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1. Introduction

1.1 Background 

Developing the building sector can provide substantial benefits to society; however 

the sector also contributes significantly to Humankind’s environmental footprint. 

Globally, for instance, buildings are responsible for more than 40% of total primary 

energy consumption and a third of total greenhouse gas (GHG) emissions (UNEP 

2009, IEA 2013). The building sector normally accounts for 10-40% of Gross Domes-

tic Product (GDP) and, at national level, usually accounts for 5-10% of employment 

(UNEP 2007 and 2009). Improving the environmental profile of buildings therefore 

has significant potential to stimulate both economic and social development, providing 

for the growth of new business, increasing employment and improving living condi-

tions. In short, the environmental development of a building during its life cycle has 

an important role to play in terms of the sustainable development of our society, today 

and into the future (UNEP 2007 and 2009).  

In this context, the life cycle energy use and environmental impacts of buildings 

have been intensively studied over the past few decades. Because of its dominance in 

the overall life cycle energy use, most attention has thus far been focussed on the en-

ergy used in a building’s functioning (operational energy) and associated impacts. 

Practical solutions for low energy buildings (e.g. a high level thermal insulation and 

air tightness of building envelopes; heat recovery ventilation system) have been inten-

sively developed and as a result, operational energy demand and associated impacts 

have been significantly mitigated, leading to the introduction and development of low 

energy buildings. Although the operation phase is still responsible for the major part 

of the life cycle energy use of buildings, as a result of the aforementioned measures to 

improve operational energy efficiency, the relative importance of the energy used in 

other life cycle phases (e.g. material production phase (embodied energy)) is nowa-

days increasing. 
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A building is composed of a combination of many different products, which are 

made from various raw materials. The manufacture of building products is actually 

responsible for about 30% of annual global raw material consumption (UNEP 2008). 

In the building sector, raw materials are extracted, processed, transported, assembled 

with other products and finally disposed of (or reused/recycled) at the end of a build-

ing’s life. These processes all contribute to energy use and environmental impacts. 

Building material selection is, therefore, a significant factor in the development of 

sustainable construction. Against this background, wood and wood-based building 

products have lately attracted considerable attention as a promising construction mate-

rial due to their unique environmental properties (e.g. renewability, reusability, carbon 

storage capacity, energy content, etc.). In fact, recently the development of sustainable 

wood construction has become a matter of public interest. In particular, the develop-

ment of high-rise and large scale buildings from wood, replacing concrete and steel, 

has become a global trend, incorporating several aspects (e.g. environmental aspects, 

industrial potential). In addition, the life cycle assessment (LCA) of wood products 

and wood construction has nowadays also been frequently discussed. 

Prior to industrialization, buildings were traditionally constructed using locally 

sourced materials and manual labour. As a result, building artisans acquired deep 

knowledge of the materials that they used, resulting in proper material selection and 

maintenance that lead to efficient resource use and sustainable building life cycles 

(Murakami 2008). This would be the wisdom of traditional vernacular buildings culti-

vated before industrialization of the construction system, which is clearly an ad-

vantage compared to modern buildings. Although little scientific attention has so far 

been paid to vernacular architectures from an environmental aspect, there should be 

useful ideas to be taken from their solution (Murakami 2008, Kimura et al. 1999). A 

combination of traditional and modern building solutions could offer an interesting 

and profitable approach to the further development of sustainable modern buildings. 

As to building material selection, the idea that “the right material in the right place” 

should be particularly notable. The nature of materials was intrinsically understood 

from various aspects and suitable materials were used according to the function re-

quired, the location of use and so forth (Murakami 2008, Thoma 2003).  

1.2 Knowledge gaps 

The effects of material selection on the environmental impacts of a building and the 

environmental profiles of wood products have been widely investigated. However, 

most previous studies have been limited to certain life cycle phases, assessment pa-
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rameters or variation of materials studied. When this study was started in 2012, there 

had probably been no comprehensive and comparative material studies from environ-

mental aspect, providing a holistic understanding of the advantages/disadvantages of 

wood products over the building life cycle. 

It is already well known that wood is, in general, an environmental friendly material 

(CEI-Bois 2006 and 2014, USDA 2010), however little work has been conducted on 

how, specifically, wood in construction can be further developed from a life cycle 

perspective to enhance the sustainability of buildings. This thesis aims to address this 

gap knowledge. 

1.3 Objectives 

The main objective of this study was to investigate the optimal use and development 

of wood products in sustainable construction in comparison to other common building 

materials. With regard to learning from vernacular buildings, a holistic analysis of 

wood in construction was carried out with the aim of gaining a wider understanding of 

wood products so as to consider how they might be further used and developed. The 

effect of material selection, mainly on environmental indicators, over the building life 

cycle using the life cycle assessment (LCA) method was quantified and discussed. 

This dissertation also discusses the assessment data and methodologies for the fair 

assessment of wood in construction.  

1.4 Organization of thesis 

This thesis consists of three main sections and is based on five original papers. First-

ly, the theoretical background to the environmental impacts of buildings and its as-

sessment, the inherent environmental properties of wood products and sustainable 

solutions in vernacular buildings are introduced. Secondly, the methodologies used are 

briefly presented and the discussion is carried out based on the core results of Papers 

I-V and literature studies. Lastly, conclusions are drawn with suggestions for possible 

practical development and future research. 

The papers appended at the end of this thesis provide detailed accounts of the find-

ings and the basis for the discussion. Since LCA is a data intensive method, the avail-

ability of a reliable and adequate dataset is significant for the assessment. In addition, 

proper assessment methodologies are a prerequisite for comparative study. Therefore, 

in the first place, and as background to the study, existing LCA databases and the lat-

est normative standards relating to the assessment of building and wood products were 
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Figure 1- 1. Composition of this thesis 

investigated (Papers I-II). Based on these studies, the effect of building material selec-

tion in a Finnish context was quantified, covering the whole building life cycle and 

several environmental and economic indicators (Papers III-IV). Furthermore, a de-

tailed profile of GHG emissions associated with the construction process of wooden 

buildings was studied (Paper V). Figure 1-1 shows the relationship between the stud-

ies consisting of this dissertation. 
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2. Theoretical background 

2.1 The environmental impacts of buildings 

In an effort to mitigate the life cycle energy consumption and impacts of buildings, 

the main focus has been on the operational energy and associated impacts because it 

accounts for the highest proportion of the life cycle energy consumption and impacts. 

For instance, about half of the global final energy consumption in the building sector 

can be attributed to the operational energy (IEA 2011). Practical solutions for low 

operational energy buildings have been studied extensively over the past few decades 

especially in Europe and North America. The energy performance of buildings (e.g. 

thermal insulation performance and air tightness) has been improved and advances in 

the efficiency of building service equipment (e.g. the ventilation system with heat 

exchange and heat pump system) have been made. These measures have been com-

plemented by building energy standards, which thus far have been orientated towards 

reducing operational energy. As a result of these efforts, although operational energy 

still accounts for the major part of the life cycle energy use of buildings, the relative 

importance of the other life cycle stages has increased, especially in the case of low 

energy buildings (Karimpour et al. 2014, Mohammed et al. 2013, Verbeeck and Hens 

2010, Ramesh et al. 2010, Sartori and Hestnes 2007, Thormark 2002). Based on the 

literature review, Sartori and Hestnes (2007) have, for instance, reported that embod-

ied energy accounts for up to 46% of the life cycle energy use (service life of 50 

years) in the case of low energy buildings and up to 38% in the case of conventional 

buildings, whilst Mohammed et al. (2013) noted that embodied carbon emission could 

account for up to 68% of emissions over a 60 year life cycle. As the distribution of the 

energy use and environmental impacts over building life cycle change, a life cycle 

perspective is becoming more significant for comprehensive building analysis. 

Although the development of new low energy and low impact buildings is important 

in the long-term, their contribution to the overall impacts of the building sector may be 
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minor in the short-term (Bell 2004, Itard et al. 2008). This is mainly because of the 

relatively small proportion of additional new (low energy and low impact) construc-

tion to the existing building stock. An improvement in the energy efficiency of exist-

ing buildings may play a significant role in mitigating energy use and environmental 

impacts in the short-term (Harvey 2009). It is, therefore, important to consider both 

new and existing buildings in environmental development. 

2.2 The effects of building material selection 

With this background, the correct selection of building materials has great im-

portance for the development of sustainable construction. Material selection directly 

affects the environmental impact of a building since it is a complex system consisting 

of many different materials. Several researchers have investigated the relationship 

between the selection of building materials and the resulting impacts. Basbagill et al. 

(2013), for instance, investigated the influence of material choice and thickness on a 

building’s embodied impact in four building elements (Substructure, Shell, Interiors 

and Services). They noted that a significant reduction in embodied impact could be 

achieved by changes to the cladding materials, piles as well as glazing and flooring 

materials, whereas changes to materials and thicknesses were not important in the case 

of the doors, stairs and building service equipment. Thormark (2006) investigated the 

effect of material choice on both the embodied energy and recycling potential in an 

energy efficient apartment block in Sweden, noting that embodied energy could be 

decreased by approximately 17% (or increased by about 6%) through implementing a 

simple material change. 

Material selection can have an appreciable effect on the construction process as well. 

Cole (1999), for instance, studied the energy consumption and greenhouse gas emis-

sions associated with the on-site construction of buildings in a Canadian context. He 

demonstrated that there were significant differences when alternative frame materials 

(wood, steel and concrete) were used. The steel structure was found to consume the 

lowest energy and emit the lowest GHG during construction and the concrete structure 

the highest (the concrete structure requiring up to 40 times more energy than the steel 

construction). The use of wood typically resulted in 2-3 times more construction ener-

gy consumption and GHG emission than steel. Cole and Kernan (1996) compared the 

life cycle energy use of office buildings built with wood, steel or concrete frames in 

Canada. Their results showed that the concrete structure consumed up to 1.39 times 

more energy, and the steel structure up to 1.82 times more energy, than the wood 

structure. Eriksson (2003) also noted that wood construction uses less energy than 
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steel or concrete construction and estimated that increasing wood construction in Eu-

rope (about 35% greater annual sawn timber use) could reduce GHG emissions by up 

to 35 to 50 Mt CO2eq per year, which corresponds to about 0.9 to 1.3% of total annual 

European emissions. 

The effect of building material choice on operational energy has also been investi-

gated. Dodoo et al. (2012) analysed the effect of thermal mass on the space heating 

energy demand and life cycle primary energy balances of a building. They calculated 

the energy saving benefits of thermal mass during the operation phase of a reference 

building located in Växjö in southern Sweden, having either a concrete or a wood 

frame. They found that the concrete frame building had a slightly lower space heating 

energy demand (0.5-2.4%) than the wooden framed alternative due to the higher ther-

mal mass of the concrete-based materials. Jokisalo and Kurnitski (2005) and Ståhl 

(2009) conducted simulations using a similar approach and found that the space heat-

ing energy savings benefits of thermal mass to be about 0.7-2.0% for buildings in the 

Nordic climate. Zhu et al. (2009) compared identical wood and concrete constructions 

in Las Vegas and found that the wood construction required higher space heating en-

ergy, but lower space cooling energy than the concrete construction. The effect of 

thermal mass in buildings is swayed by several parameters such as climatic location, 

orientation, window area, thermal insulation, ventilation and the occupancy pattern of 

the buildings (ORNL 2001, Balaras 1996). 

Although to date there has been little research carried out about the end of life (EoL) 

stage of buildings (Karimpour et al. 2014), the recycling aspect has been highlighted 

as being a potentially significant factor in reducing the life cycle energy use of build-

ings (Thormark 2006, Dodoo et al, 2012). For instance, Thormark (2006) found that 

recycling in low energy buildings in Sweden resulted in a 40% recovery of the embod-

ied energy. In addition, Höglmeier et al. (2013) analysed the cascading potential of 

wood used in the building stock of south-east Germany finding that more than half of 

the recovered wood could be utilized for high-quality secondary applications. These 

studies indicate the importance of considering the EoL scenarios of the building mate-

rials right from the beginning of the construction project. 

2.3 The inherent environmental properties of wood products 

Wood is one of the most traditional and widely used building materials that is, 

thanks to its diverse characteristics, suitable for a variety of applications. Due to their 

unique environmental properties, in the context promoting sustainability in the build-
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ing sector, wood and wood-based building products have lately attracted considerable 

attention as promising construction materials. Firstly, renewability is a notable charac-

ter of wood, which sets it apart from other construction materials such as steel, con-

crete and fossil oil-based products. In addition, during growth, trees sequester carbon 

from the atmosphere through photosynthesis and part of this absorbed carbon is stored 

in wood products. Carbon in wood products remains stored for as long as the product 

is in use. In short, wood products provide a physical storage mechanism for carbon, 

which provides climate benefits depending on temporal aspects (Sathre and O’Connor 

2010). When a wood product is burnt at end of life the stored carbon is released, how-

ever energy can also be recovered. This recovery of post-use wood and wood pro-

cessing residues for use in place of fossil fuels significantly lowers the energy and 

carbon balances of a building (Gustavsson and Sathre 2006, CEI-Bois 2006, Hennigar 

et al. 2008). 

The environmental advantages of using wood products vary depending on the inter-

action between forest growth, carbon storage in the forest and in wood-products, and 

the substitution of fossil fuel and other materials. Liu and Han (2009) studied carbon 

storage in living trees and wood products over a 400 year time span under three differ-

ent forest management scenarios: no-harvesting, harvesting at the age of maximum 

mean annual increment (MAI) and harvesting at a time after maximum MAI but be-

fore the occurrence of natural disturbance. They found that, on a landscape level, car-

bon storage in living trees is the highest in scenario where no harvesting takes place. 

However, the total carbon storage (both in living tree and in wood products) is greater 

in the other harvest scenarios. In the no-harvest scenario, carbon storage in living trees 

is possibly lost due to natural disturbances, resulting in fluctuations in the total carbon 

storage. The authors concluded that a combination of improved forest management 

and efficient transfer of carbon into wood products would be a reasonable proposition 

to ensure long-term, stable, carbon storage. The same conclusion was reached by Pe-

rez-Garcia et al. (2005). 

When it is assumed that post-use wood and wood process residues are used for ener-

gy purposes, the benefit of carbon storage become less significant over time. Werner 

et al. (2005) analysed how GHG impacts changed as the use of wood products in-

creased in Switzerland. They noted that to begin with the carbon stock in the products 

increases as wood use increases but that later this will stabilize as the amount of wood 

entering the system balances the amount of wood leaving the system. In such situa-

tions, the effect of using wood products to substitute fossil fuel has a significant role to 

play in reducing net GHG emissions. In the case of the reuse or recycling of post-use 
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wood, Sathre and Gustavsson (2006) investigated the energy and carbon balances for 

three recovered wood cascade chains; the direct effects due to physical or logistical 

differences between virgin and cascaded wood, substitution effects from wood cascad-

ing derived from a reduction in the use of non-wood materials, and land use effects 

due to a reduction in the volume of harvested wood because of an increase in wood 

cascading. Their results indicated that the most significant effect on both the energy 

and carbon balance was land use effects, followed by substitution effects, whilst the 

direct effects were relatively minor. In particular, it was noted that the carbon storage 

in unharvested wood due to the cascading of recovered wood could be significant. 

Börjesson and Gustavsson (2000) compared the effects of three different post-use 

wood handling scenarios: i) burning for energy, ii) 50% for reuse and 50% for energy 

or  iii) landfill, on the life cycle energy and GHG balance of a reference building. 

They found that the most favourable outcome arose when half the post-use wood was 

reused and half burned. When post-use wood is cascaded, forest harvest and energy 

use for the material production can be reduced in subsequent building construction. 

2.4 Assessment methods and data for wood and wood construction  

In order to assess the environmental profile of buildings, several analytical methods 

have been developed and applied (König et al. 2010). Life cycle assessment (LCA), 

which is a method to quantify the environmental impact of a product during its life 

cycle, is one of the most commonly used assessment methods (ISO 14040 2006, ISO 

14044 2006). LCA has been applied to buildings since 1990 (Fava 2006), and numer-

ous studies relating to building life cycle impacts have been undertaken internationally. 

LCA is a data-intensive method and the results vary on a case-by-case basis with dif-

ferent methodologies being applied depending upon the purpose of the assessment 

(Peeredoom 1999, Erlandsson and Borg 2003). Thus, normative standards have been 

developed that are aimed at harmonizing the assessment methodologies. The norma-

tive standards EN15804 (2012+A1:2013) and EN15978 (2011), developed by Tech-

nical Committee TC 350 of the European Committee for Standardization (CEN/TC 

350), provide a framework for the assessment of building products and buildings. The 

standards state the methodological provisions related to the life cycle modules (mod-

ule A1–3: Product stage, A4–5: Construction process stage, B: Use stage and C: End-

of-Life stage) and an additional information module (module D: Benefits and loads 

beyond the system boundary). In particular, module D, which shows the additional 

benefits and loads resulting from the reuse/recycling operations at the end of life of a 

building, is unique in defining a solution for the transparent description of the recy-

cling aspects in building LCA (Leroy et al. 2012). The standards also bring transpar-
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ency to issues of life cycle inventory (LCI), system boundaries, division into the sub-

categories to be included and so forth. 

The European research project “EeBGuide” (Wittstock et al. 2012) summarized the 

provisions of CEN/TC 350 and the international reference life cycle data system 

(ILCD) handbook (EC-JRC-IES 2010) in order to produce expert guidance on con-

ducting LCA studies for energy efficient buildings and building products. The 

EeBGuide document identified more than 150 topics to be considered when conduct-

ing product or building LCAs according to the LCA framework (e.g. goal and scope 

definition, inventory analysis) and the life cycle stages of EN 15804 and EN 15978 

standards (modules A–D). The provisions and guidance are broken down according to 

the study types (screening, simplified and complete LCA) and make a distinction be-

tween stand-alone LCAs and comparative assertions. Moncaster and Symons (2013) 

introduced a simple tool for assessing the embodied carbon and energy in UK build-

ings (the ECEB tool). This tool was developed to help in making design decisions at 

the feasibility stage that, as far as possible, are in line with EN 15804 and EN 15978. 

They concluded that the standards provide accurate analysis for the early life cycle 

phases (module A1–5) but only an approximation for the latter phases (modules B3–5 

and C). In addition, the authors mentioned that the lack of precise LCA data, especial-

ly for the product stage (module A1–3), the construction process (module A5) as well 

as the end-of-life stage (module C), makes the conduct of an accurate assessment dif-

ficult. 

For the building assessment, EN 15978 refers to the use of data obtained from Envi-

ronmental Product Declarations (EPDs) defined in EN 15804. In addition, EN 16485 

(2014) developed by CEN/TC175, provides detailed assessment rules for wood and 

wood-based products used in construction, in line with EN 15804. The LCA of bio-

based materials, principally wood products, has recently been discussed in view of 

their unique inherent (carbon storage) properties, discussed above. Pawelzik et al. 

(2013) stated that the LCA standards do not yet address details of the life cycle of bio-

based materials, and reviewed key issues and methodologies regarding their LCA. 

2.5 Wisdom in traditional vernacular cold climate architecture 

Traditional vernacular buildings were constructed with local materials and tech-

niques. However, such restrictions cultivated building solutions to secure adequate 

living conditions, adapted to the surrounding (Murakami 2008, Kimura et al. 1999). 

As a consequence, before industrialization unique building solutions could be found 
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all over the world. From a LCA perspective, it could be assumed that the traditional 

buildings had lower life cycle environmental impacts due to, for instance, low produc-

tion, construction and transportation energy. In addition, traditional buildings had been 

composed of very simple material combinations that allowed easy maintenance and 

disassembly, resulting in long building life spans and a high reuse/recycling ratio of 

the materials recovered from disassembly (Kimura et al. 1999, Uchida 2009). Mura-

kami (2008) investigated the operational performance (e.g. thermal and moisture con-

ditions of the indoor space in relation to the outdoor) of several vernacular buildings 

(e.g. an Eskimo hut in Canada, a cave house in Turkey and a waterborne house in Ma-

laysia) based on in situ measurements and computer simulation. He also assessed the 

environmental performance of the buildings using CASBEE (Comprehensive Assess-

ment System for Building Environmental Efficiency, Murakami 2004) and has con-

cluded that the vernacular buildings had very low environmental impacts thanks to 

their passive design solutions (e.g. conditioning an indoor living environment in ac-

cordance with local climate (without mechanical system), locally sourced material 

use). Although the vernacular buildings would be inferior to a modern building, for 

instance, in terms of indoor living quality, there should be hints in traditional building 

solutions to develop environmental performance of modern buildings (Murakami 

2008).  

There have been several traditional building types built in cold climate areas such as; 

the Igloo (Eskimo hut) in North America, the Chise (Ainu’s house) in North Japan and 

the log cabin,for instance, in Siberia, central Europe and Scandinavia. As even primi-

tive example would be the pit dwelling, which was a hole dug into the ground that was 

covered by a layer of soil that acted as thermal insulation and provided thermal mass. 

These were commonly built in Scandinavia, North America and North-East Asia (Ha-

segawa 1987, Emori 2004). In Finland, most wooden buildings were of log construc-

tion up to the 1930s and the 

Finnish log cabin has a very 

long history reaching back to 

the Iron Age (Suikkari 2001). 

Simple wood construction us-

ing entire tree trunks is appar-

ently vernacular architecture in 

Finland. As an example of ver-

nacular cold climate architec-

ture, an outline of the sustaina-

ble solutions embodied in a Figure 2-1. Composition of a Finnish chimneyless log cabin 
(Lindberg 2011, p. 166)
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Finnish log cabin are briefly summarised as follows.  

In principle, the Finnish log cabin was a very simple rectangular shaped building. 

Originally (before the 18th century), the cabin was a one-room building without a 

chimney which was heated by a relatively large stove (smoke stove) compared to the 

room size (figure 2-1). The cabin was normally built on a corner stone foundation and 

raised slightly from the ground. The floor was made of log halves set on the floor 

joists. In order to protect the cabin from ground frost in winter, the cabin had a double 

layer of logs under the floor and a mixture of porous dirt, turf and sand was inserted 

between the two layers of logs to act as thermal insulation. The exterior wall was 

made by stacking hewn logs, normally of pine or spruce, on top of each other. This log 

wall worked as the load-bearing frame, thermal insulation and interior/exterior clad-

ding. This multifunctionality makes best use of the inherent structural and thermal 

properties of wood. The roof consisted of a log frame onto which sheets of birch bark 

were laid to act as a waterproof layer. Thin debarked logs were placed on top of the 

bark layer to hold the bark in place. There was an intermediate ceiling under the roof, 

which was typically composed of log beams, wooden boards, moss and fine sand. 

Moss and sand functioned as thermal insulation and provided an airtight layer (Haseg-

awa 1987, Huttunen 2012, Sailo 2011, Lindberg 2011, Savo-Seura et al. 2009).

The building materials were rationally selected according to their features, availabil-

ity and location of use (table 2-1). In addition, several measures were employed in 

order to prolong the building life span. A critical enemy of wood is water (moisture). 

In principle, there is no problem so long as wood is dry. Thus, all parts of the cabin 

were designed to ensure that they would dry out quickly. For instance, the tip of the 

ridgepole was sharpened with an axe in order to prevent water penetration into the 

wood and to drain water away, whilst the surfaces of logs were hewn to prevent water 

penetration. In addition, old pine logs (approximately 160 years old or more) were 

preferred since they were very durable and did not decay easily thanks to the high 

content of resins and extractives. The bottom logs tended to become wet due to mois-

ture from the ground, so that the best logs were used there. Thanks to proper material 

selection and well developed detailing, the cabin could have quite a long service life, 

for instance the life span of logs, ridgepole and the birch bark waterproof layer were 

normally more than 100 years, about 30 years and 50-100 years, respectively. Moreo-

ver, damaged parts of the building could be easily replaced because of the simple 

building composition and, due to their large dimensions, logs could also be reused in 

new building when an existing building was deconstructed (Huttunen 2012, Sailo 

2011). 
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The cabin would be heated by the smoke stove for a couple of hours per day. It 

seems to have been a very energy and resource efficient heating method because heat-

ing with a normal stove (with chimney) would take more time (approximately twice as 

long) to make the room warm enough. Releasing the smoke directly into the interior 

space would minimise heat loss, although the air quality of the space would of course 

become worse (figure 2-2). In addition, the heat could be stored in the stove, logs and 

ceiling (log halves and sand) that might provide omnidirectional radiant heat to the 

occupants (Huttunen 2012, Korhonen 2011). 

Although the cabin as such was not assessed in this study, many things could be as-

sumed. For instance, the embodied energy would certainly be lower and recyclability 

of building components would be higher than modern buildings thanks to its composi-

tion as described above. The multifunctional simple envelope constructed out of local 

materials (log wall) would be particularly notable. The multifunctionality of a building 

element would be a common building solution found in many vernacular buildings 

(Kimura et al. 1999), which would be an extension of the limited technology and re-

sources. In addition, the operational energy would also be efficient based on the 

unique space heating system. Natural energy was maximised and the building compo-

sition was optimized in order to secure an adequate living condition with minimal 

energy. Nevertheless, of course, traditional buildings are not always better than mod-

Table 2-1. Materials used in the cabin (Huttunen 2012, Sailo 2011)

Material Feature Location of use 

Pine 
Durability, Workability (Lightness and  soft-

ness)
Log, Eave, Slat 

Spruce 
Relatively high water-resistance, Workability 

(Lightness and  softness) 

Ridge pole, Log, 

Shingles 

Birch High water-resistance Water proof layer 

Aspen 
Light-resistance, Translucency, Workability 

(Lightness and  softness) 

Ridge pole, Opening 

(window pane), Log 

Branch (Birch 
or Spruce) Workability (Flexibility) Fixing rope 

Moss Air tightness Air tightening be-
tween logs 

Turf, sand, Dirt Adiabaticity Insulation 

Snow Adiabaticity, Air-tightness Additional insulation 
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ern buildings as noted by  Murakami (2008). In addition, the building and construction 

system fundamentally differ depending on the period considered, in particular before 

and after the industrialization. Therefore, it would be adequate to incorporate the ad-

vantages of both traditional (e.g. appropriate materials use based on multiple under-

standing of their properties, simple and rational building composition) and modern 

(e.g. advanced building materials and technologies, comfortable building operation 

system) building solutions for the development of sustainable built environment. In 

this study, traditional building solutions are thus referred to in the discussion with the 

core results of the appended papers, which are based on results from modern building 

systems (e.g. material production and construction system, building configuration, 

materials).  

Figure 2- 2. Heating system of the chimneyless cabin (Korhonen 2011, p.31)
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3. Approaches and methodologies 

The papers comprising this dissertation each have distinct research questions and as-

pects. Thus, although the study objects (e.g. reference building, assessment indicators, 

system boundary, etc.) differ from each other, the basic approaches and methodologies 

used in the assessments are shared amongst the studies. All of the studies are associat-

ed with an aspect of wood in construction and give a contribution to this dissertation. 

As for learning from traditional vernacular architecture, a wider understanding of 

wooden materials over the building life cycle can be obtained in order to consider the 

correct way in which to use and develop them in sustainable construction. 

First, the methodological issues for the fair assessment of wood products and wood 

construction are discussed based on the results of Papers I and II. Second, wood in the 

context of sustainable construction is discussed based on a quantification of the effects 

of material selection studied in Papers III-V in conjunction with the traditional build-

ing solutions. In this chapter, the methodologies and terminologies used in Papers I-V 

are briefly summarised. Further information can be found in the papers themselves.  

This study is based on a limited number of case studies including certain types of 

building and building materials, sustainability indicators and scenarios. This limitation, 

naturally influences the discussion and the conclusions reached in this study to some 

extent. However, this limitation is not considered to be so critical in the context of this 

study, since the discussion was carried out from a broader perspective, rather than 

focusing on some specific numerial results, although the assessment on other sustaina-

bility indicators (e.g. acidification potential) may bring different discussion.  

3.1 Analysis of life cycle assessment data 

Buildings are complex structures consisting of many materials. Appropriate LCA 

data for building materials is thus a prerequisite for the assessment. However, several 

researchers have reported that, depending on the databases, there are fundamental gaps 
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in the modelling of data, which can sometimes result in significant difference in the 

assessment results (Yokoo et al. 2013, Frischknecht 2006, Peeredoom et al. 1999). 

Therefore, the numerical and methodological differences between existing LCA data-

bases used for the purpose of building LCAs were investigated in Paper I. The follow-

ing five LCA databases were compared by calculating GHG emission values using the 

datasets in the material production phase (Cradle-to-Gate) of three reference buildings.  

- GaBi (2013) 

- ecoinvent (2013) 

- IBO (2013) 

- CFP (2013) 

- Synergia (2010) 

At the time the research was carried out, the latest versions of all the databases were 

used. More details about the databases are to be found in Paper I. In the paper, numer-

ical differences in the building assessment results arising from the different databases 

used were observed and the reasons for the variations were investigated from the point 

of view of the database’s methodological background. In addition, possible opportuni-

ties for the further development of LCA databases and the communication of assess-

ment results were discussed. Based on the study, the issues in the databases for the 

assessment of wood construction are discussed in section 4.1.1 of this dissertation. In 

addition, all the calculations in Papers II-V were carried out with ecoinvent due to its 

transparency and comprehensive data compared to the others.  

3.2 Analysis of the latest standards for the building assessment 

In order to conduct a transparent and comparable assessment for wood construction, 

the latest normative standards EN15804 (2012+A1:2013), EN 15978 (2011) and EN 

16485 (2014) were studied in Paper II. As noted in section 2.4 there are references 

other than the CEN/TC standards for conducting building LCA (e.g. the ILCD hand-

book); however the terminology and provisions in each are not currently harmonized 

(Wittstock et al. 2012). Therefore, different descriptions and results may appear in the 

assessment depending upon the reference used. Having understood this point, this 

study focused on the standards mentioned above since they deal consistently with the 

LCA of building products and buildings and include specific guidelines for the han-

dling of wood and wood-based products used in construction. 

First, global warming potential (as an indicator describing the environmental im-

pacts) and primary energy balance (as an indicator describing resource use over the 

service life of a reference building) were assessed by following the standards. Then 
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possible points for development in the standards, especially concerning wood products 

and wood construction, were discussed from a practical perspective. The building 

studied (reference building 1) was a 4-story apartment block (living floor area: 488 

m2) located in Mietraching (Architect: Schankula Architekten/ Diplomingenieure, 

Structural engineers: Bauart Konstruktions GmbH + Co.KG, Constructor: Hu-

ber&Sohn Co.KG), approx. 50 km south-east of Munich and completed in 2010. Fur-

ther information regarding the study can be found in Paper II. In this dissertation, ma-

jor discussion points in the paper are summarised in sections 4.1.2-4.1.4. 

3.3 Analysis of building sustainability from a material perspective 

Based on the results and discussions in Papers I and II, LCA were carried out on the 

reference buildings with a material perspective. Paper III analysed how building mate-

rial selection affected the environmental and economic indicators in the material pro-

duction phase of a building, whilst Paper IV demonstrated the influence of material 

selection on the life cycle energy balance of a reference building model, in a Finnish 

context. Paper V investigated the detailed profile of GHG emissions associated with 

the construction process of wooden reference buildings. The results of the papers are 

discussed from the perspective of wood in sustainable construction in section 4.2. The 

assessment methodologies used in Papers III-V are briefly summarised in the follow-

ing section. 

3.3.1 Reference buildings 

In Papers III-V, several reference buildings were used according to the purposes of 

the study. The case studies were conducted on relatively small scale buildings (resi-

dential buildings). Here, each reference building is briefly introduced. The reference 

building used in Paper III (reference building 2) was a three story townhouse building 

planned for Helsinki (60°N, 25°E). The building consisted of five houses in a row. A 

hypothetical building model (reference building 3) was used as the study object in 

Paper IV. The dimensions of the model were scaled to those of a detached house. This 

building was assumed to be located in Helsinki as well. Three multi-story wooden 

residential buildings (reference buildings 4-A, 4-B and 4-C) were assessed in Paper V. 

Basic information about each of the reference buildings is summarized in table 3-1. 

The functional unit was 1 m2 of the living floor area, which is an area enclosed by the 

inside of the walls, excluding technical and maintenance spaces (e.g. machine room 

and storage). Although the contexts of the buildings (e.g. location and size) differ from 

each other, this was not considered to be a critical problem for the purposes of this 

study.  
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Table 3-1. Basic information about the reference buildings (Adapted from Papers III-V) 

Name Location Structure frame 
Gross 
area 
(m2)

Living
area 
(m2)

Floors 

Reference building 2 Helsinki Refer to section 3.3.2 1243 986 3 
Reference building 3 Helsinki Refer to section 3.3.2 120 96 2 
Reference building 4-A Germany Sawn timber panels 726 488 5 
Reference building 4-B Finland Cross laminated timber 730 548 3 
Reference building 4-C Italy Cross laminated timber 1840 1398 5 

3.3.2 Building materials compared 

 In Papers III and IV, a comparative study was carried out on three building compo-

nent categories: the structural frame, surface and inner components. Building service 

equipment and furniture were excluded from the calculation because they were out of 

the scope of the study. In the structural frame category, six frame materials: light 

weight timber (LWT), cross laminated timber (CLT), reinforced concrete panel (RC), 

autoclaved aerated concrete (Aircrete), brick (Brick) and light gauge steel (Steel), 

were compared using the reference buildings. The typical compositions of each build-

ing element were selected from the literature (Palolahti et al. 2013). In order to ob-

serve the differences arising from the selection of the frame materials, other building 

components (e.g. thermal insulation) were, as far as possible, held constant. U-value 

was constant in all cases regardless of the frame material and was according to Finnish 

building code D3 (2012). In addition to the comparison of the structural frame materi-

als, alternative frame material combinations were also studied (table 3-2, Paper IV). 

Here, the aim was to observe how the life cycle energy balance changes when heavy 

weight (RC) and light weight (LWT and CLT) structures are combined in a building. 

In addition to the structural frame comparison, the influence that the selection of the 

material for the surface and inner components had on the indicators was compared 

using the reference building having the LWT frame. The energy performance of the 

building (e.g. U-value) was the same in all cases. The aim was to provide a description 

of both the differences between the materials and the contribution of the component 

categories on the end results. Detailed information regarding the materials compared is 

found in Papers III and IV. 

Table 3-2. Alternative combinations of the frame materials (Adapted from Paper IV)

  Combination 1 Combination 2 Combination 3 
Foundation + Ground floor Concrete 

Exterior wall 
1F 

RC RC CLT 
2F LWT 

Intermediate floor LWT LWT RC 
Roof   LWT LWT RC 
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3.3.3 Indicators 

Although several indicators were assessed in Papers III-V, three indicators are main-

ly considered in this dissertation; primary energy balance, GHG balance and cost bal-

ance, which represent the environmental and economic aspects of sustainability. Both 

renewable (-R) and non-renewable (-NR) primary energy consumption and benefits 

were assessed. Primary energy consumption in the production phase of the building 

(embodied energy) was expressed as EE-R/EE-NR, whilst the energy content of prod-

ucts used in the building was expressed as EC in Paper III. The life cycle primary en-

ergy balance was displayed as PER and PENR in Paper IV. The CML 2001 method: 

global warming potential 100 years (Frischknecht et al. 2007), was used to quantify 

GHG emissions from both fossil fuel use (fossil GHG) and biomass fuel use (biogenic 

GHG) with the LCI data in ecoinvent. The CO2 emission from biomass combustion 

was considered to be zero based on the idea of biogenic carbon neutrality (EN 16485: 

2014) in Paper III. The temporal carbon storage in the wood products used was ac-

counted for according to EN 16449 (2014) as an environmental benefit of the build-

ings in Papers III (as CS) and V. Although this study followed the assessment rules 

defined by the standards, the handling of biogenic CO2 and carbon storage in wood 

and wood construction will be discussed at length in chapter 4, since it is a complex 

issue and is not harmonized amongst the guidelines for the LCAs of products and 

buildings. For instance, the international standard regarding the carbon footprint calcu-

lation of products (ISO 14067 2013) contains provisions for the inclusion of GHG 

emissions and removals arising from both fossil and biogenic carbon sources and sinks 

in the assessment report. Initial material cost was accounted for based on data in the 

published literature (Palolahti et al. 2013, Taloon 2014) in Paper III. The consistency 

of these two information sources was confirmed by comparing the price of the same 

products. More details are given in the papers. 

3.3.4 Assessment at each stage of the building life cycle 

Figure 3-1. Life cycle modules for building LCAs according to EN 15978 
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According to EN 15978 (2011), the life cycle phases studied in Paper III-V were de-

fined as shown in figure 3-1. In principle, the assessment in each module was carried 

out by following the standard. In the production stage (module A1-3), the inventory 

was carried out from the working drawings of the architects and structural engineers. 

Material losses during the construction process were taken into account. The calcula-

tion was carried out by multiplying the mass of each building component (kg) and the 

unit impact value (in MJ/kg, kg CO2e/kg, or €/kg) obtained from the references men-

tioned in the previous section. All information regarding the construction stage (mod-

ule A4-5) was collected by reviewing the construction documents, monitoring the 

construction works and interviewing the constructors. Data collection methods were 

determined on a case-by-case basis. Transportation of the building components and 

elements (module A4) was modelled according to the case. The impact from the mod-

ule was calculated by multiplying the distance (km) and the mass of deliverable (ton), 

taking the vehicle type into account. Worker transport to the factory or construction 

site was not included. The impact from the prefabrication and on-site construction 

work (module A5) was assessed based on the amount and types of energy consumed 

during the process. The impacts associated with the prefabrication and on-site work 

were displayed separately in Paper V in order to observe them in detailed. The 

maintenance of the buildings (module B2-5) was modelled according to the expected 

service life and maintenance interval of the building components (YM 2008, Scheurer 

et al. 2003). The calculation of the operation stage (module B6) was based on the en-

ergy demand either estimated by the designer for the purpose of energy performance 

certification or simulated with IDA ICE (2014). At the end of life stage (module C), it 

was assumed that the buildings were demolished by selective dismantling and the 

building components were managed according to the scenarios created based on the 

literature (European Commission 2011, Kuosa 2012). The primary energy consumed 

during the stage - deconstruction, transportation, waste processing for reuse or recy-

cling and disposal - were assessed up to where the end-of-waste state of the materials 

is reached (Paper IV). The net energy benefit of the recycled materials (module D) 

was calculated as the primary energy use avoided through the substitution of primary 

materials production with materials that were recycled (Paper IV). Although the as-

sessment results in this module varied depending on the scenario, the aim here was to 

describe the possible energy benefit of each building material after its service life, 

based on current recycling methods. 
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3.3.5 Analysis techniques 

In Paper III, the differences between the frame materials were quantified relative to 

an average of all the alternatives. In this study, this is termed the “difference index 

(DI)”. A DI of 3 means that the result is three times as large as the average, a DI of 2 

twice as large and 1 is the same as the average. When the DI is a decimal, for instance 

0.5, the result is half that of the average. A DI of 0 indicates that the frame material 

does not have any value in that indicator.  

In Papers III and IV, for the comparative study of the inner and surface components, 

the percentage relative differences (PRD) were used. The original specification of the 

LWT version was set as the reference value and the PRD in the results of the alterna-

tive materials were determined using equation 1. 

                  (1) 

Where PRD is Percentage of relative differences (%) 

Value.x is the value calculated with material x (MJ, kg, kg CO2e or €) 

Value.ref is the value calculated with the original specification (MJ, kg, kg CO2e or €) 

This method can indicate a positive or negative difference compared to the reference 

case and facilitates comparison as an index. More details are to be found in Paper III. 
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4. Results and discussion 

4.1 Assessment data and methods for wood construction 

In Papers I and II, it was commonly noted that the number of appropriate product 

data and a clear statement of the bases of their values are very important for compara-

tive building assessment. Although the building assessment results showed similar 

trends even with the different databases, in many cases background information about 

the data (e.g. representativeness, system boundary or allocation) was not open. In ad-

dition, even if such information was open, it was not necessarily easy for users to 

modify the existing LCA data as required, for instance, by the standards (Wittstock et 

al. 2012).  There is, therefore, still difficulty in conducting a comparable building as-

sessment in line with the standards. This issue would be particularly problematic in the 

assessment of wood construction because of the following reasons, 1) the variety of 

wood products and 2) the inherent environmental properties of wood (e.g. energy con-

tent and temporal carbon storage). 

4.1.1  Variety of wood products 

Nowadays many different types of wood-based construction materials are available; 

not only sawn timber, but also engineered wood products (e.g. Glulam, laminated 

veneer lumber (LVL) and cross laminate timber (CLT)) and board products (e.g. ply-

wood, LVL sheet, oriented strand board (OSB) and particleboard). The manufacturing 

system varies according to the product and also the location where the product is man-

ufactured. Thus, the environmental information naturally differs between products, 

and sometimes even with the same product exhibits different environmental impacts. 

For instance, figure 4-1 shows the relative differences in the GHG emission value of 

the main wooden building components data stored in five different databases (Paper I). 

Here it can clearly be seen that there are large variations between the data, which have 

different representativeness (geographical, technical and temporal). In general, in the 

case of wood product manufacturing the thermal energy used for the drying and press-

ing processes account for the major (about 70-90%) part of total energy use (Tucker et 
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al. 2009, FAO 2013a). Often biomass fuel is used alongside fossil fuels to generate 

this thermal energy and the ratio between the two varies according to country, region 

and even from mill to mill. Thus, the GHG emission value of wood products tends to 

be variable depending upon the database in question. In contrast, as shown in the fig. 

4-1, the GHG emission value for concrete is similar in all databases. This result origi-

nates from the globally uniform nature of the concrete production system and its ener-

gy profile, coming mainly from fossil fuels (EPA 2007). According to the Environ-

mental Product Declaration standard (EPD, EN15804 2012+A1:2013), it is a require-

ment  to declare information in terms of the use of resources based on the life cycle 

inventory (LCI) with the life cycle impact assessment (LCIA) result. In addition to this, 

it would be more understandable to indicate the distribution of energy resources along 

with the production process, especially for wood products that tend to have a case 

specific manufacturing system. That information could, for instance, be visualized 

with the basic steps of the process shown as a flowchart. Describing such background 

information in a simple and transparent way should deepen the understanding of wood 

product data and might stimulate a comparative study between them, resulting in the 

real development of wood products from an environmental perspective. 

There is a gap between databases with regard to the amount of wood product data. 

Table 4-1 shows the wood product data in the databases studied in Paper I. As men-

tioned in the article, there is a shortage of information about particular wood products 

in some databases and as a result some materials had to be substituted with data from 

similar products in the assessment. For instance, insulation board was used instead of 

Figure 4-1. Percentage relative differences in the GHG emission value of main building components
shown by the different databases. The reference database is ecoinvent (Adapted from Paper I) 
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cellulose fibre insulation in the case of CFP. The substitution of product data clearly 

lowers the accuracy of the building assessment. The provision of accurate data about 

specific wood products is therefore a fundamental requirement for accurate and com-

parative assessment. In particular, the development of national open databases based 

on an international data format, for instance the EPD system, would lead to the further 

popularization of the environmental assessment of buildings and would also widen the 

understanding of the environmental performance of wood products in relation to their 

specific context (e.g. locality, species). Although EN 15978 refers to the use of EPDs 

based on EN 15804 for building assessment, such data is clearly lacking at the mo-

ment. At the time the research was carried out only a few datasets (e.g. Rüter and 

Diederichs 2012, IBU 2013, Wood for Good 2013) existed that had been compiled in 

line with EN 15804. The preparation of a sufficient number of data of suitable format 

and quality is thus, as Moncaster and Symons (2013) have also mentioned, urgently 

required, especially for the assessment of data-intensive modules such as the product 

stage (module A1–3), construction process (module A5) and end-of life stage (module 

C). Since wood products are biomaterial and their production systems vary from each 

other, ideally it would be important to describe their environmental profiles on a case 

by case basis. The manufacturing and construction industries are expected to develop 

standardized data according to the EPD format described in EN 15804. Other issues, 

not within the scope of this thesis but nevertheless still important, regarding the LCA 

data of building products, are introduced in Papers I and II. 

4.1.2 Energy content 

As described in EN 16485 (2014), the energy content - the use of renewable/non-

renewable primary energy resources used as raw materials (PERM/PENRM) in the 

definition of EN 15804 and EN 15978 (2011) - of products is regarded as an inherent 

material property. That can be counted as the energy recovery potential of a building if 

the building materials with an energy content are reused/recycled as secondary prod-

uct or are used as fuel at the end of the life of a building (module C). Several studies 

have demonstrated the energy recovery benefits of the subsequent use of wood prod-

ucts as a fuel (Dodoo 2011, Thormark 2006, Scharai-Rad and Welling 2002).  In the 

standards, it is stipulated that the use of primary energy for energetic purposes 

(PERE/PENRE) and PERM/PENRM should be shown separately as resource input in 

the material production phase of a building. However, the handling of PERM/PENRM 

exiting the system boundary by reusing/recycling building materials is not clearly 

defined in the standards. Figure 4-2 shows the life cycle primary energy balance of 

reference building 1 (table 3-1) in accordance with the provisions in the standards 
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(Paper II). Here the energy content (PERM/PENRM) is counted as the energy con-

sumption in module A1-3 of the system studied. With regards to this result, if the en-

ergy content is counted solely as the input, it might be distorted in favour of a con-

struction with lower energy content in its components, like concrete and steel struc-

tures. Therefore, the fluxes of the energy content should be documented fairly within 

the system boundary by following, for instance, the scheme shown in figure 4-3 (Pa-

per II), in which the energy content incoming/outgoing to/from the systems are de-

scribed and they are balanced within the system boundary. In the building assessment, 

although the benefits of energy recovery from the materials used in the building could 

be reported in module D, it would also be relevant to express the energy content as 

input (positive value) in module A1-3 and as output (negative value) in module C 

based on the amount of materials reused/recycled in the next system. Additionally, in 

the product data differences between PERE/PENRE and PERM/PENRM should be 

clearly documented in order to avoid any misinterpretation of the values. 

Figure 4-4 shows the same results as figure 4-2 but taking into account the foregoing 

discussions (Paper II). A proper description of the impacts and potentials of a building 

according to its system would lead to a comparable assessment and could be a starting 

point for the further development of buildings and building materials. 

Figure 4-2. Primary energy balance of the reference building 1 described in accordance with provisions
in the standards (Adapted from Paper II) 
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4.1.3 Biogenic carbon 

As mentioned previously, biomass fuel is often used alongside fossil fuels in wood 

product manufacturing, so that the GHG emissions from the process include biogenic 

carbon emissions to some extent. In addition, wood products store biogenic carbon for 

the duration of their service lives as an inherent material property (EN 16485). First of 

all, biogenic carbon emissions and carbon storage naturally need to be distinguished in 

Figure 4-3. Example of the energy content fluxes in the case of wood products (Adapted from Paper II) 

Figure 4-4. Primary energy balance of the reference building 1 described in accordance with the discus-
sions (Adapted from Paper II) 
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the product data. According to EN 16485, biogenic carbon emissions can be regarded 

as zero based on the idea of biogenic carbon neutrality, if the biomass used can be 

assumed to originate from sustainable forest sources. In this sense, carbon storage in 

wood products may be a virtual value and in fact it will be zero, balanced during natu-

ral decay or incineration of the products. However, it can be included in the assess-

ment result as additional environmental information (EN16449 2014). Although the 

carbon stock in wood products may stabilize and become less significant over the 

building life cycle and forest rotation period, initially it is the dominant factor influ-

encing GHG balance (Werner et al. 2005, Sathre 2007). It would, therefore, be im-

portant to describe biogenic carbon flow clearly and fairly in the assessment results as 

regulated, for instance, by ISO 14067 (2013), regardless of the idea of carbon neutrali-

ty. 

However according to the current standards, life cycle GHG balance (GWP: global 

warming potential) shall be expressed as an aggregated value of fossil based GHG and 

biogenic carbon (both emission and storage) as shown in figure 4-5 (Paper II). Here 

the CO2 emissions from biomass fuel combustion are taken to be zero over the life 

cycle. Biogenic carbon storage in wood products is counted in module A1, which re-

sults in a net negative impact for module A1-3. On the other hand, in module C the 

biogenic carbon storage that exits the system is counted as a positive value. Hence the 

biogenic carbon balance and the contribution of biogenic carbon to the GHG emission 

is zero over the life cycle of the building, as mentioned in EN 16485. However, with-

out looking at their detailed contents, it might be difficult to understand why the result 

Figure 4-5. Global warming potential of the reference building 1 described in accordance with provi-
sions in the standards (adapted from Paper II) 
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for module A1-3 shows a negative value, whilst that of module C shows such a high 

positive value. In order to solve this issue, it would be relevant to separate fossil and 

biogenic carbon fluxes in the assessment results, for instance, as shown in figure 4-6 

(Paper II). In the figure, the biogenic carbon fluxes and fossil GHG emission can be 

seen separately in addition to the GWP. Here the meaning of GWP can be understood 

clearly in relation to the biogenic and fossil carbon aspects. This way could fairly ex-

press the environmental features of wood construction and would also help to detect 

targets for mitigating the GWP of the building being studied. 

4.1.4 System boundary for the assessment 

In the definition given in EN 15978, the construction stage (module A4-5) includes 

processes from the delivery of the construction products from factory gate to the com-

pletion of the on-site construction work. This means that, in principle, the prefabrica-

tion process of the building elements and their transportation are counted in the prod-

uct stage (module A1-3), as shown in the fig. 4-2 and 4-5. However, this arrangement 

would lead to at least two problems. Firstly, the allocation of environmental impacts 

linked to the prefabrication process to module A1–3 would make the comparison of 

product data difficult. Secondly, the results for module A1-3 may be distorted in fa-

vour of an on-site oriented construction system. In other words, proper interpretation 

of the assessment results would become rather difficult. In general, the degree of pre-

fabrication seems to be increasing in construction work (Nord 2008). It would, there-

fore, be worth considering the prefabrication process as part of the construction stage 

Figure 4-6. Global warming potential of reference building 1 described in accordance with the discus-
sions (Adapted from Paper II) 
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(module A4-5) and subdividing the stage into two information modules (e.g. module 

“A4–5: P” for prefabrication process, module “A4-5: O” for on-site construction pro-

cess), as shown in figs. 4-4 and 4-6. This approach will give more transparency to the 

assessment results that would bring developments in the efficiency of the process. 

Moreover, in this system, the environmental benefits from the prefabrication process 

waste, which are regarded as co-products in the current standards, can be described in 

module D. This would be fair, especially for wood construction with a high degree of 

prefabrication, since the most of construction waste is generated during the prefabrica-

tion process. 

4.2 Optimal use of wood in sustainable construction 

Based on the results reported in Papers III-V, the more reasonable utilization of 

wood products and how they could be further developed in sustainable construction is 

discussed here in light of the three indicators described in section 3.3.3 (primary ener-

gy balance, GHG balance and cost balance). The discussion is in accordance with the 

principles of appropriate material selection over the building life cycle, summarised 

from the literatures (figure 4.7) (UNEP 2007, 2008 and 2009, Sathre and O’Connor 

2010). As for learning from vernacular buildings, the discussion is covered from a 

wider perspective and insights are included in the discussion where relevant. Further-

more, the fact that the relative importance of life cycle phases other than the use phase 

of a building increase when the operational energy performance of a building im-

proves, is taken into account in the discussion, since the results in papers III-V are 

based on current building energy standards. The energy supply system (e.g. electricity 

mix, space heating technology, ventilation system) significantly affects the indicators 

mentioned above (Dodoo 2011, Joelsson 2008). However, this aspect is not discussed 

in detail here as it is not within the focus of this study. 

Figure 4-7. Principles for appropriate material selection for sustainable construction
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4.2.1 Renewable and local resource use 

Several social trends – rapid population growth, continuous economic development, 

a higher standard of living and technological change – all contribute to an increase in 

natural resource use. Using and processing natural resources causes environmental 

impacts (e.g. land, water and air pollution) and disturb the ecosystems (e.g. decrease in 

biodiversity). The construction industry is one of the largest consumers of natural re-

sources (UNEP 2008). Renewable natural resources, in this context, cause less impact 

than non-renewable resources mainly because of their possible continuous supply 

(EPA 2005). Wood as a renewable construction material, thus, plays an important role 

in mitigating the environmental impacts of buildings. 

However this idea must be considered in terms of sustainable forestry. A flow of 

wood products can be maintained indefinitely with proper forest management, but 

wood is not an infinite resource. Unfortunately, today, sustainable forestry practices 

have not been implemented worldwide (EPI 2010) and this means that wood cannot be 

regarded as a renewable resource in a global context at the moment. To solve this 

problem, and in contrast with commonly held beliefs, increasing the use of wood may 

be an effective solution since it positively contributes to maintaining and increasing 

forests (CEI-Bois 2014). In many cases, increasing wood use enhances the market 

value of forests to the local community, which is a significant incentive to preserve 

them. In addition, Liu and Han (2009) noted that total carbon storage in living trees 

and wood products in the long term could be greatest in scenarios with increased har-

vesting levels. In such situations, stakeholders in the construction project (e.g. client, 

architect or constructor) are naturally required to use wood products that are certified 

as being from sustainable forests. Nowadays there are more than 50 different forest 

certification programs all over the world, representing about 8% of the global forest 

area and 13% of managed forests (USDA 2010). The world’s certified forests are 

mainly located in the northern hemisphere - North America and Europe. It would be 

significant to globally increase the certified area in such a way as to positively con-

tribute to the development of a sustainable environment by using more wood in con-

struction. An appropriate balance between the production (acquisition) from, and the 

consumption of, forest resources should be considered in each region, based on the 

annual increment. 

Before industrialization, buildings were obviously constructed with local materials, 

since there was limited means of long distance transportation. Wood, in particular, is a 

location dependent material so that even wood from the same species can show differ-

ent properties and behaviour if grown in different places (Nishioka 1988). Therefore, 
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traditionally, it is noted that timber should be locally resourced (Thoma 2003). In-

creasing the use of local forest resources would also stimulate the local economy and 

proper forest management, as discussed previously. In Europe, for instance, most 

wood products are consumed domestically (more than 80% according to CEI-Bois 

2006), so that it is often claimed that European wood products contribute less to envi-

ronmental impacts because of short transport distances (CEI-Bois 2014). Morel et al 

(2001) noted that the embodied energy of a reference building constructed with local 

materials - stone masonry structure and rammed earth wall structure - could be re-

duced by 215% and 285%, respectively, compared to the case of a typical concrete 

structure due, mainly, to the difference in transportation distances. It is clear that, in 

general, shorter transportation distances lead to the lower impacts (This issue in rela-

tion to wood products will be discussed further in section 4.2.2.). However, it may 

also be argued that the use of local material is not always viable in the context of an 

internationalized society. For instance in Japan, the domestic forest resource accounts 

for less than 30% of the total annual domestic consumption (MAFF 2013), even 

though the domestic resource could fully satisfy demand. Most wood products are 

imported from all over the world over a long distance. This is mainly because of the 

elimination of tariffs for industrial round wood in 1951 and the trade liberalization of 

wood products that started in 1964 (Yamada 2012). The self-sufficiency ratio of wood 

in Japan has decreased as the price of domestic wood has increased. As mentioned by 

Morel et al. (2001), sometimes the adaptation of local materials in developed countries 

may also be difficult due to the loss of traditional construction skills as well as a lack 

of suitable building standards. 

4.2.2 Short transportation 

Transportation occurs in several life cycle stages of a building as shown in figure 4-

7. Transportation distance should ideally be as short as possible in terms of environ-

mental and economic efficiency. Transport at the end of life stage of a building tends 

to be short, since the waste management of deconstructed materials are in general 

conducted in local plants in order to optimize the cost. On the other hand, transport in 

the production and construction stages seems to be case specific. Normally, loading is 

optimised from an economic aspect; however, transport distance is not always in pro-

portion to the price of a product. Thus, sometimes a product can be bought from a 

distant country due to cheaper prices, even though the same product might be availa-

ble in a neighbouring city. In the construction industry, this trend seems to be more 

conspicuous for wooden products compared to other materials such as concrete and 

steel. Concrete consists of cement, aggregates and water, which are globally available. 

Cement is primarily consumed close to the area of production because of the availabil-
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ity of the raw materials and the high cost of transport relative to its value, particularly 

over land. Only 5.8% of world production is traded, with 40% of this trade between 

regions. In the steel market, about 30% of world production is traded. Nevertheless, 

the major proportion of trade is between neighbouring regions (Watson et al. 2005). 

Since these are very common construction materials, concrete and steel mills can be 

found in many parts of the world. Thus, the secondary processing of these materials is 

normally carried out near to the construction site. 

On the other hand wood is, as mentioned before, a location dependent material be-

cause the availability of suitable wood species differs from region to region. Trade in 

wood-based products has been active mainly between Europe, North-America and 

Asia and recently the global trade volume of wood products has been growing. About 

30% of sawn timber produced is nowadays traded (FAO 2013b). This ratio is even 

higher in the European Union (FAOSTAT 2015). In addition, the international trade in 

secondary processed wood products (SPWPs) is rapidly increasing (FAO 2007). For 

instance, about 20% of the world production of wood-based panel products are traded 

(FAOSTAT 2015) and this figure is likely to increase even more in the future because 

of increasing demand and the higher profits of SPWPs to manufactures (FAO 2007). 

SPWPs require greater manufacturing skill than primary products (e.g. logs and sawn 

timber). Thus, the mills for SPWPs tend to be unevenly distributed in certain regions. 

Figure 4-8. Greenhouse gas emissions for module A. A1-3: Product stage, A4 G to G: Transport of build-
ing components from product factory to prefabrication factory, A4 G to S: Transport of building compo-
nents from prefabrication factory to construction site, A5 Prefabrication: Prefabrication work in the
factory, A5 On-site: Construction work on the site, A5 Waste: Waste management process (Adapted from 
Paper V) 
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Figure 4-8, which shows the GHG emissions (from both fossil and biogenic sources) 

in the production and construction phase (module A) of the three multi-storey wooden 

residential buildings (reference buildings 4-A, B and C (Table 3-1)) clearly displays 

this trend (Paper V). The transport (module A4) has a relatively high share in the con-

struction stage (module A4-5), approximately 30% in the case of building 4-A and 

more than 50% in the case of buildings 4-B and C. It is remarkable that the transporta-

tion of building components results in higher GHG emission than the actual construc-

tion work, module A5, in buildings-B and C. This result mainly stems from the long 

delivery distance of the CLT panels. For instance, the CLT used in building 4-B was 

delivered over 2300km by truck and ferry. There seems to be great potential to miti-

gate the environmental impacts from the transport of building components and ele-

ments, which has also been noted by Cole (1999). In particular, the transport process 

of the wooden building components seemed to have greater potential for mitigating 

emissions than the actual construction work. Considering this point in the material 

selection process would be a relevant point for improvement. For instance in Japan, it 

has been demonstrated that the construction of an ordinary detached house (approxi-

mately 130m2) with either local wood or domestic wood could reduce the GHG emis-

sion from the transport of wooden components by about 93% or 82% respectively 

compared to construction with wood imported from Europe (Takiguchi 2006).

4.2.3 Efficient production/assembly 

The material production phase is, in general, the second most important in terms of 

the life cycle environmental impacts of a building. In addition, the construction pro-

cess is appreciably influenced by the building material selection (Gerilla et al. 2007, 

Eriksson 2003, Cole 1999). Wood products are normally regarded as contributing less 

to the environmental impact in the production and construction phases compared to 

other common construction materials (UNEP 2007, Eriksson 2003). In principle, more 

processed materials consume more energy in the production process and light-weight 

structures (e.g. wood and steel frames) require less energy in the construction process 

compared to heavy-weight structures (e.g. concrete and brick frames). 

Figure 4-9 shows the assessment results of reference building 2 (table 3-1) in the 

production stage with the six alternative frame materials for the eight indicators (Paper 

III). The figure is displayed as the relative relationship between the alternative frame 

materials (difference index). A notable point here is that the cross laminated timber 

(CLT) frame shows the poorest results in terms of the non-renewable embodied ener-

gy and material cost, even though it is wood construction. This result can mainly be 
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explained by the following; 1) relatively high production energy per kg, 2) large quan-

tity used and 3) inefficient configuration of building elements. The composition of the 

CLT framed building is normally quite similar to that of a concrete framed one, con-

sisting of as massive structural layer plus some additional functional layer (e.g. insula-

tion, wind barrier, exterior cladding). In addition, when fire protection is required on 

the interior cladding, the interior CLT surface needs to be covered by a fire proofing 

board, like gypsum board. In short, the CLT framed building tends to have duplicate 

layers, although the CLT as such may cover these functions. 

Traditional vernacular buildings had a very simple composition due to the limited 

resources and technology. For instance, the log cabin introduced in section 2.5 con-

sisted of just a single massive wooden layer, which had multifunction. After moderni-

zation (at the beginning of 20th century), buildings became more complex by increas-

ing the number of layers in the envelope in response to the functions required. How-

ever, CLT, as an advanced massive timber structure which can fully exploit the physi-

cal properties of wood (e.g. low thermal conductivity, thermal/moisture buffering 

property, fire retardancy), may have the possibility to again simplify and rationalize 

the composition of a building by incorporating several functions.  CLT may alone be 

able to form the exterior wall, for instance, if its properties could be developed so as to 

comply with building regulations (e.g. fire regulation, thermal performance) (figure 4-

10). This sort of product development would enhance the environmental and economic 

sustainability of wood construction. 

Figure 4- 9. Difference index of the reference building 2 with the six frame materials on the indicators
(Adapted from Paper III) 
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For every indicator the differences between the other alternative materials are, in 

general, relatively minor, although the light weight timber frame (LWT) shows the 

best results in many cases. However, the order of magnitude between the frame mate-

rials varies depending on the indicators. Understanding such materials’ characteristics 

would be significant for proper decision-making. In addition, it should also be noted 

that variation in the material cost between the alternatives is minor compared to the 

other indicators, as shown in fig. 4-9. This is the same trend that Yasantha 

Abeysundara et al. (2009) found, meaning that the environmental parameters should 

be considered more than economic factors in decision-making. 

Although the influence of material selection on the construction process has not 

been investigated in this study, the effect can be studied from previous studies (Cole 

1999, Cole and Kernan 1996, Eriksson 2003). Althouh these studies are rather dated, 

they do show that light-weight structures (e.g. wood and steel), in general, contribute 

to less energy consumption and GHG emission than heavy-weight structures (e.g. 

concrete) in the construction process. Low weight would be advantageous during the 

transportation and handling of building elements. 

Figure 4- 10. Simplification of the exterior wall element based on the multifunctionalization of CLT panel 
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The difference between a prefabrication oriented system and an on-site oriented sys-

tem for wood construction with regard to the GHG emission was studied in Paper V. 

As shown in figure 4-11, the on-site construction process tends to generate more waste 

than prefabrication, which means more building components are required for the on-

site oriented system. In the construction process (module A5: Prefabrication and On-

site), the prefabrication system shows slightly smaller emission values than the on-site 

system on the basis of fossil GHG emission. This finding is consistent with the results 

of a previous study (Quale 2012). In the prefabrication system, space heating energy 

for the factory, which was generated by a biomass boiler, accounted for a significant 

share. On the other hand, diesel for operating construction machines was the dominant 

energy source in the on-site system. This difference in the energy source between the 

systems is a notable point. The possible use of biomass fuel seems to be a positive 

feature of the prefabrication of wood-based building elements, since residues from the 

wood process can be utilized directly. Although it would be difficult to draw any de-

finitive conclusions from this result alone, due to the small sample size and the as-

sumptions made, prefabrication seems to be a more efficient construction method 

compared to on-site work. 

Figure 4- 11. Comparison of the prefabrication oriented system (P) and the on-site oriented system (O)
in terms of greenhouse gas emission for module A1-5 based on the reference building 4-A. A1-3: Product
stage, A4 G to G: Transport of building components from product factory to prefabrication factory, A4 G
to S: Transport of building components from prefabrication factory to construction site, A5 Prefabrica-
tion: Prefabrication work in the factory, A5 On-site: Construction work on the site, A5 Waste: Waste
management process(Adapted from Paper V)
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4.2.4 Reused/Recycled material use 

Traditionally, valuable construction materials from buildings that had been disman-

tled were reused in new construction (Kimura et al. 1999). The reason for this was 

simply that the availability of resources was limited and the value of building materi-

als was much higher than now. For instance, harvesting a large tree from a forest with 

hand tools was definitely heavy labour, so that harvested wood had to be utilized as 

fully as possible. On the other hand, nowadays, functional materials are available at 

reasonable price. Therefore new, rather than reused or recycled, materials are normally 

selected for the construction, unless there is a significant difference in function or cost. 

The use of more reused/recycled material in construction now, however, could give 

environmental and economic savings, at least in the short-term. In particular, the po-

tential environmental benefits have widely been investigated. For instance, recovered 

wood used as a secondary material could give several direct effects such as saving 

natural resources, reducing production energy and construction waste, and delaying  

carbon emission (Sathre and Gustavsson 2006, Thomark 2000 and 2006, Nakajima 

and Futaki 2001, Hiramatsu et al. 2002, Peuportier 2001, Obata et al. 2006, Dodoo et 

al. 2012). Recovered wood is normally dried sufficiently to ensure that its moisture 

content is in equilibrium with the surroundings which, in principle, can lead to im-

proved dimensional stability and strength (Miyazaki et al. 2003). For example, it has 

been demonstrated that the compression strength of recovered wood is generally high-

er than that of virgin wood (Hirashima et al. 2004, Yamasaki et al. 2005). Moreover, 

the Young’s modulus of recovered wood is, in many cases, higher than that of virgin 

wood although bending and shear strength seem to vary depending upon wood species 

(Ooka et al. 2011, Hirashima et al. 2005, Chini and Acquaye 2001). 

Although, for instance, in most cases post-use wood is either chipped into particles 

or incinerated for energy generation in the EU at the moment (Leek 2010), there is 

deemed to be good potential to enhance the reuse/recycling of post-use wood in rela-

tively large dimensioned products. For instance, if structural strength and adequate 

dimensions are secured in recovered wood from the deconstruction of buildings, an 

application through reprocessing into smaller dimension, such as batten or stud may 

be assumed at a reasonable price. Some special wood species or large dimension tim-

ber may have a high resale value if they can be carefully removed from a building by 

hand. There are certainly barriers to the use of reused/recycled material in construction 

due to economic and market factors, industry-wide reluctance, lack of information and 

a long habit amongst customers to use new material (Horvath 2004). In addition, the 

recycling of preservative-treated wood depends on several factors (USDA 2010). 
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Figure 4-12. Life cycle energy balance of the reference building 3 with the six frame materials and three
alternative combinations (Module B6 includes only space heating energy use) (Adapted from Paper IV) 

Some preservatives used in the past may, for instance, include severely toxic sub-

stances that affect human health. Thus, preservatives should be carefully distinguished 

and need to be treated properly when reusing/recycling such treated wood. In spite of 

these obstacles, however, the application of secondary products should be increased as 

reuse/recycle becomes universal. Clear classification of the recovered materials in 

terms of dimension and quality linking with proper applications could be a good start-

ing point maximising their additional values. In addition, it may be a good approach to 

create a building code, which regulates, for instance, the proportion of reused/recycled 

material to be used in a building. 

4.2.5 Efficient building operation 

Although the operational energy demand of a building mainly relates to the thermal 

performance of building envelopes, the building service systems used and the occu-

pants’ behaviour (Santin 2013, Martani et al. 2012),  this study has focused on how 

material selection affects the operational energy of a building from both physical and 

psychological aspects. A typical example would be how thermal mass affects space 

heating/cooling energy demands. Figure 4-12 shows the life cycle primary energy 

balance of the reference building 3 (table 3-1) with the six structural frame materials 

and three alternative frame material combinations (table 3-2). Both renewable and 

non-renewable primary energy (PER and PENR, respectively) consumptions and ben-
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Figure 4-13. Percentage relative differences in the assessment results of the reference building 3 caused
by the different sheathing materials (Reference is a gypsum board. Module B6 includes only space heat-
ing energy use) (Adapted from Paper IV) 

efits are described according to the life cycle stages studied.  As discussed in paper IV, 

the heavy-weight structures (RC, Aircrete and Brick) showed slightly lower space 

heating energy demands than the light-weight structures (LWT, CLT and steel). In 

addition, CLT shows a slightly lower demand than even the lighter structures - LWT 

and Steel. This can be understood as the energy saving benefit due to the thermal mass 

effect of the structural frame materials. The energy savings benefit of the heavy-

weight structures in relation to the case of the highest space heating demand (steel 

frame) is 1.1-2.0% (fig. 4-12). This thermal mass effect can also be observed even in 

the structural frame combinations (1-3) shown in fig. 4-12 in which the RC elements 

are partly combined with the wooden (LWT and CLT) structures (table 3-2, Paper IV). 

Even though the life cycle primary energy consumption becomes worse when the RC 

elements are combined with LWT, in comparison to the original LWT, space heating 

energy demand decreased slightly as the amount of RC increased. These results are 

consistent with previous studies (Ståhl 2009, Dodoo et al. 2012, Jokisalo and 

Kurnitski 2005), which found space heating energy savings due to thermal mass to be 

around 0.7-2.0% for Nordic buildings. 

Figure 4-13 shows the effect of material selection for the interior claddings (sheath-

ing) on the primary energy balance of reference building 3 (table 3-1), according to 

the life cycle stages (Paper IV). In general, the influence on space heating (module 
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B6) is not particularly noticeable from the perspective of thermal mass. This would 

mainly be because of the thickness of each material, since the effect is related to the 

heat capacity of the materials and their relative volumes. The results shown before 

indicate that the thermal mass effect seems to be minor in space heating energy sav-

ings; however, effective thermal mass design can be found in traditional buildings. For 

instance, it was said that the inside of the pit dwellings was quite warm and normally 

there was no need to light a fire in the fireplace (Hasegawa 1987, Nomura and Utaga-

wa 2004). As mentioned in section 2.5, the traditional Finnish log cabin was heated by 

a stove and the smoke released into the cabin. The cabin would be heated for only a 

couple of hours per day and would be a very energy and resource efficient heating 

method compared to modern stoves (Huttunen 2012). It is obviously not realistic to 

directly incorporate this type of heating system into a modern building due to current 

building regulations and living style, however, there may be some useful ideas to be 

gained from this traditional solution. For instance, the stove, typically made of stone, 

was relatively large in comparison to the room size (figure 2-2, 4-14); therefore, it 

could store a large amount of heat even after a couple of hours firing. In addition, the 

cabin consisted of large cross-section logs, which would provide good thermal insula-

tion as well as thermal mass. In short, it could be thought that the whole structure of 

the cabin afforded significant thermal mass. This measure might be developed to make 

up for any inadequacy in the thermal performance of the building envelope and space 

heating system, which might tend to cause uneven heat distribution in a room. As may 

be learned from these traditional building systems as well as the study conducted in 

Paper IV, the amount of thermal mass compared to the volume of space would be an 

interesting topic for further study. A reasonable balance between thermal insulation 

Figure 4-14. Heating a smoke cabin with a large stove. (Salio 2011)
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and thermal mass of a building may give a new approach to efficient building opera-

tion. Thermal mass is important especially in light-weight structures, like wood con-

struction. In this sense, massive timber structures (e.g. CLT and log) seem to have 

potential for further development. 

The interaction between space heating/cooling energy demand and building materi-

als should be discussed from other aspects as well. For instance, the indoor surfaces of 

exposed massive wood, like CLT, provide moisture buffering effects that can passive-

ly mediate the indoor climate resulting in a reduction in space heating energy con-

sumption (Hameury and Lundström 2004, Orosa and Oliveira 2009, Osanyintola and 

Simonson 2006). For instance, Osanyintola and Simonson (2006) noted that the interi-

or use of hygroscopic materials with well-controlled HVAC systems might reduce 

heating and cooling energy demands by up to 5% and 30%, respectively. In addition, 

although CLT exhibits a lower thermal mass effect than heavy-weight structures, as 

mentioned above, in general, people feel “warm” with massive wooden interior sur-

faces thanks to its haptic and visual impressions (Höppe 2002, Masuda 1999). With 

these wood effects, the occupant may feel warmer than the actual room temperature 

and thus the setting of the indoor temperature may be lower, resulting in operational 

energy and cost savings. 

Moreover, it was noted that wooden interior spaces could reduce the fatigue and 

stress of occupants more than vinyl and concrete interior surfaces (Saito et al. 2009, 

Kitta et al. 1992). These kinds of psychological effects that wooden interior surfaces 

have may change the meaning of the building operation. For instance, the concept of 

therapeutic architecture, that can heal occupants, may be designed for. If a building 

can promote the occupant’s health, medical expenses may reduce and an attachment to 

the building may be formed. These new aspects would be particularly promising top-

ics for the further development of wood products. 

4.2.6 Maintenance 

The maintenance of a building includes cleaning, painting, component re-

pair/replacement and large-scale refurbishment. These activities vary depending on 

several factors such as the properties of a material, its location in a building, building 

location, detailing and occupant’s behaviour. For instance, carpet flooring may last 

about 10 years under normal use, whilst stone flooring may last for more than 100 

years even under heavy use. Although maintenance is a complex issue, it should be an 

important aspect for sustainable construction, directly relating to the physical service 
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life of a building. Traditionally, buildings were continuously maintained and renovat-

ed due to the reasons discussed in section 4.2.4. For instance, Japanese traditional 

wood construction was periodically maintained according to the material’s durability 

and location/function. Typically the repair of the timber frame occurred every 100-200 

years, whilst the replacement of surface components, such as roofing and cladding, 

every 25-30 years. In addition, the buildings were constructed in such a way as to ease 

the maintenance (e.g. easy disassembly systems with all-timber connections, the pos-

sibility of partial replacement and repair). By incorporating these measures, buildings 

could have centuries’ long lives (Uchida 2009, Kimura et al. 1999). 

Figure 4-15 shows an overview of the influence of surface and inner component mate-

rial selection on the life cycle energy balance of reference building 3 (table 3-1, Paper 

IV) in the same way as figure 4-12. On the whole, the differences between the alterna-

tives are minor compared to the structural components (fig. 4-12), but differences can 

be seen at some points in the maintenance stage (module B2+4). As shown in figure 4-

16, the primary energy consumption in the maintenance of flooring materials varies 

between the alternatives (Paper IV). Since the floor is the part of the building that 

wears quickly in daily use, maintenance is an important aspect. For instance, PVC 

flooring sheet requires higher primary energy in module B2+4 compared to the refer-

Figure 4-15. Life cycle energy balance of the reference building 3 with the alternative materials in the
surface and inner components (Module B6 includes only space heating energy use) (Adapted from Paper
IV) 
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ence case (wood plank flooring) due to its higher maintenance demand. Although it 

consumes less energy in the production stage, this option ends up with a higher life 

cycle energy balance than the reference (fig. 4-15). This result is just about the energy 

balance, but the same issues can be considered in a different way. 

Figure 4-16. Percentage relative differences in the assessment results of the reference building 3 caused
by the different flooring materials (Reference is wood planking. Module B6 includes only space heating
energy use) (Adapted from Paper IV) 

Figure 4-17. Percentage relative differences in the assessment results of the reference building 2 in the
production stage caused by the different flooring materials (reference is wood planking) (Adapted from
Paper III) 
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Figure 4-17 shows the effect of flooring material selection in reference building 2 

(table 3-1) on several indicators: renewable/non-renewable resource use (RU-R/RU-

NR), renewable/non-renewable embodied energy (EE-R/EE-NR), GHG emissions in 

the material production stage, material cost, energy content and carbon storage. As can 

be seen form the figure, PVC flooring sheet is a cheaper option than wood plank floor-

ing at the production stage, but it will cost even more afterward due to the mainte-

nance activities. On the other hand, although the initial cost of stone flooring is about 

50% more than wood plank flooring, it requires less energy for maintenance, which 

would result in lower maintenance costs as well. Exterior and interior claddings are 

also important building parts to be properly maintained. Since they are exposed to 

heavy use conditions and weather in daily life, physical deterioration will be faster 

than other building parts. In addition, such building surfaces directly relate to the visu-

al quality of a building. Maintenance of the claddings thus has multiple roles (e.g. to 

keep functionality, visual impression) on building conditions. As mentioned before, 

the influence of maintenance activities may be negligible in the life cycle energy of a 

building, but it should be considered from several aspects because of its significance 

in sustainable construction. 

The life span of wood products can be as long as centuries under ideal conditions, as 

has been demonstrated throughout history. However, wood can also deteriorate easily 

if exposed to conditions that favour the development of wood-degrading organisms 

(USDA 2010). Therefore, wood tends to have the reputation of being a maintenance 

intensive material. The major organisms that attack wood are fungi and insects. Seri-

ous decay caused by fungi strongly correlate with the moisture content of wood. 

Therefore, in the first place, it is fundamental to keep wood dry (e.g. moisture content 

of 20% or less). In that sense, it is important to: 1) select a suitable wood product 

(species) for the chosen location in a building, and 2) ensure proper detailing to keep 

wood dry and promote drying when it gets wet. Chemical preservation (e.g. preserva-

tives) and modified products (e.g. thermally modified wood, densified wood) should 

also be considered according to the conditions and concept of a building. Combination 

with non-wood products is, of course, a basic approach. On top of the proper design of 

a building, the occupant’s awareness is important for the maintenance. Maintaining 

wood products in a building may be thought of as being similar to growing a flower or 

plant. Wood products are natural materials so that their expression will change in ac-

cordance with level and way of maintenance. If an occupant can find joy in mainte-

nance activities, like cultivating plants, affection in the building may be born. That 

will definitely extend the life span of the building. Appropriate design leading to ideas 
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about how to live with a building should be considered in order to stimulate this ten-

dency in an occupant. 

4.2.7 Long-lasting 

A primary factor in sustainable construction is the design and building of long life 

structures. Due to limitations imposed by the building technology prevailing at the 

time, traditional buildings had simple configurations and were composed of homoge-

neous structural members.  However, such simplicity was also the result of long im-

provement (Murakami 2008). In addition, the service life of a building mainly related 

to physical factors (e.g. aging, deterioration), which could be mitigated by proper 

maintenance, as discussed in the previous section. In the context of traditional vernac-

ular buildings, there might be no conscious sense of the end of a building’s life cycle. 

In the modern age, building service life is subject to several factors, not only physical 

factors but also functional, technical, economic, legal and social obsolescence (König 

2010). Therefore, it is not easy to attain long life in buildings even if that is the origi-

nal intention. 

Physical obsolescence is mainly caused by the initial quality of a building and poor 

maintenance. Good quality requires initial investment, which is not normally prefera-

ble for clients. The maintenance issue can be tackled relatively easily since the prob-

lem is normally clear and controllable. Functional and technical obsolescence could, 

in principle, also be accommodated by designing adaptability and renewability of the 

building’s program and building service systems. For these points, a regular inspection 

strategy would be important. Economic value loss is the most common reason for 

demolition (König 2010), which stimulates scrap and build activities. This aspect also 

relates to legal obsolescence. Naturally, it is necessary to update buildings in accord-

ance with new building regulations. However, it is normally difficult to meet that re-

quirement in a building that has already lost economic value. It is also quite natural 

that during its life cycle, the style of a building falls out of vogue. Long life cannot be 

expected if a building’s atmosphere conflicts with an epoch. At present, it is a chal-

lenge to realize long-lasting buildings due to these complex factors. History, however, 

at least teaches us that a building with essential functionality and beauty possibly has 

timeless value. Such buildings could be loved by people beyond logic and time, and 

become a permanent fixture. This kind of building can give rise to movements like 

Docomomo (1988), whose main missions are to conserve the architectural heritage of 

the modern movement and to foster interest in heritage over economic value. Of 
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course not every building can achieve this level of quality, but at least a building 

should be designed and built based on such sustainable consciousness. 

In that sense, wood may have an advantage over other common construction materi-

als because it may hold charm as it ages. As a wood surface changes its visual expres-

sion over time – as it darkens with age, for example – people may find this pleasing. 

As discussed previously, wood also has several other properties (e.g. haptic, olfactory, 

warmth, antibacterial, etc.), which differs according to the species. These diverse 

characteristics of wood could be a key to producing a building that is loved. In general 

wood construction physically ages faster than other construction systems, like con-

crete and steel. However, wood buildings can have an even longer service life than the 

others with proper periodical maintenance and repair, as has been historically demon-

strated. The forest can grow in parallel with the maintenance period, so that tradition-

ally a semi-permanent resource circulation and building service life could be realized 

in wood construction (Uchida 2009).  

Building reuse, in general, creates less environmental impact than new construction 

in the case of the same building size and functionality (e.g. operational energy perfor-

mance). For instance, a previous study (NTHP 2012) noted that the environmental 

savings from building reuse could be from 4 to 46% over new construction, depending 

on the building type, location and assumed level of energy performance. In addition, 

the study also found that new building with 30% more energy efficiency takes from 10 

to 80 years to overtake average-performing existing building in terms of life cycle 

energy. The authors concluded that even the reuse of an average level building con-

sistently offers immediate reduction in environmental impact compared to the new 

construction of a more energy efficient building. In addition, Liu and Han (2009) 

found that the carbon stock in living trees and wood products was about 10% less in 

the case of a 50 year product life span compared to a 100 year life span, as the stock in 

the product pool becomes lower when the service life is shorter. 

4.2.8 Efficient disassembly 

As shown in figure 4-12, heavy-weight structures (reinforced concrete (RC), Air-

crete and Brick) seem to require higher energy than the light-weight structures (light 

weight timber (LWT), cross laminated timber (CLT) and steel) in the end of life stage 

of a building (Paper IV). This is the same trend as discussed in section 4.2.3. In that 

sense, although wood construction has an advantage, optimization of the disassembly 

process contributes to a further reduction in the environmental and economic impacts 
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of the stage and enhances the reuse/recycling potential of post-use construction mate-

rials. As previously discussed, traditional vernacular buildings were simply composed 

of a single or a few materials so that it was easy to disassemble the building with little 

damage to the materials, a large proportion of which could be then be reused. As is 

well known, Japanese traditional wood construction was basically built with only all-

timber joints (Nishioka 1988, Uchida 2009), therefore, it was easy to disassemble a 

building component-by-component. In contrast, in the modern age, the configuration 

of a building became complex and industrial products were often developed as com-

posites with several different materials in order to meet the functional requirements 

(Kimura et al. 1999). For this reason, the disassembly of a building became difficult 

and the degree of material recycling dropped, then as a result, the amount of waste 

increased. Thus design for disassembly is very important and should be included in the 

initial building design phase (Crowther 2003, Guy 2003, Thormark 2001). Efficient 

disassembly based on proper design would maximise the potential for the re-

use/recycling of post-use materials, as demonstrated in traditional building practice. 

Disassembly design has been widely studied and has been suggested by several re-

searchers (Nordby 2009, Crowther 2005, Guy and Ciarimboli 2008, Thormark 2001). 

Common guidelines include the use of mechanical joints rather than gluing to increase 

the removability of components, and to simplify the configuration of a building, re-

ducing the number of materials used. Moreover, documenting the inventory of materi-

als used in a building is fundamental. Considering the jointing method would naturally 

be effective in a construction system consisting of a number of connections, like a 

light weight timber frame system (e.g. post and beam structure, timber framed panel 

structure). The simplification of the building configuration could be developed in a 

massive timber system (e.g. CLT panel structure, log structure). As discussed in sec-

tion 4.2.3, it would be an ideal case for disassembly as well if, for instance, the exteri-

or wall of a building could be composed solely of a CLT layer. This would possibly be 

a unique development for massive timber construction. 

In order to stimulate the disassembly design of wood construction in practice, re-

gional recycling chains of post-use wood would need to be established in the construc-

tion material market. Several related factors, such as an extension of the re-

used/recycled materials application as discussed in section 4.2.4, rationalization of 

their price compared to the virgin materials and a trade system for post-use wood be-

tween the building owner, demolition companies and product manufactures, should be 

developed.   
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4.2.9 Reuse/Recycle 

The amount of construction and demolition waste (C&DW) in the European Union 

(EU), for instance, accounts for about one third of the total waste (by weight) generat-

ed by economic activities (Eurostat 2015). The amount of C&DW has recently been 

increasing in parallel with active construction activities, and its harmful impacts on the 

environment have been widely discussed. Following this trend, increasing the recy-

cling ratio of C&DW is one of the main issues facing society nowadays (Toji and 

Fischer 2011). As noted by Höglmeier et al (2013), for instance, there seems to be 

significant potential for the stock of wood products in existing buildings to be cascad-

ed.

In many cases, post-use wood products are reused or recycled as a fuel or secondary 

products. Thanks to its inherent properties (e.g. carbon storage, energy content), the 

reuse of post-use wood products may give significant environmental benefits. Reusing 

post-use wood as a secondary product simply extends the carbon storage period in the 

product. Burning post-use wood as a fuel contributes not only to energy recovery but 

also to a reduction in net GHG emission, through the substitution of fossil fuel use. As 

can be seen in figure 4-12 and 4-15, the energy benefits (module D) becomes relative-

ly high in the case of wood products used due to the reasons discussed above. Here it 

was assumed that 90% of post-use wood is recycled as a fuel. EPS insulation, which 

was also assumed to be reused as a fuel, shows higher energy benefits than in the case 

of wood-based insulation (cellulose fibre). However, since EPS is a fossil-based mate-

rial, cellulose fibre would still be a preferable option if both energy and GHG aspects 

are taken into account. 

Basically the entire tree can be utilised either as product or as fuel and this is an ad-

vantage of wood compared to other building materials. Therefore, co-products and 

process waste generated in the construction process of wooden building are also useful 

resources. The recycling of wood should be important because such biomaterials are 

considered to be a key player in the material economy of a sustainable society. Hoog-

wijk et al. (2003) has noted that the demand for biomaterials and biomass fuel is ex-

pected to increase significantly during the coming 50 years. Although forest resources 

are renewable, they are finite as well. Therefore, it is significant to use the available 

wood resources efficiently, and in such context, cascading utilization, which is defined 

as the sequential use of resource for different purpose (Haberl and Geissler 2000), 

should be taken into consideration further in the future. As Börjesson and Gustavsson 

(2000) studied, there would be good balance in the application of post-use wood, be-
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tween burning as a fuel and reusing/recycling as secondary product, on the life cycle 

energy and GHG balance of buildings. 

A cascade chain could be more conceivable when large dimension products (e.g. 

CLT panel, glulam) were used. The large products can be made into smaller products 

by cutting them up. The small products (e.g. 2x4 sawn timbers) could also be cascaded 

by, for instance, gluing them together into a glue-laminated product. In any event, 

wood products can finally be incinerated with energy recovery, so it would be advan-

tageous to utilize wood as many times as possible as a product beforehand. Such cas-

cading wood may possibly create new business opportunities, stimulating the wood 

product industry.  

4.2.10 Holistic approach for building material selection 

As discussed, material selection for sustainable construction is a complex issue. 

Wood especially is a more diverse material than other common building materials 

such as concrete and steel. Factors associated with wood (e.g. moisture content, 

strength, dimension, carbon storage, energy content, visual and haptic quality, fra-

grance) vary from piece-to-piece and from time-to-time. Thus, it would be important 

to utilize wood according to the purpose and its features on a case-by-case basis. Since 

there is no perfect material in every sense, all materials need to be fairly handled. The 

idea “the right material in the right place” developed in history should be recalled. 

Nevertheless, in many cases cost has priority over the other aspects. In reality, for 

now it would be very difficult to consider, for instance, the environmental impacts on 

equal terms as the material cost when selecting materials. Thus, it would be significant 

to develop a system that could connect economic aspects to the other aspects and ena-

ble several factors to equally considered in the decision making process. For example, 

if there is a discount system in proportion to the environmental impacts of products in 

the market, there are more choices than ever before. The CO2-Performanceladder 

(Termeer and Vastbinder 2012), which is a procurement tool to encourage companies 

to be aware of their CO2 emissions, is a good example that brings a notional discount 

on the tender price in proportion to the CO2 performance of their product or service. 

This is an instrument developed for sustainable procurement. A new tax system on 

building materials, like a carbon tax (CIE 2011), may also be one measure. As dis-

cussed in section 4.2.8, a post-use material purchasing method wouldbe effective in 

promoting recycling system, as it has worked nicely in, for instance, the car industry.  
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5. Conclusions

Traditional vernacular architectures were based upon a deep understanding of the 

surroundings and the features of locally sourced building materials. This wisdom was 

translated into a rational building composition and appropriate material usage, and 

supported the attainment of adequate living conditions and a proper building life cycle, 

without any advanced technologies. Recently, a reduction in the environmental impact 

of a building during its life cycle has been intensively discussed. Material selection 

especially has a significant role to play in sustainable construction since a building is a 

complex system consisting of many different components. In such a context, wood 

products have lately attracted considerable attention as promising construction materi-

als due to their unique environmental properties. In many cases, simply the use of 

wood is often regarded as a sustainable building solution and in general this would be 

correct. However, little work has been conducted on how wood in construction can be 

further developed from a life cycle perspective for the sustainability of buildings. In 

order to tackle this question, this study referred to the traditional building solutions in 

conjunction with the core results of the appended papers. 

This thesis basically dealt with two topics; a discussion of methodological issues for 

the assessment of wood products and wood construction, and a comprehensive discus-

sion about wood in sustainable construction over the building life cycle. Firstly, meth-

odological issues were studied based on the current normative standards and assess-

ment data. The results indicated the significance of the number of appropriate product 

data and a clear statement of the assessment basis for a fair and comparative assess-

ment. It has been highlighted that, since wood has more diverse environmental charac-

teristics and production process than other common building materials such as con-

crete and steel, an appropriate description of these features in product data as well as 

the building assessment result is important. 
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Secondly, wood in construction was discussed based on the results of the comparative 

studies regarding the relationship between the material selection and the sustainability 

of a building (mainly the environmental aspects), with reference to traditional building 

solutions. The discussion was arranged according to ten principles in terms of appro-

priate building material selection over the building life cycle.  It was found that there 

are both strengths and weaknesses in the use of wood depending on the life cycle stag-

es. In this sense, the importance of diverse perspectives to building materials has been 

highlighted. In particular it was found that although a massive timber structure, like a 

CLT framed building, has certain weaknesses (e.g. high embodied energy) it would 

have potential for contributions to the environment in a different manner. A reduction 

(e.g. of resource use, energy consumption and GHG emissions) has thus far been a 

principle to mitigate environmental problems. However, wood products may have the 

possibility to contribute to the environment more positively with more use, by opti-

mising the weaknesses (environmental impacts) and maximising the strengths (envi-

ronmental benefits). For instance, as discussed in chapter 4.2.3, the multifunctionaliza-

tion of a building component that was practiced in traditional buildings could be a 

possible means.  In that case, the building composition can be simplified dramatically 

and the life cycle energy balance of a building will significantly change. The energy 

consumption in the production, construction, maintenance and EoL stages may be 

decreased and the energy benefits from the reuse/recycling of building materials may 

be increased. If this measure can be applied to a zero-energy building (zero net opera-

tional energy consumption), a net plus life cycle energy building can be even imagined. 

In addition, the more wood is used, the more the forest may be activated, the carbon 

storage pool may be increased, the substitution of fossil based fuel and products may 

be stimulated and so forth. This would be a paradigm shift from the current approach 

to the environmental problems. The environmental impacts are simply determined by 

the impact of an activity (unit impact) and the number of people who do it. In a situa-

tion of population growth, an idea of efficiency would not be enough. Not only opti-

mizing the unit impact but also turning the situation (population growth) into a posi-

tive way for humans and the environment would be required. In that sense, wood 

seems to have significant potential. It would be important to consider a specific ap-

proach and use for wood in construction.  

To achieve this goal, there is the need to learn about the characteristics of wood 

more deeply. Several further research topics could be found through this study. For 

instance, the psychological effects of wood (via its appearance, haptic feeling, fra-

grance, etc.) would be an important topic, since it may influence not only building 

operation systems but also a human’s wellbeing in a building. Further studies should 



52

also examine, from various aspects, the interaction between the materials and other 

factors, such as the building type, scale, geometry, location, climate condition, etc. 

Moreover, the effects of different material combinations would be a relevant topic for 

future study so as to develop “the right material in the right place” concept. The as-

sessment of traditional vernacular buildings as such would also be an interesting topic. 

This study is subject to the limitation of the number of case studies including certain 

types of material, sustainability indicators and scenarios. Therefore, repeated case 

studies would be significant to generalize the information and develop a more com-

prehensive understanding of wood in sustainable construction in comparison with 

other materials, from a human oriented perspective. 
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