied to generate improved 
designs: 

Step 1: Rank the population according to the performance of designs in objective(s) space by using 
Eq. (3). 

Step 2: Determine the value of OBJd for the best feasible design and mark it as a reference design. 

Step 3: Check how many infeasible designs are better than the reference design. If there is less 
than REPN  of them, assign that number to ,REP REALN  , otherwise ,REP REAL REPN N= . 

Step 4: To the best ,REP REALN  infeasible solutions identify infeasible variables. 

Step 5: Starting with the best infeasible design, do for each ,REP REALN : keep all feasible variables 

and replace the infeasible with the corresponding reference design’s variables. 



Remaining ,- REP REALN N  individuals are selected and processed following the normal procedure of 

the used optimizer. Variables from those designs that are repaired get mutated, but cross-over is 
disabled to prevent any possible performance degradation. 

Repair technique can be used repeatedly with each new population, if there is at least one feasible 
solution present. If there is none, the heal technique is re-activated to create it. Healing the designs 
in such situation is much easier than in the beginning when they are far from the feasible space. 
Now only few variables are infeasible, so there is far greater chance of correcting them 
successfully. Healed designs should not differ much in objective(s) value(s) from the original. So 
throughout the optimization heal and repair strategies are active to aid in more efficient 
optimization. 

3 ‘VOP’ GENETIC ALGORITHM 

To implement heal and repair strategies (H&R) a simple GA called VOP is used (Klanac and 
Jelovica 2007). VOP is a binary coded algorithm consisting of: a) a fitness calculator, b) the 
weighted roulette wheel selector operating on the basis of computed fitness values, and c) a 
subroutine executing the single-point cross-over with a probability of pC and the bit-wise mutation 
with a probability of pM. These are standard operators and are, except for the fitness calculator, 
elaborated in Deb (2001). 

VOP’s fitness function is defined as: 
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4 OPTIMIZATION OF A TANKER STRUCTURE 

Optimization will be performed on the 40 000 DWT and 180m long chemical tanker’s midship 
section. Its main frame longitudinal elements are optimized for the smallest allowed scantlings, 
while keeping the topology of the structure unchanged. The tank’s plating is built from duplex 
steel to resist the aggressive chemicals which are transported and is the only part of the structure 
with yield strength of 460 MPa. For the remaining structure, 355 MPa steel is used. 

4.1 Problem description 

Variables considered in the optimization are the plate thicknesses and stiffener sizes. Number of 
stiffeners per each strake is depicted in Figure 1 together with scantlings of the transversal 
structure. Considered variable values are discrete, having the step for the plates of 1 mm, a value 
in general appropriate for early design stage. Plate thicknesses in double bottom and double side 



structure are assumed to be available from 8 to 23mm, except of stringers whose range is the same 
as for longitudinal bulkhead and the deck, 5 to 20mm. Stiffener sizes are taken as standard holland 
profiles. 

 

Figure 1. Half of the main frame section of a considered tanker and scantlings of the transverse structures 
(underlined) 

The midship section is assumed to stretch between L/4 and 3L/4 cross-sections, without the 
change in scantlings. It is subjected to the hull girder loads, the cargo loads and the lateral 
hydrostatic loads, while ballast tanks are assumed to be empty. Pressure loads are calculated from 
liquid density indicated in Figure 1. The section is exposed to four critical hull girder loads acting 
on a section at two positions, L/4 and L/2. For the former, the shear force of 72 960 kN is applied 
in hogging and -74 880 kN in sagging, while for the later, the total vertical bending moment of 
2 933 000 kNm is assumed for hogging and -2 410 000 kNm for sagging. 

The response under the hull girder loads is calculated applying the numerical Coupled Beam 
method of Naar et al. (2004). On top of that is added the response of the panel under the cargo and 
hydrostatic loads, calculated with uniformly loaded simple beam. 

Each strake is checked for eight failure constraints concerning plate yield and buckling, stiffener 
yield, lateral and torsional buckling, stiffener’s web and flange buckling and crossing-over. These 
criteria are taken from DNV (2005), Hughes (1988) and Hughes et al. (2004). Altogether 376 
failure criteria are calculated for each loading condition. They are transformed into adequacies 
which is a non-linear normalization function between the structural capacity of some structural 
element j, ( )ja x , and a loading demand acting on it, ( )jb x : 
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Two objectives are considered in this study: minimize the total weight of hull steel (abbreviated as 
f1) and minimize the total weight of the duplex steel (abbreviated as f2). Minimizing the hull 
weight would increase the payload capacity, but reduction in duplex steel would be the most 
significant for decrease in production costs since the material and labour costs for this steel are 
tenfold to those of high tensile 355 MPa steel used for the remaining structure. 
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Both weights are calculated by extending the obtained cross-sectional weight for the whole length 
of the ship. For the hull steel weight, additional 21.4t each 3.56m is added to account for the 
weight of the web frames. 

5  THE OPTIMIZATION PROCESS 

The optimization is carried out with the following parameters: population of 60 design 
alternatives, crossover probability 0.8 and mutation probability 0.003. Values are set based on the 
literature (Deb 2001) and previous experiences of the case (Klanac et al. 2008). 

Before allowing H&R to operate, a relation between constraints and variables is established: if any 
of eight constraints from a strake is violated, assume both strake variables to be responsible (plate 
thickness and stiffener size). This is physically not entirely correct since stiffener-related 
limitations are not influenced by plate thickness and vice-versa. To satisfy cross-over constraint 
however it is better to change both variables, so this rule is for simplicity used for all constraints. 
Changing one part will influence the stress distribution throughout the structure and thus influence 
all the constraints. Therefore creating a feasible design from the infeasible in the proposed way 
cannot be guaranteed. 

Random initial population is generated that will be used for all the optimization runs. It is 
completely infeasible, violating from 14 to 31 constraints. This number is actually not that high 
comparing to total 376 that need to be satisfied for a design to be feasible. Thus their constraints 
are mostly fulfilled, and those that are not indicate on infeasible variables, following the simple 
rule for their detection that was set.  

5.1 Effects of healing the population 

Optimizer starts to operate and determines that the initial population (P-A) is completely infeasible 
so it activates the healing procedure. Healing is used for 25 designs (41% of population) based on 
the smallest overall constraint violation, (P-B), 25 based on the best performance, (P-C) and the 
remaining 10 will be handled as usual with VOP, (P-D). Figure 2  shows the change in number of 
violated constraints after healing the first generation, according to defined population parts. 

Originating from the solutions closest to the x-axis in P-A, first 25 designs from the second 
generation (P-B) are in average the heaviest designs in that generation as seen in Figure 3 and 
Figure 4, showing the f1 and f2, respectively. Thicker plate or larger stiffener generally cause 
smaller violation of associated constraints, thus heavier structure is usually less infeasible. That is 
why designs that are healed based on the smallest constraint violation are heavier (or worse in 
performance) than those healed based on objectives. The latter are located in P-C in Figure 3 and 
Figure 4. Table 1 shows that both feasible and infeasible average design in P-B is heavier than in 
P-C, in both objectives. Figure 3 and Figure 4 visualize also the decrease of feasible solutions in P-
C compared to P-B. Contrary to first 25 designs in the healed generation, second 25 originally 
brake more constraints and are harder to make feasible. Figure 2 and Table 1 confirm this reduced 
feasibility in P-C. Majority of feasible solutions created using healing is present in the first half of 
P-B and in the middle and second half of P-C part of the population – those having originally less 
infeasible variables. Heal technique managed to create totally 18 feasible designs out of 50 
attempts (36%), although the remaining designs are also competitive, braking up to four 
constraints but mainly only one. A qualitative feasible design can arise if those infeasible designs 
are crossed-over in further stages of optimization. 



 

Figure 2. VOP – H&R: Constraint violations of the first 180 designs 

 

Figure 3. VOP – H&R: Total hull steel weight of the first 180 designs 

 

Figure 4. VOP – H&R: Total duplex steel weight of the first 180 designs 

Remaining 10 designs for the second generation (P-D) are selected and processed following the 
normal VOP procedure. They can be seen in Figure 2, Figure 3 and Figure 4. We can see the 
reduction in number of violated constraints when compared to first generation where they originate 



from; see Figure 2. Obviously selection preferred less-infeasible designs having up to 20 broken 
constraints (and one with 25), which is smaller than the 31 in the initial population. 

Table 1. VOP – H&R: Performance of different population parts from the first three generations 

Generation 1 2 3 

Population part P-A P-B P-C P-D P-E P-F 

Working mode normal heal cons heal objs normal repair normal 

Number of designs 60 25 25 10 6 54 

Number of feasible designs 0 11 7 0 3 16 

Feasible 
Avg. hull steel, t - 9686 9500 - 9113 9550 

Avg. duplex, t - 3483 3458 - 3317 3431 

Infeasible 
Avg. hull steel, t 8751 9451 9366 8685 9374 9300 

Avg. duplex, t 2997 3441 3344 3086 3364 3299 

 

Comparing designs in P-D to those in P-B and P-C in Figure 3 and Figure 4 clarifies the reason for 
not healing the whole second generation – those solutions are much better in objective values. 
Table 1 shows that average infeasible design from P-D is in fact 800 t lighter in f1 and 300 t lighter 
in f2 than the average design from P-B and P-C. This will provide diversity for the continuation. 

5.2 Effects of repairing the population 

Continuing with the third generation, infeasible designs from part P-D are repaired since their 
objective(s) value(s) are better than the best feasible design. The best six of them will undergo 
repairing (P-E). Six designs or 10% of the population is the maximum amount of individuals that 
is repaired during the optimization. This will then not interfere much in normal GA operations in 
case the repair is not effective. 

The best feasible solution from the second generation is selected as a ‘donor’ for repairing. Higher 
competition among input feasible solutions will yield a better donor design, so it is preferable to 
have more feasible individuals to choose from. Six designs from the second generation to be 
repaired in the third are there the best infeasible design, likely from population part P-D. Their 
infeasible variables are replaced with the feasible ones from the donor design. Repaired designs 
are presented in P-E in Figure 2, Figure 3 and Figure 4. It can be seen that three of them are 
repaired successfully while others are almost feasible. The first repaired solution is originally the 
lightest in the second generation and therefore requires replacing many infeasible variables. After 
repairing, it stays infeasible and becomes quite heavy. The following three designs are more 
successful, turning into feasible and importantly, lighter in both objectives than all feasible 
solutions from the second generation. This is tabulated in Table 1 where it can be seen that the 
average feasible design in P-E is 4-500 t lighter in f1 than the average feasible design in P-B and P-
C. Weight of duplex steel is some 150 t smaller in the same comparison. These designs will surely 
be selected in the following generation. 

Remaining part of the population from the third generation (P-F) is taken from parts P-B, P-C and 
P-D and is processed normally. The weight of the resulting designs can be seen in Figure 3 and 
Figure 4. Clearly among the feasible designs in P-F there are no heavier designs from P-B. Having 
low fitness, they were not selected for continuation. f1 of the average feasible design in P-F is 70 t 
lighter than in combined P-B and P-C population, while the f2 is reduced by 35 t; see Table 1. 
Infeasible designs are in P-F also lighter than the ones in P-B and P-C where they originate from. 
They are not descendants from P-D since designs in P-F violate up to four constraints, much 
smaller than in P-D. 



5.3 Comparing the performance of the algorithms 

Optimization with VOP – H&R is continued until generation 350 when the progress became 
negligible. Starting with the same initial population and using the same parameters, normal VOP 
and also NSGA-II algorithm was run to compare the results but were both allowed continuing until 
generation 600. NSGA-II is a widespread multi-objective GA that uses the following concepts: 
elitism, non-dominated sorting of designs in objective space, crowding-distance operator, binary 
tournament selection and constraint-domination. Description of these concepts and the algorithm 
itself can be found in Deb et al. (2002). 

Comparison of the optimization progress is tabulated in Table 2. Comparing the objectives in the 
given generations, clearly VOP - H&R surpasses other two algorithms. This is especially 
expressed in the beginning since the heal procedure reduced the search for feasible designs to only 
one generation, for which NSGA-II spend 15 and normal VOP 30 generations. The final design 
with VOP - H&R is for f1 better by 90 t and 120 t from VOP and NSGA-II, respectively, while for 
f2 by 35 and 100 t in the same algorithm order although the last two algorithms were run almost 
twice as long. 

Table 2. Comparison of optimizers, presenting weight of hull steel (f1) and weight of duplex steel (f2) for the 
best designs of each objective in the given generations  

Algorithm VOP VOP - H&R NSGA-II 

Objective f1, t f2, t f1, t f2, t f1, t f2, t 

Generation 50 8835 3150 7825 2715 8340 2795 

Generation 100 8115 2835 7580 2680 7780 2760 

Generation 200 7885 2795 7420 2645 7545 2735 

Generation 300 7775 2745 7350 2645 7520 2735 

End 7440 2674 7348 2632 7467 2734 

5.4 Optimization outcome 

Figure 5 presents the best design alternative from the three optimization runs. Its scantlings are not 
standardized, thus there can be significant differences in plate thicknesses and stiffener sizes from 
neighboring strakes. This design is compared with design of minimum rule scantlings obtained 
from the calculation of the rules of Bureau Veritas (2006). There is no corrosion addition in any of 
the presented designs. 

In this study high loads are imposed to act on the main frame, requiring that it is not only used in 
L/2, where it has to deal with maximum vertical bending moment, but also in L/4 and 3L/4 where 
it is subdue to maximum shear force. Due to this conservative consideration, the minimal rule 
scantlings design shown in Figure 5, violates 32 constraints, mostly plate and stiffener yielding 
from the vertical strakes in longitudinal bulkhead, where it does not account for high shear force, 
but also plate yield in inner bottom. To account for this, plates are in inner bottom and also in 
bottom strakes for the optimized structuresignificantly thickened, however corresponding 
stiffeners are reduced guided by weight reduction. The optimized structure also has considerably 
higher plate thicknesses but also bigger stiffeners in longitudinal bulkhead. This is especially 
expressed for the lowest strakes, who deal with high cargo pressure. Those plates are the main 
reason for the increase of the weight of duplex steel, as seen in Table 3. Outer strakes in double 
side have generally smaller scantlings, while the inner are similar to bottom strakes – thickened 
plates and reduced stiffeners. Deck scantlings are reduced while the reduction in all stringers is 
quite significant. 



 
Figure 5. Scantlings of the main-frame members for the design of minimal rule requirements, shown above 

dimension lines, and for the design xH** , shown below dimension lines 

The optimized structure has approached many constraint boundaries, mainly plate yield, plate 
buckling and stiffener yield from majority of strakes in the main frame, except for stringers in 
double side and cofferdam but also floors, whose constraint values are generally increased. That 
design has in total 52 active constraints, as seen in Table 3, where constraint is considered to be 
active if stress exceeds 3/4 of critical value. 

Table 3. Objective’s values for the best hull steel design obtained in optimization, compared with design of 
minimal rule requirements, and also the number of negative and active constraints 

 Optimized structure Min. rule req. 

f1, t 7353 7550 

f2, t 2652 2270 

Negative con. 0 32 

Active con. 52 18 

6 CONCLUSION 

The ‘healing’ and ‘repairing’ techniques for the genetic algorithm can reduce the number of 
evaluated designs needed to reach satisfactory optimization solutions. This allows resource and 
time savings when used in the early design stage. Benefits of these techniques have been shown on 
example of the main frame of 40 000 DWT chemical tanker. Optimization time was reduced by 
approximately half when compared to the ‘normal’ working mode of the algorithm and also when 
compared to one well-established GA. Crucial detail was to establish proper connection between 
the constraints and the variables. This was done here in a rather crude manner, however, even with 
that kind of mapping the results showed clear advantages of using healing and repairing 
techniques. 
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In general, it can be assumed that proper sensitivity between variables and constraints ensures the 
success of creating feasible designs. It also presumably allows capturing the good objective(s) 
values(s) in the later stages of the optimization when the repair technique is utilized. These 
assumptions require more thorough investigation. 

Objectives used in this study do not form well-developed Pareto frontier, thus the designs are 
spaced rather condense in the objective space and it is easy to rank them there. The question arises 
on the proper selection scheme when dealing with large and dense frontier. This is definitely one 
of the questions to be answered in the following studies. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the support of IMPROVE project, funded by European Union 
(Contract nr. 031382- FP6 2005 Transport-4), and the Technology Development Centre of Finland 
– TEKES, including Finnish shipbuilding industry, through the project CONSTRUCT. First author 
would also like to acknowledge the support of Finnish National Graduate School of Engineering 
Mechanics. 

REFERENCES 

Bureau Veritas 2006. Rules for the classification of steel ships. 
Cheong, F., Lai, R. 2000. Constraining the Optimization of a Fuzzy Logic Controller Using an Enhanced 

Genetic Algorithm, IEEE Trans on Systems, Man, and Cybernetics – part B: Cybernetics, 30(1), p. 31-46. 
Chou, H., Premkumar, G., Chu, C.H. 2001. Genetic algorithms for Communications Network Design – An 

Empirical Study of the Factors that Influence Performance, IEEE Trans on Evol Comp, 5(3), p. 236-249. 
Deb, K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Chichester: John Wiley & Sons. 
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. 2002. A Fast and Elitist Multiobjective Genetic Algorithm – 

NSGA-II, IEEE Transactions on Evolutionary Computation. 6/1: 182-197. 
Deb, K., Mohan, M., Mishra, S. 2003. A Fast Multi-objective Evolutionary Algorithm for Finding Well-

Spread Pareto-Optimal Solutions, KanGAL Report Number 2003002 
Det Norske Veritas 2005. Rules for the classification of steel ships. Høvik. 
Ehlers, S., Klanac, A., Tabri, K. 2007. Increased safety of a tanker and a RO-PAX vessel by implementing a 

novel sandwich structure. 4th Int. Conference on Collision and Grounding of Ships. Hamburg:109-115. 
Hughes, O.F. 1988. Ship Structural Design. Society of Naval Architects and Marine Engineers. New 

York:Wiley. 
Hughes, O.F., Ghosh, B., Chen, Y. 2004. Improved prediction of Simultaneous local and overall buckling of 

stiffened panels. Thinn-Walled Structures, 42: 827-856. 
Klanac, A., Jelovica, J. 2009. Vectorization and Constraint Grouping to Enhance Optimization of Marine 

Structures. Marine Structures, 22(2): 225-245. 
Klanac, A., Ehlers, S., Jelovica, J. 2009. Optimization of crashworthy marine structures. In press by Marine 

Structures, available online 12 August 2009 
Liu, B., Haftka, R.T., Akgün, M.A., Todoroki, A. 2000. Permutation genetic algorithm for stacking sequence 

design of composite laminates, Comp. methods in applied mechanics and engineering, 186, p. 357-372. 
Naar, H., Varsta, P., Kujala, P. 2004. A theory of coupled beams for strength assessment of passenger ships, 

Marine Structures, 17(8): 590-611. 
Osyczka, A. 2002. Evolutionary Algorithms for Single and Multicriteria Design Optimization. New York: 

Physica-Verlag. 
Romanoff, J., Klanac, A. 2007. Design Optimization of a Steel Sandwich Hoistable Car-Decks Applying 

Homogenized Plate Theory. 10th Int. Symp. on Practical Design of Ships and Other Floating Structures – 
PRADS, Houston. 

Todoroki, A., Haftka, R.T. 1998. Stacking sequence optimization by a genetic algorithm with a new recessive 
gene like repair strategy, Composites Part B, Elsevier Science, p. 277-285. 


