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Abstract 
Energy systems are evolving and energy companies are required to take action to achieve 
higher levels of energy efficiency. Smart cities have been widely under discussion and smart 
energy systems are considered as the backbone of this approach. District heating and cooling 
(DHC) businesses are argued to be ‘important tools’ for reaching energy targets. The major 
objective of this research is to study the special characteristics of smart energy systems and 
how DHC systems are adapting to them. The most important factors for smart thermal grids 
are intelligence, efficiency, and flexibility in production and consumption, customer 
involvement, integration with other energy systems, and reliability. This study will present 
three case studies to highlight energy efficiency measures on the consumer side of a DHC 
system. The first study concentrates on the benefits of remote measurements and better 
implementation of a district heating (DH) forecasting model when consumer’s hourly 
measurements are utilised. The forecasting model was formed using linear regression, based 
on outdoor temperature data and the social component of the heat consumption. The study 
shows that forecasting models are more accurate for bigger customers and aggregated groups 
of customers and in the best cases a rather simple model predicts heat consumption with good 
accuracy.  
The second case study focuses on the flexibility of the DH network. The demand-side 
management (DSM) potential of district-heated residential buildings was determined by 
cutting heat for one hour during the morning consumption peak. Utilising the results of an 
earlier study, where the thermal behaviour of eight different-aged residential buildings was 
simulated, the object of this research was to figure out the overall DSM potential of the 
buildings. The results showed that the thermal behaviour of the buildings varies and that the 
buildings with the best potential for DSM were the ones built during the years 1940–2002. In 
the larger scale, the momentary heat effect decreased 80 percent due to DSM actions.  
The last case study concentrates on the original idea of the DH system, which is that heat can 
be recycled from sources where it otherwise would be wasted. A new business model is 
presented and critically evaluated, in which heat customers can sell their waste heat back to 
the energy company at a predetermined price. The pricing model is estimated relative to the 
waste heat suppliers as well as to the energy company. The results showed that, in general, it 
is profitable for heat customers to sell their waste heat in situations where the price of 
electricity is low, because then priming the temperature of the waste heat using heat pumps is 
affordable. System-wide, the results showed that emission levels were increased in most of the 
cases due to the priming of the waste heat. Despite the results, this concept is an important 
opening for the energy and heat markets to include more waste heat in an energy system and 
thus decrease primary energy consumption. 
Keywords:  thermal energy systems, smart energy systems, district heating and cooling, 
energy efficiency, consumption forecasting, demand-side management, waste heat utilisation  
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Tiivistelmä 
Energiajärjestelmät kehittyvät ja energiayhtiöiltä vaaditaan toimia energiatehokkuuden 
parantamiseksi. Kaukolämpö- ja kaukojäähdytysjärjestelmiä pidetään tärkeinä osina tehokkaita 
energiajärjestelmiä. Tämän tutkimuksen tavoitteena on tarkastella älykkäiden 
energiajärjestelmien tärkeimpiä tekijöitä sekä sitä, miten kaukolämpö- ja 
kaukojäähdytysjärjestelmät sopeutuvat niihin. Älykkäiden lämpöjärjestelmien tärkeimpiä 
tekijöitä ovat älykkyys, tehokkuus, joustavuus tuotannossa ja kulutuksessa, asiakkaiden 
osallistuvuus, integrointi muiden energiajärjestelmien kanssa ja järjestelmien luotettavuus. 
Tässä työssä esiteltiin kolme tutkimusta, joiden lähtökohtana ovat lämmönkuluttajat. 
Tutkimusten tavoitteena oli lämpöjärjestelmien energiatehokkuuden parantaminen. 
Ensimmäinen tutkimus keskittyi lämpöenergian etämittauksen hyötyihin. Tutkimuksessa 
kehitettiin kaukolämmön kulutuksen ennustusmalli, jossa hyödynnettiin asiakkaalta saatua 
tuntimittausdataa. Ennustusmalli perustui lineaariseen regressioon ja siinä hyödynnettiin 
ulkolämpötilaa ja lämmönkulutuksen sosiaalista komponenttia. Tulokset osoittivat, että 
ennustusmalli on tarkempi suuremmille asiakkaille sekä asiakasryhmille. Lämmönkulutusta on 
mahdollista ennustaa tarkasti melko yksinkertaisella ennustusmallilla. 
Työn toinen osa keskittyi kaukolämpöjärjestelmän joustavuuteen sekä lämmön varastointiin. 
Tässä osassa selvitettiin kaukolämmitettyjen asuntojen kysyntäjoustopotentiaalia silloin, kun 
lämpöenergia katkaistiin yhdeksi tunniksi aamukulutushuipun aikana. Tutkimus perustui 
aiemmin tehdyn selvityksen tuloksiin, jossa simuloitiin kahdeksan eri vuosikymmenenä 
rakennetun kerrostalon lämpökäyttäytymistä lämmönkatkaisun aikana. Tulokset osoittivat, että 
rakennusten lämpökäyttäytyminen vaihtelee suuresti rakennusvuoden mukaan. Paras 
kysyntäjoustopotentiaali oli kerrostaloasunnoissa, jotka on rakennettu vuosien 1940 ja 2002 
välillä. Kaupungin energiajärjestelmätasolla hetkellinen lämpöteho laski joinakin päivinä jopa 
80 prosenttia kysyntäjouston ansiosta. 
Työn kolmannessa osassa lähtökohtana oli, että kaukolämpöjärjestelmässä voidaan hyödyntää 
hukkalämpöä monenlaisista lähteistä. Tässä osassa esiteltiin uusi kaupallinen malli, jossa 
kaukolämpöasiakkaan on mahdollista myydä hukkalämpöä energiayhtiölle ennalta määrättyyn 
hintaan. Järjestelmää kutsutaan avoimeksi kaukolämpö- ja kaukojäähdytysjärjestelmäksi (Open 
DHC). Hinnoittelumallia arvioitiin sekä hukkalämmön toimittajan että energiayhtiön kannalta. 
Tulokset osoittivat, että hukkalämmön myyminen kaukolämpöverkkoon on kannattavaa silloin, 
kun sähkönhinta on alhainen. Tällöin hukkalämmön lämpötilan nostaminen (priimaus) 
lämpöpumppuja käyttäen ei ole asiakkaalle liian kallista. Järjestelmätasolla tulokset osoittivat, 
että lähes kaikissa tapauksissa hukkalämmön vastaanottaminen nosti energiajärjestelmän 
päästötasoa, joka johtui hukkalämmön priimauksesta. Tuloksista huolimatta Open DHC on 
mielenkiintoinen avaus energia- ja lämpömarkkinoille, jonka tavoitteena on tuoda lisää 
hukkalämpöä järjestelmään ja täten vähentää primäärienergian kulutusta.  
Avainsanat lämpöjärjestelmät, älykkäät energiajärjestelmät, kaukolämpö ja kaukojäähdytys, 
energiatehokkuus, kulutuksen ennustus, kysyntäjousto, jätelämmön hyödyntäminen 
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1 Introduction 

1.1 Research theme and background 

Thermal energy, i.e., heating and cooling, accounts for 46 percent of global final energy 

demand (International Energy Agency, 2013). Because of thermal energy’s large share 

of overall energy demand, the future trend in thermal demand will significantly affect 

global energy need as well as emission levels. At the EU level, district heating (DH) and 

district cooling (DC) along with combined heat and power (CHP) production are 

considered as ‘important tools’ for reaching the energy targets (Connolly et al., 2014; 

European Commission, 2012). Also, the International Energy Agency (2013) highlights 

the fact that district heating and cooling (DHC) systems are feasible energy technologies; 

they will be even more feasible in the future when a projected 6.3 billion people will live 

in cities around the world by 2050.  

In Nordic countries, DH has a long tradition, with a large market share. Yearly DH 

consumption is approximately 130 TWh (International Energy Agency, 2010a). DC 

systems in wide scale have a shorter history but their market share is increasing. CHP 

production has a big role in Nordic DH production. The energy efficiency of a CHP plant 

is high and the energy company also receives income from selling electricity. 

Energy systems are evolving, with pressure from many directions (for example the EU’s 

climate change strategies, national regulations, and energy efficiency directives) to 

increase energy efficiency. The production of electricity with renewable sources brings 

challenges to energy systems because production is more difficult to forecast. Also, 

consumers can produce electricity to be sold back to the network, thus production will 

be more scattered.  

Smart cities have been widely under discussion as expected solutions for energy systems 

coping with the coming changes. Energy systems in smart cities are assumed to be 

flexible, adaptable, reliable, and efficient in both production and consumption. 

Intelligence and utilisation of information and communication technologies (ICT) in 

smart energy systems are regarded highly as they are helping cities to make better use 

of their resources. The role of consumers is also becoming more important; they are no 
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longer considered as a single consumption point of the system but as an important part 

of the energy system having the possible capacity to produce energy for the network as 

well as to be a flexible consumer. 

The DHC business is expected to have the willingness to reply to the changing market as 

well as the ability to develop new ideas for the heating market. Initially, DHC systems 

have features which will help energy systems respond to the expectations of a smart 

energy system. One of these features is that in a DHC network, it is possible to utilise 

heat that otherwise would be wasted (such as heat from CHP plants, industrial waste 

heat, and geothermal heat), making the energy system more efficient. Industrial waste 

heat originates in industrial processes in large quantities, but in many cases the location 

makes it hard to utilise in existing heat networks. Small-scale industrial companies, such 

as data centres, ice stadiums, and shopping centres, which need continuous cooling, are 

usually located close to population centres, but the amount of waste heat generated is 

smaller and usually the quality is not proper as such.  

Another strength of DHC systems is their ability to bring flexibility to energy systems, 

since storing energy (heat or cold) in the short term is easy. DH networks have already 

been used as small heat storage systems; beside this, in many cases larger heat storage 

systems are added to the network. One possibility to make DH systems more efficient is 

to use demand-side management (DSM), which would help to even out consumption 

peaks.  

A traditional DH system in Finland is presented in Figure 1 (at left). As the figure shows, 

the base load is produced in CHP plants and the peak load is produced in heat-only 

boilers (HOB). The imbalance between the production and consumption can be evened 

out with small heat storage systems; also the heat network is used as heat storage. DHC 

consumers consist of single consumers (residential buildings, public buildings, offices), 

small enterprises (such as grocery stores, ice stadiums, data centres located close to 

residential areas) and big companies (need of process heat in industry). Heat consumers 

in the DHC business have been seen as an inflexible part of the energy system.  

In future, DHC systems need to be developed towards the figure presented at the right 

in Figure 1 where heat production is versatile, even more so with the addition renewable 
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energy sources. The increase of fossil fuel prices due to climate policy actions requires 

energy companies to consider other fuel options. The significance of heat storage to 

even out the imbalance of production and consumption has increased. Consumers have 

become a more important part of the system in achieving energy efficiency targets. 

Consumers can be a flexible part of the energy system and their consumption can be 

forecasted more precisely. Waste heat from larger consumers can be utilised and thus 

decrease the use of primary fuels as well as emissions. The temperature level of the DH 

system should be lower to bring more waste heat into the network and to achieve a 

lower level of heat loss. ICT systems and remote measurements (smart measurements) 

are an important part of the transition to smart energy systems. 
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Figure 1. Transition of DH systems. The traditional DHC system is presented at left. At the 
right, a more efficient and flexible DHC system is presented where production is more 
versatile, waste heat is utilised in DHC production, and single customers are more flexible 
as well as permitting more accurate forecasts.  
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1.2 Research gap 

Smart energy systems have been widely studied but the research has mainly 

concentrated on smart electricity grids. Smart electricity grids have been studied in 

terms of energy policy and regulation as well as in country-specific reviews (Connor et 

al., 2014; Crispim et al., 2014; Lin et al., 2013; Muench et al., 2014), ICT technology (Bhatt 

et al., 2014; Reddy et al., 2014; Wissner, 2011), renewable energy and energy 

optimisation (Clastres, 2011; Kaygusuz et al., 2013; Mohamed and Mohammed, 2013; 

Phuangpornpitak and Tia, 2013), and energy storage (Koohi-Kamali et al., 2013; Krajačić 

et al., 2011).  

Also, the term smart grid is almost always used to refer to smart electricity grids. The 

problem of this one-sided research is that it often leads to researchers concentrating on 

electricity transmission lines, flexible electricity consumption, and electricity storage as 

being the main ways to deal with the integration of fluctuating energy sources from 

renewable energy. The efficiency of the energy system is increased when electricity 

systems are combined with other energy systems such as heating and cooling systems, 

gas grids, and transportation (Hvelplund et al., 2014; Lund et al., 2014, 2012).  

There are a few research and political papers, however, which concentrate on smart 

thermal energy systems, including district heating and cooling systems, promoting their 

benefits as a part of an efficient energy system. In Schmidt et al., (2012) the 

concentration is on the challenges and opportunities for district heating and cooling 

systems as necessary parts of smart cities. Some of the same writers have also 

participated in the policy papers in the EU-level smart city group (Schmidt et al., 2013) 

where similar work has been done.  

Another EU-level series of research studies concentrating on thermal networks as a part 

of smart energy systems was implemented between the years 2012 and 2014 (Connolly 

et al., 2014, 2013, 2012; Persson et al., 2014). Heat Roadmap Europe studies 

concentrate on how local resources can be utilised to satisfy the energy demand. The 

methodologies used are geographical mapping and energy simulations with the 

energyPLAN tool. As a result, these reports give recommendations for a redesign of the 

European heat supply, at the same time achieving the CO2-emission reductions set by 
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the European Council to be accomplished by the year 2050. The main ideas for achieving 

these goals involve lowering heat demand in buildings and expanding district heating 

systems across the EU-28 and candidate countries.  

As stated above, smart energy systems have previously been studied widely, but a wider 

perspective is needed. It will be necessary to combine research concentrating on 

electricity grids with research into different energy systems to find the most energy-

efficient solution. Also, studies where the concentration is on consumers as a flexible 

part of thermal energy systems (and thus as part of larger smart energy systems) have 

received less attention.  

1.3 Targets and research questions 

The central question of this research is what the special characteristics of a smart energy 

system are and how DHC systems are adapting to them. With different case studies, this 

research will concentrate on how different energy efficiency measures on the consumer 

side will affect DHC systems and will proceed from there to examine the efficiency of 

the whole energy system.  

This thesis is aimed to address the following research questions: 

- How can DHC markets adapt to the definition of a smart city? What challenges 

will such adaptation bring to DHC systems? Which DH and DC characteristics will 

help energy systems become smarter? 

- How can DH remote measurements be utilised? Is it possible to develop more 

specific forecasting models for DH consumption based on hourly consumption 

data from individual customers? What benefits do remote (smart) 

measurements bring? Is it possible to make energy systems and DHC systems 

more efficient with smart measurements? 

- How can small consumers such as residential buildings and public buildings 

function as a flexible part of the energy system? What is the possibility of using 

demand-side management (DSM) to make energy systems more efficient? What 

is the DSM potential of district-heated residential buildings for cutting short-

term heat demand peaks? 
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- How can waste heat from different temperature levels be utilised in heat 

networks and how can the quality of the waste heat be increased to the 

necessary level? What are the effects of feeding waste heat to the DHC network 

with regard to the efficiency of the energy system and emission levels? How are 

the availability of waste heat and the timing of heat demands linked together 

and what is the role of heat storage in this? What kind of pricing model is 

convenient for the efficient sale of waste heat?  

1.4 Construction of the research 

After the introduction, this research is divided into seven chapters. Chapter 2 briefly 

presents the heating options mainly used for space heating in Finland. After this, the 

chapter concentrates on examining the basics of DH and DC systems. This chapter 

describes how DH and DC systems have developed over the years and in which countries 

these systems can be found. The basic technologies are presented, concentrating on 

how these systems are executed in the Finnish energy system. Variations in district 

heating and cooling consumption are described with city wide examples, as well as 

consumption from one residential block building. Chapter 2 also provides information 

about measuring and forecasting district heating consumption, supported by a literature 

review. Finally, Chapter 2 describes the advantages and disadvantages of these systems 

as well as their future challenges. 

Chapter 3 concentrates on common factors of thermal energy systems in smart cities. 

Because the definitions of the terms ‘smart city’ and ‘smart energy system’ are not 

unambiguous, this chapter starts by examining different definitions and common factors 

for these systems. When common factors are found, characteristics of thermal energy 

systems in smart cities and smart energy systems are examined to ascertain what 

challenges these will bring to DHC systems and which DHC characteristics will help 

energy systems to become smart.  

Chapter 4 concentrates on optimising heat and cold production in smart energy systems, 

since this will become even more important for energy systems in the future. This 

chapter will concentrate on a literature review of heat and cold storage, including waste 

heat in thermal energy systems, and the modelling of energy systems. The last part will 
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concentrate on presenting the energyPRO energy simulation tool, since this tool is used 

for optimising energy systems in Chapter 7. 

Chapters 5, 6, and 7 each concentrate on a case study which looks at different challenges 

of DHC systems when adapting to smart energy systems. Chapter 5 focuses on ICT 

systems and the possibilities of smart metering in DH. There are many possibilities 

related to smart metering which are still untapped in DH systems, even though, at least 

in Finnish DH companies, remote meters have been installed giving hourly consumption 

data. This chapter focuses on building a DH consumption forecasting model based on 

hourly measurements.  

Chapter 6 presents how a DH system can be a flexible part of the energy system, with 

concentration on DSM. Here it is examined the possibility of residential block buildings 

to operate as short-term heat storage sites by cutting the heat for one hour in the 

morning to lower the heat load peaks in the DH system.  

Chapter 7 demonstrates the utilisation of waste heat in a DHC network by investigating 

the Open DHC system in Stockholm. The idea of the Open DHC system is that a DHC 

network will be opened to customers, giving them the opportunity to sell their extra 

(waste) heat at a pre-determined price to the thermal network. Differing amounts of 

waste heat, at various temperature levels, will be recovered in the DHC system. This 

case study will critically evaluate the opportunities and challenges of the Open DHC 

system in terms of increasing the energy efficiency of DH systems and decreasing the 

CO2-emissions. To be able to do that, the whole energy system is modelled on hourly 

level. 

The individual case studies in Chapters 5, 6, and 7 are discussed in terms of the area of 

research to which they belong, and the research gaps in earlier studies.  

In Chapter 8, a discussion of the whole study, with conclusions, is given. This chapter 

also makes recommendations for further study.  
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2 District heating and district cooling systems 

2.1 Traditional options for heating 

In the traditional heat supply market, heat can be supplied using various technologies 

and fuels, such as electricity, district heating, oil, or gas (no. 1 in Figure 2). With electric 

heating, the customer can choose the electricity supplier and thus influence the choice 

of the fuel. With DH systems, the customer is not free to choose the heat supplier 

because DH systems are specific to a particular area. Additionally, heat can be supplied 

with a heat pump from the air (no. 2), from the ground (no. 3), or by circulating heat 

inside the building (no. 4). From these space-heating options, the dweller can choose 

either one technology or a combination of the above-mentioned technologies. This is 

not the case in every country, however. For example, Denmark and Norway have 

regulations that make it possible to force customers to connect to the DH network 

(International Energy Agency, 2010a). In the case of Finland, the supporting heating 

systems, such as solar thermal or heat-storing fireplaces, brings more reliability for the 

dweller’s heating systems.  

Heat 
from air

Heat from 
the ground

Fuel (i.e. DH, 
electricity, oil)

Circulation 
inside the 
building

1

2

3

4

 
Figure 2. Traditional heat supply market where the red lines represent the heating and 
the blue lines the cooling. 
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Customers want a comprehensive service for both heating and cooling. The increased 

cooling demands in residential buildings result from heat gain due to the number of 

entertainment electronics and ICT appliances being used. In addition, certain types of 

service buildings need continuous cooling (Haywood et al., 2012; Uddin and Rahman, 

2012). This changes the heat supply market. Heat inside a building must also be 

delivered elsewhere, and this is the reason why two-way heat transfer is an important 

part of the heat supply market. Space-heating options (2–4) can be used for cooling as 

well. In the case of a DH business, two-way heat transfer means that buildings 

(customers) sell waste heat to the DH system and the energy company pays an agreed 

price for the heat. 

The dweller usually chooses a heating system based on multiple considerations, such as 

whether the heating system is economical, environmentally friendly, and reliable 

(Motiva, 2012). 

Electric heating 

Electric heating can be implemented either as a room-specific system or a water-cycling 

system. Adjustment for the desired temperature level is quick and easy in both systems. 

Electric heating is especially suitable for houses, in which heat demand is small (such as 

small low-energy and passive-energy houses), since the cost of electric heating is higher 

than for other heating options. Installation costs for a room-specific electric heating 

system (for a single-family house) is approximately 5000–10000 €; for the water-

circulating system, it is 7500–12500 €. The operating costs vary according to the 

electricity consumed. Delivery reliability of the electric heating system is almost 

100 percent and its use is effortless; thus it does not need much maintenance. 

District heating 

The heat for the DH system can be produced in a heat-only boiler or combined heat and 

power plant. The environmental effects of the DH depend on the method used for heat 

production. Typically, the investment costs for the DH system for a single-family house 

is 10000–15000 €. In addition to this, there are costs for heat consumption. Delivery 

reliability of the DH system is almost 100 percent and its use is effortless; thus it does 
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not need much maintenance. More information on the DH system is presented later in 

Chapter 2, sections 2.2 and 2.3. 

Ground source heat pump  

Ground source heat is typically collected either from bore well in the rock or from the 

run of pipes installed horizontally at a depth of one metre. Approximately two thirds of 

the heat produced is the renewable heat from the source and one third is produced with 

electricity, which is used to run the system. The typical investment cost for the ground 

source heat pump for a single-family house is 15000–20000 €.  

Oil heat 

An oil heating system includes the following parts: oil boiler, oil burner, oil tank, flue 

chimney, and control system. Newly installed oil heating systems are energy-efficient 

with 94–95 percent efficiency. Measured yearly, the energy efficiency of the oil heating 

system is approximately 90 percent. Oil heating systems are easy to combine with 

renewable energy systems such as solar heat or wood.  

Beside these, the following supporting heating systems were included in the study: 

Solar heat 

Solar heat technology is based on the utilisation of solar heat energy to operating a 

building’s heat applications. Solar collectors are used to recover the solar heat. In Finnish 

weather conditions, solar heat is mainly used for heating domestic hot water but it is 

also possible to use it for space heating. Measured yearly, a typical solar heat system 

can produce 50 percent of the heat needed for domestic hot water and 10–15 percent 

of that needed for space heating. Solar heat is normally used as a supplementary heating 

system in single-family houses. The size of a solar heat system suitable for a single-family 

house is 8–20 m2 and its investment cost is approximately 4000–7000 €.  

Heat-storing fireplace  

Wood fires have a long tradition in Finland even though fireplaces and wood-fired 

boilers are rarely the main heating system in buildings nowadays. The fireplaces have 

some special features when compared with other heating systems. Fireplaces can be 
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used in exceptional circumstances where centralised energy systems are not available. 

Wood firing requires active procurement and storing of the fuel as well as an active user. 

Wood firing as a supplementary heating system can result in energy savings as well as 

being economical. The negative side of wood firing is the particle emissions produced. 

As a supplementary system in a single-family building, the investment cost of a fireplace 

is approximately 3000 € and the price of the firewood is 55–95 €/i-m3 (dry wood).  

Because of the cold weather in Finland, space heating of residential buildings is one of 

the biggest energy consumers. Statistics available from Finnish Energy Industries show 

that district heating has the largest market share with 46 percent of heating residential, 

commercial, and public buildings, followed by the market shares of other heating 

systems in Finland (Energiateollisuus ry, 2014). In Figure 3, the market share of heat 

pumps (11,6 %) includes the electricity consumed by them. The market share of 

electricity (18,6 %) includes the electricity consumption of heat distribution equipment 

and electric sauna stoves; similarly market share of wood (13,1 %) includes the wood 

used by sauna stoves.  

 
Figure 3. Market share of space heating in residential, commercial, and public 
buildings in Finland, 2012 (Energiateollisuus ry, 2014) 

 

District heating 
46 %

Electricity
19 %

Heat pump
12 %

Light fuel oil
8 %

Wood
13 %

Heavy fuel oil
1 %

Natural gas
1 %
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2.2 Introduction to district heating and district cooling systems 

District heating is centralised heat production for heating buildings and service water 

and distributing the heat to consumers in a wide area. On a global scale, DH is widely 

used in Western and Eastern Europe, North America, and some Asian countries (Japan, 

Korea, China, and Mongolia) (Energiateollisuus ry, 2006; Frederiksen and Werner, 2013). 

The main customers for a district heating system are industry, public buildings, office 

buildings, apartment buildings, and single-family houses.  

District cooling is centrally produced, delivering chilled water from a cooling plant to 

customers (such as residential, commercial, and industrial facilities) which are 

connected via a pipeline. DC is mostly used in downtown or commercial areas and can 

be found in several European countries (such as Finland, Sweden, German, Austria, and 

France), Japan, Korea, USA, and the United Arab Emirates. DC still has a rather small 

share in the cooling market (Frederiksen and Werner, 2013). Proper statistics for this 

Table 1. Capacities, total sales, and length of pipeline for DH systems, plus percentage 
of citizens served by DH in selected countries (Euroheat & Power, 2011) 

 DH capacity DH sales Trench length of 
DH pipeline 

system 

Percentage of 
citizens served 

by DH 

 MWth TJ km % 
Austria 9 500 73 176 4 376 21 
China 338742 1) 2 810 220 147 338  
Denmark  10 194 30 288 61 
Finland 22 940 11 229 13 060 50 
France 16 293 78 502 3 644 7 
Germany 49 931 2) 279 938 20 151 12 
Hungary 7 638 31 647 2 138  
Japan 4 248 21 958 656  
Korea 38 321 187 024 2 037 15 
Netherlands 5 600 268  5 
Norway 2 893 13 859 1 334 1 
Poland 58 300 235 19 621 41 
Russia 541 028 3) 6 891 293   
Sweden 17 500 182 727 22 800 48 
USA 89 600 354 871 3 320 3 

1) plus 85 273 t/h steam 
2) connected load 
3) in 2007 
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are difficult to get because figures are not systematically collected. Table 1 and Table 2 

show the figures for DH and DC systems in selected countries across the world. 

Table 2. Capacities, total sales and length of the pipeline for DC systems (Euroheat & 
Power, 2011) 

 DC 
capacity 

DC sales Trench length 
of DC pipeline 

system 

 MWth MWh km 
Austria 35 64 832 7,4 
Denmark    
Finland 156 125 880 77 
France 668 876 000 145 
Germany 161 171 667 54 
Hungary 3 602  
Japan 3960 3 460 704  
Korea 194 181 495 33 
Norway 126,2 122 711 53 
Poland  46 20 
Sweden 650 3) 900 000 334 
USA 16234 24 714 555 596 

 

DH systems have developed over the years. The first DH systems were established in the 

USA during the 1880s, using steam as a heat carrier. This system also spread to Europe 

and it is still used in DH systems in Manhattan and Paris. The energy efficiency of a 

steam-based system is low; such a system is also unsafe due to the possibility of steam 

explosions. The second generation of DH systems used pressurised hot water at 

temperature over 100 °C as a heat carrier. CHP production was widely used, which 

meant more efficient systems. This technology was dominant in most DH systems until 

the 1970s. The third-generation systems use pressurised water as a heat carrier but at 

lower temperatures (the supply temperature is often below 100 °C). All DH system 

extensions as well as most new systems use this technology. The trend in DH system 

development has been towards lower temperature levels, material-lean components, 

and prefabrication, leading to lower costs at construction sites.  

Similar developments can be distinguished in DC technology, where the main 

technologies have been developed from centralised condensers and decentralised 
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evaporators with a refrigerant (first generation, introduced in the late 19th century) to 

large mechanical chillers (second generation). The third generation of DC (many of these 

having been installed in the 1990s) includes technologies such as natural cooling from 

sea water or lakes, absorption cooling, and heat pumps (Frederiksen and Werner, 2013; 

Lund et al., 2014). 

There are many advantages of DHC systems when compared to other heating or cooling 

systems. One of the main advantages is greater production efficiency. When this is 

combined with the use of heat and cold storage systems, it will promote more efficient 

use of fuels. A wide range of fuels and technologies can be used for production of district 

heating; additionally, utilisation of heat that would otherwise be wasted is possible. On 

the customer side, the benefits of DH system include less space required for heating 

Table 3. The advantages and disadvantages of district heating and cooling systems 

Advantages Disadvantages 

- higher efficiency than in single-

house heating or cooling 

- high production efficiency 

- greater efficiency accompanies 

efficient use of fuels and lower 

emissions 

- wide range of fuels and 

technologies 

- utilisation of heat and cold 

storage systems 

- high delivery reliability, 

comfort, and continuous heat 

delivery 

- less floor space and lower 

capital investment for the 

customer’s own heating 

equipment 

- investment incentive with long 

pay-back period due to the need 

for extensive networks of piping 

- individual customers unable to 

negotiate prices and delivery 

conditions in natural monopolies 

harmful environmental effects 

during the piping construction 

- possible widespread interruptions 

of heat distribution 

- heat loss from the system 

- large differences in consumption 

due to  seasonal changes 

- not suitable for sparsely 

populated areas 
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equipment, a high degree of reliability, and the comfort of the system. One of the 

disadvantages of a DHC system, restricting the spread of such systems, is that DHC 

systems are structured as investment-incentive systems with long pay-back periods. 

Customers are also unable to negotiate prices and delivery conditions in DH and DC 

systems, which are always natural monopolies. DH and DC systems are not suitable for 

sparsely populated areas due to the heat loss problem. Other advantages and 

disadvantages are listed in Table 3.  

2.3 District heating systems in Finland 

The first district heating network in Finland was established in 1940 in Helsinki 

(Energiateollisuus ry, 2006). As shown in Figure 3, in 2012 approximately 46 percent of 

Finnish houses were heated with DH, while in larger cities such as Helsinki, the share of 

DH was more than 90 percent (Energiateollisuus ry, 2013; Helsingin Energia, 2014). The 

DH network in Finland is a double pipe system (see Figure 4), where heat is delivered to 

customers as heated water. The heat demands of the customer include both the heating 

of the residential space and the need for service water. In a double pipe system, a supply 

Heat-only-
boilerCHP

DH 
network

Heating

Service water

Customer

 
Figure 4. A typical double-pipe DH system where the base heat load is produced at a CHP 
plant and the peak load is produced with heat-only boilers. The red lines represent the 
supply pipes and blue dashed lines the return pipes.  
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pipe takes the hot water to the customers and a return pipe carries the cooled water 

back to the heating plant. The DH water circulates from the heating plant to the 

customers and back to the heating plant. The water is circulated with pumps which are 

located at the heating plant and, in larger networks, also along the DH network. The 

network’s construction pressure is usually 1.6 MPa. The customers are connected to the 

network with an indirect connection. This means that the heat from the DH system is 

transferred through heat exchangers in buildings to secondary radiator circuits and to 

heat domestic water.   

The heat producer controls the supply water temperature according to the outdoor 

temperature, with the maximum temperature being 120 °C. The supply water 

temperature must be high enough to deliver the necessary heat to customers and to 

cover heat losses in the network. On the other hand, the temperature should be as low 

as possible to minimise heat losses in the network and to allow maximal power 

production at CHP plants. Therefore, the temperature control curve of the heat 

producer determines the lower limit for the supply water temperature to satisfy 

customers’ heat consumption. The temperature can be increased due to weather 

conditions such as increased wind speed, air humidity, forecasted significantly lower 

outdoor temperatures, or if the network is used as heat storage. Similar DH systems can 

be found in other Nordic countries, except Iceland, where geothermal sources are the 

main source of heat for DH systems (Energiateollisuus ry, 2006; Frederiksen and Werner, 

2013; Kontu et al., 2012). 

2.3.1 District heating consumption 

DH is used for heating residential space and for heating domestic hot water. Space 

heating consists mainly of two parts: heating the radiators and heating the air coming in 

through ventilation systems. The distribution of the heat energy consumed in residential 

buildings yearly is roughly (Energiateollisuus ry, 2006):  

- heating residential space (40%),  

- heating air in ventilation systems (35%), and  

- heating domestic hot water (25%).  
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The heat load varies widely throughout the year, following the weather phenomena of 

the different seasons, especially the changes in outdoor temperature. This is referred to 

as seasonal heat load variation. The momentary heat load fluctuates more strongly than 

the seasonal heat load. The DH demand also varies with the weekly and daily pattern; 

this is called the social component of the heat load. (Dotzauer, 2002; Gadd and Werner, 

2013a, 2013b; Kvarnström et al., 2006; Nielsen and Madsen, 2000; Wojdyga, 2008) 

The most significant factor affecting the heating of a building is the weather. The 

difference between indoor and outdoor temperature directly affects the amount of heat 

that is lost by convection and conduction through walls, floors, and ceilings. Beside this, 

solar radiation and wind speed and direction affect heat consumption. Direct solar 

radiation heats up buildings. Strong winds intensify the effects of cold weather. The 

instantaneous consumption fluctuates more than monthly consumption. Figure 5 

presents the DH consumption in 2011 of one medium-sized city in Finland. The seasonal 

variation of the heat consumption can easily be seen. In summer time, only heat for 

domestic hot water is needed.  

 
Figure 5. Heat consumption of one city for one year showing the yearly pattern of 
consumption 

 

The social component of DH consumption means that the consumption has weekly and 

daily patterns. This is the main factor determining the heat consumption necessary to 
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produce domestic hot water. Typically, the heat consumption decreases at the 

weekends. Hourly changing DH consumption typically has a morning peak, which is due 

to the use of domestic hot water and the starting up of ventilation systems in office 

buildings. The evening peak is mainly due to increased use of domestic hot water. In the 

night time, the heat consumption is decreased due to less activity. These phenomena 

can be found in Figure 6, where hourly heat consumption of one residential building for 

one week is presented. The daily pattern can be seen from heat consumption peaks, 

with the outdoor temperature also affecting the consumption level. Different types of 

customers and buildings have different consumption behaviour. The weekly pattern can 

be more clearly evident for the whole network, which includes different customer types, 

than for single customers. This is because different customers have different 

consumption behaviour types which correlate in the larger scale.  

 
Figure 6. Heat consumption of one residential building for one winter week showing 
the daily pattern of consumption 

 

2.3.2 District heating production 

Transferred heat power in a double-pipe system is calculated with formula (1) 

 

∅ = 𝑚̇𝑚𝑐𝑐𝑝𝑝∆𝑇𝑇 = 𝑐𝑐𝑝𝑝𝜌𝜌𝜌𝜌′∆𝑇𝑇 (1) 
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where 𝑚̇𝑚 is the mass flow of the DH water (in kg/s), cp is the specific heat capacity (in 

J/(kg*K)), and ∆𝑇𝑇 is the temperature difference of the water in supply and return pipes 

(in K). This means that the heat demand changes can be satisfied in two different ways: 

by changing the flow of the district heating water, or by changing the temperature 

difference between supply and return pipes. The maximum heat power transmission of 

the network is defined by the size of the pipe, allowable pressure level, pressure loss 

and pressure difference, maximum size of the pumps in the heat production plant, and 

measurement of the customers’ DH appliances and possible restriction of water flows.  

The heat load variations require a flexible heat production structure. When designing 

the production for a DH system, the baseline is that the power needed will be divided 

for at least two different production units, as presented in Figure 7. This is advantageous 

economically and also for the reliability of the system. The power generated can be 

divided for the base load and the peak load. The base load is typically produced in the 

CHP plants; for the peak load demand, separate HOBs are used.  

 
Figure 7. Duration curve for heating power. The heat demand is covered with base 
load production units (for example, a CHP boiler) and peak load production units 
(HOB) 

 

To increase the level of flexibility, the DH networks perform as small heat storage 

systems; in addition to this, many DH systems have separate heat storage capacity to 

even out the imbalance of the heat demand and production. In the energy systems with 
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CHP production, heat storage units are also used to optimise the profits from electricity 

production. Heat storage systems have been suggested as one way of handling the heat 

load variations.  

Seasonal heat storage (i.e., storing heat in summer to be used in winter) have been 

studied (Gabrielsson, 1988; Nielsen and Möller, 2012; Sibbitt et al., 2012; Tveit et al., 

2009), but they are not widespread in many DH systems, since competitive technology 

does not yet exist. For daily heat variations, heat storage systems have been studied and 

implemented to decrease peak load capacity and investigate the effects on the whole 

energy system. The DH networks perform as small heat storages and beside this many 

DH systems have separate heat storage systems to even out the imbalance of the heat 

demand and production. Different sizes of heat storage units for DH systems have been 

studied (Nuytten et al., 2013; Østergaard, 2012; Smith et al., 2013; Verda and Colella, 

2011). The use of building mass as heat storage has also been studied (Jokinen, 2013; 

Jokinen et al., 2014; Olsson Ingvarson and Werner, 2008).  

Many advantages could be achieved with elimination of daily heat load variations, such 

as less use of the peak load boilers, which usually use more expensive fossil fuels, less 

need for electricity for pumping energy, easier optimisation of the DH system operation, 

and less need for maintenance because of the smoother use of heating plants (Gadd and 

Werner, 2013a). The start-up and maintenance costs of the HOBs are also significant 

additional cost items for DH companies. 

2.3.3 Measuring district heating consumption 

The thermal energy consumed by customers is measured. The heat meter consists of a 

flow sensor, temperature sensors, and a heat consumption meter. The flow sensor 

measures the volume of circulating water flow. The temperature sensors are installed 

in two locations to measure the temperature of supply and return water. Figure 8 

presents a simplified picture of principles of measuring district heating, showing the 

location of sensors.  
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Figure 8. Simplified diagram of the principles of district heating measurement devices 

 

The heat consumption meter calculates the consumed heat energy using the water flow 

and temperature difference by using formula (2) 

𝑄𝑄 = 𝑐𝑐𝑝𝑝 � 𝑞𝑞𝑚𝑚
𝑡𝑡1

𝑡𝑡0
∆𝑇𝑇𝑇𝑇𝑇𝑇 

(2) 

where Q is heat energy, cp is the specific heat capacity for water, qm is the district heating 

water flow, ΔT is the temperature difference of district-heated supply and return water, 

t0 is the beginning time for measurement and t1 is the finishing time for measurement.  

Figure 9 and Figure 10 show hourly measurements of a typical heat meter which consists 

of flow and temperature sensors. The measurements presented in Figure 9 and Figure 

10 are from one residential block building located in Helsinki for one winter week. Figure 

9 shows the supply and return temperatures, showing that supply water temperature 

remained high, almost 100 °C, due to the cold weather that week. The outdoor 

temperature for this particular week varied from -17,4 °C to 2,2 °C.  

Supply water temperature, which is controlled in the power plant, is more stable than 

the return water temperature. This is because the water temperatures are measured as 

momentary values and if simultaneous DH water use for domestic hot water is taking 

place as the temperature measurement is taken, then peaks for return water 

21 
 



 

temperature occur. From these values, the temperature difference is calculated using 

formula (2). 

 
Figure 9. Hourly measurements of DH supply and return water temperatures for one 
residential block building (same building as in Figure 10) 

 

 
Figure 10. Hourly measurements of DH water flow for one residential block building 
(same building as in Figure 9), with outdoor temperature measurements taken at the 
same times 
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From Figure 10, where DH water flow is presented, the typical daily pattern of the DH 

system can be seen with morning and evening peaks (see Chapter 2, section 2.3.1).  

Traditionally, customers have sent their heat meter readings to the energy company 

once a year. The problem with this arrangement has been that some readings will always 

be missing. In addition, the temporal distribution of consumed heat energy cannot be 

resolved.  

In the near future, legislation will guide energy companies and property owners towards 

more developed measurement operations in the DH and DC business as well as in the 

electricity and gas businesses (European Union, 2012). Many DH companies are moving 

towards remote meter reading, which means that the data showing thermal energy 

consumed is sent to the energy company automatically. In Finland, the biggest DH 

companies have installed remote meters for almost all of their customers and the 

installation pace since 2008 has been fast. This was studied in a questionnaire-based 

research study, where 20 Finnish DH companies were asked about their motivation for 

remote metering (Piispanen, 2010). In 2008, only 28 percent of the customers of the DH 

companies in the study had remote meters, whereas in 2013, the DH companies 

forecasted that almost all of their customers (over 90 percent) would be under remote 

metering. As of 2014 remote meters have been installed to customers’ substations. It 

would be important to install them also in some medium points of the network. This 

would allow the development of programs to verify the accuracy of measurement data 

and to monitor the network’s operation.  

With remote meter reading, it is possible to get more accurate, real-time energy 

consumption data from customers. Currently the meter readings are not monitored 

continuously and they are used mainly for billing purposes. Remote data could also be 

used by the energy companies to locate faults in the network and to identify inefficient 

heat-use habits of customers. 

In addition to the benefits mentioned above, it is possible to utilise hourly heat energy 

measurements in many other ways. These possibilities include, for example, verifying 

the accuracy of measurement data, correcting certain measurement errors 

automatically, and monitoring the network’s operation. In addition, it is possible to 
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develop more accurate adaptive forecasting models, to plan production more accurately 

and to better optimise the operation of the network. Remote measurement data also 

enables the use of new dynamic pricing systems. 

The study by Piispanen (2010) reveals that the most important benefits from remote 

metering, in the opinion of DH companies, are better billing processes and faster 

availability of the readings. A better billing process would include such aspects as 

abandoning the use of estimation billings, the design and use of faster billing processes, 

and fewer mistakes. It would also allow for better control of production, easier reporting 

for customers, and monitoring of consumption.  

2.3.4 Forecasting district heating consumption 

Remote measurements in DH and DC systems allow development of more specific 

forecasting models. The literature includes several studies of forecasting models for DH 

applications. DH forecasting models should normally consider at least two factors: 

outdoor temperatures and the social component of consumption, As these factors have 

the greatest influence on heat consumption (Dotzauer, 2002; Kontu et al., 2012; 

Kvarnström et al., 2006). The social component of heat consumption indicates the 

behaviour of customers and it mainly concerns the use of domestic hot water. For this 

reason, the social component consists of annual, weekly, and daily patterns. Inadequate 

consumption and weather data leads to inaccurate forecasting models which advocates 

for using simple forecasting models.  

More accurate forecasting models have been developed where, in addition to the 

outdoor temperature and the social component, more specific weather conditions have 

been taken into consideration (Nielsen and Madsen, 2006, 2000; Wojdyga, 2008). These 

weather conditions include wind speed and direction, solar radiation, and precipitation. 

Besides these factors, different DH networks might include other characteristics, such 

as customers’ specific geographic location, which will affect the heating consumption. 

These factors are called stochastic factors. The effect of these kinds of phenomena at a 

large scale is small and hard to model explicitly with sufficient accuracy (Dotzauer, 2002).  

Different methods to predict DH consumption have been used, such as the linear 

regression model (Kvarnström et al., 2006), the Grey-box method (Nielsen and Madsen, 
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2006, 2000), the Box-Jenkins method (Chramcov et al., 2009), and the conditional finite 

impulse response (cFIR) model (Pinson et al., 2009). Production forecasting models for 

other applications have also been developed; for example, to forecast electricity 

consumption. Compared to electricity consumption, DH has a special factor, which is the 

time delay between production and consumption. Taking time delay into account in the 

forecasting model improves its accuracy (Dotzauer, 2002). One possibility to consider 

the time delays in a forecasting model is to model the whole DH network based on 

information available from the heat production companies. With this, it would also be 

possible to model and investigate heat losses in different parts of the network. 

2.4 District cooling system in Finland 

In Finland, the first DC system was established in Helsinki in 1998; since then DC has 

increased rapidly. As of 2013, DC is available in eight cities in Finland: Helsinki (since 

1998), Turku (since 2000), Lahti (since 2000), Heinola in Vierumäki (since 2002), 

Lempäälä (since 2008), Espoo (since 2012), Tampere (since 2012), and Pori (since 2012). 

Altogether DC energy was produced 169 GWh in 2013 and the length of the DC piping 

was approximately 95 km. The production of DC in Finnish systems is mainly based on 

heat pumps (48,8 % of the production). The other production methods used were as 

follows: free cooling (26,3 % of the production), absorption cooling (17,1 % of the 

production), and compressor technology (7,8 % of the production). (Energiateollisuus 

ry, 2014) 

The cooling energy is distributed through a supply pipe as cold water. After delivering 

cooling for the customer, the warmed water is returned to the power plant through a 

return pipe and recycled. In most DC systems, the customers are connected to the 

network by an indirect connection where DC pipes forming one water cycle connect to 

a cooling system in a different building with another water cycle (similar to a DH system 

connection, as shown in Figure 4). In a direct connection, the DC water cycles in the 

cooling system of the building. Direct connection should be used only in networks with 

few customers (2–3 customers).  

One difference between DH and DC networks is the greater width of pipes used for DC. 

The reason for this is the lower temperature difference between the supply and return 
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temperatures. Large pipe diameters give a larger area for heat transfer to the supply 

pipe which results in greater cold losses. Still, the magnitude of cold losses is lower in 

DC networks when compared to heat losses in DH networks because of the smaller 

difference in temperature between the DC water and the ambient air. 

2.4.1 District cooling consumption 

Cooling demand exists in various industrial processes and commercial businesses which 

need cooling continuously. Beside this, citizens need cooling to higher standards of 

comfort. For space cooling, the cooling demand comes from climatic conditions such as 

air temperature, solar radiation, wind speed and direction, and air humidity. Besides 

these, internal heat sources such as machines, computers, and other electric appliances 

affect the cooling demand. Lighting and the number of people in a building bring more 

heat to the building. The predominant factor for cooling demand is the outdoor 

temperature (Euroheat & Power, 2006). The cooling power is chosen so that the inside 

temperature will stay at a desired level. In the coldest periods of outdoor temperature, 

cooling demand can occur at the same time as heating demand. 

 
Figure 11. Daily average cold load in Helsingborg, Sweden in 2009 (Frederiksen and 
Werner, 2013) 

Figure 11 shows daily average cold demand in Helsingborg, Sweden for the year 2009. 

The figure shows that cooling demand exists even in the coldest periods. When the 
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outdoor temperature is higher than 10 °C, the cold demand increases substantially. The 

cold demand at weekends is slightly lower than for weekdays.  

Figure 12 presents typical average daily variations in district cooling load in Helsingborg, 

Sweden in 2009. The figure shows that cold demand varies widely between summer and 

winter periods. In seasons when the cold load is high, the daily average cold load is about 

30–40 percent smaller than the hourly peak load. This means strong daily variations of 

cold load and encourages district cooling companies to invest in cold storage systems. 

(Frederiksen and Werner, 2013) 

 

 
Figure 12. Typical daily district cooling load variations during four seasons in 2009 
(Helsingborg, Sweden) (Frederiksen and Werner, 2013) 

 

2.4.2 District cooling production 

DC can be produced several ways. The most commonly used methods in Nordic 

countries are free cooling, absorption cooling, compressor technology, and heat pumps. 

Free cooling means efficient utilisation of nature’s own energy resources and cooling 

energy derived from sea water, lakes, or rivers. In winter time, when these waters are 

cold, the existing cooling energy is enough to meet the cooling demand. In summer and 
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autumn, when the waters are warmer, free cooling can be utilised as an efficient and 

cost-effective source for the base demand. It is also possible to utilise snow for a DC 

system; for example, in Sundsvall, Sweden, snow is collected in winter time to be later 

used during the warm season.  

Absorption cooling utilises waste heat that is produced, for example, in CHP production 

(DH that cannot be utilised in summer time due to low heat demand), industrial 

processes, or flue gases. Absorption cooling is based on the qualities of refrigerant used, 

selected based on the needed cooling temperature. The most commonly used 

refrigerants are lithium bromide, used when the cooling temperature is over 5 °C, or 

ammonia used when colder temperatures are needed. (Energiateollisuus ry, 2006; 

Frederiksen and Werner, 2013; Suomen Kaukolämpö ry, 2004) 

Compressor technology has four main components: the compressor, the condenser, the 

evaporator, and the expansion valve. Compressor technology needs electricity to work 

and the most commonly used refrigerants are ammonia, HFC, or HCFC. Using this 

technology, lower cooling temperatures are available than with absorption cooling. 

(Energiateollisuus ry, 2006; Frederiksen and Werner, 2013; Suomen Kaukolämpö ry, 

2004) 

Heat pumps are a well-known technology used mainly in heat production. To increase 

the efficiency of the district energy system using heat pumps, it is reasonable to combine 

the DH and DC systems since heat pumps are able to produce both heating and cooling 

at the same time. (Energiateollisuus ry, 2006; Frederiksen and Werner, 2013; Suomen 

Kaukolämpö ry, 2004) 

These methods of production can be combined, depending on the local conditions, so 

that needed energy is produced in the most cost-effective way. Cold storage is a very 

important part of DC systems since cooling demand usually varies greatly during a 24-

hour cycle. In DC networks, the size of the cold storage should be around 1/3 of the 

cooling load. Cold storage systems bring many advantages for the cooling network, such 

as smaller need for cooling capacity and thus lower investment costs, greater reliability 

for the system, and the avoidance of operating the production plants at low efficiency 

while the demand is low.  
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2.5 Challenges in future 

The role and competitiveness of DH in future energy systems have been studied widely 

(e.g., Connolly et al., 2014; Lund et al., 2014, 2010; Magnusson, 2012; Persson and 

Werner, 2011; Pöyry Management Consulting Oy, 2011). In Nordic countries, DH has 

been growing steadily for decades and it is still increasing in both the length of piping in 

DH networks and DH production and use. In spite of this, many references predict that 

DH is increasing at a  slower pace than in former decades and will eventually lead to the 

stagnation or the reduction of DH use (e.g., International Energy Agency, 2010a).  

In Sweden, for example, DH grew significantly in the second half of the twentieth 

century (Magnusson, 2012). After the year 2000, DH production and use were almost 

static. Similar developments can be seen in the Finnish DH system. It is stated that even 

though the trend of DH production and use is still positive, the key measure of a system, 

heat load, is declining, causing the stagnation of the system (Magnusson, 2012). The 

deceleration of DH growth has been explained by different factors, such as increased 

energy efficiency of buildings due to climate policy actions, warmer climate due to 

increased greenhouse effect, and conversion to other heating alternatives due to newly 

developed heating technologies.  

Table 4 compiles the challenges that DH systems will face in future. Many of these 

challenges are due to the reformation of energy policy at the EU and national levels such 

as emission trading, increased levels of energy production taxes and fuel prices, and 

energy efficiency policies for buildings and energy systems. These will affect the 

allowable emission levels of DH systems, fuel selection, costs of DH due to the increased 

taxes and fuel prices, and the heat demand due to increased level of energy efficiency 

in buildings.  
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Table 4. Challenges for DH systems and reasons for challenges 

Challenges for DH system Comments / Questions 

- reformation of energy policy 

and its effects on the 

competitiveness of DH  

- emission trading, increased heat 

production taxes, increased fuel 

prices, EU 2020-policies, energy 

efficiency policies for buildings, 

IE-directive (Industrial 

Emissions) requiring 

investments for power plants to 

decrease SOx, NOx, and particle 

emissions 

- emission reduction and 

renewable energy  

- due to climate policy actions 

- increased level of energy 

efficiency in buildings causing 

lower heat demand 

- due to climate policy actions 

- taxation policy of DH - due to climate policy actions 

- price and cost variations of 

different fuels  

- competitiveness with other 

energy systems, diminishing 

natural resources, climate policy 

- conversion to other heating 

alternatives due to newly 

developed heating technologies 

- more competition in heating 

markets 

- warmer climate due to 

increased greenhouse effect, 

leading to lower heat demand  

- lower heat demand will 

decrease the competitiveness of 

DH systems compared to other 

possible heating systems 

- keep the image of DH system 

attractive for consumers 

- to attract new customers  
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The heat demand level in buildings is expected to decrease due to energy efficiency 

policies for buildings as well as in consequence of higher temperature levels since the 

climate change. In this situation, the level of competitiveness with other heating systems 

will be higher. Technologies and energy efficiency of other heating systems are 

developing, which raises the level of competition between different heating systems. It 

is important to keep the image of the DH system attractive to new customers.  

Because of the challenges presented in Table 4, the DH companies have to consider the 

following questions to stay competitive: 

- How to add renewable energy sources and surplus heat for the production of 

district heat  

- How to improve the energy efficiency of the district heating system on the 

consumer side, including investigation of ways to minimise heat use in buildings 

- How to develop a low-energy DH system specifically for use in low-energy 

building areas 

The situation for DC systems is different, since they have a shorter history on the wider 

scale. DC systems have been growing fast in Finland and other Nordic countries during 

the past 15 years. Reasons for this are the possibility of using natural cooling sources 

such as cold sea water for the DC, increased cooling demand to satisfy the need for 

comfort levels, reliability and freedom from worry of DC systems for customers, and the 

better energy efficiency of the system compared to individual cooling appliances.  

It is expected that climate change will increase the cooling demand in Nordic conditions. 

Also citizens demand comfort and thus the use of cooling energy will increase because 

of the increased level of wealth in the community. Some of the future challenges are 

common to both DH and DC systems (see Table 4), such as reformation of energy policy 

and emission reduction and energy efficiency targets. The challenges for DC systems in 

the future are mainly centred on the following topics: 

- How will the demand for cooling evolve in future? How will climate change affect 

it? How will different regulations about the energy efficiency of buildings affect 

the cooling demand? 
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- What actions should DC companies take to be able to expand the DC network 

and make it more accessible for citizens? 

- How should DC systems be marketed to citizens in such a way that as many 

people as possible would be familiar with the system and its benefits? 

- How may the technical and financial competitiveness of DC systems be ensured, 

compared to other cooling systems? 
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3 Smart cities and thermal energy systems 

In recent years, smart cities and smart energy systems have been under discussion in 

many research and political papers. The drivers behind the development towards smart 

cities and smart energy systems are varied. Environmental aspects are changing energy 

systems. Dependency on fossil fuels needs to be reduced. CO2 emission targets are 

changing the fuel mix in many energy systems. These reasons will increase the share for 

energy systems of renewable energy sources with fluctuating characteristics. Energy 

systems based on decentralised production and various energy technologies need good 

management systems and ICT technologies to work efficiently. On the other hand, 

different sources predict that energy demand is increasing, even though many actions 

have been taken to prevent this. Some reasons for increased energy demand are the 

growth of population worldwide, industrialisation, and increased living and wealth 

standards.  

The third driver towards development of smart cities is a worldwide trend of 

urbanisation. For example, in the EU countries 74 percent of the people were living in 

urban conditions in 2013; while the world-wide share was 53 percent (The World Bank, 

2014). It is predicted that there will be 6,3 billion people living in cities around the world 

by 2050. An urbanised world means that cities will use most of the energy produced. 

Urban areas have a huge potential to be efficient in many areas, including energy 

efficiency, since it is easier to provide energy, water, and sanitation to people living 

closer to each other.  

There is no unambiguous shared definition, however, for the term ‘smart city’ on a 

global scale and it seems difficult to identify common descriptive attributes for it 

(Neirotti et al., 2014). In the online Business Dictionary (BusinessDictionary, 2014), the 

term ‘smart city’ is defined as  

a developed urban area that creates sustainable economic development 

and high quality of life by excelling in multiple key areas  

Dirks (2009) suggests that smart cities are based on six core attributes (key areas), which 

are people, business, transport, communication, water, and energy. Giffinger et al. 
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(2007) highlights the following attributes for smart cities: smart economy, smart people, 

smart governance, smart mobility, smart environment, and smart living. One thing that 

is common to all smart city definitions is that smart cities are characterised by a 

pervasive use of information and communication technologies (ICT), which helps cities 

to make better use of their resources.  

The importance of energy systems in smart cities is acknowledged widely in different 

sources and smart energy systems are considered as a backbone of the smart city 

(Net!Works European Technology Platform, 2011). It is also argued that smart grids are 

needed because of the new characteristics of energy systems: more fluctuating 

renewable energy is included in the energy systems and there is more bi-directional 

power flow (consumers producing to the grid) (Lund et al., 2012; Muench et al., 2014). 

Literature considering smart energy systems can be found widely but the research has 

mainly concentrated on electricity grids (usually called smart grids). It is argued that 

smart energy systems should be considered for wider systems where electricity, 

thermal, and gas grids are combined and coordinated to find synergies between them 

to produce efficient systems. 

The term ‘smart grids’ is criticised as being too indistinct and overly fashionable (Muench 

et al., 2014). Smart grids are defined as (Muench et al., 2014) 

an energy distribution system with the unique features to allow functional 

interaction of relevant market participants with the implementation of 

modern technologies such as ICT, to provide the capacity (in kW) that 

enables smart market applications (in kW/h), and to ensure the stability 

of distribution grids by securely connecting a large number of small points 

of intermittent consumption and production 

Another research study defines the term ‘smart energy grids’ as (Neirotti et al., 2014):  

automated grids that employ ICT to deliver energy and enable information 

exchange about consumption between providers and users, with the aim 

of reducing costs and increasing reliability and transparency of energy 

supply systems 
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Definitions for smart thermal grids or important factors to consider in building one can 

be found in a few sources (Gaia Consulting Oy, 2011; Schmidt et al., 2013, 2012). From 

these definitions as well as definitions for smart electricity grids and smart cities, some 

common factors can be highlighted which future DHC systems should take into account. 

These are presented in Figure 13 and explained more carefully later. The different 

factors partially overlap each other. 

 

Utilization of ICT 
systems

Role of consumers

Flexible
Integration with 

other energy 
systems

Reliable,  
competitive and 

attractive

IMPORTANT FACTORS FOR 
SMART THERMAL GRIDS

Intelligently and 
efficiently planned 

and operated

 

Figure 13. Important factors for smart thermal grids 

 

Intelligently and efficiently planned and operated 

Thermal networks should be planned and operated intelligently. Intelligently planned 

thermal systems utilise efficient technologies such as piping materials, substations, and 

heat storage systems. The real challenge in intelligent planning is to consider the 

implications of long-term development scenarios, considering technical possibilities that 

might not be foreseen in design standards. 

Intelligent planning is needed to utilise energy sources efficiently. Initially, DHC systems 

integrated as a part of an energy system have features which will help energy systems 
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in the transformation towards smart systems. The original idea of the DH system is that 

heat can be recycled from sources where it otherwise would be wasted. In 2011, for 

example, 77 percent of DH in Finland originated from recycled heat, including surplus 

heat from CHP plants, waste-to-energy plants, and industrial processes, as well as 

energy delivered by heat pump (Euroheat & Power, 2011). This makes a DH energy 

system more efficient, leading to cost-effectiveness of the system. One challenge is that 

lower temperature levels for a DH system would require more waste heat to be supplied 

to the network. 

In smart energy systems, energy is produced in versatile production plants where 

centralised and decentralised plants are integrated. Technology used is efficient, and 

local energy resources are exploited. Consumers may also sell their extra heat to the 

network. This will require a flexible and intelligent heat network as well as the use of 

lower temperature levels. Thermal plants are spatially integrated in the community, 

taking into account the whole energy system. Efficiency will lead to cost-effectiveness 

of the system. 

Utilisation of ICT systems 

One of the most important and most commonly mentioned factors regarding smart 

cities and smart energy systems is the utilisation of ICT systems. Utilisation of ICT 

systems is not possible, however, without remote and real time data of the operational 

state of each part of the network. This means measurement data must be collected from 

production plants, consumers, and different measurement points in the network.  

Beside the data, the possibility of modifying the state of the network (i.e., control) is 

needed. The data itself does not help to make smart systems intelligent but 

development of proper programs to efficiently utilise the data is needed. In the case of 

thermal energy systems, utilisation of ICT systems means, for example, that more data 

from consumers and different parts of the network will be available from smart meters 

which should be exploited more efficiently. Finding malfunctions is also possible with 

more data and proper programs.  
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Role of consumers 

The role of consumers will become more important in smart cities. Consumers will not 

only be considered as simple consumption points but as consumers which are an 

integrated part of the smart system. Energy companies should enable the end-users to 

interact with the heating and cooling systems since the customers can act flexibly in 

consumption as well as producing heat for the network. This could happen as energy 

companies develop new business models to encourage better participation by 

consumers. 

Flexible 

Thermal networks will be a flexible part of the energy system, bringing adaptability in 

the short, medium, and long term. Short-term adaptation means adapting energy supply 

and demand situations with different sizes of storage systems, demand-side 

management, and peak-load boilers, all of which need to be integrated to the system. 

Medium-term adaptation means adjusting the temperature level in existing networks 

and in the long-term, adapting by aligning the network development with urban 

planning. Smart thermal systems should also be flexible in size, which means they are 

possible solutions for neighbourhood-level or city-wide systems, according to the 

demand for heat and cold. Also in the long term, smart thermal systems should be 

flexible in case heat (or cold) demand decreases due to emission targets.  

Thermal networks are a flexible part of the energy system in the short term, with the 

capability of storing heat or cold. Heat storage systems have been studied widely in 

different scales (e.g.,Arteconi et al., 2012; Nuytten et al., 2013; Olsson Ingvarson and 

Werner, 2008; Østergaard, 2012; Sibbitt et al., 2012; Smith et al., 2013; Tveit et al., 2009; 

Verda and Colella, 2011) and their role in future energy systems with fluctuating energy 

sources will increase. Advanced thermal storage systems should be developed to be 

more efficient and applicable (such as seasonal storage for high temperatures, see 

Schmidt et al., 2013, 2012). After having a functioning ICT system (smart heat meters), 

the exploitation of heat storage and DSM will make energy systems more efficient.  
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Integration with other energy systems 

Thermal grids need to be integrated into the whole urban energy system from a spatial 

point of view as well as from an energy system point of view. The spatial point of view 

is related to urban planning parameters and processes to achieve a techno-economic 

feasibility. The size and structures of the planned DHC networks (micro networks, city-

wide networks, or regional heat transport systems) depends on urban structures and 

topologies as well as land-use characteristics.  

The system level of integration means co-operation with other energy systems. Smart 

energy systems should be planned for wider systems where other energy systems such 

as electricity, thermal, and gas grids are integrated, combined, and coordinated to find 

synergies between them to have the most efficient systems and minimise emissions 

levels. In the case of a thermal system, this is closely related to the flexibility of the 

system, since the storage capacity will bring the possibility of optimising electricity use 

and production (for example, heat pumps and CHP). System-wide energy modelling is 

important to see the effects of primary energy use as well as emissions levels for the 

whole energy system. This is shown in a case study in Chapter 7, where waste heat is 

utilised in a DHC system. Chapter 4, section 4.3 discusses the importance of energy 

modelling.  

Reliable, competitive, and attractive 

The reliability of energy systems is an increasingly important factor for consumers. DHC 

systems have a good track record of being reliable heat and cold suppliers and should 

remain so in future. Competitiveness of thermal energy systems means that they need 

to be cost-effective, both for individuals and businesses. DHC systems are competing 

with other heating and cooling systems in the open market, which is why they need to 

be shown as an attractive option for consumers and investors.  

Despite the high reliability of the heat and cold supply, customers might perceive some 

negative connotations about DHC systems, such as the necessity of long-term contracts 

with the utility, the feeling that they are dependent (not possible to choose the heat or 

cold deliverer), and high connection costs. To increase acceptance in the population, at 
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least the following aspects need to be considered: introducing transparent and adaptive 

tariff systems, developing new business models to allow customers to participate 

(including customers of different sizes), and creating possibilities for customers to 

control their level of comfort by using intelligent control systems.  
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4 Optimising heat and cold production 

The heat and cold loads in DH and DC systems have high seasonal variations (see more 

details in Chapter 2, section 2.3.1). This results in need for heat supply optimisation with 

a set of plants with different cost characteristics in order to minimise annual heat supply 

costs. More information about this is presented in Chapter 2, section 2.3.2. When heat 

is produced in CHP plants or with heat pumps, the price of electricity affects the 

optimisation of different power plants.  

The future will bring challenges for optimisation of heat and cold production. Integration 

of renewable energy, such as wind power, solar power, and ocean energy, brings 

challenges to energy systems. Large hydropower stations are an exception since they 

are typically well suited for electricity balancing. These challenges are usually regarded 

as a problem for the electricity grid but other energy systems should not be forgotten, 

since they can help in the adaption of renewable energy sources. The optimisation 

challenge depends on the share of renewable energy input (Lund et al., 2012). The 

higher the share of renewable energy in the energy systems, the more challenges will 

occur.  

Lund et al. (2012) highlights that smart grids with large shares of renewable energy 

should not be seen as separate from the other energy sectors such as heating systems, 

gas grids, and transportation systems. Energy systems with a high capability of utilising 

intermittent renewable energy sources should be designed with CHP and improved 

efficiency (e.g., in the form of fuel cells). The CHP plants should be operated so that they 

produce less energy when the renewable energy input is higher and more when 

renewable energy input is low. Energy storage systems bring more flexibility to the 

energy systems. Heat storage systems should be preferred since electricity storage 

systems are inefficient and expensive. It is also important to utilise electricity in 

transportation systems (such as electric vehicles) to increase the efficiency of the energy 

system, as well as to invest in flexible demand such as heat pumps, consumer demand, 

and electric boilers. 
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4.1 Heat and cold storage 

As stated in Chapter 2, section 2.3.2, the variation of the hourly heat demand with 

morning and evening peaks brings challenges in heat production. The heat load 

variations require a flexible heat production structure. The daily and hourly heat load 

variations cause additional costs for the DH system and reduce its efficiency. This is 

mainly due to the fact that heat for the peak load periods needs to be produced with 

HOBs, which in most cases are fuelled with more expensive fuels than large CHP plants. 

The start-up and maintenance costs of the HOBs are also significant additional cost items 

for the DH companies.  

There is a large volume of published studies describing the use of heat storage systems 

to optimise the DH systems. Simulation models and tools for the heat storage systems 

have been developed for example in the premise of investment of the new energy 

systems (Tveit et al., 2009), the optimal use of the heat storage and primary energy 

consumption (Verda and Colella, 2011), as well as to even out the variations of the 

renewable electricity production (Nuytten et al., 2013). The operation of the different 

DH systems (case studies) has been analysed for example in studies conducted by 

Kiviluoma (2013) and Streckienė et al. (2009). The optimisation of the electricity 

production with the heat storage systems has been studied for example in a case in 

Germany (Streckienė et al., 2009). Kiviluoma and Meibom (2010) studied the effect of 

the heat storage systems in the Finnish energy system where electricity is produced with 

renewable sources such as wind power. 

Demand-side management means the measures which the energy company uses to 

influence the consumption behaviour of the consumers. In the DH business, the usual 

goal of DSM is the better management of the energy production in such a way that the 

consumption level of the heat and its temporal behaviour would be optimal in relation 

to the whole energy system. With DSM, it is possible to improve the economics of heat 

production by, for example, cutting the peak loads. Shifting peak-load production to 

either earlier or later times will make energy production more efficient. Also, it is 

possible to produce heat for the heat storage at other than peak load times. 
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The effects of DSM for energy saving in the DH system have been studied for example 

in office buildings. In Jyväskylä, Finland, it has been estimated that with DSM it would 

be possible to achieve 25-30 percent savings in heat load (peak load) by exploiting the 

thermal mass of the building (concrete building) and by properly controlling the heating 

system (IEA, 2005; Kärkkäinen et al., 2003). This study was conducted for two office 

buildings, and the effects of DSM were first estimated using a calculation model. 

Afterwards, experimental tests were conducted for the same buildings and the results 

were extrapolated to apply to the whole city. In Iowa (United States), DSM has been 

tested for office buildings, and the energy savings was found to be up to 30 percent 

(Braun et al., 2002). Using the mass of the buildings as a heat storage device has also 

been studied in Gothenburg, Sweden (Olsson Ingvarson and Werner, 2008). In this 

study, the changes in inside temperature were analysed in 12 different types of buildings 

using a field survey. The results showed that the energy-saving potential with DSM was 

approximately 25 percent for the whole city. 

4.2 Including waste heat in the energy system 

One strength of DHC systems is that it is possible to utilise heat that would otherwise be 

wasted, making the energy system more efficient. Waste heat usually originates from 

industrial processes. It is defined as energy flow which has  

- the wrong quality, such as temperature that is too low, 

- the wrong location, so its utilisation in industrial processes is not possible or not 

profitable, or 

- the wrong timing, as for energy demand. 

Beside these, waste heat is available in lakes, ground, and waste water from cities. 

Despite the high shares of CHP in DH systems in Nordic countries, the amount of 

industrial waste heat used as a heat source in DH systems is still generally low, even 

though it is regarded as a vital means of increasing energy efficiency. The figures vary 

depending on the source.  

Persson and Werner (2012) studied the amount of industrial waste heat recovered in 

DH systems in the EU-27 countries: it was only 0,4 percent in 2008. In the new heat 
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roadmap for Europe, Connolly et al. (2014) mapped the yearly potential of industrial 

excess heat in DH networks in the EU-27 countries to be 2710 PJ. The amount of 

industrial excess heat used in DH networks accounted for only 0,9  percent of the 

mapped potential in the year 2010 (Connolly et al., 2014). In Sweden, the amount of 

industrial waste heat used in DH systems was the highest out of all these countries in 

2011, accounting for seven percent (3852 GWh) of the total fuel input (Svensk 

Fjärrvärme, 2011).  

The reasons for the low amounts of industrial waste heat utilised in DH networks are 

numerous; they include the low temperature level of waste heat, which is unsuitable for 

DH networks, and the long distances from the waste heat source to the heat demand, 

which increases the distribution losses. In addition to these technical limitations, the 

lack of a proper business model as well as human factors makes it difficult to use 

industrial excess heat in DH networks. 

However, DH collaboration between industries and energy companies has been studied 

in the literature quite extensively from various perspectives. Grönkvist and Sandberg 

(2006) and Thollander et al. (2010) have analysed the factors promoting and inhibiting 

DH collaboration between industries and utilities in several ways. Different case studies 

on utilising industrial waste heat have been presented from distinct starting points, 

using various methods. For instance, Ajah et al.  (2007) studied the techno-economic 

feasibility of industrial waste heat using the ASPEN plus tool to recover waste heat from 

the pharmaceutical industry in DH networks. Svensson et al. (2008) and Jönsson et al. 

(2008) studied the amount of waste heat available from a kraft pulp mill in Sweden, 

examining whether the waste heat should be used internally in the pulp mills or 

externally in a DH network.  

Holmgren (2006) studied a municipal DH system using various heat sources. She 

analysed scenarios for making new investments in the energy system and investigated 

the energy system as a whole using the MODEST simulation tool. Kapil et al. (2012) took 

into account the distance between an industrial waste heat facility and a DH system 

when the profitability of collaboration between the particular process industry and the 

DH system was evaluated.  
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Gebremedhin and Moshfegh (2004) and Karlsson et al. (2009) analysed even larger 

systems where various heat companies and industrial sites might form a shared heat 

market. Both studies included examples from Sweden, using the MODEST simulation 

tool to calculate the results. Gebremedhin and Moshfegh (2004) focused on conditions 

for establishing a joint heat market, analysing which heat plants should be used and how 

to meet the heat demand in a cost-effective and environmentally reasonable manner. 

Karlsson et al. (2009) analysed the prospects of three large industrial plants and four 

energy companies forming a regional heat market. They calculated the economic 

influence for different operators as well as the environmental impacts of such a heat 

market.  

The above-mentioned studies provide an interesting cross-section on how to best use 

various amounts of industrial waste heat in different types of DH systems. The general 

conclusion of these studies is that the benefits of using waste heat in a DH network are 

dependent on the energy system as a whole, as well as on the geographical distance 

from the waste heat source to the municipality (heat demand). The studies also 

demonstrated that the heat trade in the DH business can occur at different levels.  

Traditionally, DH networks have been community-based markets, where an energy 

company sells heat to its customers. In addition to this, heat trade can occur between 

two or more energy companies where the production units with the lowest marginal 

price produce heat and the producer receives compensation for this. At the next level, 

the DH companies and industrial utilities can implement a bilateral agreement where 

waste heat from industry is fed into a DH system.  

The third level of the heat trade, which has not yet been studied in the academic 

literature, is implemented in a real-life case in a market-based thermal system, Open 

District Heating and Cooling (Open DHC) (Fortum, 2013a). The idea here is that a DHC 

network will be opened to customers to give them the opportunity to sell their extra 

(waste) heat to the thermal network. The waste heat, at different temperature levels 

and amounts, will be recovered in the DHC system. The novelty value of this system is 

that the energy company develops an open-pricing model for waste heat and, based on 

that model, a waste heat supplier can sell the waste heat to the DH network whenever 
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it is profitable for them to do so. The price of waste heat in this case depends on the 

outdoor temperature, but other options for pricing are also possible.  

4.3 Modelling energy systems 

Energy systems are complex systems of complete energy supply and demand. The 

purpose of energy planning is to find a set of sources and conversion devices in such a 

way that energy requirements or demands are planned in an optimal manner. Energy 

system models are simplified representations of real systems, built as tools to explain, 

predict, or control the behaviour of these systems.  

Energy planning models have been developed since 1970s’. A brief history of the 

development of energy planning models is presented in Jebaraj and Iniyan (2006). 

Nowadays there are many different kinds of energy planning models for different 

purposes. There are models which concentrate on one specific technology as well as 

models for planning whole energy systems covering many different conversion 

technologies. Models can concentrate on, among other things, various environmental 

issues, economic issues, or the optimisation of different technologies. Energy system 

models can be classified by the purpose of the model, by the model structure, or by the 

geographical coverage of the model. Many different classifications of energy system 

models have been presented in literature while there are only few models that fit into 

one distinct category. Energy system models can be classified for example by the 

purpose of the model, by the model structure or by the geographical coverage of the 

model. Many different classifications of energy system models have been presented in 

the literature (see van Beck (1999)). 

Different energy system models have been studied widely and numerous reviews are 

found in the literature (Bhattacharyya and Timilsina, 2010; Connolly et al., 2010; 

Hiremath et al., 2007; Jebaraj and Iniyan, 2006; Manfren et al., 2011; van Beck, 1999). 

These reviews concentrate on some specific area, such as energy system models suitable 

for developing countries (Bhattacharyya and Timilsina, 2010) or energy models that can 

be used to analyse integration of renewable energy (Connolly et al., 2010).  
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Heating sector can be found in many of the energy simulation tools. CHP is included 

among others in Balmorel (2014), EnergyPLAN (2014), energyPRO (EMD International 

A/S, 2013), SIVAEL (2009), Stream (2014), and RETScreen (2014). EnergyPRO, Stream 

and RETScreen also include district heating simulations. There are also specific models 

which are designed for district energy applications and for planning district heating and 

cooling systems, such as the GRADES Heating calculation system developed by Enoro, 

formerly Process Vision, (Enoro, 2014), Vitec NetSim, Apros (2014), and HEATSPOT 

(Knutsson et al., 2006).  

4.3.1 EnergyPRO 

Chapter 7 presents a case study where waste heat is inserted into the district heating 

and district cooling network. In this study, to calculate the merit order of power plants 

with given heat demand in an energy system, the energyPRO simulation tool was used. 

EnergyPRO is an input-output modelling software package used for modelling energy 

systems (Connolly et al., 2010; EMD International A/S, 2013; Hinojosa et al., 2007). It is 

used for optimising the operation of plants using technical, financial, and external 

parameters. With energyPRO, it is possible to model all types of thermal generation 

(except nuclear), renewable generation, and energy storage systems (Connolly et al., 

2010). As a result, energyPRO calculates the merit order of different production plants 

to minimise the cost of meeting the heat demand.  

The energyPRO tool has been applied in several cases published in journal articles 

presenting case studies; for example, in Denmark, the UK, and Germany. CHP power 

plants and their investment and operation strategies in Danish energy systems were 

studied in Lund and Andersen (2005). The study by Nielsen and Möller (2012) 

concentrates on net zero energy buildings and the possibility of using their excess heat 

as an energy source. With the energyPRO simulation tool, they model how excess heat 

production from net zero energy buildings influences different types of DH systems in 

Denmark. Ostergaard (2012) investigated the system impact of different types of energy 

storage systems, including district heating storage, biogas storage, and electricity 

storage in Denmark. 
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Streckienė et al. simulated a case study with CHP plants and thermal storage in the 

German spot market where day-ahead prices for electricity show significant variations 

(Streckienė et al., 2009). A similar approach was taken by Fragaki (Fragaki et al., 2008; 

Fragaki and Andersen, 2011) to the UK energy market, where only a few CHP plants have 

thermal storage.  

Input values for energyPRO are either heat demand, cooling demand, and/or electricity 

demand, depending on the optimisation task. Demands can be inserted into the 

program as rough period estimates or exact hourly distributions (time series). Input 

values also include information on the environment (such as electricity prices and 

Table 5. Working method of the energyPRO tool in this case study 

How the energyPRO tool works 

INPUT VALUES 

Environment Fuels Producing units Heat storage 

systems 

Hourly heat 
demand data Heat values Fuel power Volume 

Hourly outdoor 
temperature data Fuel prices Electricity power Temperature in the 

top 
Hourly electricity 

price data 
Taxes and 

financial support Heat power Temperature in the 
bottom 

  Minimum power Insulation 
  Regulation  

  Taxes and 
financial support  

  O&M costs  
  Revision times  

 

OPTIMISING MERIT ORDER OF PRODUCING UNITS, 

TARGET: MINIMISING COSTS 

 

RESULTS: COSTS AND EMISSIONS 
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outdoor temperatures), fuels (such as heat values, possible restrictions, and prices), and 

production units (such as production figures, minimum power, O&M costs, and taxes).  

The input values for the energyPRO model used in this study are presented in Table 5. 

The user can define whether all producing units can produce heat for heat storage 

(which was the case in this study). 

EnergyPRO calculates the annual production, typically in one-hour steps, allowing the 

optimisation to take hourly-varying electricity prices into account. EnergyPRO does not 

calculate the optimal merit order chronologically, but it can find optimal operation 

strategies in the most favourable periods. The reason for this is that each new 

production has to be carefully checked to avoid disturbing already-planned future 

production, in order to avoid problems with, for example, varying electricity prices (Lund 

and Andersen, 2005).Figure 14 shows the graphical user mode for the energyPRO 

simulation tool with case examples presented.  

 
Figure 14. Example of the graphical user mode of the energyPRO simulation tool (EMD 
International A/S, 2013) 

 

Figure 15 presents how energyPRO gives the hourly results in graphical mode. In this 

figure, the upper graph shows the electricity tariff up against which production is 

optimised. The second and third graphs show the optimised heat and electricity 
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production with different production units. The bottom graph shows how the thermal 

storage is used during particular hours. 

 
Figure 15. Example of how the results are shown hourly in graphical format in the 
energyPRO simulation tool (EMD International A/S, 2013) 
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5 CASE I: Remote customer measurements and forecasting DH 
consumption 

One of the challenges of the DHC systems is better utilisation of the ICT and data 

available from remote customer measurements. There are many benefits that energy 

companies can achieve after remote measurements are applied fully, but work is still 

ongoing. This chapter will focus on remote metering in a DHC network and the utilisation 

of remote customer measurements. First, possibilities and benefits of remote metering 

are listed. Secondly, this chapter concentrates on building a forecasting model where 

hourly remote measurements are utilised. 

5.1 Target of the study 

The thermal energy consumed in district-heated houses is computed based on three 

main measurements (see a more detailed description in Chapter 2, section 2.3.3). These 

measurements are the mass flow of the DH water and the temperatures of the supply 

and return water. From these measurements, the heat consumption meter calculates 

the thermal energy consumed.  

Traditionally, customers have sent heat meter readings to the energy company once a 

year. The main problem of this arrangement has been missing data. Many DH companies 

are moving towards remote meter reading, which means that the data for thermal 

energy consumed is sent to the energy company automatically. This will allow energy 

companies to develop their processes, and one possibility is to develop DH forecasting 

models.   

DH forecasting models are described in more detail in Chapter 2, section 2.3.4. A 

common feature of the earlier forecasting models was that forecasting data is based on 

DH production data from heat producer for a larger area (city or neighbourhood). In this 

study, the forecasting models are based on hourly customer measurements. More 

specific forecasts based on individual customer measurements may benefit both DH 

producers and single customers. For the heat producer, it allows for better production 

planning and optimisation. Customer- and area-specific forecasts allow the DH company 

to determine where and when it should produce heat and how it should use heat storage 

systems optimally. With heat consumption data from single customers, it is possible to 
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develop customer profiles for different customer types. Forecasts for different existing 

and planned neighbourhoods may be developed, as well as estimates for the 

consumption of customers for which measurement data is missing. For single DH 

customers, specific forecasts allow planning for their own heat consumption and 

possible local production, using e.g., heat pumps and solar collectors. Such benefits can 

be expected in the future when smart DH systems are fully available.  

The value of this part of the study was the availability of more accurate heat 

consumption data, directly from customers and almost in real time. The target was to 

develop a forecasting model of DH consumption based on data from individual 

customers. The focus was to find out if it is possible to develop more specific forecasting 

models for DH consumption based on hourly consumption data from individual 

customers. The forecasting model implemented in this research was formed using linear 

regression based on outdoor temperature data and the social component of the heat 

consumption. Information about the precise geographical location of the customers was 

not available, so it was not possible to take into account more specific weather 

conditions such as the effects of wind speed, solar radiation, or precipitation on heat 

consumption. 

5.2 Methods and data used 

5.2.1 Data used 

The data used in this research consisted of hourly-based DH consumption data from 

single customers of Helsingin Energia, the energy company of Helsinki producing 

electricity, heat, and cooling for the city dwellers. The hourly consumption data was 

collected from apartment buildings built in different decades. The data covers the full 

year 2011. The measurements collected from the customers were cumulative water 

flow (m3), supply water temperature (°C), and return water temperature (°C). From 

these parameters, the following data was calculated automatically and also received 

directly from customers: cumulative energy used (MWh), hourly consumed energy 

(MWh), and the utilisation rate of consumed energy for every hour (scale from 0 to 1 as 

ratio of nominal maximum water flow). Besides these, the hourly outdoor temperature 

of Helsinki was available for the same period of time as the DH consumption data.  
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Initially, data was received from 14 customers. To evaluate the quality of the data, each 

data series was first investigated graphically. Because remote meter reading systems 

have been installed quite recently (and the work is still ongoing), the data series were 

more or less incomplete. Data for some days was missing from all customers. In addition, 

a few customers had even longer periods of data missing. These problems refer to either 

a centralised data acquisition problem affecting all customers or to a data acquisition 

problem for a single customer. Besides these, a small number of measurements for 

randomly-placed individual hours were also missing. 

The main part of the missing data was for the summer period, which is why the 

forecasting model was developed only for the winter period (the middle of September 

to the middle of May), when DH is mainly used in Finland. However, in the case of three 

customers, some data was missing for a longer period of time. Customers no. 3, no. 4, 

and no. 14 were rejected from the study because the amount of data missing was more 

than 16 percent (16.8 percent–23.8 percent). In addition, two customers (no. 9 and no. 

10) were rejected because the precision of the hourly metering values was not sufficient. 

Due to a scaling problem, these measurements had precision to only one decimal place. 

In the end, nine customers were included in the study. Even then, some of the data was 

missing from single hours. These single missing data were replaced by interpolating 

between measurements from the previous and following hours. Table 6 presents the 

Table 6. Data of customers included in the forecasting model 

Customer no. Decade of 
construction 

Max water flow 
(m3) 

Missing data 
(%) 

1 1900 5,6 0,38 

2 1900 2,8 0,05 

5 1970 1,6 0 

6 1970 3,2 0,03 

7 1980 5,6 0,41 

8 1980 4,8 0,94 

11 2000 6,4 0,47 

12 2000 4,8 0,62 

13 2010 3,4 0,91 
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included customers and also lists the construction decade of the building, maximum 

water flow, and the share of the missing data. Compared to earlier forecasting models 

concerning DH consumption from in previous studies, the amount of missing data is very 

small (Nielsen and Madsen, 2006, 2000). 

5.2.2 Regression analysis 

Regression analysis is a statistical analysis method describing how one variable depends 

on another. Linear regression is used to estimate the linear dependency of variables. 

The forecasting model aims to explain the behaviour of the unknown quantity y in terms 

of known quantities x, parameters a and random noise e 

 

y=f(x,a)+e (3) 
  

Forecasting models can be classified according to the shape of the function f and in this 

paper the focus is on a linear regression model. The linear regression model can be 

written as a form of 

 

𝑦𝑦𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑡𝑡, 𝑡𝑡 = 1 …𝑇𝑇 (4) 
 

This is a linear equation system with two unknowns a0 and a1 and one constraint xt for 

each period of time t. Because there are, in general, many more constraints than 

variables, this is an over-determined equation system and it can be solved in the least 

squares sense. Each equation has a specific error variable et 

 

𝑒𝑒𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑡𝑡 − 𝑦𝑦𝑡𝑡, 𝑡𝑡 = 1 …𝑇𝑇 (5) 
 

Parameters 𝑎𝑎0 and 𝑎𝑎1 are values sought that minimise the square sum of the error 

variables 

 

Min 𝑒𝑒12 +  𝑒𝑒22 + ⋯+  𝑒𝑒𝑇𝑇2 (6) 
 
With matrix notations the problem can be written as  
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Min 𝒆𝒆𝑇𝑇𝒆𝒆    s.t (7) 
 

𝒆𝒆 = 𝑿𝑿𝑿𝑿 − 𝒚𝒚 (8) 

 
Substituting e into the objective function yields an unconstraint optimisation problem 

 

Min (𝑿𝑿𝑿𝑿 − 𝒚𝒚)𝑇𝑇(𝑿𝑿𝑿𝑿 − 𝒚𝒚) = 𝒂𝒂𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 − 2𝒂𝒂𝑇𝑇𝑿𝑿𝑇𝑇𝒚𝒚 + 𝒚𝒚𝑇𝑇𝒚𝒚 (9) 
 
Forming the derivative and setting it to zero gives the solution 

 

2𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 − 2𝑿𝑿𝑇𝑇𝒚𝒚 = 0 → 𝒂𝒂 = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒚𝒚 (10) 
 

In this study, heat consumption y is explained by a linear model based on the outdoor 

temperature x, determining the parameters using history data represented in Chapter 

4, section 4.2.1. 

It was discovered how much the forecasting model accuracy increases if the social 

component is included in the forecasting model in addition to the outdoor temperature. 

This was done by including the weekly pattern of heat consumption in the forecasting 

model in four different ways. The weekly pattern was added in the regression formula 

 

𝑦𝑦𝑡𝑡 = 𝑎𝑎ℎ(𝑡𝑡) + 𝑎𝑎1𝑥𝑥𝑡𝑡 (11) 
 
where 𝑎𝑎ℎ(𝑡𝑡) is an average of each hours’ (depending on the model) error classified 

hourly. The different models with their names and short descriptions are presented in 

Table 7.  

In the fourth and fifth models, the midweek holidays in the Finnish calendar were taken 

into account. In the year 2011, there were nine midweek holidays which were 

considered as Saturdays or Sundays depending on the nature of the holiday. The 

assumption was that if the shops were partly open on a midweek holiday, it was 

considered as a Saturday. Other midweek holidays were considered as Sundays. 
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Five different forecasting models were estimated for each customer separately, for 

customer pairs, and for all the customers together. Customer pairs were formed from 

the sum of customers whose buildings were built in the same decade. The customer 

pairs were customers no. 1 and no. 2 (built at the beginning of 1900), customers no. 5 

and no. 6 (built in the 1970s), customers no. 7 and no. 8 (built in 1980s), and customers 

no. 11 and no. 12 (built in 2000). Lastly, forecasting models were made for all the 

customers as a group.  

As stated earlier, only winter time was considered in this forecasting model; summer 

time from mid-May to mid-September was excluded. The period of 15.3.2011 5:00 p.m. 

to 17.3.2011 7:00 p.m. was excluded because most of the data was missing.  

5.2.3 Methods used for estimating forecasting error 

The accuracy of different forecasting models was compared with the N-1 method. This 

means that the forecasting models for each customer separately, for customer pairs, 

and for the sum of all customers were constructed for the inspected period of time, but 

week no. 13/2011 was excluded. When the forecasting models were formulated, they 

were tested for week no. 13/2011 and the accuracy of the models was compared. Week 

no. 13/2011 was chosen because in the year 2011 it was a week of typical winter 

weather in Helsinki, with temperatures varying from -9.8 °C to +4.5 °C. The average 

temperature was -1 °C.  

Table 7. Names and descriptions of the models 

Model name Description 

T Only the outdoor temperature (Tout) was considered 

T168 The Tout together with a 168-hour weekly pattern was used. 

T72 The Tout together with a 72-hour weekly pattern (working days, 

Saturdays, Sundays) was used. 

T168H Same as the T168 model, but midweek holidays were classified as 

Saturdays or Sundays. 

T72H Same as the T72 model, but midweek holidays were classified as 

Saturdays and Sundays. 
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The accuracy of different models was compared using absolute and relative error of the 

measured and simulated values of the model. The relative error was calculated by 

dividing standard deviation by the average of measured values. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑆𝑆𝑆𝑆
∑ 𝑥̅𝑥

 (12) 

 
The standard deviation (SD) is a measure of how widely values are dispersed from the 

average value,  calculated as 

𝑆𝑆𝑆𝑆 = �∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑖𝑖
𝑛𝑛

 (13) 

 
where xi is the observation and n is the sample size.  

5.3 Results and discussion 

The first forecasting model (T) was implemented using only outdoor temperature data 

in the linear regression model. Figure 16 and Figure 17 present two scatter charts of two 

customers’ DH consumption as a function of outdoor temperature. When the outdoor 

temperature decreases, the heat consumption increases. These two customers were 

chosen as an example to show the difference between forecast models for different 

customers. For customer no. 1 (in Figure 16) the consumption points follow the 

 

 

Figure 16. Regression lines for customer no. 1, with good accuracy. 

0,000

0,050

0,100

0,150

0,200

0,250

0,300

-30 -20 -10 0 10 20 30

En
er

gy
 c

on
su

m
ed

 (M
W

h)

Outdoor temperature (°C)

56 
 



 

regression line closely and the error for regression is small. For customer no. 6 (Figure 

17) the scatter diagram shows that the error for regression is larger and the 

consumption points do not follow the regression line as well as for customer no. 1. 

 
Figure 17. Regression lines for customer no. 6, with poor accuracy. 

 

If the summer period was included in the forecasting models, the temperature function 

for the whole year would be non-linear because the heat consumption for heating 

houses in the summer is low, in practice zero at temperatures above 17 °C. However, 

DH is also needed in the summer to provide domestic hot water. When summer is 

excluded from the forecasting model, the linear model approximates the relationship 

between heat consumption and outdoor temperature well. 

The social component, i.e., weekly pattern of heat consumption, was then added to the 

forecasting models. The weekly pattern was taken into account in four different ways as 

described in Chapter 4, section 4.2.2. Figure 18 shows the measured hourly consumption 

of customer 1 (‘Measured’) for week 13/2011. The outdoor temperature of the selected 

week (secondary axis) demonstrates a typical winter temperature range in Southern 

Finland, extending from +4.5 °C to -9.8 °C. The measured hourly consumption curve 

shows the typical consumption pattern for the week with morning and evening peaks. 

0,000

0,050

0,100

0,150

0,200

0,250

0,300

-30 -20 -10 0 10 20 30

En
er

gy
 c

on
su

m
ed

 (M
W

h)

Outdoor temperature (°C)

57 
 



 

For this customer, the heat consumption increased at the end of the week, which was 

explained by decreased outdoor temperature.  

Figure 18 presents simulation results of three different forecasting models. The first 

forecasting model, model T, based on only outdoor temperature data, shows that it 

estimates the consumption quite well, but most of the consumption peaks are 

underestimated by the model, whilst for the consumption peaks on Friday and Saturday 

the forecast gives values that are too high. The relative error for this model was 9.5 

 

Figure 18. N-1 forecasting models for week 13/2011 for customer no. 1 
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percent. Consumption peaks can be predicted with better accuracy when the weekly 

pattern is included in the forecasting model. Model T168, with a weekly pattern of 168 

hours, gives a relative error of 7.69 percent. In the third model, model T72, where the 

weekly pattern is considered as working days, Saturdays and Sundays, consumption 

peaks are modelled even more accurately, with a relative error of 7.15 percent. The 

models T168H and T72H, where the midweek holidays were included, gave almost 

identical results to models without the midweek holidays. For better clarity, these 

results are omitted from Figure 18, but the results can be seen in Table 6.  

Table 8 and Table 9 summarise the relative and absolute errors of all forecasting models 

for individual customers, pairs of customers, and all customers grouped together. The 

relative error in the T-models for individual customers varies from 9.50 percent to 26.74 

percent. Variation is quite large due to differences among customers. The accuracy of 

the forecast for small customers with small water flow (no. 5 and no. 6) is worse than 

for big customers (no. 1, no. 8, and no. 11). 

Table 8. Relative errors of different forecasting models 

  Relative errors (%) 

Customer T T168 T72 T168H T72H 

1 9,50 7,69 7,15 7,76 7,17 

2 10,62 7,53 7,66 7,50 7,63 

5 20,81 14,90 15,42 14,99 15,47 

6 26,74 24,46 24,32 24,19 24,06 

7 14,42 8,09 7,51 8,13 7,53 

8 10,40 6,77 6,25 6,74 6,26 

11 11,61 7,88 7,58 7,89 7,59 

12 12,87 8,45 8,32 8,39 8,24 

13 21,65 15,52 15,82 15,51 15,81 

Sum of 1 and 2 9,13 6,69 6,43 6,71 6,41 

Sum of 5 and 6 19,83 16,04 16,12 15,86 15,94 

Sum of 7 and 8 12,05 6,51 5,80 6,52 5,81 

Sum of 11 and12 11,29 6,41 6,41 6,37 6,36 

Sum of all 10,67 5,34 5,28 5,33 5,25 
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Including the weekly pattern brings more accuracy to all forecasting models. The results 

are 2.35–6.91 percentage points better when the weekly pattern is included, depending 

on the customer and the model type. The accuracy of the models including the weekly 

pattern varies, because different customers have different user habits. For example, the 

accuracy of predicting the consumption of customer no. 7 improves almost seven 

percentage points when the weekly pattern is added to the model. But for customer no. 

6, the accuracy improves only about two percentage points and the accuracy of 

prediction is low in every model. Table 8 and Table 9 also show that the forecasting 

models for individual customers are worse than for pairs of customers or for all 

customers grouped together. As the heat consumption for single customers does not 

typically coincide with one another, the consumption for a larger set of customers is 

evened out and the relative prediction error is made smaller. 

Table 9. Absolute errors of different forecasting models 

  Absolute errors (MWh) 

Customer T T168 T72 T168H T72H 

1 0,0097 0,0076 0,0073 0,0078 0,0074 

2 0,0078 0,0060 0,0061 0,0061 0,0061 

5 0,0081 0,0056 0,0057 0,0056 0,0057 

6 0,0164 0,0135 0,0135 0,0134 0,0134 

7 0,0196 0,0109 0,0102 0,0109 0,0102 

8 0,0107 0,0074 0,0071 0,0074 0,0072 

11 0,0160 0,0104 0,0102 0,0104 0,0102 

12 0,0154 0,0105 0,0105 0,0105 0,0104 

13 0,0141 0,0111 0,0112 0,0110 0,0112 

Sum of 1 and 2 0,0162 0,0122 0,0119 0,0123 0,0120 

Sum of 5 and 6 0,0204 0,0148 0,0148 0,0147 0,0146 

Sum of 7 and 8 0,0297 0,0153 0,0143 0,0154 0,0144 

Sum of 11 and 12 0,0291 0,0166 0,0167 0,0165 0,0165 

Sum of all 0,0872 0,0421 0,0424 0,0420 0,0423 
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It is difficult to compare the accuracy results with earlier studies, where forecasting was 

based on DH production data, because the forecasting methods, network size, and 

examination periods vary (Dotzauer, 2002; Kvarnström et al., 2006). However, it seems 

that the forecasting models developed in this study, using consumption data from 

customers, are competitive with earlier studies. For the group of customers, the relative 

error was even smaller than in earlier studies. 

5.4 Conclusions 

In this part of the study, forecasting models for DH consumption were developed using 

hourly heat consumption data from individual customers. The models were constructed 

based on linear regression, using the outdoor temperature data and the social 

component of the heat consumption as explanatory factors.  

The results show that accuracy of the forecasting model varies depending on the 

customer. The forecasts tend to be more accurate for bigger customers and aggregated 

groups of customers. In the best cases, a rather simple model was shown to predict the 

heat consumption with reasonable accuracy. The forecasting model for the group of 

nine customers was very accurate and the relative errors were smaller than in earlier 

studies. This may be due to better-quality source data and the fact that the temporal 

mismatch between production and consumption does not disturb the model. 
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6 CASE II: Flexibility and customer participation – Demand-side 
management 

One of the challenges in DHC systems as a part of smart cities is to bring flexibility to the 

DHC network. DHC systems are already a flexible part of the energy system, with the 

ability to store energy (heat or cold), but the possibility of using residential buildings as 

short-term heat storage facilities has not been studied widely. This part of the study 

focuses on the flexibility of the DH system, and the concentration is on the utilisation of 

heat storage systems in the short term using customer participation. Here the efficiency 

of the energy system is increased by cutting the heat for one hour during the morning 

peak for the customers living in block buildings.  

6.1 Target of the study 

The target of this part of the study is to examine the possibility of residential block 

buildings operating as short-term heat storage facilities to reduce the heat load peaks 

in the DH system. The research question can be divided into two parts. First, the reaction 

of buildings of differing ages to the temporal heat cut, with varying outdoor 

temperatures, was ascertained, as well as how this would affect the indoor temperature 

level of the buildings. This part was mainly done in Jokinen (2013) but the methodology, 

input data, and results are briefly described here as well. Secondly, using the previous 

results, the object was to figure out the overall DSM potential of the buildings. The 

starting point of this study was to keep the DH customers satisfied with the heat 

delivery. This means that DSM is implemented in such a way that the heat is reduced for 

one hour every weekday morning. The restriction was that the indoor temperature 

could not decrease over 1 °C. The heat for the domestic hot water was not reduced; 

technologically, this is possible because of the connection to the DH (see Figure 4). 

As stated before, DSM for DH buildings has been studied earlier but the concentration 

has been mainly on single buildings and office buildings. However, far too little attention 

has been paid to the effects of DSM on the residential buildings despite the fact that in 

Helsinki, for example, approximately 54 percent of the DH customers (measured in 

space area) are residential buildings (Statistics Finland, 2013). DSM studies on a large 

scale (for example, city-wide) are lacking. 
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6.2 Methods and data used 

Buildings of different ages respond to heat reduction and thus to the temperature 

change in diverse ways. This is the reason why an extensive study is needed, where the 

inside temperature behaviour in residential buildings during a heat reduction is 

estimated. Structures and technical systems in simulated buildings represented the 

typical values according to the regulations in effect during each decade (Jokinen, 2013). 

The buildings were simulated using the IDA-ICE program (Björsell et al., 1999; IDA, 2013; 

Salvalai, 2012). In this study, it was important to take into account the speed of the 

inside temperature change when simulating buildings. Dynamic simulation models are 

based on a detailed thermal model of the building when it is possible to take into 

consideration the time delays in the buildings. The benefit of the dynamic simulation 

model is the possibility of using the hourly weather data. 

The computations conducted in this study concentrated on analysing the block buildings 

and the DH system located in Helsinki, Finland, where 47 percent of the residential 

buildings are block buildings. The building stock consists of buildings of different ages. 

Table 10 presents the number of block buildings, with floor space, built in different 

Table 10. The block buildings in Helsinki (number and floor space) divided by the 
building year (Statistics Finland, 2013) 

Building year 

Residential 

buildings (number) Floor space (m2) 

The share of floor 

space (%) 

- 1920 698 1 755 460 8,0 

1921–1939 1 265 3 494 868 15,9 

1940–1959 1 432 2 933 152 13,3 

1960–1969 1 630 3 803 396 17,3 

1970–1979 1 146 2 671 188 12,2 

1980–1989 1 651 2 167 585 9,9 

1990–1999 1 297 2 440 596 11,1 

2000–2009 778 1 998 797 9,1 

2010–2012 245 678 189 3,1 

Sum 10 154 21 975 263  
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decades. The largest share (over 17 percent) of the block buildings in Helsinki was built 

in the 1960s as more than over 17 % of the buildings were built in this decade. (Statistics 

Finland, 2013). 

The thermal behaviour of the residential buildings is studied in conditions where the 

heat is cut for one hour. The starting point of this research is the customer satisfaction 

with the heat delivery. This means that the heat cut must be implemented in a way 

which does not cause harm to the customers. In Finland, the optimal inside temperature 

(affected by air humidity, gender, and age) is 21 °C (Seppänen, 2001) which refers to the 

temperature level with which most of the people are satisfied and the number of 

dissatisfied people are in a minority. Beside this, comfort decreases if the inside 

temperature varies too much too fast. This is the reason why the inside temperature 

cannot fluctuate more than 1 °C per hour inside the apartment (Seppänen, 2001).  

The optimal inside temperature is defined when air humidity is 50 percent, and during 

the winter time, when air humidity decreases, the optimal inside temperature increases 

0.3 °C for every 10 percentage points decrease in air humidity (Seppänen, 2001). Gender 

and age do not affect the optimal temperature directly, but the differences come from 

the different clothing habits of men and women as well as the activity levels of people 

of different ages. In this study, the days where the decrease of the inside temperature 

does not exceed 1 °C during the heat cut are regarded as theoretical DSM potential. For 

the simulations, the heat is cut at 7:00 a.m. on weekdays when the heat consumption 

peak typically occurs. The delivery of the domestic hot water is not cut.  

All the simulated buildings are based on the block building built in 1968 which is 

presented in Figure 19 and simulated with the IDA-ICE tool. The input values for the 

simulations of the buildings of different ages varied according to the building 

regulations. Every room in the simulated buildings was modelled separately (Jokinen, 

2013). 
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Figure 19. A block building built in the year 1968, simulated with the IDA-ICE tool. The 
red colour shows the rooms which are critical in the sense of the decrease of the 
indoor temperature (in this case, upper corner rooms). (Jokinen, 2013) 

 

The structures, heat insulation, and ventilation, as well as the heating systems of the 

residential buildings, have changed over the years. The structure type has changed from 

a masonry structure to a mixed structure, and nowadays the most commonly used 

structural type is concrete elements. The structure of the external wall has changed from 

a massive two-layer brick uninsulated wall structure to a more energy-efficient sandwich 

structure. Regulations concerning heat insulation have also evolved since the 1930s to 

be more energy efficient. The ventilation in the block buildings has traditionally been 

natural ventilation, but since the 1960s, forced ventilation systems have been installed. 

Heat recovery systems have become more common since the year 2000. Traditional 

heating systems in the block buildings were based on stove heating; these have been 

displaced by central heating systems beginning in the 1910s. The DH systems have a long 

tradition in Finland from the 1950s. In Helsinki in 2012, 93.7 percent of all block buildings 

(9513 buildings) were heated with DH (96.8 percent as floor space) (Mäkiö, 1989; 

Neuvonen, 2006; Statistics Finland, 2013). 

The input values for the simulations are presented in Table 11. The thermal load caused 

by the people (125 MW) inside the building is taken into account in those rooms where 

activity takes place. The number of the people is 1/28 people/m2 (The Ministry of the 

Environment, 2010).  

The inside temperature of the buildings does not follow the changes in the heat load 

immediately but has a time delay, which is due to the large heat load capacity of the 

buildings. With this time delay, it is possible to gain both benefits and disadvantages. 

Due to the time delay, the inside temperature stays stable, which simplifies the heat 
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control. It does not decrease rapidly even if the heat is stopped suddenly. The 

disadvantage of the time delay is in the cases where the buildings are used only 

occasionally, so it is not possible to heat up or cool the building down quickly.  

 

The theoretical potential for DSM (QTeor) is formed from the average heat load during 

the heat cut for each building type. From the simulation models, the average heat load 

for those days when a heat reduction is possible is calculated as a result. For each 

building type, the theoretical potential for DSM can be calculated by multiplying the 

average heat load (P) during the heat reduction period by the space area for each 

building type (A), which can be derived from Table 11. This is presented in formula (14). 

 

𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑃𝑃 ∗ 𝐴𝐴 (14) 

Table 11. The input values for the simulations of the buildings (Jokinen, 2013) 

  1880-
1919 

1920-
1939 

1940-
1960 

1968 1976 1985 2003 2010 

U-values of the 
building elements: 

        

 External wall 
(W/m2,K) 

0,91 0,91 0,53 0,44 0,4 0,28 0,25 0,17 

 Roof (W/m2,K) 0,4 0,2 0,45 0,35 0,35 0,22 0,16 0,09 

 Base floor 
(W/m2,K) 

0,48 0,2 0,59 0,41 0,4 0,36 0,25 0,16 

 Windows (W/m2,K) 2,1 2,1 2,1 2,1 2,1 2,1 1,4 1,0 

 Doors (W/m2,K) 0,7 0,7 0,7 0,7 0,7 0,7 1,4 1,0 

Other input values:         

 n50-value (l/h) 6 6 6 6 6 6 4 2 

 Annual efficiency 
of the ventilation 
heat recovery (%) 

0 0 0 0 0 0 30 45 

 Flexibility of the 
thermal loss of 
buildings’ envelope 
(%) 

0 0 0 0 0 0 10 30 
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Heat load during the heat reduction period is presented in unit W/m2 and the space area 

in unit m2. 

6.3 Results and discussion 

The heat load varies for block buildings built in different decades. The heat loads during 

the heat cut for simulated block buildings with relation to the outdoor temperature are 

presented in Figure 20. The heat loads presented do not include the heat needed for 

domestic hot water but only the heat required for the space heating. The block buildings 

built before 1985 follow approximately the same heat load curve. A big change can be 

seen for the buildings built in 2003 and 2010, for which the heat loads during the heat 

reduction are much smaller when compared with the older buildings.  

There are three important factors affecting this. The first one is the smaller n50-value 

for buildings built after the year 2003. The n50-value indicates the leakage air flow rate 

(see Table 11) and it affects the energy consumption significantly: a change in a whole 

number in the n50-value affects the heat demand of the building by seven percent 

 

Figure 20. The average heat load (W/m2) for buildings of different ages during a heat 
cut with different outdoor temperatures. The heat needed for domestic hot water is 
not included. 
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(Rakennustieto Oy, 2010). The second factor affecting the smaller heat loads in buildings 

built after 2003 is the forced ventilation system, where the air is reheated with an 

electric heater in the ventilation system. The third factor is heat recovery from exhaust 

air with an air-to-air heat exchanger, which became more common after the year 2000. 

Figure 20 shows that the largest potential to decrease the level of heat load by using 

DSM is in block buildings built before the year 2000. The heat load is high in these 

buildings. In newer buildings, the time when heat is not needed for space heating is 

longer than for the older buildings. For the building built in 2003, heat was not needed 

for space heating during the days from 1.5.2012 to 16.9.2012 and for the building built 

in 2010, heat was not needed from 24.4.2012 to 7.10.2012. 

The change in the indoor temperature in relation to the outdoor temperature during 

the heat reduction in block buildings built in different decades is presented in Figure 21. 

The horizontal red line shows the maximum temperature decrease (1 °C) that was set as 

a precondition for the residents’ comfort. Figure 21 shows that the newer the building 

is, the better the heat storage capacity it has, which means slower cooling of the 

building. For example, the indoor temperature of the block building built in 2010 cooled 

down only 0.6 °C over the course of one hour, even with the coldest outdoor 

temperatures. The inside temperature for the building built in 2003 did not decrease 

more than the allowable 1 °C during the heat reduction period. This means that for these 

block buildings, DSM was implemented for all the days when space heating was needed. 

For the older block buildings, there were days when it was not possible to implement 

the heat reduction because it would have caused too great a change in inside 

temperature. The critical outdoor temperature causing this was -17 °C for the buildings 

built in 1976 and 1985. This means that there were fewer than five days when DSM 

could not be implemented. For the building built in 1968, the critical outdoor 

temperature was -12.6 °C and the heat reduction could not be implemented for a total 

of nine days. 

 

68 
 



 

 

Figure 21. The relationship between the indoor temperature change after the heat 
reduction and the outdoor temperature. The red horizontal line shows the maximum 
value of the indoor temperature change, which was set to 1 °C to ensure the comfort 
of the residents. The points whose value is higher than 1 °C show the number of days 
when a heat cut was not possible (one point is equal to one day).  

 

The heat behaviour during the winter time of the buildings built in 1940–1959 was 

exceptional compared to the other simulated buildings. When the winter frosts were 

thawing, the inside temperature cooled down more than during times when the outdoor 

temperature was even colder. It was therefore not possible to give a critical temperature 

for DSM for these buildings. However, during 2012, there were five days when it was 

not possible to implement the heat reduction. 

The DSM potential for the buildings built during the years 1920–1939 is high, because 

they still need heat energy in June. The critical outdoor temperature for the heat 

reduction was -10 °C; in 2012, there were 13 days when the heat reduction could not be 

implemented. The DSM potential was the smallest for the oldest buildings, built in 1880–
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1920; in which the heat cut could not be implemented in 59 days due to decrease of 

inside temperature. 

According to the results, the block buildings with the most potential for DSM were the 

buildings built during the years 1940–2002. The reason for this is the large quantity of 

buildings of this age, as well as their high heat demands. The cooling of buildings of this 

age is relatively slow. The results showed that the DSM potential of the oldest buildings 

(built before the year 1920) was the smallest. Usually the oldest block buildings are built 

densely in the city centre, however, where the cooling of the buildings can be slower in 

reality than in the simulations; thus the potential for DSM is higher. 

Figure 22 presents the overall theoretical DSM for each day in the year 2012 (columns), 

produced with formula (13). The different colours show the DSM potential of the 

buildings built each year. This figure also shows the total DH consumption (grey line)  

every day at 7:00 a.m. without any realised DSM. This gives an overall view of the 

 

Figure 22. The total potential for DSM during the year 2012. The grey line shows the 
total demand on the DH and the bars the maximum hourly heat demand decrease 
achieved by DSM. 
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potential for DSM for energy savings. Results show that the theoretical potential for 

DSM of the residential block buildings in Helsinki was approximately one percent of the 

total district heating energy supply of the company, using the data from 2012. 

Considering the momentary heat effect, the significance was much larger, 

approximately 80 percent. 

6.4 Conclusions 

The purpose of this part of the study was to determine the potential of DSM for DH block 

buildings in Helsinki, Finland. The thermal behaviour of eight block buildings built in 

different decades was simulated using outdoor temperature data from the year 2012. 

The input values for the simulations covered the typical construction values for each 

building type. DSM was implemented so that the heat was cut every weekday morning 

at 7:00 a.m., when typically there is a consumption peak in the DH. A one-hour heat 

reduction was selected to examine how the apartments would. Longer periods of heat 

cuts would also be possible in the apartments where the indoor temperature did not 

decrease below the desired level. This would especially include apartments built after 

the year 2000, and would increase the potential for DSM. The heat reductions were not 

implemented at the weekends because the largest heat demand peaks occur during the 

weekdays. The heat for the domestic hot water was not reduced. The starting point for 

DSM was that the indoor temperature of the buildings could not decrease more than 

1 °C.  

This case study found that thermal behaviour of the buildings varies by date built. The 

buildings with the most potential for DSM were the ones built during the years 1940–

2002. In these buildings, the indoor temperature did not fall below the maximum 

acceptable value; but the heat load was high enough that a heat reduction was 

beneficial as an energy-saving measure. The new buildings were already so energy-

efficient that the heat load, even with the coldest outdoor temperatures, was not very 

high.  

The results of this study indicate that DSM has the potential to lower the heat load of 

block buildings without causing any harm or discomfort to the residents. This leads to 

higher efficiency for the system, since less peak load capacity is needed. The heat 
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needed for the peak load periods is mainly produced with HOBs, which use fossil fuels, 

so their energy efficiency from a system point of view is lower than that of CHP plants. 

Also, part of the start-up costs of separate heating plants could be avoided if DSM could 

be implemented. For the energy company, the benefits of DSM are lower heat 

production costs, since the larger part of heat is produced with CHP plants. The energy 

costs for the DH customer might decrease if the level of consumption falls due to DSM. 

The lower cost level does not necessarily occur if the reduced heat load is compensated 

for in the consecutive hours while recovering the cut-off energy. Thus, the peak load 

may fall as a later peak may take place during the morning hours. 
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7 CASE III: –Utilisation of waste heat in DH and DC networks 

One of the challenges for a DHC system and for the whole energy system is to take more 

waste heat into the network, which would increase the energy efficiency of the system 

and decrease the use of primary energy. This chapter presents and evaluates a business 

model where waste heat is sold to the DHC network at a predetermined price. The 

business model is called Open DHC and it is implemented in Fortum’s network in 

Stockholm. The whole energy system is modelled to see how the reception of waste 

heat affects the operations of the system, with special attention to the level of emissions 

and the question of profitability.  

7.1 Target of the study 

The purpose of this chapter is to present the Open DHC concept and critically evaluate 

its opportunities and challenges in terms of increasing the energy efficiency of DH 

systems and decreasing CO2 emissions. The pricing model is estimated relative to the 

waste heat suppliers as well as the energy company. In this study, there are two research 

questions: first, when is it profitable for a waste heat supplier to sell waste heat to a DH 

network? and second, how does the reception of waste heat affect the operations of 

the entire energy system? This chapter presents a case study where relatively low-

temperature waste heat was sold to an energy company as prime heat (these terms are 

explained in the following sections). The temperature of the waste heat was first 

increased using a heat pump whenever it was profitable for the waste heat supplier to 

do so, and then sold to the energy company in question. For this, an optimisation tool 

was implemented. The impacts on the merit order of the energy system and, 

consequently, the impacts on emissions and profitability, were calculated using the 

energyPRO simulation tool.  

The following terminology has been developed to describe the situation being studied 

in this paper (see Figure 23). The energy company delivers heating and cooling to the 

customer. The customer has waste heat available. The temperature of the waste heat 

(TWH) is too low to be fed into the DH system as it is, so the waste heat supplier increases 

the temperature level using a heat pump. Primed waste heat refers to the heat product 

at an acceptable temperature level (TPWH) after the heat pump has been used. Primed 
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waste heat is fed into the DHC system and the energy company compensates the waste 

heat supplier at market prices. 

 

Waste heat 
operator

- DHC customer

Energy 
company

- operates the DHC 
systemHeat 

pump

Waste heat Primed waste heat

Compensation

TWH TPWH

Delivery limit

Electricity

 
Figure 23. Terminology used in this study. The waste heat supplier is responsible for 
increasing the waste heat temperature to an acceptable level (delivery limit). After 
the temperature has been increased, the primed waste heat is fed into the DH 
network. The energy company then compensates the waste heat operator. 

 

7.1.1 Presentation of Open DHC 

The idea behind Open DHC is to create a business model where the customer can sell 

the waste heat back to the producer at a predetermined price. In the Open DHC system, 

customers can compete with a producer’s own heat production and the producer sets a 

market price for waste heat based on its own production costs. If the customer can 

deliver heat at a lower price, the producer will buy it. Four different products are 

presented in the Open DHC system: prime heat, secondary heat, recycled heat, and heat 

capacity.  

Prime heat is the most valuable product. It is transferred from the customer’s building 

to the producer’s heat network through the DH producer’s supply pipe. The price is 

equivalent to or lower than the incremental variable cost of the energy company’s own 

production costs. The target group for selling prime heat is primarily those customers 

with existing facilities with an excess heat capacity, where the temperature is high 

enough so that it can be fed to the supply pipe, or customers who have appliances that 

increase the temperature level. Secondary heat is water for which the temperature level 

must be at least 55–64 °C. The heat is transferred to the producer’s heat network 

through the DH producer’s return pipe. The target group for selling secondary heat is 
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primarily those customers who have waste heat that cannot be recycled locally and who 

possibly have a heat pump to increase the temperature level of the waste heat.  

The lowest delivery temperatures of prime and secondary heat, as well as the prices for 

them, are presented in Figure 24. The price for prime and secondary heat is set daily by 

the energy company according to the outdoor temperature; so, the colder the weather, 

the more valuable the product. The customer must optimise in which category the heat 

should be sold. This naturally depends on the temperature level of the waste heat, which 

affects how much the temperature has to be increased before feeding it to the DH 

network. The higher amount of compensation for prime heat is one factor influencing 

the optimisation process. The coefficient of performance (COP) of the heat pump 

decreases if a larger temperature increase is needed. The amount of electricity needed 

will also increase.  

 

Figure 24. Demanded delivery temperature and compensation of heat with different 
outdoor temperatures in an Open DHC system in Stockholm (Fortum, 2013a) 

 

The last two heat products in the Open DHC business model, recycled heat and heat 

capacity, differ from the two previous products. The temperature of recycled heat must 
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temperature; thus, higher prices are possible when the water temperature is higher. 

Recycled heat flows through the district cooling return pipe in order to heat up the 

district heat in large heat pump systems and it is purchased only in winter time. The 

product called heat capacity is compensated for or purchased either as heat or cooling 

energy when customers temporarily reduce their heating or cooling needs (flexible 

consumption) or lease their existing heating or cooling capacity to an energy company. 

The price of the heat capacity is fixed via private agreements between the energy 

company and the customer. 

7.2 Methodology and case study presentation 

The purpose of this study is to investigate how feeding waste heat into a DH supply pipe 

(a product called prime heat, see previous section for definition) influences the way in 

which the energy system operates. The study focuses primarily on merit order, costs, 

and emission levels. Calculations for this study are based on the energy system operating 

in Stockholm, Sweden (from now on called the energy system). The reason for this is 

that the pricing model for waste heat has been developed for this particular energy 

system, originally based on the marginal production costs of the energy company. In this 

investigation, the maximum load of the waste heat fed into the DH system is 20 MW. 

The original temperature of the waste heat varied between 0 and 50 °C at intervals of 

5 °C, and different scenarios were calculated (11 scenarios altogether) based on the 

temperature. The case in which the original temperature of the waste heat is 0 °C 

represents a situation where ground-source heat is fed into the DH system. The 

temperature level of the waste heat was primed to the required level using a heat pump. 

The premise was that waste heat is fed into the DH system during those hours when it 

is most profitable for the waste heat supplier.  

The methodology (calculation order) of this study is divided into four parts. In the first 

part, a reference case without any primed waste heat was analysed. In the second part, 

the hours when selling the primed waste heat (at different temperatures, 11 cases) to 

the DH system was profitable for a waste heat supplier were investigated. In the third 

part, the ways in which feeding the primed waste heat into the DH system affected the 

energy company were examined for each different scenario. In the last part, the energy 
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systems calculated in parts one and three were compared. Next, the tools and methods 

used in this study are presented and validated. 

7.2.1 Presentation of the energy system and the calculations 

The DH network in the Stockholm region consists of four different parts with 

approximately 70 heating plants delivering more than 12 TWh of heat annually. The 

heating plants are owned by five major DH producers in the area. Some of the DH 

companies co-operate with one another in the heat trade. In the Stockholm region, 

Fortum produces DH in three main areas using a versatile selection of heat production 

plants and fuels (Dahlroth, 2009; Djuric Ilic et al., 2012; Svensk Fjärrvärme, 2011). Note 

that even though the part of Stockholm’s DH network operated by Fortum is used as a 

reference case, it does not exactly represent the real situation. For example, in the 

calculations, the DH network was modelled as one big network and not as three 

separate networks with transmission pipes. Also, the heat trades and the co-operation 

between the different DH companies were not taken into account. The idea was to 

observe retrospectively how the energy system would have changed if primed waste 

heat had been fed into the DH network whenever it was profitable for the customer.  

The calculations for the studied energy system aim primarily to satisfy the given heat 

demand (see Figure 25, where a rough illustration of the calculated energy system is 

presented). The energy system contains a versatile mix of different plants producing 

heat. For heat production, the system includes CHP plants and heat-only boilers as well 

as sea-water heat pumps, which partly use electricity as the source of power. The CHP 

plants, together with the heat pumps, produce the base heat load for the system. Heat 

production with CHP plants leads to savings in primary energy use and reduced 

emissions if the production replaces more energy- and emission-intensive marginal 

electricity in the electricity network (Rinne and Syri, 2013).  

With DH production, the smallest variable costs are for the large CHP plants, while the 

highest costs are for the heat-only boilers (HOBs). This is why the heat for peak load 

periods was produced using the HOBs. To simplify the calculation, HOBs were 

considered as a single boiler including both oil-fired HOBs and electricity HOBs. In reality, 

HOBs are located around the city. Even though the main focus is on producing heat, 
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electricity is still produced in CHP plants and used by heat pumps and the electric boiler 

in this system. This is why energy system operations need to be optimised hourly: to 

take into account the changes in the price of electricity. The energy system also contains 

heat storage units, which is why it is not relevant to do the optimisation process only on 

an hourly basis; rather, the system must include an optimal strategy for a longer period 

of time.  

 

CHP plants

Heat-only-boilers

Thermal storage

Electric boiler

Heat pumps
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- oil
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Figure 25. Rough illustration of the calculations used for the energy system. The red 
solid line represents the heat flows, while the black dashed lines represent the 
electricity flows and the green solid lines represent the fuel flows. The primary energy 
used in the industrial plant is not considered in the calculations, thus only the waste 
heat from it is considered.  

 

To optimise the energy system operations, different input values are needed. The 

boundary terms for computing the values are the changes in heat demand and the 

capacity parameters of the production plants. In addition, the use of heat storage is 

limited by the size of the storage facility as well as the input and output maximum flows. 

Input values also include information about the surrounding conditions, such as 

electricity prices, outdoor temperatures, energy taxes, and emission levels. The energy 

system can be optimised so that the production costs are minimised.  
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At the hourly level, the heat production from the different production units, the storage 

capacity, and the heat demand have to be in balance, as illustrated in Equation (15): 

 

𝑄𝑄𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑄𝑄𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑄𝑄𝑡𝑡𝐻𝐻𝐻𝐻 + 𝑄𝑄𝑡𝑡𝐸𝐸𝐸𝐸.𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑄𝑄𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 + 𝑆𝑆𝑡𝑡−
= 𝑆𝑆𝑡𝑡+ + 𝐷𝐷𝑡𝑡 

𝑡𝑡 = 1, … ,8760 (15) 

 

where different 𝑄𝑄𝑡𝑡 represents the heat production from the different production units 

(CHP plants, fuel-fired boilers, heat pumps (HP), electric boilers, and primed waste heat), 

𝑆𝑆𝑡𝑡− and 𝑆𝑆𝑡𝑡+ represent the heat charging and discharging of heat from storage and 𝐷𝐷𝑡𝑡 

represents the heat demand.  

The reference case was calculated using hourly data from 2011. The input values for the 

heat and power plants are presented in Table 12 and Table 13. A heat storage capacity 

of 60 000 m3 is included. The heat storage capacity of the DH network (DH pipes) was 

not taken into account in the calculations.  

The calculations are based on actual hourly outdoor temperature data from Stockholm 

for the year 2011 (Statistics Sweden, 2011), as well as the SPOT prices for electricity 

(Nord Pool, 2011). The heat needed for domestic hot water was considered as a constant 

value and the different demand peaks caused by the use of hot water during the 

mornings and evenings were not taken into account. This gives a sufficient value for the 

heat demand during the year. The fuel prices (International Energy Agency, 2010b; 

Vuorinen, 2009) and energy taxes in Sweden (Skatteverket, 2013), as well as the variable 

O&M costs for the power plants (International Energy Agency, 2010b; Vuorinen, 2009), 

were derived from several sources. The variable O&M costs are expressed in relation to 

electric power production for the CHP plants and in relation to heat production for HOBs 

and heat pumps. All of the CHP plants have start-up and shut-down periods of four hours 

each. The CHP plants include turn-on costs (International Energy Agency, 2010b; 

Vuorinen, 2009), which will affect the merit order of the system considerably when 

production is divided into the different production units.  
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Table 12. Information on the power plants producing DH for the energy systems 
(Fortum, 2013b; International Energy Agency, 2010b; Vuorinen, 2009) (the variable 
O&M costs do not include fuel costs)  

Power Plant Fuel 
(MW) 

Heat 
(MW) 

Elec. 
Power/Con

s (MW) 

Variable 
O&M 
costs 

(€/MWh) 

Turn-on 
costs 

(€/turn on) 

Coal CHP 454 250 145 7 7 000 

Waste CHP 390 267 71 40 10 000 

Wood CHP 135 75 42 5 4 500 

Wood pellets 
CHP 

335 215 75 5 16 000 

Oil CHP 607 330 210 15 7 000 

Heat pump 1  225 65 5 - 

Heat pump 2  256 88 5 - 

Heat pump 3  50 18 5 - 

Heat only boiler, 
oil 

1 425 1 300  10 - 

Electric boiler  180 180 1 - 

Heat storage 60 000 
m3 

    

 

Table 13. Heat values, fuel prices, and CO2 emission factors used in the calculations 
(Rinne and Syri, 2013; Statistics Finland, 2011) 

  Coal Waste Wood Wood 
pellets 

Oil Marginal 
electricity 

Heat value  MJ/kg 27 20 12 18 42  

Fuel price  €/kg 0,071 0 0,07 0,165 0,57  

CO2-
emission 
factor  

 94 g/MJ - - - 77 g/MJ 0.68 
t/MWh 

 

To calculate the merit order of the power plants based on the given heat demand in the 

energy system, the energyPRO simulation tool was used. EnergyPRO (Connolly et al., 

2010; EMD International A/S, 2013; Hinojosa et al., 2007) is an input-output software 
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package used for modelling energy systems. It is used to optimise the operation of plants 

using technical, financial, and external parameters. As a result, energyPRO can calculate 

the merit order of different production plants that minimise the cost of production to 

meet the heat demand. The energyPRO simulation tool has been used in various cases; 

for example, in Denmark (Lund and Andersen, 2005; Nielsen and Möller, 2012; 

Østergaard, 2012)), the UK (Fragaki et al., 2008; Fragaki and Andersen, 2011) and 

Germany (Streckienė et al., 2009). EnergyPRO also calculates annual production rates, 

typically in one-hour steps. In this way, the optimisation process takes hourly varying 

electricity prices into account. The energyPRO simulation tool does not calculate the 

optimal merit order chronologically, but it locates an optimal operation strategy for the 

most favourable periods. The reason for this is that each time new energy is produced, 

it has to be carefully checked to avoid disturbing the already planned future production 

rates and to avoid encountering any problems, for example, with varying electricity 

prices (Lund and Andersen, 2005). 

7.2.2 Calculation methods for profitability 

The original temperature of the waste heat in this case study was so low that it had to 

be increased using heat pumps before being fed into the DH system. This study 

concentrates only on cases where waste heat is fed into the DH supply pipe (prime heat, 

details in Chapter 6, section 6.1.1). The principle of connecting the waste heat source to 

the DH network is shown in Figure 26. The temperature levels shown in the figure are 

only estimates. In Figure 26, waste heat is used to heat up the DH water from the return 

pipe using the heat pump so that the temperature level is high enough for the DH supply 

pipe. Investment costs for the heat pump facilities are not included in the calculations. 

The calculations are based on the idea that waste heat is sold to the energy company 

during those hours when it is profitable for the waste heat seller. For this, hourly 

calculations are carried out that take into account hourly electricity prices. Electricity is 

used to power the heat pump. 
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Figure 26. Sample case of a data centre with the heat pump connected to the DH 
network (prime heat). The temperatures in the figure are examples only; higher 
temperatures from the cold side are also possible.  

 

It was calculated whether or not it is profitable to the waste heat seller to sell the heat 

at each particular hour. If the criterion for equation (16)  

 

𝑟𝑟𝑒𝑒𝑒𝑒 + 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶

< 𝑟𝑟𝑃𝑃𝑃𝑃 (16) 

 

is fulfilled, then the heat load (kW) from the waste heat is fed into the DH networks for 

that particular hour. If Equation (15) is not fulfilled, then it will not be profitable to sell 

the waste heat at that particular hour. The examination is done hourly. In Equation (15), 

𝑟𝑟𝑒𝑒𝑒𝑒 is the Nordpool spot electricity price each hour, 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.𝑡𝑡𝑡𝑡𝑡𝑡 stands for the electricity 

taxes, and 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the electricity transmission costs, while 𝑟𝑟𝑃𝑃𝑃𝑃is the price that the 

energy company pays for the waste heat each hour (depending on the outdoor 

temperature) and COP is the coefficient of performance for the heat pump. The COP 

value used here is based on rather small ground-source heat pumps operating at about 

10 kW of output. It is roughly the same, within a sufficient degree of accuracy, for larger 

units using the same type of technology. 
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7.3 Results and discussion 

7.3.1 Results of the reference case 

First, calculations of the reference case without any primed waste heat being fed into 

the energy system were made. The idea was to find out the merit order of the power 

plants with the given heat demand and electricity prices. With this information, it was 

possible to determine the costs and emission levels caused by producing the necessary 

heat. 

Most energy systems contain a versatile mix of power plants with different marginal 

costs for production. In an optimal energy system, the heat production plant with the 

lowest production costs produces the base heat. When the heat demand increases, the 

heat plant with the second lowest production costs is added to the production mix. In 

an energy system with CHP plants (or plants that use electricity), the electricity price 

affects the marginal cost of production, and thus, the merit order of the power plants. 

The electricity price fluctuates a great deal during the year.  

Figure 27, Table 14, and Table 15 show the results of the reference case for the year 

2011. With the given input values, the base load of the heating system was produced 

 

Figure 27. Heat production for the reference case, 2011  
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using the CHP plant, which is fuelled with waste. The reason for this has to do with the 

nature of the fuel, which is continuously produced by the inhabitants of the municipality. 

Additionally, the heat pumps assist in producing the base load. In September, there are 

two periods of time during which the heat demand is covered using only the heat 

pumps. The reason for this is the low electricity price during those periods of time, 

making it unprofitable to produce CHP. The peak loads are mainly handled using oil 

boilers. The turn-on costs for the CHP plants affect the merit order significantly. Table 

14 shows the heat production figures (in GWh and as a percentage of the overall 

production) for the different heat production types. Table 15 shows an overall picture 

of the energy system during the year 2011.  

Table 14. Plant-specific results for the reference case 

  Heat 
pumps 

CHP  
waste 

CHP 
coal 

CHP 
wood 

CHP 
wood 
pellets 

CHP 
oil 

Electric 
boiler 

Oil 
boiler 

Heat 
production GWh 3 264 2 262 1 

018 163 252 198 521 51 

Heat 
production % 42,2 29,3 13,2 2,1 3,3 2,6 6,7 0,7 

 

Table 15. Overall production results for the reference case 

Heat demand GWh 7 729 

Fuel consumption (at CHP plants and with 
HOBs) 

GWh 6 261 

Electricity consumption (HPs and electric 
boiler) 

GWh 1 559 

Electricity production (CHP plants) GWh 1 497 

CO2 emissions tCO2/a 784 735 

 

7.3.2 Results with the waste heat included 

The aim of the study was to investigate how feeding waste heat into an energy system 

affects its operations, including merit order, the CO2 emissions of the entire energy 

system, and profitability. The profitable sale of waste heat is affected by many factors, 
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such as the hourly price of electricity, the price paid for the waste heat by the energy 

company, and the demanded temperature level for the waste heat.  

Figure 28 shows the level of primed waste heat fed into the DH supply pipe on four 

sample days when operations were guided by the profitability to the waste heat 

supplier. The figure also shows the outdoor temperature (varying from -11,7 °C to 3,8 °C) 

and the electricity price (varying from 33.6 €/MWh to 63.8 €/MWh) on the same days. 

The figure illustrates how the temperature of the primed waste heat is dependent upon 

the outdoor temperature. For example, for those hours when the outdoor temperature 

falls to its lowest level, feeding the primed waste heat into the system is not very 

profitable for the supplier. Also, the lower the level of the waste heat’s original 

temperature, the less profitable it is to the supplier to sell the waste heat. This is due to 

 

Figure 28. The primed waste heat (MW) fed into the supply pipe with different original 
temperatures (0–50 °C) on four sample days (maximum load 20 MW). The outdoor 
temperature and the electricity price on those days are also represented. The 
decrease in the waste heat output, e.g., by 44 hours, is due to the cold weather and 
the higher output water temperature needed from the heat pump. This leads to a 
decrease in the maximum output heat effect from the pump. When the heat source 
temperature is higher, this phenomenon is not that strong. The non-profitable 
operation, rounded to 81 hours, is due to the high electricity price compared to the 
heat sales price, which is low during the mild weather conditions at that particular 
time. 
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the fact that the temperature of the waste heat has to be increased using heat pumps 

and the maximum output of the pump decreases when the temperature difference 

between the heat source and the heat output increases. The same applies to the COP of 

the heat pump: it also decreases when the temperature difference increases. Similarly, 

the electricity price affects the profitability of selling waste heat, and this can also be 

seen in the figure at hours 81–83.  

Table 16 shows the amounts of waste heat energy that were profitable for the supplier 

to sell to the energy company at different waste heat temperatures (the maximum 

waste heat load was 20 MW) during the year 2011. From the table, we can see that the 

higher the waste heat temperature, the more profitable it is to sell the waste heat to 

the DH system. This is due to the higher maximum output and the COP of the heat pump 

when the temperature increase is smaller. The table also shows the electricity 

consumption and the CO2 emissions related to use of the heat pump. Finally, the costs 

Table 16. The amounts of primed waste heat that were profitable for the supplier to 
sell to the energy company at different waste heat temperatures during the year 
2011. The maximum waste heat load was 20 MW. 

Waste heat 
original 
temperature 

Energy 
from waste 
heat 
(MWh/a) 

Share of 
hours (%) 
when 
waste 
heat 
feeding is 
profitable 

Electricity 
used for HP 
(waste 
heat) 
(MWh/a) 

CO2 
emissions 
related to 
HP use 
(t/a) 

Costs for 
the energy 
company 
(€/a) 
receiving 
the waste 
heat 

0 53 880 32,2 146 558 99 660 3 390 320 

5 55 813 33,3 121 738 82 782 3 467 741 

10 67 244 39,7 101 560 69 061 3 809 691 

15 79 077 46,4 85 051 57 835 4 147 171 

20 96 576 56,3 71 467 48 598 4 559 027 

25 113 323 65,8 60 235 40 960 4 937 645 

30 125 859 72,9 50 906 34 616 5 184 504 

35 130 785 75,7 43 128 29 327 5 278 555 

40 139 684 80,7 36 619 24 901 5 410 157 

45 165 997 95,7 31 156 21 186 5 779 671 

50 172 883 99,6 26 557 18 059 5 882 106 
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for the energy company due to the waste heat being fed into the DH system under 

different scenarios (temperature level of waste heat) are shown.  

Figure 29 compares the operational income and CO2 emissions of the DH system 

receiving the waste heat with the reference case. A value of one in the figure indicates 

that either the CO2 emissions or the operational income is at the same level as in the 

reference case. The extent to which the CO2 emissions of the heat pump increase the 

temperature level of the waste heat is taken into account when calculating the 

emissions of the entire energy system.  

The results show that the energy company has made a pricing model in such a way that 

the profitability stays fairly constant in all cases and the changes in profitability are only 

minor. However, it must be noted that in this study, the emphasis was only on one 

method of feeding waste heat into the DH system and the amount of waste heat was 

small. The effects on the energy system if, for example, waste heat were to be fed into 

the DH return pipe, were not considered in this study. The comparison of the CO2 

emissions of the DH system where waste heat was recovered with the reference case 

was made. Here, the CLCA method (Rinne and Syri, 2013) yielded an emission factor of 

0.68 t/MWh for marginal electricity (heat pump). The results show that the CO2 emission 

levels for the entire energy system increased in most cases. Only in the cases where the 

original temperature of the waste heat was 45 °C or above did the CO2 emission levels 

 

Figure 29. Comparison to the reference case. Values lower than one mean that the 
figure is smaller when compared to the reference case. 
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decrease. This was due to the fact that the lower the original temperature level of the 

waste heat, the more heat pump energy (electricity) must be used before the waste heat 

can be fed into the DH network. 

7.4 Conclusions 

The current study presented the concept of a new DHC business model, called Open 

DHC, and used a case study to evaluate its profitability and benefits for both heat 

customers and energy companies. It has to be emphasised that this analysis 

concentrated only on a single heat product (prime heat) in the Open DHC system, which 

was the most valuable product that we identified and which was fed into the DH supply 

pipe. The acceptable temperature level and the paid price for the prime heat were set 

by the energy company according to the outdoor temperature level. The analysis 

presented the generally known fact that optimising the energy system is a complicated 

task where different aspects are affected, such as the price of the electricity and the 

existing power plants. This is why the optimisation process has to be done hourly. The 

findings suggest that, in general, it is profitable for heat customers to sell their waste 

heat in situations where the price of electricity is low. In such situations, priming the 

temperature of the waste heat using the heat pump is affordable for the customer. The 

selling of the waste heat is also influenced by the outside temperature, which the energy 

company uses to determine the temperature of the waste heat. 

Earlier studies in the existing literature give positive results for feeding industrial waste 

heat into DH systems when considered from both economic and environmental 

perspectives. However, in this study, when priming the waste heat with a heat pump 

was included in the emissions calculations, the emissions level of the whole system did 

not necessarily decrease. This was the case when the original temperature of the waste 

heat was under 45 °C. These results emphasise the fact that the system boundaries must 

be set widely for the analysis and that partial optimisation of the systems should be 

avoided. If the emissions level of the system were to be considered only with respect to 

the energy company, the level would naturally decrease with the amount of waste heat 

fed into the DH system because the company’s own production would decrease. 

However, to obtain the correct results, the emissions caused by the use of a heat pump 
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to prime the waste heat must be included in the analysis. In a low-temperature DH 

network, the concept of Open DHC would be more profitable, where waste heat at lower 

temperatures would be suitable and some of the waste heat could be fed into the DH 

system as such.  

Despite the results from the case study, Open DHC is an interesting approach for the 

energy and heat markets, where increasing energy efficiency is necessary in order to 

meet climate policy targets. In the case of DH systems, one of the objectives in the future 

will be to utilise all available surplus thermal energy; the Open DHC business model is 

an excellent starting point for doing this because of its novel pricing method. An Open 

DHC system can be also considered as a flexible part of energy and DH systems where 

flexibility is introduced by the use of heat pumps. Such flexibility requires maintaining 

smart control of the heat pumps. An Open DHC system can be applied in different DH 

systems, but the pricing of the waste heat must be specific to every system because the 

price is based on the variable cost of the energy company’s own production costs.  
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8 Conclusions 

Energy systems are evolving, and pressure to increase energy efficiency as well as the 

levels of renewable energy use is increasing. DH and DC businesses are expected to 

respond to the changing market. Beside this, they should develop and bring new ideas 

to the heating market to help energy systems to cope with the challenges that they are 

facing. The main objective of this study was to examine the special characteristics of 

smart energy systems and to discover how DHC systems are adapting to them. This 

research highlights three challenges for DHC systems, which are presented as case 

studies where the concentration was to study how different energy efficiency measures 

on the consumer side are affecting the energy-efficiency level of the DHC system and, in 

the end, the whole energy system. The case studies covered the areas of DH forecasting 

models based on remote measurements (Chapter 4), the DSM potential of district-

heated residential buildings (Chapter 5), and energy-system level calculations of a case 

study where waste heat is utilised in the DHC network (Chapter 6). The conclusions of 

the case studies can be found at the ends of each respective chapter. 

From the definitions of smart cities and smart energy grids, this study finds important 

factors for smart thermal grids. These factors reveal the challenges for DHC systems on 

which they especially must concentrate to stay in the forefront of energy systems 

development. Many of the studies concerning smart cities and smart energy systems 

repeat the importance of intelligence and utilisation of ICT systems. In a DHC system, 

this means, for example, the more efficient utilisation of consumer measurements 

measured and transmitted to the energy company on an hourly basis. In this area, many 

benefits are still not utilised such as monitoring the network’s state and correcting 

certain measurement errors automatically. It is also possible to develop new dynamic 

pricing models as well as consumption forecasting models. These possibilities are still 

mainly untapped since proper calculation methods and data systems are lacking. In 

Chapter 4, new forecasting models for DH consumption were developed, based on 

hourly consumption measurements from individual customers. The conclusion of this 

part was that the accuracy of the forecasting models varies depending on the customer 

but it is possible to construct more accurate forecasting models if they are based on 
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single customers, compared to earlier studies where models were constructed based on 

production data from heat producers for larger areas. 

Other factors highlighted in the studies of smart energy systems are their greater 

efficiency in both production and consumption as well as their flexibility. In DHC 

systems, these factors mean versatile production plants utilising local resources and 

heat and cold storage systems, bringing flexibility to the whole energy system. The 

efficiency of the energy system must be verified by simulating the system with wide 

system boundaries as is shown in Chapter 6. New heat and cold sources have to be 

explored; for example, industrial waste heat could be put to greater use. Chapter 6 

presents an interesting business model called Open DHC, where customers are offered 

an opportunity to sell their waste heat to the thermal network. One of the initial benefits 

of DH and DC systems is their ability to store heat and cold. Chapter 5 discussed the 

possibility of residential block buildings for operating as short-term heat storage 

facilities to reduce the heat load peaks in the DH system without jeopardising the 

reliability of the heat delivery and customer satisfaction. The results showed that 

theoretically DSM has potential to decrease energy consumption and the momentary 

heat effect city-wide, but the thermal behaviour and thus the potential for DSM varies 

between buildings of differing ages.  

8.1 Future research 

Future research is needed in this area, since energy systems are evolving and DHC 

systems need to take advantage of such development. Research of smart energy 

systems has concentrated on smart electricity grids, and only a few studies can be found 

in the area of smart thermal grids. There is very little research in the area of DC systems, 

and more is needed. The reason for this is that DC systems have a relatively short history 

in wide scale. Studies concerning DH and DC in cities in which they are still not available 

are needed. These types of studies should include energy-system-wide modelling so that 

decision makers could see the benefits of these systems.  

In forecasting energy consumption, especially DH consumption, research should 

continue in the area of developing DH consumption forecasts for single-family houses 

as well as other types of buildings. This would allow the development of different kinds 

91 
 



 

of consumption profiles. Such profiles can then be aggregated into forecast models for 

existing and planned neighbourhoods. Consumption profiles would also allow for 

estimating consumption for customers with missing measurement data. 

In heat storage and DSM management, future research should investigate the exact 

effects of DSM for the energy system using case studies. It will be necessary to study 

how large a share of DSM potential can be implemented in reality and how DSM will 

affect the operation of the energy system. This question is not unambiguous, since the 

optimisation of the energy system is affected by many considerations such as the 

structure of the system, timing of the consumption, and the electricity price at different 

times. The other essential future research area should cover practical implementation 

of heat cut. The simplest way would be to cut the heat at the heat exchanger. With this 

connection, the cooling will involve the whole building and the control of the system has 

to be done according to the rooms in which the temperature changes the most (in most 

cases the corner rooms). The other possibility would be to build an automated system, 

where every room would have a control system also in block buildings. The problem 

here would be higher investment costs as well as possible failure of the adjusting 

devices. The benefit would be longer heat reduction times. 

Future research in the area of supplying waste heat to the DHC network, especially in 

the case of an Open DHC system, should include case-specific studies of different energy 

systems receiving waste heat. This study emphasises the importance of system-wide 

modelling, and it also reveals that it is necessary to evaluate the effects of changes in 

energy systems on a wide scale, including system-level optimisation with wide boundary 

levels. The case study presented in this paper did not answer the question of how the 

operation of the energy system would change if all heat trade products in the Open DHC 

system were in use. For example, for the waste heat operator it might be more 

profitable to sell the waste heat as a product called secondary heat in instances when 

the original temperature is not that high. Future research in this field should examine 

the benefits of this heat trade. It would also be interesting to assess from a technical 

standpoint how large amounts and varying qualities of waste heat would affect DH 

networks.  
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