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Abstract 
This thesis is focused on the development of dielectric rod waveguide (DRW) components 

at sub-THz frequencies. DRWs proved themselves as low loss transmission lines at sub-
millimeter wave and THz frequencies; they can be well matched with rectangular metal 
waveguides, and also used as antennas. In addition, the DRW allows integration of various 
components using standard microfabrication techniques, e.g. the bolometric power sensor can 
be integrated in the center of the DRW and measure the power travelling in the DRW, and a 
phase shifter based on a high impedance surface (HIS) can be manufactured on the surface of 
the DRW and can change the phase of the propagating wave inside the DRW. 

In the first part of this thesis the narrow band and wide band DRW antennas were designed, 
manufactured and tested. The DRW antennas are lightweight, compact and easy to 
manufacture. The narrow band DRW antenna proved to operate in the range of 220 – 325 GHz. 
The wideband DRW antenna showed a constant performance over the band of 75 – 1100 GHz 
according to numerical simulations and over the band of 75 – 325 GHz experimentally. The 
radiation patterns of the antenna were measured in co- and cross-polarization. The co-
polarization radiation patterns are nearly independent of frequency. The 3 dB beamwidth is 50º 
- 60º, and the 10 dB beamwidth is about 95º. The return loss of the antenna is better than 15 dB. 

In the second part of this thesis the bolometric power sensor integrated into DRW was 
designed, manufactured and tested at frequencies 75 – 1010 GHz. The power sensor consists of 
a metallic antenna -like structure in the center of the DRW in E-plane suspended on a 
membrane over an airgap to improve the thermal insulation. The power sensor showed good 
matching with the rectangular metal waveguides and constant responsivity over the wide band 
of frequencies, as well as a linear responsivity up to 500 mW applied power. 

In the third part of this thesis the microelectromechanical system (MEMS) tunable HIS was 
developed for integration on to the surface of a DRW using suspended carbon nanotube 
(SWCNT) film as a movable element of the HIS. The implementation of a SWCNT network as 
a material for movable suspended film allows to significantly simplify the fabrication process  
of the HIS due to a simple technique of the SWCNT film deposition by dry transfer, and additio- 
nally it allows to reduce the actuation voltage of the HIS due to the low Young's modulus of the 
SWCNT network. The unique deposition technique of the SWCNT film allows to design a HIS 
phase shifter directly on the surface of the DRW. The suspended SWCNT film structure sho- 
wed the tunability of the capacitance of 100% at 0 – 10 V applied bias voltage. Such properties 
allow to create a SWCNT MEMS HIS with a phase shift of 260° at 0 – 7 V bias voltage. 
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millimeter waves, MEMS, SWCNT, HIS 
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1. Introduction 

1.1 Background 

The terahertz wave region is often defined as the frequency range between 
0.3 – 3 THz of the electromagnetic spectrum [1, 2]. This part of the electro-
magnetic spectrum is also called as the submillimeter wave region. The milli-
meter wave region, on the other hand, is defined as a wave region correspond-
ing to the wavelengths from 10 mm to 1 mm, which is in frequency range from 
30 – 300 GHz. THz and mm-wave frequency systems are finding interest in 
high capacity communication systems [3], radars [4], imaging systems [5], 
material spectroscopy [6], medical diagnostics [7], biological studies [7, 8], 
radioastronomy [9] and other applications. This thesis work deals with the 
frequency range from 0.1 – 1 THz, which may be called as the sub-THz fre-
quency range.  

The terahertz wave radiation lies in the boundary region between lightwaves 
and microwaves. Both the radio-frequency technologies from one side of the 
spectrum and the optical technology from the other side are immature at the 
terahertz wave region [1]. 

1.1.1 Dielectric rod waveguides and antennas 

A basic building block for all the radiowave systems is a waveguide and all 
the following devices are depending on the type of the waveguide. The most 
common transmission line in mm-wave technique is a hollow metal wave-
guide. With a growing frequency metal waveguides and other types of trans-
mission lines possess high losses due to conduction loss in metal elements. 
Currently metal waveguides are available up to 1 THz, however their losses 
above 100 GHz are more than considerable.  

A dielectric rod waveguide (DRW) is a rather novel type of waveguide which 
is especially advantageous in the sub-THz region due to smaller losses com-
pared to any other waveguides [10, 11]. DRW can be made of a dielectric mate-
rial with a dielectric permittivity higher than the permittivity of air, e.g. silicon, 
GaAs, or sapphire. In DRW the losses are determined only by dielectric losses, 
which are determined by a loss tangent, . For the non-doped high resistive 
semiconductors the loss tangent can be in the order of 10-4. As a result, com-
pared to standard rectangular metal waveguides, the DRW has lower losses, 
wider tolerance, and lower cost. 



 

16 

1.1.2 Microelectromechanical systems in mm-wave technology 

Microelectromechanical systems (MEMS) have been developed in the last 
decades along the advances in microfabrication techniques and they have 
opened a new opportunity for various devices and sensors, such as accel-
erometers, temperature sensors, gas chromatographs and others. In the field 
of radio engineering, MEMS technology has allowed to create reconfigurable 
transmission lines, inductors, varactors, resonators and switches [12, 13]. In 
addition, carbon based materials, such as graphene and single-walled carbon 
nanotubes (SWCNT) attracted a great interest and offered a new opportunity 
for MEMS development due to unique mechanical and electrical properties of 
SWCNTs [14 - 16].  

1.2 Objectives and scope of the thesis 

The objective of this thesis work has been developing wideband DRW com-
ponents at sub-THz frequencies, such as antennas, power sensors and phase 
shifters. The development of wide band DRW antennas [II, III] paves the way 
to integration of novel semiconductor THz sources directly on the DRW, which 
in combination with the DRW phase shifters [VI] and power sensors [IV] will 
result in complete THz system that can be used for diagnostics, spectroscopy 
or in other applications. The DRW THz technology will allow fabricating all the 
devices on the same substrate or waveguide, which will simplify the fabrication 
process, and could have advantage to other systems possessing lower losses.  

The remaining of the thesis is organized in following manner: 
Chapter 2 is devoted to the DRW antennas, numerical simulation, determin-

ing the optimal DRW antenna dimensions, and measurements of the anten-
nas. 

Chapter 3 is devoted to the DRW power sensor, numerical validation of the 
bolometer operation, demonstrating the operation of the power sensor and 
analyzing the results.  

Chapter 4 is devoted to the SWCNT MEMS fabrication, extracting of the 
SWCNT film parameters, modeling the film deflection at applied bias voltage, 
designing the DRW HIS with a movable SWCNT membrane and estimating 
the phase shift of the resulting structure. 

Chapter 5 gives summaries of publications, and Chapter 6 presents the con-
clusions and future work.  

1.3 Scientific contribution 

The scientific contribution of this thesis work can be explained with the fol-
lowing seven points: 

1. Experimental verification of operation of DRW antenna at 220 – 325 GHz 
range. [I] 

2. A method of matching a single DRW antenna with different rectangular 
metal waveguides was proposed and verified using numerical simula-
tions. [II] 
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3. A manufacturing and measuring of a wide band DRW antenna for the 
frequency range of 75 – 325 GHz, the cross polarization levels of a DRW 
antenna were measured, the independence of radiation patterns on fre-
quency was proven. [III] 

4. A novel type of a DRW power sensor was experimentally demonstrated. 
[IV] 

5. A novel fabrication method of the SWCNT suspended membrane was 
proposed and experimentally realized, the resulting structure is analyzed 
and allowed to extract parameters of the SWCNT film and model the film 
deflection. [V] 

6. The high tunability of SWCNT MEMS varactor of 100% was achieved at 0 
- 10 V bias voltage. [V] 

7. The design of SWCNT MEMS HIS was proposed allowing to fabricate the 
HIS directly on the surface of the DRW and to achieve a 260° phase shift 
at 7 V bias voltage. [VI] 
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2. Dielectric rod waveguides and anten-
nas 

DRWs support propagating modes, and an infinite DRW with a constant 
cross section does not radiate [10, 17]. However, discontinuities in the DRW 
cause the propagating wave to radiate, hence the DRWs can be used as anten-
nas [18]. The DRW antennas can be separated into two main groups by the 
type of radiation: end-fire antennas and leaky-wave antennas.  

The leaky-wave DRW antennas have periodic discontinuities, which cause 
energy to leak from the antenna [19]. The angle of radiation from these anten-
nas depends on frequency and they do not radiate to the boresight direction. 
The end-fire DRW antenna, on the other hand, radiates to the boresight direc-
tion and its radiation pattern is almost independent on frequency [20]. This 
thesis considers DRW end-fire antennas using rectangular metal waveguides 
for excitation [I - III].  

2.1 Propagating modes in DRW 

Two main types of DRW are used: with circular cross-section and with rec-
tangular cross-section. The mode propagating in the DRW with a circular 
cross-section is  mode [17]. The solution for the  mode propagation 
in circular waveguides can be found analytically in terms of the Bessel func-
tions, so circular DRWs are well studied. However, due to the problems and 
inconvenience of implementation of circular DRWs in, e.g., integrated circuits, 
this thesis is concentrating on the DRW with a rectangular cross section.  

Modes in the rectangular DRW can not be calculated analytically, however 
there are approximate methods, such as Marcatili’s [21] or Goell’s [22] meth-
ods which allow to calculate the optimum cross-section of the rectangular 
DRW for the given material at the given frequency band. 

Two sets of modes exist in a rectangular DRW:  and  [10, 17]. These 
modes are hybrid modes, in which indices  or  denote that the electric field 
is mainly polarized in these directions. Indices  and  denote the number of 
exterema of the field components in  and  directions, respectively. The de-
sired mode in a rectangular DRW is a hybrid  mode (see Fig. 2.1). 

According to Marcatili’s approximation,  is the dominant electric field 
component of the  mode, and the other components are , , and  
while  and  are negligible. The  and  field components of the  
mode are cosinusoidally distributed inside the DRW and are decaying expo-
nentially outside. The schematic field distribution for the  or  components 
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is shown in Fig. 2.1. The Marcatili’s method considers only 5 regions for the 
calculation of the field distribution and propagation constant shown in Fig. 2.1. 
The shadowed regions are less essential for the waveguide properties and 
fields in these regions are not taken into account.  
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Figure 2.1. Schematic field distribution of Ey or  components of the propagating mode  in 
the DRW. 

The  field component can be expressed as follows for the each of 5 regions 
(Fig. 2.1): 
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where 51M  are unknown amplitude coefficients, xk  and yk  are the propaga-

tion constants in region 1 (refractive index 1n ) in the horizontal and vertical 

directions, respectively, 3xk  and 2yk  are the decay factors in the outer regions, 

and 1  and 2  are additional phase constants. 

Marcatili’s method allows to evaluate approximately the propagation con-
stant for modes in a DRW with a given cross section and dielectric constant in 
a given frequency range. It is then possible to estimate the optimal cross sec-
tion of the DRW for the single mode propagation regime in the given frequen-
cy range. The optimal cross-sections for a single  mode propagation in Si or 
GaAs DRWs are: 1.0 mm × 0.5 mm for 75 – 110 GHz range matched with WR-
10 waveguide, 0.60 mm × 0.30 mm for 110 – 150 GHz range matched with 
WR-06 waveguide, and 0.30 mm × 0.15 mm for 220 – 325 GHz range 
matched with WR-03 waveguide [10, 11, 23]. 
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2.2 Matching DRW with metal waveguides 

The DRWs and DRW antennas are usually studied by exciting and matching 
the DRW with a rectangular metal waveguide [10, 20, 11] due to a wide availa-
bility of sources and devices based on rectangular metal waveguides, such as 
vector network analyzers. However the important advantage of the DRW is the 
possibility of integrating semiconductor devices into it. Hence DRWs will allow 
to develop future mm-wave and THz sources incorporated with DRW anten-
nas [24, 25]. 

Previously DRWs and DRW antennas made of low permittivity materials, 
such as Teflon (εr = 2.1) or polyethylene (εr = 2.25), were studied [20]. Typical-
ly these DRWs have the same cross section as the rectangular metal wave-
guide, and thus additionally require structures such as a launching horn to 
decrease the losses in the transition. An example of such a launching horn is 
shown in Fig. 2.2 [20]. Launching horns may cause inconvenience of using 
such DRWs, and they increase the size and weight of the system.  

 

 

Figure 2.2. DRW antenna made of low permittivity material matched with a metal waveguide 
using a launching horn [20]. 

Using high permittivity materials, such as Si (εr = 11.68), sapphire (εr = 8.9 – 
11.1), or GaAs (εr = 10.88) allows to match such a DRW with metal waveguides 
directly without using launching horns or other additional structures, which 
has been shown experimentally and by means or numerical simulations [10, 
26-27]. In that case the cross section of DRW was smaller than the cross sec-
tion of the metal rectangular waveguide for the same frequency band. The 
DRW of the smaller cross-section is inserted into the metal waveguide with a 
bigger cross section and the end of the DRW is tapered to reduce the insertion 
loss. The fundamental mode  of the metal waveguide excites the  mode 
in the high-permittivity DRW [10], providing good matching and transmis-
sion. An example of a DRW antenna with a cross-section of 0.30 mm × 0.15 
mm matched with WR-03 metal waveguide with cross-section of 0.43 mm × 
0.86 mm is shown in Fig. 2.3. 
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Figure 2.3. High permittivity DRW antenna matched with WR-03 waveguide.  

Increasing the length of tapering allows to improve the matching of the DRW 
and metal waveguide. It was shown, e.g., for Si DRW of a cross section of 1.0 
mm × 0.5 mm at 75 – 110 GHz that the reflection is reduced significantly as 
the tapering length increases up to 6 mm; above 6 mm the S11 is better than -
20 dB [11]. These dimensions can be scaled for other DRWs with different 
cross-sections at different frequency ranges.  

The single mode DRW antennas with different cross sections for each fre-
quency range were studied, and they showed good performance: a DRW an-
tenna with a cross-section of 1.0 mm × 0.5 mm for the 75 – 110 GHz range 
matched with the WR-10 waveguide, with a cross-section of 0.60 mm × 0.30 
mm for the 110 – 150 GHz range matched with the WR-06 waveguide, and 
with a cross section of 0.30 mm × 0.15 mm for the 220 – 325 GHz range 
matched with the WR-03 waveguide [11]. One can note that the cross section 
of the antenna becomes smaller with increasing frequency, which results in 
fragility of the antenna and therefore in difficulties in manufacturing and op-
eration. Another disadvantage of such an approach is the necessity to produce 
different rod antennas for every frequency range. 

This thesis shows the possibility of using one DRW antenna over a wide fre-
quency range. The antenna can be matched with different metal waveguides as 
it is schematically shown in Fig. 2.4. It is not necessary for the antenna to be 
fully inserted into the metal waveguide. It is enough if the tip of the antenna is 
inserted into a metal waveguide with a smaller size.  

The cross-section of the antenna is 1.0 mm × 0.5 mm. Based on the observa-
tions stated above the length of the matching tapering is chosen to be 8 mm. 
Three different cases of matching the antenna with the WR-10, WR-05 and 
WR-03 waveguides are combined in Fig. 2.4.  

 

 

Figure 2.4. Geometry of the DRW antenna with alternative feed waveguides. 
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Figure 2.5. E field distribution in the transition from a WR-03 waveguide to a wideband DRW 
antenna. 

The DRW antenna was simulated using Ansoft high frequency structural 
simulator (HFSS) software. The simulated electrical field distribution in the 
transition from metal WR-03 waveguide to a DRW antenna is shown in Fig. 
2.5 at 300 GHz. The wave propagates from the metal waveguide to DRW and 
does not radiate further into the open space. Thus it shows that the DRW an-
tenna can be matched with metal waveguides of different sizes. 

The length of the insertion of the antenna into a metal waveguide can vary in 
the experiment due to the small sizes of the DRW antenna and metal wave-
guide and also due to mechanical backlashes of the experimental setup. There-
fore the tolerance of the insertion length was studied. The comparison of S11 
for antenna with different insertion length into the WR-03 waveguide is shown 
in Fig. 2.6. One can see that the matching improves as the antenna is further 
inserted into a waveguide. An improvement is noticeable until the insertion 
length of 1.5 mm for the WR-03 band, and for the lengths of 1.5 – 2.5 mm it 
does not change noticeably; S11 is better than -25 dB.  

S11 of the DRW antenna with the same geometry and the cross section of 0.3 
mm × 0.15 mm designed for matching with the WR-03 waveguide is shown in 
Fig 2.6 for comparison. One can see that S11 of the antenna with the cross sec-
tion of 1.0 mm × 0.5 mm is not worse than that of the antenna with the cross 
section of 0.3 mm × 0.15 mm, hence there are no drawbacks of using the an-
tenna with a bigger cross section in terms of matching. 
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Figure 2.6. S11 of the wideband DWR antenna at different insertion length into WR-03 wave-
guide and S11 of a single mode DRW antenna fully inserted into WR-03 waveguide. 
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The widths of WR-2, WR-1.5 and WR-1 waveguides are smaller than that of 
the DRW antenna (0.5 mm); hence the DRW antenna can not be inserted into 
those waveguides. The transition that was used to simulate the matching of the 
DRW antenna with those waveguides is shown in Fig. 2.7. The size of the 
waveguide for impedance matching of the antenna must be the same in the E 
plane and the tapering of the transition is done only in the H plane. The angle 
of tapering is chosen to be 10°. 
 

 

Figure 2.7. The transition between WR-1.5 waveguide and DRW antenna. 

The simulated S11 parameters are presented in Fig. 2.8 for waveguides from 
75 to 1100 GHz. It is shown that the matching is good for the whole frequency 
range and S11 is better than -20 dB. For the WR-2, WR-1.5 and WR-1 bands the 
simulation is carried out with the transition shown in Fig. 2.7. One can see in 
Fig. 2.8 that the transitions provide a good matching of the DRW antenna with 
the metal waveguides. 
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Figure 2.8. Simulated S11 of the DRW antenna matched with different waveguides. 

2.3 Antenna tapering and radiation pattern 

The radiation tapering of the antenna defines its radiation pattern. The ta-
pering can have either a linear or non-linear profile. Non-linear profile DRW 
antennas were studied by several authors [28, 29] and an improvement of gain 
of the antennas was achieved. However, there are two main problems with 
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non-linear tapers: first, it is very difficult to produce non-linear tapers for high 
permittivity mm-wave DRW antennas made of Si, GaAs, or sapphire, and sec-
ond, the non-linear profile compromises the wideband performance of the 
antenna. Hence, the antennas described in this thesis have linear profile taper-
ing. 

Linear tapers of the DRW antenna can be of three types: E-plane (YZ in Fig. 
2.4), H-plane (XZ in Fig. 2.4) or pyramidal tapers. It was shown in [20] that 
the E-plane tapers and pyramidal tapers provide the same performance of the 
antenna in terms of beamwidth and gain, while the H-plane taper performs 
significantly worse. Since it is technologically difficult to produce pyramidal 
tapers, both ends of the antenna are chosen to be E-plane tapered.  

The radiation from an E-plane taper of a single mode DRW antenna with the 
cross-section of 0.30 mm × 0.15 mm at 300 GHz is illustrated in Fig. 2.9. In 
that case the wave propagates in the single mode  regime and radiates into 
free space as the cross section becomes narrower at the taper.  

 

 

Figure 2.9. Simulated E field distribution in the vicinity of the tapering of the single mode DRW 
antenna. 

In contrast, the proposed wideband DRW antenna has a bigger cross-
section; but that does not affect the radiation or matching, which will be illus-
trated further. The radiation from the wideband DRW antenna at 300 GHz is 
illustrated in Fig. 2.10. The wave propagates in a single mode regime in the 
transition from the metal waveguide to the DRW antenna (Fig. 2.5) and to the 
beginning of the radiation tapering (Fig. 2.10). The comparison between two 
antennas matched with the WR-03 waveguide is shown in Fig. 2.11.  

 

 

Figure 2.10. Simulated E field distribution in the vicinity of the tapering of the wideband DRW 
antenna. 
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Figure 2.11. Comparison of the dimensions of the wideband antenna and the single mode 
DRW antenna. 1) – cross section at Z = 0 mm, 2) – cross section at Z = 10.5 mm. Dimen-
sions are in millimeters. 

Fig. 2.12 shows the comparison of simulated field distributions inside the 
DRW for the case of the antenna under study with the maximum cross section 
of 1.0 mm × 0.5 mm and for the optimized antenna with a cross section of 0.3 
mm × 0.15 mm (Fig. 2.11) which is designed to operate in the single mode re-
gime. It can be seen, that at Z = 0 (maximum cross section) the electric field 
distribution is wider for the antenna under study, however it has only one 
maximum in both X and Y directions. Moving along the tapering the field be-
comes more concentrated in the rod, and at Z = 10.5 mm, when the Y dimen-
sion of the two antennas coincides, the field distribution in the Y direction is 
almost the same for both antennas. The X dimension of the antenna under 
study is constant, thus the shape of the field distribution in the X direction 
does not change along the rod and it is wider than the field distribution for the 
antenna with a smaller cross section.  

Furthermore, the comparison of radiation patterns for the two antennas is 
shown in Fig. 2.13, and it can be seen that the radiation patterns are identical. 
It shows that one antenna with a larger cross section can be used in a wide 
range of frequencies and it operates the same way as the antennas designed 
and optimized for the single mode regime at a given frequency. 

 

 

Figure 2.12. Comparison of the simulated electric field distributions inside of DRW antennas at 
300 GHz: 1 – field distribution for the wideband antenna at Z = 0 mm (1.0 mm × 0.5 mm); 2 
– field distribution for the wideband antenna at Z = 10.5 mm (0.3 mm × 0.5 mm); 3 – field 
distribution for the single mode antenna at Z = 10.5 mm (0.3 mm × 0.15 mm). See Fig. 
2.11. 
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Figure 2.13. Comparison of the simulated radiation patterns of two antennas: wideband DRW 
antenna and single mode DRW antenna with the cross section of 0.30 mm × 0.15 mm in E 
and H planes at 300 GHz. See Fig. 2.11. 

The effect of radiation tapering length on the radiation pattern of the DRW 
antenna is shown in Fig. 2.14. The simulations are performed for the antenna 
with a matching tapering length of 8 mm. The radiation patterns are presented 
for radiation tapering lengths of 10, 12, 15 and 20 mm at 300 GHz in the E 
plane. It is shown, that as the radiation tapering length increases, the radiation 
pattern becomes narrower and the side lobes become smaller, which agrees 
with previous observations for the single mode DRW antennas [20, 30]. How-
ever, it is difficult to manufacture the antennas with long tapering since the tip 
becomes fragile. Therefore, 15 mm seems to be the optimal tapering length. 
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Figure 2.14. Radiation patterns of the antennas with different radiation tapering lengths at 300 
GHz. 

The desirable polarization of the antenna is along the Y direction (Fig. 2.11). 
Hence the magnitude of the cross polarized component of the field must be 
studied. Simulated cross-polarization (X component) radiation patterns are 
shown in Fig. 2.15 for frequencies 85 GHz (top) and 280 GHz (bottom). The 
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amplitudes are normalized to maximum amplitudes in co-polarization at 
boresight direction.  
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Figure 2.15. Simulated cross-polarization radiation patterns of the antenna at 85 GHz (top) and 
280 GHz (bottom). Dashed lines indicate cross-sections at φ = 45˚. The slight asymmetry is 
due to numerical errors caused by asymmetric mesh in HFSS simulation. 

2.4 Antenna fabrication and measurement setup 

The tapered DRW antenna was manufactured using a dicing saw with a dia-
mond blade of 20 μm thickness. It was cut from a double side polished high-
resistivity GaAs wafer of 500 μm thickness. The dimensions of the antenna in 
the H-plane are defined by the wafer thickness and the geometry of the anten-
na in the E-plane is defined by the cuts of the saw. Finally the antenna was cut 
with a cross section of 1.0 mm × 0.5 mm with tapers of 8 mm and 15 mm long. 
A photograph and a microscope close-up image of the fabricated antenna are 
shown in Fig. 2.16. 
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After cutting, the antenna was mounted in a Styrofoam holder and this hold-
er was attached to a positioning stage, which allows the accurate insertion of 
the DRW antenna into the metal waveguide. 

 

 

Figure 2.16. A microscope image (top) and a photograph (bottom) of the fabricated DRW an-
tenna. 

S-parameters of the antenna were measured with Agilent E8361C PNA using 
WR-10, WR-06, WR-05 and WR-03 waveguide extensions. In case of the WR-
10 waveguide the antenna was inserted to the waveguide at full length of the 
matching taper, i.e. 8 mm (see Fig. 2.4), and in case of the WR-06, WR-05, 
and WR-03 waveguides the antenna was inserted up to the maximum possible 
length, 6.0 mm, 5.5 mm, and 3.5 mm, respectively. 

The radiation patterns at different frequencies were measured using an 
ABmm vector network analyzer and a planar scanner. The measurements were 
done in the far field since for the end-fire DRW antenna the far-field distance 
is small. According to the generally used criterion, the far-field distance equals 
to , where  is the largest dimension of the antenna, and  is a 
wavelength. The largest dimension of the antenna is 15 mm in Z direction (Fig. 
2.4). However, for the end-fire antenna the dimensions of the cross-section are 
more important, and the higher is the frequency, the smaller part of the tip 
behaves as a radiator. As it was shown in [31], the phase center of the DRW 
antenna moves closer to the tip as the frequency increases, which results in a 
smaller effective aperture size of the DRW antenna. Results shown in Fig. 2.10 
agree well with the above mentioned observation: the effective size of the an-
tenna in the Z direction is of the order of 3 – 4 mm at 300 GHz, and the cross 
section is less than 0.3 mm × 0.5 mm (Fig. 2.11). This results in the far-field 
distance by any criterion of only 30 mm or less. The measurements were per-
formed at a distance of 100 mm.  

The experimental setup for measuring the radiation patterns is shown in Fig. 
2.17. The antenna was glued to a holder and attached to a 6-degrees-of-
freedom positioning stage. The ABmm vector network analyzer was used in 3 
frequency bands: 75 – 110 GHz with the WR-10 waveguide, 110 – 170 GHz 
with the WR-06 waveguide and 220 – 325 GHz with the WR-03 waveguide. 
The antenna was aligned and inserted into a metal waveguide using a position-
ing stage. An open ended waveguide (OEWG) probe was used to sample the far 
field. 
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Figure 2.17. Experimental setup for measuring the radiation patterns. 

2.5 Measurements and results 

The measurement results together with the simulated results for the antenna 
matching are shown in Fig. 2.18. One can see that the measurement data cor-
respond well with simulated results at 75 – 110 GHz (WR-10), 110 – 170 GHz 
(WR-06), and 140 – 220 GHz (WR-05). However, at 220 – 325 GHz (WR-03) 
the measured reflection is higher than the simulated one. It can be explained 
by the fact, that the tip of the antenna is not perfect.  

One can see in Fig. 2.16 that the tip of the antenna is broken and the cracks 
on the surface have dimensions of the order of 100 μm. At lower frequencies 
when the cracks are much smaller than the wavelength, the unideality does not 
affect the results. At 300 GHz the wavelength is 1 mm in free space and inside 
the DRW it is of the order of 300 μm, so the cracks of the antenna are of the 
order of quarter of a wavelength. As it can be seen in Fig. 2.18, it results in 
smaller return loss than that expected from the simulation results. At frequen-
cies higher than 300 GHz the cracks affect results much more and it is not 
possible to use this antenna. Therefore, due to current manufacturing equip-
ment in our laboratory the operational frequency of the antenna is limited to 
325 GHz (WR-03 waveguide band). However, using a modern and more ad-
vanced dicing saw it will be possible to fabricate an antenna with smoother 
surface and increase the highest operational frequency. 
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Figure 2.18. Measured and simulated S11 parameter of the antenna. 
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The measurement results for the vertical (E-plane) and horizontal (H-plane) 
cuts of the radiation patterns are shown in Figs. 2.19 and 2.20 together with 
the simulation data. The measurement data were transformed from planar 
coordinates to spherical coordinates and a probe correction for the open ended 
waveguide was added. Instead of using an open-ended waveguide (OEWG) 
probe correction presented in [32], we used a simulated (HFSS) radiation pat-
tern for the probes at different mm-wave bands. The simulated radiation pat-
terns of the OEWG probes differ from the calculated radiation patterns of [32] 
by a factor of 1.5 for the E plane radiation pattern and factor of 0.75 for the H 
plane radiation pattern. The measurement results in Figs. 2.19 and 2.20 corre-
spond well with the simulation results, however at frequency 280 GHz the dis-
crepancy between the measured and simulated data is more considerable. It 
can be explained by the quality of the tip of the antenna and asymmetry. The 
beamwidths of the antenna at different frequencies are presented together in 
Table 2.1. 

The gain of the antenna was measured using a three antenna method [30] at 
95 GHz, 120 GHz, and 160 GHz. The measured gain of the antenna is 9.8 dB, 
10.8 dB, and 10.3 dB, respectively. The uncertainty of the measurements was 
about 0.3 dB and it is caused by uncertainty of the gain of the reference anten-
nas and uncertainty of the distance between the antennas. For comparison it is 
possible to estimate the gain of the antenna knowing the very low losses of the 
DRW and using the 3 dB beamwidth values given in Table 2.1. According to 
Table 2.1 the gain is about 10 dB over the whole frequency range measured. 
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Figure 2.19. Measured and simulated E plane radiation patterns of a wideband antenna at 
different frequencies. 

 



 

31 

-60 -45 -30 -15 0 15 30 45 60
-20

-15

-10

-5

0

R
el

at
iv

e 
po

w
er

, d
B

Azimuth, deg

 85 GHz simulated
 85 GHz measured
 120 GHz simulated
 120 GHz measured
 280 GHz measured
 280 GHz simulated

 

Figure 2.20. Measured and simulated H plane radiation patterns of a wideband antenna at 
different frequencies. 

Table 2.1.  Antenna beamwidths at different frequencies (in degrees). 

Frequency, 
GHz  

E plane H plane 

3 dB 10 dB 3 dB 10 dB 

meas. sim. meas. sim. meas. sim. meas. sim. 

85 51 52 96 98 52 52 96 94 

95 57 56 92 95 59 56 96 94 

120 51 48 95 94 60 60 91 92 

140 51 48 94 83 58 54 92 92 

160 56 50 98 94 52 54 84 89 

280 58 54 94 94 49 48 91 88 

310 57 58 92 98 58 66 94 94 

 
The radiation patterns of the antenna in cross-polarization were measured 

using the same setup shown in Fig. 2.17 but turning the OEWG probe 90 de-
grees using a waveguide twist, so the X component of the field was measured. 
The measurement results of cross-polarization are presented in Fig. 2.21 to-
gether with the simulated results. Since the radiation patterns of the antenna 
consist of 4 lobes, the results are presented as cross-sections at  = 45° (See 
Fig. 2.15) in contrast with results of co-polarization measurement, which are 
presented in the E-plane at  = 90° and in the H-plane at  = 0°. 
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Figure 2.21. Simulated and measured cross-polarization radiation patterns of the antenna. 
Presented are cross-sections at  = 45˚ (see Fig. 2.15). 
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3. DRW power sensor 

The power sensor is intended to measure the power of incident radiation or 
power of the travelling wave in a waveguide. There are numerous power sen-
sors available for microwave, mm-wave, THz and infrared range [33], usually 
they are integrated with an antenna [34 - 36], integrated into a metal wave-
guide [37], or using a fin-line [38]. However, the DRW requires a new ap-
proach to integrate the power sensor into it. In this chapter the DRW power 
sensor is studied and tested as a terminating load in the metal waveguide [IV], 
which is common in power meter applications. As a result, the power sensor 
can measure the power of mm-waves travelling in the DRW. Subsequently, it 
can be used in devices based on DRW such as controllable DRW antennas 
[III], as well as antenna arrays [39].  

3.1 Bolometer power sensors 

Bolometer power sensors play a significant role in power measurements. A 
direct detection bolometer power sensor detects the heating caused by absorp-
tion of RF, millimeter wave, or infrared power [33, 40]. The absorbing element 
is usually realized in a form of thin membrane to reduce the thermal capacity 
and thermal conduction [40 - 42]. The heating in direct detection bolometers 
causes the change in the resistance of the absorbing element, which is next 
measured. However, the temperature change can be also measured using 
thermocouples [43], electron heating effect in n-Si [37], or temperature-
dependent kinetic inductance [44]. 

The most sensitive bolometer sensors ate the superconducting bolometer 
sensors, which utilize the steep resistance-temperature dependence of super-
conductors near the critical temperature [45]. Superconducting bolometer 
sensors are used in the most sensitive mm-wave and THz measurements, 
mostly in radio astronomy [45] and mm-wave imaging [35] or security appli-
cations [46]. For the spectroscopy and radio astronomy applications the heter-
odyne mixer detectors are needed, which additionally require THz local oscil-
lator source [47, 48].  

While superconductor bolometers and bolometer mixers offer outstanding 
sensitivity and widely used in radioastronomy, the resulting detection systems 
are complicated due to the need of cryogenic cooling of THz local oscillators, 
hence the is still a need for a cheap room-temperature bolometers. This chap-
ter presents a thin metallic room temperature bolometer structure integrated 
into DRW [IV]. 
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3.2 Design of a DRW power sensor 

The power sensor consists of a metallic structure which absorbs mm-wave 
power and is therefore heated, causing a change of its resistivity. The structure 
is integrated into a center of a DRW parallel to the E plane so that it absorbs 
the energy of the wave propagating in the DRW. The schematic view of the 
metallic structure integrated into the DRW is presented in Fig. 3.1. The shape 
of the bolometer comes from the need to produce a gradually absorbing struc-
ture that has dimensions comparable to a wavelength. The shape of the metal-
lic bolometer structure was studied using Ansoft HFSS software. Fig. 3.2 
shows the volume loss density in the transition between a WR-10 metal wave-
guide and the DRW with the integrated bolometer structure. The simulations 
results show that the bolometer provides the best matching if the square re-
sistance of the metal film is about 20 Ω/sq. The bolometer is a long stripe of 
metal and it consists of about 100 squares resulting in an overall resistance of 
about 2 kΩ.  

 

 

Figure 3.1. A design of the power sensor. 

 

 

Figure 3.2. Volume loss density in the transition between the metal waveguide and DRW with 
the integrated bolometer structure at 90 GHz. 

The metallic structure consists of the bolometer and a reference resistor (Fig. 
3.1). The bolometer absorbs the power and it is thermo-insulated from the 
DRW, while the reference resistor is a small stripe of metal which is in thermal 
contact with the DRW and is considered not to absorb the incident millimeter 
wave power. Thereby, the reference resistor can detect the heating caused by 
the changes in the environment not related to the absorption in the bolometric 
structure, which allows to subtract the errors caused by the instability of the 
environment, e.g. temperature changes. As one can see in Fig. 3.2, the volume 
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loss density is higher around the bolometer structure than that around the 
reference resistor, which indicates that the resistor absorbs a negligible part of 
power compared to the bolometer structure. The presence or absence of the 
reference resistor does not influence to the simulation results. The reference 
resistor is a stripe of metal which consists of the same amount of squares as 
the bolometer structure. The scheme is designed for 4 wire measurements of 
the reference resistor and the bolometer to improve the precision of the meas-
urement. 

The width of the prototype of the power sensor layout is less than 1.2 mm; it 
is integrated into a DRW with the cross section of 0.6 mm × 1.2 mm, which 
allows to insert and match the DRW with the power sensor into a WR-10 
waveguide with the size of 1.27 mm × 2.54 mm. The size of the structure is 
limited only by a lithography resolution; therefore the power sensor can be 
scaled down and integrated into DRWs of different sizes. 

3.3 Thermal insulation of the bolometer 

To achieve higher sensitivity and diminish the influence of a substrate tem-
perature on the bolometer, it must be thermally insulated. The insulation can 
be done by suspending the bolometer on a membrane above an airgap.  

To estimate the efficiency of thermal isolation of a bolometer suspended on a 
membrane, simulations have been performed for two bolometer designs: a 
bolometer suspended on a SiO2 membrane, and a bolometer deposited on a 
polymer film (PTFE). The simulations have been performed in COMSOL Mul-
tiphysics 3.5a. In both simulations it is supposed that mm-wave power of 0.1 
mW is dissipated in the metal element. The temperature distributions for both 
variants are shown in Fig. 3.3 in color scale. The cooling only by thermal con-
ductivity from the metallic bolometer structure to the Si DRW through the 
membrane or the PTFE substrate is taken into account. The maximum tem-
perature increase of the bolometer structure vs. heating time is shown in Fig. 
3.4. One can see in Fig. 3.4 that the maximum overheat of the PTFE film and 
the air-gap-isolated metallic bolometer structure is 0.05 °C and 0.35 °C, re-
spectively. Additionally, the bolometer on a PTFE film is slower. The tempera-
ture is saturated after 0.07 s in the bolometer on a PTFE film, in comparison 
with 0.03 s in the case of the cantilever one. 

 

 

Figure 3.3. Overheat temperature distributions of the bolometers at DC with different thermal 
isolation: a) 50 μm air gap and 1 μm thick SiO2 cantilever (undercut is 50 μm); b) 50 μm 
PTFE layer. 
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Figure 3.4. Transient curves of the temperature in the hottest points of the bolometer on canti-
lever and on PTFE film. 

The optimal values of the gap and lateral undercut for the cantilever sensor 
are found on the base of simulations and show that increasing both parame-
ters improves the sensor functionality. At the same time, technologically ac-
ceptable value for the undercut is about 50 μm and it already provides reason-
able overheat. That is why experimental samples were fabricated with a gap 
and undercut of 50 μm. The airgap will affect the performance of the device 
only if the size of an airgap is comparable to the wavelength, hence the 50 μm 
airgap can be used at frequencies up to approximately 1 THz (300 μm wave-
length). 

3.4 Fabrication 

The fabrication of the power sensor is done using Si dry etch on a high-
resistivity Si substrate. The thermo-insulation of the bolometer structure is 
provided by a SiO2 membrane. The fabrication steps are shown in Fig. 3.5. 
First, the Cr metallic structure of the thickness of 100 nm is deposited and pat-
terned on top of SiO2 layer (a). Next, the structure is covered by a layer of 
Al2O3 (b), (c), which will protect the structure during Si and SiO2 etching. Then 
the SiO2 layer is etched between the metallic structure (d) and after that the Si 
substrate is etched using inductively coupled plasma reactive-ion etching (ICP-
RIE) (e) with the undercut which provides the thermo-insulation. Thereby the 
metallic bolometer structure is suspended in the air by a 50 μm SiO2 mem-
brane. The membrane is fixed to the Si DRW only by one edge. This design 
significantly simplifies the fabrication process of the sensor. 

In Fig. 3.6 scanning electron microscope (SEM) images of the SiO2 cantilever 
cut at AA’ plane (see Fig. 3.1) are shown. The cross section corresponds to the 
schematic in Fig. 3.5 e). After 40 minutes etching in ICP-RIE the gap depth 
and lateral undercut reach 80 μm and 60 μm, respectively. The lighter color 
between gaps shows the long channel along the symmetry axis of the structure. 

Finally, the DRW consist of two halves: the sensor chip with a metallic struc-
ture and a cover chip. After the fabrication they are bonded together using SU-
8 photoresist so that the metallic structure is located in the center of the DRW. 
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Figure 3.5. Fabrication steps of the power sensor. 

 

Figure 3.6. SEM images of 1 μm thick SiO2 cantilever cut at AA’ plane (see Fig. 3.1) with differ-
ent magnifications. a) three arms of metallic structure with etched gaps (lateral undercut is 
60 μm); b) central arm (depth of etching is 82 μm). 

3.5 Measurements and results 

A schematic overview of the experimental setup is shown in Fig. 3.7. Several 
power sources were used to generate power at different frequencies: Gunn 
oscillators were used at 45 – 150 GHz with output power up to 25 mW, back-
ward wave oscillators (BWO) at 640 – 1000 GHz with output power up to 10 
mW and a magnetron at 94 GHz with average output power up to 500 mW. 
The transition to the WR-10 waveguide was used if needed and the power sen-
sor was inserted into an open end of the waveguide. In the case of measure-
ments at 45 GHz the power sensor was inserted into the center of a WR-19 
waveguide. A photograph of the power sensor prototype ready to be inserted 
into a WR-10 waveguide is shown in Fig. 3.8. In the case of Gunn oscillators, 
the power sources were set to generate maximum possible power and the out-
put power was varied by an attenuator. For the frequencies above 150 GHz the 
power source was BWO. Three BWOs were used to generate power at frequen-
cies of 640, 820, and 1010 GHz. The power was varied by changing the cath-
ode current of the BWO. The output power of the source was first measured by 
a Dorado DPM-2A colorimeter power meter. The resistance change of the 
power sensor was measured with an HP 3478A multimeter using a 4 wire 
method. 
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Figure 3.7. Experimental setup scheme. 

 

Figure 3.8. A photograph of the power sensor ready to be inserted into a WR-10 waveguide. 
The sensor is glued and contacts of the sensor are bonded to a printed circuit board. 

The matching of the devices with a WR-10 waveguide was measured at W 
band, shown in Fig. 3.9 together with the simulations results. One can see that 
S11 is less than -17 dB over the whole band. Simulations show also that S12 is 
below -25 dB which means that the bolometer structure absorbs about 98% of 
incident power. 
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Figure 3.9. Measured and simulated S11 parameter for the power sensor at W band. 

Power measurement results are shown in Figs. 3.10 – 3.12. The value plotted 
on the graphs is , where  is the resistance at applied power,  is 
the resistance at . The value of  for the sensor under test is 1.81 kΩ. 
Resistance change measurements are carried out automatically with HP 3478A 
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multimeter. The amount of bias current generated with the HP3478A multi-
meter is  = 1 mA, which gives the bolometer constant DC heating and does not 
affect measurements of mm-wave heating. One can see in Figs. 3.10 – 3.12, 
that the resistance of the bolometer changes linearly on the power. 

Fig. 3.13 shows the dependence of the slope  versus frequency. The 
uncertainty of the values at frequencies lower than 150 GHz is about 1 dB. The 
uncertainty of the BWO measurements at higher frequencies (Fig. 3.11) is 
higher due to uncertainty of the output power of the BWO. The dashed line in 
Fig. 3.13 shows the average slope, which is 0.51 Ω/mW. 

The power sensor was also tested with DC power applied up to 200 mW and 
showed no signs of burnout or degradation, which can be considered as a good 
tolerance to high power. 
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Figure 3.10. Results of measurements for the sensor prototype using Gunn oscillators power 
sources. 
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Figure 3.12. Results of measurements the sensor prototype at 94 GHz using magnetron power 
source. 

Using the magnetron power source at 94 GHz the power sensor was tested at 
high amounts of power up to 500 mW. The output pulse power of the magne-
tron is 2.2 kW. Measurements were carried out in pulse regime with duty cy-
cles from 3∙10-5 to 3∙10-4 corresponding to an average power range from 65 to 
505 mW. Reference power was measured by HP W8486A power meter with 30 
dB attenuation. Results of the measurements are shown in Fig. 3.12. 

According to thermal simulations 0.1 mW power applied directly to the met-
al structure causes approximately 0.28 °C temperature increase, which corre-
sponds to a 0.18 Ω resistance change, which is 1.8 Ω/mW. Measurement re-
sults show 0.51 Ω/mW resistance change. The difference can be explained by 
taking into account that in the thermal simulation the power was evenly dissi-
pated in the structure, however in the power sensor RF heating is not even 
through the whole structure as it can be seen in Fig. 3.2. In addition, in the 
power sensor the actual thermal leakage can be higher than that in the simula-
tion; hence the temperature increase of the structure is smaller than in the 
thermal simulations. Furthermore, due to the surface roughness of the film the 
square resistance at high frequencies can be higher than that on DC. 
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Figure 3.13. The dependence of the slope ΔR/ΔP versus frequency. 
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The noise equivalent power ( ) of the power sensor can be estimated by 
taking into account two main noise sources: phonon noise due to thermal con-
ductance from the bolometer element to the substrate , and the Johnson 
noise due to thermal fluctuations in the bolometer resistive element. 

The phonon  can be expressed as in [33]:  
 

where  is the Boltzmann constant,  is the temperature, and  is the thermal 
conductance from the bolometer element to the substrate. The thermal con-
ductance  can be expressed as in [47]: 

 

where  is found from the DC measurements of , and  is found from 

the temperature coefficient of resistance of Cr, resulting in  = 12 mW/K. 
The Johnson  can be expressed as in [33]:  

 

where  is the voltage responsivity of the power sensor, and it can be ex-
pressed as , where  is the bias current through the bolometer during 

the resistance measurement. At  = 1 mA  = 0.5 V/W. 
Finally, the total  can be expressed as:  

 

which results in  = 11.5 nW/Hz0.5 at  = 1 mA. 
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4. DRW phase shifter based on a recon-
figurable SWCNT HIS 

An important component of all the RF, microwave, mm-wave and THz sys-
tems is a phase shifter, which is especially interesting when implemented in 
phased array antennas.  

Phase shifters can be analog type or discrete type. Discrete type phase shift-
ers are often realized with switches; they are well developed and show reason-
able performance [49-53]. However, implementation of large switching net-
works and circuitry is inconvenient for, e.g., reflectarrays. Another disad-
vantage of the switching networks is the discrete characteristics of the phase 
change since the switching appears between pre-manufactured delay lines. 

On the other hand, analog type phase shifters change the phase in a continu-
ous way, and therefore they are more advantageous for beam steering applica-
tions. However, the common analog type ferroelectric phase shifters possess 
high losses at mm-wave frequencies [54].  

The prospective candidate for an analog type DRW phase shifter is a high 
impedance surface (HIS) which is placed on the side of the DRW and change 
the propagation constant of the wave in the DRW. The HIS is a special case of 
metamaterials, which are considering a wide range of assembly of structural 
elements with unique electromagnetic properties [55]. The HIS can consist of 
electrically small wires, strips, slots, or patches, which determine the surface 
impedance of the HIS and hence the reflection of incident electromagnetic 
wave. Around the resonant frequency of HIS the reflection phase of electro-
magnetic wave is changing from 180° to -180° [56-58]. The resonant frequency 
of a HIS can be actuated by DC voltage using MEMS patches which can move 
up and down and change the gap between patches and the ground plane [58-
60], hence changing the reflection phase at a given frequency. Placing a HIS 
on the side of a DRW will result in change of propagating constant and hence a 
phase shift as shown in [61].  

While the existing MEMS technology allows to create reconfigurable trans-
mission lines [62], variable capacitors [63], and reconfigurable metamaterials 
[60], the resulting structures have a complicated design of movable patches 
and require high bias voltage to actuate the patches. It is possible to overcome 
these problems by implementing a carbon nanotube membrane as a movable 
element in a reconfigurable HIS.  

SWCNTs have outstanding electrical and mechanical properties which make 
them very attractive for future MEMS applications [14, 64]. SWCNTs can be 
implemented in MEMS devices as individual nanotubes [65], as vertically 
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aligned forests [66, 67], for reinforcing suspended composite beams [68, 69], 
or as freestanding films.  

Outstanding plasticity and low Young’s modulus of the SWCNT films give 
certain advantages compared with thin films made of traditional materials, 
such as lower actuating voltages and simpler fabrication process. Recently 
SWCNT films were implemented in various MEMS devices, such as high fre-
quency switches [50, 70], as mechanical resonators [71], and as vibrating gate 
electrodes in the field effect transistors [72]. 

The direct SWCNT deposition technique by dry transfer from the nitrocellu-
lose filter surface [73] reduces the number of fabrication steps and does not 
require any release procedure, hence improving the repeatability of the fabri-
cation process. Additionally it gives an opportunity to cover large areas which 
is essentially important for, e.g., creating large reflector antenna surfaces, sen-
sor matrices or large values of capacitance. And finally, it opens the possibility 
to integrate the SWCNT HIS directly to the surface of a DRW, while in the pre-
vious works the HIS had to be fabricated on a separate chip. This chapter re-
ports research work towards such a DRW phase shifter based on a reconfigu-
rable HIS with a movable SWCNT film [V, VI]. 

4.1 High impedance surfaces 

The HIS can consist of a periodic mesh of patches, grids, wires or slots above 
a ground plane. The resonant frequency of the HIS is determined by dimen-
sions of the structure. The patches and slots are chosen as more advantageous 
structures in terms of the fabrication process, since it is possible to create 
movable membranes above a ground plane. 

 

 

Figure 4.1. Schematic cross-section of a HIS. 

A schematic cross-section of a HIS is shown in Fig. 4.1. The metal strips are 
placed on the dielectric layer with relative permittivity  and thickness . The 
relative permittivity of the medium above the HIS is . The period of the 
strips is  and the width of the slots between the strips is .  

An approximate model to describe such a HIS was developed in [56] for the 
normal plane wave incidence. In case of a mesh of slots the model is valid for 
polarization perpendicular to the slots polarization, and in case of a mesh of 
square patches the calculations are the same for two perpendicular polariza-
tions of normal incidence due to symmetry.  

The impedance of the surface consisting of the mesh of parallel slots placed 
on the dielectric layer is: 

 

where 
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is the mesh parameter,  is the period of the mesh,  is the slot width (see Fig. 
4.1).  and  are the effective wave impedance and the effective wave 
number, respectively: 

 

If the mesh is placed above a ground plane at a distance , then the input 
impedance of the grounded dielectric layer with permittivity  is: 

 

The impedance of the whole structure is calculated as a parallel connection 
of  and : 

 

Finally, the reflection coefficient is: 

 

where  is the wave impedance of the media above the HIS.  

The assumptions of the model are the following:  is smaller than the wave-
length,  and . The modification of the formula for  is pre-
sented in [56]. If the  is smaller than , the higher-order Floquet modes re-
flected by the ground plane must be taken into account, resulting in additional 
coefficient  added to  in (4.2), and therefore,  must be substituted by 

 in (4.1), where  

 

This model allows to estimate the initial dimensions of the structure to 
achieve a resonance at a given frequency. Taking into account the limitations 
of the fabrication process (further discussed in Section 4.3), possible dimen-
sions of the HIS shown in Fig. 4.1 for a resonance frequency around 100 GHz 
are the following:  400 μm,  2 μm,  4 μm with  12 and  12. 

These dimensions can be impractical in some cases, for example for a DRW 
phase shifter it will be advantageous to reduce the period of the slots  to place 
more elements on the surface of the DRW. To address these issues a multi-
layer HIS have been studied in [58, 74].  

 

 

Figure 4.2. A schematic cross section of a two-layer HIS with two grids of the same period. 
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A schematic image of a two-layer HIS according to [74] in shown in Fig. 4.2. 
The structure consists of two layers of periodical mesh of slots, separated with 
dielectric layer of thickness , above the ground plane. The dimensions of two 
meshes of slots and relative permittivity of two dielectric layers are the same 
for simplicity.  

It is possible to describe a two-layer HIS by introducing a parallel plate ca-
pacitance  for a unit sell of HIS created between two meshes of slots: 

 

and the impedance of the two-layer structure can be calculated as a parallel 
connection of impedances of the two grids of slots  and  (4.1), each cal-
culated with corresponding values of  (4.3), impedance of the grounded 
dielectric layer  similar as  in (4.4), but  must be substituted by , 
and impedance of the capacitor  (4.8): 

 

Introducing a second layer of slots allows to decrease the period of the mesh 
, decrease the thickness of the dielectric layer  and decrease the possible 

values of , which will be advantageous during fabrication process. Possible 
dimensions of the HIS shown in Fig. 4.2 for a resonance frequency around 100 
GHz are the following:  ,  3 μm,  1 μm with  
7.5, and  12. 

Finally, the resonant frequency of the HIS according to these calculations 
differs by about 15% from the simulated results. The further discussion of the 
structure using numerical simulations is presented in Section 4.5. 

4.2 Reconfigurable HIS with a SWCNT membrane ground plane 

The reflection phase of HIS can be changed by changing one of the dimen-
sions of the structure. The recently emerged MEMS technology allowed to cre-
ate a tunable HIS with movable patches, i.e. changeable  in Fig. 4.1 or  in 
Fig. 4.2. However this approach resulted in a complicated and expensive de-
sign of MEMS patches, and limitations of the size of the structure due to fabri-
cation process limitations. Another problem of the conventional MEMS varac-
tors is their high actuation voltage (50 V and higher) [63].     

It is possible to overcome these problems by using a stationary mesh of slots 
deposited on a substrate and implementing a SWCNT membrane as a movable 
ground plane. SWCNTs have outstanding electrical and mechanical properties 
which make them very attractive for a MEMS technology implementation. 
While individual SWCNTs possess a high Young’s modulus close to 1 TPa [75], 
the SWCNT networks can have much lower Young’s modulus values from 60 
MPa to 10 GPa [76]. This can be due to the fact that in a SWCNT network indi-
vidual tubes are connected to each other with van der Waals forces, which de-
termines the overall elasticity of the film.  

The proposed fabrication process for a DRW integrated HIS with a SWCNT 
membrane is shown in Fig. 4.3. First, the mesh of Au strips are deposited on a 
high resistivity Si substrate (Fig. 4.3 a)). The period and separation between 
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the Au strips are corresponding to  and  in (4.2). The maximum period D is 
not limited by the fabrication process, but it should be smaller than a wave-
length according to the HIS model. The minimum slot width d is limited by the 
lithography resolution. Common optical lithography process has a resolution 
of 1 μm. It is possible to achieve a smaller resolution, however it requires more 
expensive process equipment, e.g., e-beam lithography. The relative permittiv-
ity of Si substrate is  11.9 and it corresponds to  in (4.3). The thickness 
of the substrate is 500 μm, which allows to cut a DRW of cross-section 1.0 mm 
× 0.5 mm from the substrate.  

Next, the dielectric layer is deposited on top of the first mesh of strips (Fig. 
4.3 b)) using plasma enhanced chemical vapor deposition (PECVD) technique. 
The thickness of the layer corresponds to  in (4.8). The thickness of the layer 
is limited by the fabrication process to a value from several tens of nanometers 
to about 4 μm. The common PECVD materials are: amorphous Si (a-Si), SiO2, 
and Si3N4. The deposition rates of SiO2 and Si3N4 are higher than that of a-Si, 
and the dielectric constant of Si3N4 (  = 7.5) is higher than that of SiO2 (  = 
3.9). Therefore Si3N4 is the optimum dielectric in terms of deposition rate and 
high dielectric constant which results in faster fabrication process and smaller 
thickness of the layer according to the model (4.8). The dielectric constant of 
the Si3N4 layer corresponds to  in (4.3) and (4.8). 

Next the second mesh of Au strips is deposited on top of the Si3N4 layer of 
the same period  and separation  (Fig. 4.3 c)), followed by the deposition of 
the second layer of Si3N4 with the thickness , which corresponds to  in (4.4) 
(Fig. 4.3 d)). 

The next step is fabrication of the support groove structure for the movable 
SWCNT ground plane. The properties of the suspended SWCNT film over the 
groove structure have been studied in [V]. The SWCNT membrane can be sus-
pended between dielectric grooves of width w shown in Fig. 4.3 e) similarly as 
in [V], however the period of grooves doesn’t have to coincide with the metal 
mesh period D. The aspect ratio of /  is limited between approximately 8/1 
and 20/1 to achieve an optimal control voltage of a movable SWCNT mem-
brane, and it will be further discussed in Section 4.4. The grooves are etched 
using reactive-ion etching (RIE). The supporting dielectric width  is limited 
by a ratio /   2/1 due to the difficulties in fabrication structures with a high 
aspect ratio. 

Taking into account all mentioned limitations the dimensions of the HIS for 
a resonance frequency around 100 GHz are the following:  

,  3 μm,  1 μm,  40 μm,  10 μm, with  7.5 and  
11.9. 
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Figure 4.3. Fabrication process of the DRW integrated HIS with a SWCNT membrane. 

Finally the substrate is cut by a dicing saw into the form of DRW with cross 
section of 1.0 mm × 0.5 mm and taperings. The SWCNT film is transferred 
onto the structure by a direct transfer method from the nitrocellulose filter 
[73] (Fig. 4.3 f)). The schematic image of a DRW with the HIS fabricated on 
the side is shown in Fig. 4.3 g).  

The resulting HIS has an uneven ground plane, which will result in a reso-
nance frequency shift, however it can be taken into account in numerical simu-
lations. 

4.3 Fabrication and testing 

The simplified suspended SWCNT membrane structure above the mesh of 
metal contacts have been fabricated and tested to study the properties and 
performance of the SWCNT membrane. The SWCNT MEMS were fabricated 
on a low doped Si substrate (104 Ω·cm) to prevent the short-circuit between 
the SWCNT film and the bottom gold pads. The wafer was covered with a 500 
nm layer of Si3N4 for insulation. The grooves were patterned using a Microtech 
LW 405 laser writer lithography on a 1.4 μm thick photoresist AZ 5214E with 
dimensions  30 μm,  30 μm. After the lithography grooves were etched 
using reactive-ion etching (RIE) with  = 2 μm. After the etching, a 24 nm 
thick Au film was evaporated on the sample covering both the photoresist layer 
on top and the grooves on the bottom. The following lift-off procedure in ace-
tone resulted in dissolving photoresist and releasing the Au film covering top 
parts of the structure, while Au film on the bottom parts of grooves remained 
unaffected. As a result, Au formed a mesh of stripes on the bottom of the 
grooves with the same dimensions as grooves:   for the 



 

48 

MEMS. The SWCNT film was deposited on the top of the structure with direct 
transfer method from the nitrocellulose filter after dry transfer [73].  

Some nanotubes from the SWCNT film can form a short circuit between the 
contacts. To avoid it the grooves are filled with nanocellulose aerogel [77]. The 
nanocellulose aerogel is a soft and flexible porous material. It prevents short 
circuits between the contacts while it allows the deflection of SWCNT film due 
to its flexibility and compression. For other samples the nanocellulose aerogel 
was deposited in the grooves before the deposition of the SWCNT film. After 
that the SWCNT film was deposited over the structure. Various sets of samples 
were fabricated and tested: with a freestanding SWCNT film and with a 
SWCNT film deposited on top of the nanocellulose aerogel. The nanocellulose 
aerogel has porosity of 98% [77], hence its dielectric constant is close to the 
dielectric constant of air and the nanocellulose aerogel changes properties of 
the varactor only mechanically.   

A SEM image of the SWCNT film deposited over the groove is shown in Fig. 
4.4. In order to visualize the profile a thin 20 μm long stripe was ablated 
through the SWCNT film using a focused ion beam (FIB). The sample was tilt-
ed at 55° while the FIB was perpendicular to the sample surface as it is sche-
matically shown in Fig. 4.4. The FIB ablated both the SWCNT film and an Au 
film directly under it, while a tilted SEM image allowed to visualize the air gap 
between the SWCNT and Au films, verifying that the SWCNT film is freestand-
ing. 

 

   

Figure 4.4. Left: SEM image of a suspended SWCNT film after FIB ablation. Right: a schematic 
A – A’ cross-section showing FIB and SEM orientation to the sample. 

The SWCNT MEMS were tested at low frequencies using Agilent B1500A 
semiconductor device analyzer to study the mechanical properties of SWCNT 
film and the electrical actuation of the gap between the SWCNT membrane 
and Au strips. The impedance of the structure was measured between the 
SWCNT membrane and Au strips. The equivalent circuit of the SWCNT MEMS 
is presented in Fig. 4.5 for the low frequency measurements between the two 
contacts of the parallel plate capacitor, and it is different from the high fre-
quency surface impedance model described in Section 4.1. The capacitance  is 
created between the SWCNT film on the top and the Au film on the bottom. 
The non-capacitive leakage of the current between the SWCNT and Au films is 
taken into account by introducing the resistance  parallel to the capacitance 

. The inductance  is taking into account the self-inductance of the SWCNT 
network.  
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Figure 4.5. SWCNT MEMS circuit model. 

Measurements of the device impedance were done over the frequency range 
of 1 kHz – 1 MHz and then the measured imaginary part of impedance (reac-
tance) was fitted with a calculated reactance for the equivalent circuit shown in 
Fig. 4.5. This allows us to extract the values of ,  and  according to the 
equivalent circuit model at each bias voltage. The measured and fitted equiva-
lent circuit reactances of the device are shown in Fig. 4.6 at various bias volt-
ages. 

 

 

Figure 4.6. Measured (solid lines) and calculated (dashed lines) imaginary part of impedance 
for different bias voltages. 

According to the circuit model the value of inductance stayed almost con-
stant ( = 6 μH) independently on the bias voltage, the parallel resistance  is 
changed in the range of 50 Ω – 80 Ω for the samples without nanocellulose 
insulation layer and is about 1.3 kΩ with nanocellulose insulation layer. In the 
case without nanocellulose insulation the resistance  decreased with increas-
ing bias voltage. 

The series resistance does not contribute to the reactance and is not included 
in the circuit model. The value of the series resistance  was of the order of 
500 Ω for the samples without nanocellulose aerogel and determined by the 
resistivity of the SWCNT film (≈200 Ω/□). 

The value of capacitance at zero bias voltage was  = 3 nF for the sample 
without nanocellulose and  = 1.8 nF for the sample with nanocellulose. Since 
the SWCNT films had arbitrary shape and were not covering the whole area of 
the device, the difference in the values of  is due to different areas of the 
SWCNT film covering the device. 
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4.4 SWCNT film deflection model 

To extract the parameters of the SWCNT film from the low frequency imped-
ance measurements, the deflection model of the MEMS must be discussed. 
The cross–section of the structure with a bent SWCNT film is schematically 
shown in Fig. 4.7. The displacement of the SWCNT film due to the bias voltage 
can be calculated by equating electrical attraction force and mechanical strain 
in the SWCNT film. 

 

 

Figure 4.7. Cross section of the bent SWCNT film. 

The bias voltage between the SWCNT film and lower contacts create an at-
traction force: 

 

where  – permittivity of air,  – the area of the plane,  and  – the 
width and the length of the groove respectively,  – bias voltage,  – depth of 
the groove,  – mean distance between the SWCNT film and metal con-
tact as a function of maximum film displacement . 

The curvature of the SWCNT film increases its length and creates a strain 
force in the SWCNTs: 

 

where  – Young’s modulus of the SWCNT film,  – the area of the 
cross-section of the SWCNT film,  – thickness of the SWCNT film,  – 
the length of the bended SWCNT film as a function of . The stiffness of the 
film is considered negligible. One can find the displacement  at given bias 
voltage  and Young’s modulus  by solving equation of  from (4.10) 
and (4.11): 

 

The following assumptions were taken during the calculations:  
1) The profile of the bended SWCNT film is parabolic, which allows to calcu-

late the length  as a function of . 
2) In (4.10) the parallel plate capacitor is considered with the distance be-

tween plates . 
In contrast to the linear approach, the described method is a more accurate 

way to calculate the film displacement and to take into account the nonlinear 
effects in the case of a low density SWCNT film.  
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4.5 Results 

The measured and calculated capacitances of the MEMS varactor vs. bias 
voltage are shown in Fig. 4.8 for two types of the structures: with nanocellu-
lose placed between the SWCNT film and Au pads and without nanocellulose 
aerogel. The measured capacitance values were extracted from the fitted reac-
tance curves according to the equivalent circuit (see Fig. 4.5 and 4.6). The cal-
culated capacitances were fitted to the measurement results as a function of: 

 

where  is the capacitance at zero bias voltage. The following constants were 
taken for calculations in (4.12) and (4.13):  = 30 nm,  = 30 μm,  = 2 μm, 
and  = 3 nF for the sample without nanocellulose and  = 1.8 nF for the 
sample with nanocellulose aerogel sublayer.  
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Figure 4.8. Measured and fitted capacitance change of the SWCNT varactor. 

The fitting of function (4.13) to the measured results as a function of  and 
 allows one to extract the value of Young’s modulus of  = 80 MPa for the 

freestanding SWCNT networks without nanocellulose aerogel and  = 140 
MPa for the sample of SWCNT networks on nanocellulose aerogel. One can see 
in Fig. 4.8 that the measured values fit well to the deflection model described 
with (4.12) and (4.13). The tunability of the capacitance is close to 100%, from 
3 nF to 5.8 nF for the sample without nanocellulose filling and 44% from 1.8 to 
2.6 nF for the sample with nanocellulose filling at 0 .. 10 V bias voltage. This is 
3 times higher tunability than that achieved according to the common linear 
film deflection model because in the linear deflection model the length in-
crease of the film in not taken into account.  

According to the linear deflection model the maximum tunability is 30% 
[78], after which the pull-in voltage is achieved and the MEMS cantilever is 
pulled to the bottom of the groove. The pull-in voltage for the SWCNT MEMS 
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varactor without the nanocellulose aerogel sublayer hasn’t been achieved due 
to decreasing parallel resistance of the device with increasing voltage and short 
circuit protection of the Agilent B1500A semiconductor device analyzer. From 
the calculations the pull-in is expected at about 12 V. For the SWCNT MEMS 
varactor with the nanocellulose aerogel sublayer this sublayer protects the va-
ractor from pull-in. 

The obtained Young’s modulus of the SWCNT film is  = 80 MPa, that is in 
very good agreement with previous measurements [76]. With nanocellulose 
aerogel filling the effective Young’s modulus of the system is higher (  = 140 
MPa) due to the additional stiffness of nanocellulose aerogel. 

The maximum displacement  for the sample with  = 80 MPa is 1.60 μm 
at 10 V bias voltage, hence the gap between the SWCNT film and gold patches 
changes from 2.00 μm to 0.40 μm. For the sample with  = 140 MPa the gap 
is changing from 2.00 μm to 0.94 μm. 

The length of the film  (see Fig. 4.7) is 30.23 μm for the displacement 
 = 1.60 μm, and 30.10 μm for the displacement  = 1.06 μm, which corre-

sponds to 0.8% and 0.3% length increase respectively. Due to a small relative 
length increase neither any hysteresis behavior in the capacitance dependence 
nor any degradation in the varactor performance was noticed. 

Knowing the Young’s modulus of SWCNT film it is possible to calculate the 
film deflection for the HIS described in Section 4.2 with  = 40 μm and  = 3 
μm according to (4.12). In that case CNT film is displaced to the value  = 1.4 
μm at 10 V bias voltage.  

A double layer HIS structure with a movable membrane suspended over the 
grooves shown in Fig. 4.3 was simulated in Ansoft HFSS software. The de-
pendences of the reflection phase of the modeled HIS on frequency are shown 
in Fig. 4.9 for different values of  changing from 3.0 μm to 1.5 μm with steps 
of 0.1 μm. 
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Figure 4.9. Simulated reflection phase from a HIS at different values of  from 3.0 μm to 1.5 
μm. 
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Knowing the Young’s modulus of the SWCNT film and the dimensions of the 
structure it is possible to calculate the reflection phase of the HIS at a given 
frequency vs. bias voltage. The simulated reflection phase from a HIS vs. bias 
voltage at 100 GHz is shown in Fig. 4.10.  
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Figure 4.10. Simulated reflection phase from a HIS vs. bias voltage at 100 GHz. 
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5. Summary of articles 

[I] Dielectric rod waveguide antenna for 220 – 325 GHz 
A dielectric rod waveguide antenna for 220-325 GHz is presented. Simula-

tions for determining antenna optimal geometry are performed. Measurement 
results of the radiation pattern are shown and compared with the simulation 
results at 310 GHz. Matching of the antenna with a metallic waveguide is ex-
perimentally studied. 

[II] Dielectric rod waveguide antenna at 75 – 1100 GHz 
The possibility of using a single dielectric rod waveguide antenna at 75 – 

1100 GHz frequency is presented. The simulations of the antenna showed that 
DRW antenna can be well matched with standard metal waveguides from WR-
10 to WR-03 directly and from WR-2 to WR-1 with transitions. The influence 
of antenna geometry on radiation pattern is studied. The radiation pattern of 
the antenna is independent of frequency. 

[III] Wide band mm and sub-mm wave dielectric rod waveguide 
antenna 

The design of a dielectric rod waveguide (DRW) antenna for frequencies of 
75 – 325 GHz is presented. The optimal broadband antenna geometry is de-
termined using numerical simulations. A single DRW antenna is matched with 
metal waveguides of different sizes for different frequency bands. Measure-
ment results agree very well with the simulation results up to 325 GHz; the 
gain of the antenna stays nearly constant (G ≈ 10 dB) over the whole frequency 
range measured from 75 GHz to 325 GHz (160% relative bandwidth). The up-
per limit is due to our limited manufacturing capability to produce sharp an-
tenna tips. The return loss of the antenna is better than 15 dB. The radiation 
patterns are nearly independent of frequency. The 3 dB beamwidth is 50º - 
60º, and the 10 dB beamwidth is about 95º. This indicates that the aperture 
size of this end-fire antenna decreases as a function of frequency, and this ob-
servation agrees well with the earlier observation that the phase center of a 
DRW antenna moves towards the antenna tip as a function of frequency. Also 
the cross polarization was studied. The cross-polarization level is better than -
15 dB at all frequencies. 

[IV] Millimeter-wave power sensor based on silicon rod wave-
guide 

A novel type of RF power sensor, based on a metallic structure integrated in-
to an mm-wave DRW made of Si is presented. The metallic structure is em-
ployed as a bolometer in the center of DRW. Numerical simulations of tem-
perature distribution are shown. A prototype was tested at frequencies of 45 
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GHz – 1 THz and a power levels from 0.1 to 500 mW. The power sensor 
showed the sensitivity of 0.51 Ω/mW resistance change. 

[V] Carbon nanotube network varactor 
Microelectromechanical system varactors based on a freestanding layer of 

SWCNT films were designed, fabricated and tested. The freestanding SWCNT 
film was employed as a movable upper patch in the parallel plate capacitor of 
the microelectromechanical system. The measurements of the SWCNT varac-
tors show very high tunability, nearly 100%, of the capacitance with a low ac-
tuation voltage of 10 V. The functionality of the varactor is improved by im-
plementing a flexible nanocellulose aerogel filling. 

[VI] Reconfigurable mm-wave phase shifter based on high imped-
ance surface with carbon nanotube membrane MEMS 

A novel phase shifter based on high impedance surface (HIS) with carbon 
nanotube (SWCNT) membrane MEMS is proposed. The SWCNT MEMS HIS is 
integrated into a dielectric rod waveguide (DRW) so that the SWCNT mem-
brane acts as a movable ground plane. A presented novel fabrication method 
of the phase shifter is significantly simpler than those previously used. The 
device performance is verified through numerical simulations that show a the-
oretical phase shift of nearly 360° with a 7 V bias voltage applied. In the exper-
imentally demonstrated a SWCNT membrane varactor the distance of the 
SWCNT membrane and metal patches changed from 2 μm to 0.4 μm with a 10 
volt bias. 
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6. Conclusions and future work 

This thesis studies DRW components at sub-THz frequencies. DRWs provide 
good matching with rectangular metal waveguides and possess low losses. 
DRWs can be as well used as antennas. The possibility of using a DRW anten-
na over the 220 – 325 GHz frequency range is shown both numerically and 
experimentally. The matching and the radiation pattern of the antenna depend 
on tapering lengths. With both tapering lengths of 6 mm, S11 is below -13 dB 
and the -10 dB beamwidth of the antenna is 75°. 

The possibility of using a single DRW antenna over the 75 – 1100 GHz fre-
quency range is shown using numerical simulations. The 8 mm matching taper 
of the antenna provide good matching with WR-10, WR-08, WR-06, and WR-
03 waveguides with S11 better than -20 dB, and it is possible to match the an-
tenna with WR-2, WR-1.5 and WR-1 waveguides using a transition. With the 
transition, S11 is better than -17 dB at all frequencies.  

Single mode and oversized wideband DRW antennas are compared and they 
show similar performance indicating that there are no drawbacks using the 
wideband antenna. The radiation patterns of the wideband DRW antenna are 
studied using numerical simulations at different radiation tapering lengths. It 
is shown that a longer tapering provide narrower radiation pattern. The opti-
mal antenna geometry is chosen for fabrication and measurement of the an-
tenna. The wideband DRW antenna has been measured at 75 – 325 GHz. It 
shows S11 better than -15 dB and constant radiation patterns with 95° -10 dB 
beamwidth and about 10 dB gain over the used frequencies. The results agree 
well with the simulation data.  

The power sensor integrated into DRW has been designed, manufactured 
and tested. The DRW poser sensor provides good matching with rectangular 
metal waveguides, has a linear response over a wide range of frequencies, and 
is capable of measuring high amounts of power. The noise equivalent power of 
the sensor is  = 11.5 nW/Hz0.5 at a bias current  = 1 mA. 

The SWCNT network film has been implemented as a movable membrane in 
a parallel plate capacitor. It allows to simplify the fabrication process and re-
duce the actuation voltage of the MEMS. The measurements of the varactor 
impedance have been performed at low frequencies, which allows to extract 
the values of SWCNT film Young’s modulus and to estimate the displacement 
of the film vs. the bias voltage. The measurement results of film stiffness agree 
with previous observations. In addition it allows to design the mm-wave 
MEMS HIS which is fabricated directly on the surface of the DRW and pro-
vides a phase shift of nearly 360° at low actuation voltage of 7 V.  
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The future work includes creating wideband DRW antennas integrated with 
THz sources, phase shifters and power sensors. Additionally, further investiga-
tion of SWCNT films properties at sub-THz frequencies is needed. Finally, the 
DRW waveguides can be fabricated directly on a substrate with integrated de-
vices to create a fully integrated system without using any metal-based trans-
mission lines.  
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