
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Gaja Kochaniewicz

Smart lock for bike sharing in corporate
environments

Master’s Thesis
Espoo, May 27, 2015

Supervisor: Professor Jukka K. Nurminen, Aalto University
Instructor: Niko Päivärinta M.Sc. (Tech.)

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Gaja Kochaniewicz

Title:
Smart lock for bike sharing in corporate environments

Date: May 27, 2015 Pages: vii + 74

Professorship: Data Communication Software Code: T-110

Supervisor: Professor Jukka K. Nurminen

Instructor: Niko Päivärinta M.Sc. (Tech.)

Bike sharing systems facilitate and promote biking as a public transportation
alternative, providing benefits to the health and the environment. Contemporary
bike sharing systems are automated and robust, but still have drawbacks. These
are, for example, dependence on immovable stations with limited capacity and
availability of service, only present in selected cities. Moreover, currently there
are no solutions for automated bike sharing for private and corporate use.

In this thesis, we introduce a bike sharing system designed as a service for com-
pany employees. This system allows using the bikes for short trips or commuting.
The focus of the thesis is on creating a smart bike lock, which is a device that
enables automated bike access management. Currently, there are no smart bike
locks available commercially off-the-shelf. However with our bike management
system, relying on a custom-made smart bike lock, the companies can offer their
employees shared bikes with minimal management effort.

The system has been tested in a controlled environment, and the device has been
evaluated. The results are positive: the device fulfils the core requirements of the
system and can be used as part of the service. The current smart bike lock is still
a prototype. Further work is necessary to improve the design and add features
such as short range wireless.

Keywords: bike sharing, bike rental, smart bike lock, Arduino, embed-
ded programming, time-based one-time pad, Bluetooth Low
Energy, NFC, GPS, GSM, power consumption

Language: English

ii

Acknowledgements

I wish to thank the Erasmus program which led me to Finland where I stayed
to do my master studies. I thank Aalto University for teaching me not only
theoretical knowledge but also life skills. I am grateful to my advisor, Jukka
K. Nurminen, for his help and guidance on this thesis as well as the courses
he taught me during my studies at Aalto.

I wish to thank my employer and co-workers for the opportunity to do
my thesis about work. I really enjoyed the tasks in this project. I am also
indebted to Helsinki Hacklab for invaluable advice in project development
and access to hardware that I could do my measurements with.

In my thesis writing I am especially grateful to Julia Casado, Eero af
Heurlin, Otso Jousimaa, Robert Obryk, Ivan Raul, Jyry Suvilehto and Kli-
ment Yanev for suggestions and feedback on my work. You were great help.

I am thankful for support and kindness to my family and all my friends,
on- and offline.

Lastly I would like to thank Jere for his patience and encouragement.

Espoo, May 27, 2015

Gaja Kochaniewicz

iii

Abbreviations and Acronyms

2/3/4 G second, third, fourth generation of cellular telecom-
munications technology

BLE Bluetooth Low Energy, unless otherwise specified
refers to Bluetooth versions 4.0 to 4.2

IDE Integrated Development Environment
EEPROM Electrically Erasable Programmable Read-Only Mem-

ory; a type of non-volatile memory
FTDI Future Technology Devices International company;

here refers to devices providing USB to serial con-
nectivity using a chip made by the company

GPS Global Positioning System; a satellite-based naviga-
tion system

GSM Global System for Mobile Communications; a 2G
standard

M2M Machine to Machine communication
microSD miniaturised Secure Digital card; a small memory card
NiMH Nickel Metal Hydride batteries
NFC Near Field Communication
PWM Pulse-Width Modulation; a technique of sending an

oscillating signal between devices
RTC Real-time Clock; an embedded chip that keeps accu-

rate track of time
SMS Short Message Service
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
TOTP Time-based One-Time Password

iv

Contents

Abbreviations and Acronyms iv

1 Introduction 1
1.1 Problem statement . 1
1.2 Thesis structure . 3

2 Background 4
2.1 Bike rental and bike sharing 4
2.2 Bike sharing systems . 4

2.2.1 Impact of bike sharing systems 5
2.2.2 Bike sharing history 5
2.2.3 Contemporary bike sharing 6

2.3 Car sharing services . 7
2.4 Smart bike locks . 9

2.4.1 The Lock Box . 10
2.4.2 BitLock . 10
2.4.3 Skylock . 12
2.4.4 Noke U-lock . 12
2.4.5 Lock8 . 13

2.5 Wireless technologies . 14
2.6 The smartphone as a key . 16

3 System design 17
3.1 Project setting . 17
3.2 The service . 18

3.2.1 User guide . 18
3.2.2 Service architecture . 19
3.2.3 Requirements . 20
3.2.4 Stakeholders . 22
3.2.5 Long term use . 22

3.3 Access control . 22

v

3.3.1 Numeric code . 23
3.3.2 Short range wireless 24
3.3.3 GSM . 24

3.4 Security and location tracking 24

4 Implementation 26
4.1 Tools used to develop the bike lock 26
4.2 Bike lock prototyping . 26

4.2.1 Arduino . 27
4.3 Design of the solution . 28

4.3.1 Iterations . 29
4.4 Hardware . 30

4.4.1 Main circuit board . 30
4.4.2 Keypad . 32
4.4.3 Real Time Clock . 32
4.4.4 Servomechanism . 33
4.4.5 SD card board . 35
4.4.6 Power switch for the servo 35
4.4.7 Other peripherals . 36
4.4.8 Enclosure . 37

4.5 Power use of the device . 37
4.5.1 Batteries . 38

4.6 Software of the device . 40
4.6.1 Main . 41
4.6.2 Input . 42
4.6.3 Code validation . 43
4.6.4 Locking . 43
4.6.5 Sleep . 44

5 Evaluation 46
5.1 Evaluation methods . 46
5.2 Hardware limits . 46

5.2.1 Logic optimisation . 47
5.2.2 SRAM optimisation . 48
5.2.3 Arduino connectors . 49

5.3 Internal hardware testing . 50
5.4 Power measurements . 50

5.4.1 Power consumption model 53
5.5 Feedback from users . 54

5.5.1 The System Usability Scale 54
5.5.2 Custom survey . 57

vi

6 Discussion 59
6.1 Project improvements . 59

6.1.1 Design improvements 59
6.2 Alternative solutions . 60

6.2.1 Arduino Mega . 60
6.2.2 ARM chips . 60

6.3 Other hardware issues . 61
6.4 Future use case: Campus bikes 63

7 Conclusions 64
7.1 Lessons learned . 64
7.2 Future work . 66
7.3 The future of bike sharing . 66

A Flowcharts 72

vii

Chapter 1

Introduction

People who commute on a daily basis have a choice of different transport
options that include cycling, driving a car, or taking public transport and
walking. For many the first option is too exhausting and the last option is too
slow. The third option of public transport for many requires also walking. As
a consequence, most people decide to go by car the whole way. Nevertheless
many people would like to have transport options that let them use their car
less and conveniently exercise.

Some companies want to help their employees with this situation. Usually
they provide bikes that can be used for short trips to and from work or during
work hours. There is no system in place to control access to these shared
bikes or to allow reservation in advance. We want to change that by creating
a bike sharing system for companies.

The contribution of this thesis is a system that manages bikes automat-
ically. Users of the system can locate bikes in the city and use them if they
have the right to do so. The users may pick up and return the bikes whenever
they want to from the place the bike is at and leave it at their destination.
We expect that people will use them for short trips, such as getting from the
workplace to nearest train station.

1.1 Problem statement

The work in the thesis is a bike sharing system with focus on the smart bike
lock, a device that provides access control to the shared bikes. There are
currently no commercial off-the-shelf devices that would fit exactly with the
bike sharing system we have in mind. There are some projects in development
which goal is to create such devices, but they are not available yet, so we are
working on our own solution.

1

CHAPTER 1. INTRODUCTION 2

In addition to the smart bike lock, the system relies on a smartphone
application to authenticate the user to the service. The service is deployed
on a server holding synchronized data of all users and bikes. The server
dispenses access codes to the smart bike locks to authenticated users to let
them use the bikes. The smart bike lock is an important element because
it provides security and access control for the shared bikes. It holds the
reserved bike for user who made the reservation and prevents theft when a
bike is left in a public place.

Although smart bike locks are a new idea, the concept of bike sharing
is not and bike sharing programs already exist. However they rely on bike
stations embedded in the pavements and they are usually only present in
larger cities. These bike sharing systems have limitations and they would
not work for this kind of project.

Setting

The work described in this thesis is done at the company Inline Market
Evolutions Oy, based in Helsinki. The company offers business to business
solutions in various fields. Nevertheless, they have not worked previously
with electrical devices manufacturing, so this kind of task is unfamiliar for
the company.

The challenge of the project is therefore to develop a new service and
design a hardware device to implement it. The team working on it is com-
posed of three people and the work is divided among them. The server
and smartphone application are developed by Lulit Woldemeskel and Jacopo
Chiapparino. Their work is not detailed in this thesis.

Problem definition

The thesis context is a bike sharing project, but the implementation and
evaluation parts of the thesis focus mostly on building one part of the project,
which is the development of a functional and adequate smart bike lock.

The base requirements for the smart bike lock in this project are twofold:
to provide access control to the bike with reasonable level of security, and the
ability to operate for extended periods of time with minimal to no mainte-
nance. The lock should operate through spring, summer and autumn without
issues. It needs to be reliable, so that the users can, at any given time, start
using the bike and return it safely. Therefore it needs to be robust, easy to
attach to a bike, power-efficient and straightforward to use.

The project has been planned to iterate rapidly over prototypes to make
a simple device composed from ready-made elements. The electronics and

CHAPTER 1. INTRODUCTION 3

the software use the Arduino platform with some modifications. The current
result is a plain functional device that supports the system and fulfills all the
key requirements. The device is a box inside of which is a key that opens a
regular bike lock that the bike is locked with.

1.2 Thesis structure

The rest of the thesis is organized as follows. Chapter 2 describes the back-
ground of the project from the history of bike rental, to current bike rental
systems and their efficiency. Car sharing is then mentioned as a similar type
of service. It is followed by descriptions of upcoming smart bike locks and
wireless technologies used in them. Chapter 3 presents the complete system
design, which includes use cases, service architecture and explanations for
some planning decisions. Chapter 4 elaborates on the design of the smart
bike lock. It presents the design logic, the constituting elements and the im-
plementation. This description also includes the issues that were encountered
during the development and their solutions. Chapter 5 evaluates the system
by reviewing the collected user feedback, as well as by analysing the techni-
cal issues and power consumption of the prototypes. Chapter 6 discusses the
applicability of the system in a real environment, its weaknesses and possible
improvements. It also elaborates on these improvements ranging from small
incremental changes to complete redesign . Chapter 7 concludes by provid-
ing a general overview of the project and by discussing the lessons that were
learned from it.

Chapter 2

Background

This chapter covers the history of bike and car sharing systems. Next is
description of projects, which are currently in progress, with similar goals to
this thesis work. Last part is about wireless technologies.

2.1 Bike rental and bike sharing

A previous study[30] defines what bike rental and bike sharing and how to
distinguish these two kinds of service:

Bike rental is a service provided in a few locations and clients can rent
a bike for periods of time from days to weeks.

Bike sharing is a concept with a slightly different format. The bikes are
distributed around an area in many stations. Users are encouraged to take
bikes from one place and return them to another one. The length of the trips
made with the bikes is supposed to be very short, from few minutes to few
hours. The system uses automation and money, cards or phones to simplify
pickup and return procedures at the stations.

2.2 Bike sharing systems

Biking is a healthy transport alternative to cars or public vehicles[11]. Most
people know how to bike[3], but there are still segments of population that
do not do it frequently. This can be caused by many reasons, such as not
owning a bike or having trouble with including biking in the daily workflow.
Some people find themselves in situations where they wish they had a bike
they could use immediately.

4

CHAPTER 2. BACKGROUND 5

2.2.1 Impact of bike sharing systems

At least some of the issues that prevent people from biking can be solved by
bike sharing services. A study conducted in Washington D.C.[10] concludes
that access to shared bikes can promote cycling among people from new
segments of the society compared to bike owners. This confirms that good
bike sharing services contribute to an increase in cycling in the society.

Studies[40] looking at the frequency and patterns in use of bike sharing
systems show that many people manage to incorporate the use of rented bikes
into their daily routines. Between the most and the least frequent users of the
system, researchers noticed a large group of people who used the system as
a transport alternative equal to other public transport options. This shows
that there are people who would use a bike in their daily routine on a semi-
frequent basis if they had the option to do so. This segment is a potential
target group of this thesis project.

2.2.2 Bike sharing history

Bikes can be rented in many cities across the world from public, local self-
service sharing systems. The bikes are most commonly distributed across the
city in parking stations that the user can use. Number of stations, their po-
sitions and size varies between cities. DeMaio[13] calls these systems the 3rd
generation of bike sharing, meaning there is a history of significant changes
in how the systems are ran.

The first bike sharing service was started already in 1965, in Amsterdam[12].
The project was called ”Witte Fietsen” (Eng. White Bikes) and it was ba-
sically a service offering white-painted bikes to the public without a fee or
strict control. DeMaio reports that due to the essentially non-existent secu-
rity systems in place, this bike sharing fell apart only after a few days.

Although the first system failed, bike sharing was not abandoned. In-
stead, it has evolved and that experience has paved the road for new systems.
The first service of the next generation in bike sharing started in 1991 in
Denmark[12], where main improvements were more robust bikes and pickup
and return stations located around the city with coin deposit machines. The
system still allowed the users to stay anonymous, which facilitated theft.
Consequently, in the following 3rd generation, this was changed. In 1996 at
Portsmouth University in England the bike sharing program Bikeabout[12]
introduced user accountability for the bikes.

CHAPTER 2. BACKGROUND 6

Figure 2.1: A bike station of the Velib bike sharing system[42]. This photo shows bikes
attached to the bike stands on the street, in Paris.

2.2.3 Contemporary bike sharing

Currently public bike sharing systems follow the idea which was introduced
in 2004 by OYBike in London[31]. It was the first system to deliver self-
service automated renting from stations distributed around the city. This
kind of automated stations are now distributed in many large cities around
the globe operated by dedicated companies. Users can rent a bike with mobile
applications, text messages, magnetic cards and credit cards.

Rental systems also vary on the payment model[30], such as hourly,
monthly fees, annual subscription or free of charge. There are programs
that penalise the users for using the bikes for too long; others give free rides
for complying with rules. Some bike sharing systems are ran by cities them-
selves, others by advertising companies like JCDecaux or Clear Channel. The
variety of programs is considerable and the ways they approach the business
model vary.

It is obvious that the bike sharing programs are succeeding. One example
is the Spanish Bicing system[30] which increased the number of bikes and
stations eight times after the first year and a half of operation, from May
2007 to the end of 2008. It is not an exception, as many others have had
similar success. Moreover, there is an increasing number of cities joining with
their own systems. The majority of the programs are in Europe, but there
are also a few in Asia and the Americas[44].

Furthermore, rental systems are still struggling with some issues, such as
the distribution of the bikes across the city as they are used which results in

CHAPTER 2. BACKGROUND 7

the overcrowding of some stations while others are left empty. For example a
Parisian program Velib[12] (see Figure 2.1) is trying to remedy this by incen-
tivising the users to pick up and return bikes in specific patterns. Modelling
a system that can manage the users’ actions in a busy city is a non-trivial
task.

The necessity to use the parking stations of limited capacity is a drawback
of the system. On the other hand, the advantages of this kind of system is
the robustness and good security offered by the parking stations. Unused
bikes have strict locations and are connected to the common network. Bikes
do not need individual tracking systems to be located and users can easily
spot the stations.

Helsinki bike sharing

Currently, Helsinki has no station-based bike sharing service. There are a few
small bike rental services but they have few locations and are not automated.

The city of Helsinki attempted to install and run a bike sharing system
called CityBikes but the program was discontinued in 2010[45] due to van-
dalism and subsequent increasing costs of operation. Since then there were
various news announcing plans to create a new bike sharing program[46], but
at the moment, in 2015 there is no running public program with easy to rent
bikes in the area of Helsinki. People who want to use a bike are left to use
smaller private bike rentals or own bikes.

2.3 Car sharing services

Bike sharing can be compared to car sharing. Both of these services are re-
volving around sharing of vehicles and have been gaining popularity in recent
years. This section goes over three examples of car sharing demonstrating
the evolution and technological enhancements to the service.

Singaporean car sharing

Singapore has strict car ownership laws and the prices of vehicles grew quite
high for average household. As a result a car sharing co-operative scheme[36]
has been implemented in 1997 to provide an alternative to car ownership.
The members of the system could reserve a car 24 hours in advance, and
then pick up the key from a key box. The service had yearly fees as well as
a small payment for travelled distances.

This car sharing scheme was not automated and cars had stations. The
reservations were made through phone calls to an officer who would prepare

CHAPTER 2. BACKGROUND 8

the car keys on demand. The ability to place a reservation on a short notice
and payments being based on distance rather than on time were completely
opposite to arrangements of car rental services. That arrangement made the
car sharing system popular. The number of members of the co-operative
more than doubled in two years from the initial 120.

The service is comparable to the station-based bike sharing systems be-
cause it also has stations. It is however ran by a co-operative rather than a
company or the city.

car2go

In 2009 a new type of car sharing service called car2go was started in Ulm[15].
It was not based on stations like the Singaporean car sharing, but rather the
cars could be picked up and left anywhere. This system is known as ”free-
floating”. The cars are tracked with GPS and users can user them anywhere
within the perimeter of the city. The service knows not only the position but
also the status of the fuel, cleanliness and overall shape.

Cars can be reserved as well as picked up ad-hoc. Pick up of the car is
fully automated. Users need to be registered and poses an RFID card that
opens the car door. Every user is by the system about the state of the car
including dirt and possible damages. If any issue arises, customer support is
called automatically. If there are no problems, user can start using the car.
Service fee is only one and depends on how long the car is used, counted with
increments of 1 minute.

The car2go service is operated by a company. There are no stations in
the service and because of that it is very flexible. The system of modified
cars could be compared to mounting a permanent smart bike lock on bikes
and using them to run a service.

Green Move

In a paper from 2012[4] a plan for ”peer-to-peer”, free-floating car sharing
called Green Move is presented with a plan for spreading the use of electrical
cars. Each car gets equipped with a special Green e-box, which much like the
bike locks has wireless capabilities, as well as GPS and GSM. To open the
car, user has to use a smartphone with a short-range wireless protocol like
NFC or BLE to communicate with the Green e-box. Both the smartphone
and the Green e-box communicate with the server which is said to not only
log the location and usage statuses, but also predict routes, speed and time
of travel and use it for the reservation logic to help users find available cars
near them.

CHAPTER 2. BACKGROUND 9

Green Move is trying to convince car owners to share their electrical,
emission-free cars with others for the sake of the environment. Similarly, they
go for a technical solution with the Green e-box packed with features. The
paper mentions also their complex reservation system which actively collects
information and predicts vehicle availability for the users, which would also
be useful for a bike sharing system.

The Green Move system is a combination of the previous two car sharing
systems. It is planned to rely on the users renting out their own cars like a
co-operative. Additionally, the cars would be equipped with a special e-box
comparable to a smart bike lock with GPS, GSM, short range wireless and
other features.

2.4 Smart bike locks

Despite the rising popularity of the bike sharing systems, there are limita-
tions. The main issue is that they are not everywhere. Many towns and
cities still have no good automated bike sharing service. However, the shape
of bike sharing may change in the near future with new technologies bringing
new possibilities to create and run smaller bike sharing enterprises. At the
forefront of the technology are smart bike locks that may be able to democra-
tise bike renting and sharing. It would mean that mean that not only large
companies but also small entrepreneurs can run bike sharing services. This
thesis project is working to create such a system.

Most of the devices described in this chapter have used Kickstarter which
is a crowd-funding platform. Various small companies and individuals use it
to showcase their prototypes and gather monetary support from the public.
In turn they promise to develop services and produce devices. The people
who support the project can order some of the first models but the projects
are not always finished or shipped.

In 2013 two Kickstarter projects on personal smart bike lock were funded.
Since then, these projects have been in production to deliver in each case a
working hardware product as well as a software system. A few months later
other similar products appeared on Kickstarter and are in various stages of
progress. All of these projects have similar functionality of access control to
using a privately owned bike. As no project has delivered a working product
yet, the following overview is mostly based on the information provided by
the designers and manufacturers.

CHAPTER 2. BACKGROUND 10

2.4.1 The Lock Box

First, The Lock Box[16] should be mentioned even thought it is not a smart
bike lock. It was founded on Kickstarter in June 2013 and manufactured
and sent to the backers in September 2014. The Kickstarter page describes
the product as a very simple padlock-shaped box for a car key (see Figure
2.2). The creator’s idea was to keep safe keys to cars borrowed from rental
services. It was later extended to accommodate other valuables like credit
cards. Various items can be stored in the padlock attached for example to
underside of a car. Users would open it by entering the correct unlock code
set in the box.

The description on the Kickstarter page is not long but from pictures it
seems the lock has no electronics. However, the Lock Box has several things
in common with the prototypes of this project, which is why it is worth
noting. Both of them are built as an attachment that holds a key. In case
of the Lock Box, it is a car key, while in case of this thesis it is a key for a
regular bicycle lock.

Another interesting fact about the Lock Box is that while it was planned
to start shipping in 3 months, the project took altogether over a year to
complete and ship. Now it can be bought online from the manufacturer’s
shop.

2.4.2 BitLock

BitLock[29] is a smart bike lock that completed its Kickstarter campaign in
November 2013. It is made by a company based in the US with manufacture
taking place in China. The device, as described on the Kickstarter page is
a modified bike U-lock (see Figure 2.5) with Bluetooth Low Energy (BLE),
which communicates with the user’s smartphone. On the outside, the lock
has only one button to both close and open it. Inside it has a very small
embedded circuit and a high-power, 3.7V non-rechargeable AA battery. The
lock is expected to work up to 5 years with that battery (2400mAh) even
with the wireless functionality which needs to be on at all times to detect
the approaching user.

Communication between the user and the lock is supported with smart-
phone applications. Manufacturer promises to provide versions for iPhone
and Android. They assure they have tested the application on popular phone
models to ensure it performs well. Moreover the application is to be released
to Apple’s and Google’s marketplaces for easy install.

The smartphone application and a smartphone with BLE are necessary
for this system. Without them the user cannot open the bike lock. The goal

CHAPTER 2. BACKGROUND 11

Figure 2.2: The Lock Box[16].

Figure 2.3: The Noke U-lock and the
Noke[18].

Figure 2.4: The Skylock[39]. Figure 2.5: The BitLock and its
electronics[29].

of the product is to replace keys with a smartphone for bike security. This
is meant to make the lock easy, more reliable and minimal in maintenance.
Furthermore, the application is supposed to support sharing the bike with
other users. This means the BLE of the lock will be capable of pairing with
more than one smartphone making it possible to share the bike in groups or
communities.

The lock appears complex and seems to include state-of-the-art ideas.
The electronics are tiny and use only an AA battery fitted inside a U-lock,
which is a small space. Moreover, it is equipped with BLE which is in use
probably almost all the time. This can mean high power use, but creators

CHAPTER 2. BACKGROUND 12

assure that the power source which is a 2400mAh battery will last 5 years.
These features make it an interesting study of a product similar to the goal
of this project. However, there is one thing in which BitLock misses out
with this project, which is the form factor of the lock. The U-lock is not
permanently attached to the bike and any user that can open it can also
steal the lock. The goal of this project is a more permanent fixture.

2.4.3 Skylock

Skylock[39] is similar product to BitLock. It is crowd-funded outside of
Kickstarted and set to ship in the summer of 2015. Manufacturer, Velo Labs
Inc is also stationed in the US. Their website describes the product as BLE-
enabled U-lock equipped with sensors, a touch interface and a solid, rubber
shell (see Figure 2.4). It has a solar panel and can be additionally charged
via USB. It has been designed for easy use, snapping to lock when in position
and touching on the side to unlock. To open the lock, a smartphone with
BLE 4.2 and an application will be needed. The smartphone will have to run
a recent OS, like iOS 6.1 or Android 4.0.3 to have the software work with it.

This product could be a candidate for a closed and power self-sufficient
solution. This would allow the complete locking of the enclosure preventing
tampering and breaking. It is possible however that the low efficiency of the
solar panel and long-term storage in the dark would make use of the USB
charger a necessity. It is still an interesting solution to consider.

2.4.4 Noke U-lock

Noke[18] is another U-lock based product (see Figure 2.3) on Kickstarter
funded in April 2015 set to complete on September 2015 by FUZ Designs
stationed in the US. Creators say their product uses BLE 4.0 and is designed
to be opened with a smartphone via BLE as well as a BLE keyfob or, in
case of emergency, a series of clicks on the side of the lock. It is supposed to
come equipped with an anti-theft loud alarm coupled with motion sensors.
Aside from that, creators promise it will be robust and water resistant. Its
battery is estimated to last up to several years if the alarm is off. The product
can then be charged with a micro-USB connection. Again, it would use a
smartphone application for using as well as sharing of the bike. The detailed
requirements for running the application are not supplied.

The company working on Noke U-lock also has in progress a similar
project of a Bluetooth padlock, called Noke (see Figure 2.3), which is de-
layed as its shipping deadline passed in February 2015. There is a review[8]
of a trial version of the product online describing its use. According to the

CHAPTER 2. BACKGROUND 13

article, the padlock needs to be paired with a BLE phone with the Noke ap-
plication. Lock can be opened and closed freely by hand when the phone is
within the vicinity of the phone. The presence of the phone allows unlocking.
As a result if a paired device is close enough, the lock can be opened. Man-
ufacturer states it will be possible to pair it with different phones so more
than one person can use it. It can also be opened by a custom combination
of presses on the lock handle in case a phone is not available. The usability
was rated as good by the reviewer who also mentioned the final product will
ship in June 2015.

Noke seems to have experience with building embedded devices, but they
too are delayed with deliveries which does not bode well for the end result.
It seems though as their electronics are close to completed if they were able
to send a unit to be reviewed.

2.4.5 Lock8

Last in the lineup is Lock8[24], which is the only bike lock that does not have
a shape of a U-lock and is produced by a German company. Still, it is also
late with delivering the product despite local manufacture. The device is
however much different. It is an attachment to the bike’s rear wheel’s frame
with a pluggable cable (see Figure 2.6).

The product’s Kickstarter page says it is equipped with BLE, GPS and
GSM. It is also said to have a robust security system with temperature,
motion and gyro-accelerometer sensors detecting theft attempts, sounding a
loud alarm and sending a notification to the user’s smartphone. Designers
say it will detect attempts to move the bike or to break the lock in ways such
as freezing, cutting, drilling and burning. The insides of the lock will not be
accessible and the only way to charge it will be via a USB port or by biking
as it will have a dynamo.

With these scenarios predicted, the lock’s design is to clearly stay in place
secure and attached to the bike. However, it can also cause problems as the
user cannot replace the battery and must connect the device via USB to a
power source. It seems that creators are not worried about this and expect
the dynamo to keep the battery full, so the capacity is likely sufficient to
work for a year or so with all the wireless features in use.

When the battery is charged, the user should be able to use the provided
mobile application and BLE to open the lock. Application is to use shared
BLE keys so access to the bike can be shared. As the lock is a permanent
fixture, this makes for a good bike sharing device. However the price of the
product is steep so even the Kickstarter page suggest sharing it to earn the
money back. There are few details about the application and its features

CHAPTER 2. BACKGROUND 14

Figure 2.6: The Lock8 mounted on a bike[24]. It is attached to the rear wheel. The lock
has a cable connected to it from both sides. It is locked to a pole on the street.

aside from that it will allow sharing the bike.
Although the project does not focus on the software side, there is plenty

of detailed technical specification, including operation and storage temper-
atures, sensors and loudness of the alarm system. The lock is programmed
not only to lock and unlock, but also to detect theft and notify the owner. It
is clear that the design has been carefully analysed and planned to be almost
as robust as the station-based bike sharing systems are.

The form and technology of this lock make it closest to the ideal form of
this thesis project. It is an enclosed device that can be permanently attached
to a bike. It is tamper-proof and can be used in public and as a main element
in a bike sharing system. Lock8 is therefore a reference point in both form
and technology design. In its concept it is very sophisticated and seems to
be complete as a product.

2.5 Wireless technologies

Among the many wireless standards only two are common enough to be
viable for this project. Many other technologies like WiFi are high power, or
like ZigBee not present in current smartphones. The technologies that are
used in the smart bike locks are BLE, NFC and cellular networks.

CHAPTER 2. BACKGROUND 15

Cellular network

There are currently three generations of cellular networks: 2G, 3G and 4G[7].
While 2G is still in use in many parts of the world, it is getting replaced slowly
by its successors, 3G and 4G. These networks are used most commonly by
mobile phones to send messages. The coverage for 2G and 3G is good in cities
and towns and the system is maintained by the cellular network companies.
This makes 2G and 3G good channels for long distance communication.

Bike sharing systems benefit from using the cellular networks. For exam-
ple Lock8 uses GSM, a 2G network, with a Machine To Machine (M2M)[43]
SIM card to connect to the network and send the owner an SMS text mes-
sage in case of theft or other issues. If the lock were part of a bike sharing
system, the text messages could be sent to the server as part of an automated
notification system.

Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a recent communication standard made with
the goal of lowered power consumption. As a result the standard has short
range, but still is able to communicate over the distance of maximum 50
meters[37]. This means that walking past a BLE device like a bike lock
with a BLE-enabled smartphone may be enough to pair them and exchange
some information[8]. An important note is that BLE is incompatible with
the previous versions of Bluetooth, so while many old phones were equipped
with an older Bluetooth version, they cannot communicate with the new
chips. BLE is used by all smart bike locks mentioned in this chapter.

Near-Field Communication

The Near-Field Communication (NFC) standard is based on the RFID tech-
nology and allows communication over very short range of maximum 20cm[17].
In practice this means that to get devices to pair and exchange the informa-
tion, they have to be very close to each other. The NFC is considered secure
due to that short distance.

The range of NFC holds advantage over BLE in scenarios where there are
many bikes with similar locks in the same area. With an NFC lock, a user
would have to just approach their bike and unlock it by tapping the lock. In
the case of BLE, the user would have to select it from a list and confirm. It
might not be a major issue if the mobile application is programmed well to
handle this contingency.

A problem that NFC has but BLE does not is that it is sensitive to metal.
We have found that an NFC antenna used in embedded programming could

CHAPTER 2. BACKGROUND 16

not read an NFC tag when propped against a metal surface. To make it work,
NFC-enabled element requires shielding so putting it in a metal container or
attaching it to a metal frame might significantly impair its performance.

NFC market penetration

NFC has a problem with market penetration. While it has made it to many
smartphones before BLE and many older phones from the last 2 years are
equipped with it, there is the notable exception of Apple products. Only the
most recent model 6 of the iPhone has been equipped with NFC and currently
it is still exclusively used for the ApplePay service. While last year there were
news of Apple giving access to use NFC to application developers[28], there
have been no signs of it happening yet.

In the United Stated 41.3% of smartphones are Apple models[23] which
is a significant fraction. Moreover the company is widely recognized, which
might be why pictures of iPhone devices were used to display the mobile
phone functionalities in the Kickstarter campaigns for the smart locks. The
attention to Apple might explain why the smart locks prefer to use BLE. NFC
might seem less like a viable option to them in comparison. On the other
hand, statistics[19] on the whole world show decrease in popularity of Apple
phones to 20.4%, which means there are markets where Apple products are
much less significant.

2.6 The smartphone as a key

The importance of including Apple devices in such projects is not only be-
cause it is a large share of the market. It is important because most of users
of smartphone devices like iPhones and Android smartphones have their de-
vice with them at all times. These smartphones have now increasingly more
processing power and many hardware features like wireless chips for WiFi,
BLE, NFC and GSM. These wireless features are already used by a variety
of applications.

This is why the wireless bike locks are trying to replace traditional keys
with smartphones. That replacement is expected to bring better security and
usability, as some users might be more prone to forgetting their bike lock key
than their smartphone. Additionally it simplifies sharing the bike with other
smartphone users without borrowing a physical key.

Chapter 3

System design

This chapter describes two use cases and resulting design of the project.
Because the project is still in development, first part of the chapter lists the
expected functionality with explanations followed by the current status of
the project.

3.1 Project setting

The project has been started with the goal of providing service in a business
to business model. The company at which the project is developed intends
to sell the solution to client companies in various forms like complete setup,
partial setup up or improvement of an existing bike sharing program. There
are already companies in the Greater Helsinki area that offer their employees
the perk of using company bikes. They are however often not managed
properly and bikes are used only in the first come, first served model.

First come, first served is not desirable because there is no of information
about bike availability which makes relying on them a gamble. This is an
important factor for the usability of the system and it relates directly to
the main use case for the bikes. Many companies, that have this kind of
bike sharing, are interested in implementing access control and reservation
system.

The last mile problem

The bike sharing benefit is supposed to reduce the frequency with which
employees use their cars to come to work. For many the reason to use a car
is the lack of end to end public transport connection between their home
and the company office. If an employee decides to use the public transport,
they will need to walk a few kilometers from the nearest bus or train stop to

17

CHAPTER 3. SYSTEM DESIGN 18

the office. This is called the ”last mile” problem. Many people faced with it
often choose to use their car to get from home to the office. However, if at
the last step of the journey with public transport there was a bike waiting
for that employee, they would be more inclined to use that option. This way
they would contribute not only to a cleaner environment, but also to their
own health.

Use case 1: Travelling to and from work

Because there is an element of trust in the bike waiting at the last stop, this
use case must start when the employee is planning the journey, and decides to
use the company bike. The employee needs to be able to to reserve a bike in
advance for a specific time window using a bike sharing system. The system
should ensure that the bike will be waiting at the expected destination at
the time window reservation has been made for. The employee will then go
to the location bike is stationed at and use it to reach other offices. System
will update the bike’s user and their location. Once the trip is done, the bike
will be again accessible to other users informed of the new location. After
work the employees will be able to do the same trip in the other direction,
from company office to a bus or train station and then use public transport.

Use case 2: Trips during work hours

Another use case for the bikes are short trips from the office to nearby lo-
cations and back during office hours. Those could be for example visits to
customers, business meetings and lunch trips to restaurants. Some of these
might be planned in advance and so bike could be reserved earlier, but the
employee could also take any free bike when needed. Ad-hoc renting is simple
since the system delivers information about nearby accessible bikes.

3.2 The service

The service’s requirements are based on use cases 1 and 2. The results are
described in the following sections starting with a description of how the
system works from a user’s point of view.

3.2.1 User guide

In order to use our bike sharing system, a user must have a smartphone with
installed application for bike sharing. After logging into the application, the
user is presented with a list of bikes that are available. Clicking on the bike

CHAPTER 3. SYSTEM DESIGN 19

brings up the map with the bike’s current location. The user can then chose
to use the bike by clicking a button. The user is then forwarded to the next
screen with instructions on how to unlock the bike and the code to open the
bike lock.

The smart bike lock is mounted on the frame of the bike. It is a box with
a button, a led light and a number pad. To start using it, the user has to
click the button. The lock signals with a small led light that it is ready for
input. The user can enter the numeric code in and once it is recognized as
correct, the box opens. The user has to open the lid of the box by hand and
retrieve the key for the bike from inside. After that, the lid can be closed.
To close shut the lock of the lid, user must click the asterisk button.

The key retrieved from the box opens the regular bicycle lock that keeps
the bike locked. The user keeps the bicycle lock and the key with them when
they travel and once the trip is over, the bike can be locked again and the
key can be returned the same way into the box.

The smartphone application stays in the background during the trip keep-
ing track of the changing location and counting the travelled distance. The
kilometers travelled will be listed after the trip in the user’s profile as a
history record.

3.2.2 Service architecture

The structure of the system was designed to suit company-related use cases.
The system is composed of 3 elements:

• server - keeps track of statuses of all bikes, holds the reservations, grants
the access to bikes

• smartphone application - provides users access to the system, makes
reservations, assists during the journey

• smart bike lock - access control to the bike, secures the bikes in place
(development described in Chapter 4)

In the most robust configuration of such a system all elements should be
able to directly communicate with each other:

Smartphone and the server
This connection is necessary in the system to authenticate the user to
the system, fetch fresh information about the bikes and communicate
that the user is renting a bike. The connection is made over the Inter-
net, which can be accessed via WiFi or a mobile phone connection like
3G and 4G.

CHAPTER 3. SYSTEM DESIGN 20

Smart bike lock and the server
This connection is optional and its main use would be to report the
status of the bike as well as its location. It would be mostly a security
measure to locate the bike when it is not used by anyone. This feature
would require GSM and GPS.

Smart bike lock and the smartphone
This connection is also optional and its main use would be to improve
the usability for the users of the system. The users would be able to lock
and unlock the bike with the application on the smartphone directly
instead of typing in the code. For this connection a short range wireless
like BLE or NFC would be suitable.

Other, less robust configurations are possible. For example we can give
up the direct connection between the smartphone and the smart lock or the
smart lock and the server. This greatly simplifies the project on technical
side. In the simplest form only one direct connection is necessary, and that
is between the smartphone and the server to receive live updates.

As a result the bike lock can be built without any wireless abilities as
those are expensive to implement and maintain. Instead the user with a
mobile phone can be used as a bridge between the lock and the server. This
means the user would have to transfer a password provided by the mobile
phone to the lock correctly for the latter to open.

3.2.3 Requirements

The functional requirements described below are only relevant to the current
iteration as the possible future iterations are not yet all decided by the project
team. Their description is expanded later.

User requirements

The user should be able to do the following actions with a smartphone:

• log in and log out of the system

• get a list of available bikes and their locations

• unlock a bike and use it

• return the bike and lock it

• see the journey in the system as a route and as a distance and time
summary

CHAPTER 3. SYSTEM DESIGN 21

In the pilot phase functionalities such as users enrolling themselves via the
mobile are not available as adding new users needs to be controlled. Similarly
adding the bikes, especially since new bikes can only be added in the system
when there is a hardware lock mounted on it.

Additionally, the reservation system for bikes has not been finished yet.
In simple form, the reservation system can be just the server making the bikes
unavailable some time before the reservation starts. There are, however still
unsolved issues like what should the system do if a previous user is late in
returning the bike. There are examples of systems[4] which track shared
vehicles in motion and estimate time of arrival at expected destination. It
would require quite a bit of work to implement for this example, but it can
be seen as the upper bound to complexity of such a system.

Technical requirements

The technical requirements can be divided by the part of the system whose
functionality they describe. The currently implemented requirements are as
follows.

Server
The server’s requirements are to be a database of users, bikes and
companies which use the system. The server needs to keep up to date
information about the state of the bikes and based on that generate
and send a valid access code when it receives a valid request. There
needs to be an API for the mobile application to use to communicate
with the server. As an alternative to the application the server can also
host and offer a mobile website.

Mobile application
The application has access to the server via the mobile API and sends
updates about its state. It also fetches the access code when necessary.
In the case of the mobile application location can be tracked using the
GPS to calculate the travelled distance and to inform the server about
the final location of the bike.

Smart bike lock
The bike lock needs to receive and compare input from the user to the
correct numeric code and open the lock when it gets a match. It must
always have enough battery to allow the user to use the lock.

CHAPTER 3. SYSTEM DESIGN 22

3.2.4 Stakeholders

In the first two use cases, the company employees are the users of the system,
renting and riding bikes. However they are not paying for the service, which
is a benefit provided for free by their employer. The employer has a contract
to use the system and pays the company running the service making it a
business to business model. The company that runs the service provides
the servers, mobile applications and the hardware for access control. The
bikes can be owned by either company. They would however require upkeep
on the hardware side so the project would have another stakeholder to do
maintenance.

There is also one more stakeholder that could be part of the project, if the
design of the lock also included a GSM connection. That connection would
require a mobile phone operator to lease the connection from, possibly at
slightly different prices and with different features than consumer phones as
only the SMS feature would be needed.

In the planning phase an ad-driven revenue model was considered as one
of the ways to pay for the maintenance of the system and keep the service
subscription cost low. This is an idea similar to how JCDecaux and other
companies earn money from their bike sharing system.

3.2.5 Long term use

The project is currently still in development and needs more work in devel-
opment. However it is already being tested and the maintenance requires
little work: server administration, user support, battery replacements and
bike maintenance. Since bikes are used and left outside, there is a possibility
of vandalism, improper use of the devices and theft which are hard to pre-
dict. Despite the risks we have found the system to work well during internal
trials.

3.3 Access control

To access the bike, the user has to be authenticated to the server to gain
the authorisation to access the bike. There are many ways that this can be
implemented. In the project we rely on the smartphone to communicate with
the server to authenticate the user and get the authorisation.

CHAPTER 3. SYSTEM DESIGN 23

3.3.1 Numeric code

The authorisation can be done via password. In this case the password is a
short numeric code that the smartphone fetches from the server and the user
has to input by hand into the smart bike lock.

Securing numeric input is difficult because it has to be simple to use at
the same time, which limits the length of the code. To make it worse, anyone
passing the device on the street can have a go at it. Comparing it to wireless
security where the attacker needs to have at least a set of tools, it is very
easy to look at a legitimate user input the code and then repeat it or just
try any code.

As using one fixed password is too dangerous, security measures like us-
age of one time passwords have to be implemented. There are standards
suggesting use of various algorithms to generate hard to predict and guess
numeric codes. One of them is the Hmac-based one-time password algorithm
made by M’Raihi et al[25], where numeric codes are generated with a secret
key, an incremental counter and a hash function. This ensures that every
time a code is generated it is different.

The downside of a counter-based algorithm is however uncertainty of
whether both the server and the bike lock have a correct count. The server
might get multiple requests for a code if the user makes mistakes while using
the mobile application. On the other hand if the bike lock only increments
the counter once a correct value has been put in, it can be susceptible to a
brute-force attack.

There is however another variation of that algorithm TOTP created by
M’Raihi and another team of researchers[26]. This algorithm relies on a clock
to generate timestamp which can be used instead of the counter. The result
is very hard to guess, secure numeric code. Without an easy way to guess
the code, attacker will have to default to using a brute force attack that will
have a large number of possibilities: digits usedcode length. The number of
possibilities is then tied to the code length and to the number of digits user
can enter. For example, a code made of five numbers, each between 0 and 9,
has 105 = 100000 possibilities.

Length of the numeric code is related to the usability as shorter code will
be easier to enter. Number of digits used in the numeric code is related to
implementation and size of the number pad the device uses. Using fewer
digits allows using a smaller lock enclosure.

CHAPTER 3. SYSTEM DESIGN 24

3.3.2 Short range wireless

Alternative to the numeric code is using a short range wireless like NFC or
BLE. This means the smartphone would have to have that wireless function-
ality enabled so the bike sharing application can pair with the smart lock
and send it the confirmation message. Therefore the communication proto-
col would have to be built so the bike could be unlocked on first time the
smartphone would be paired with the smart bike lock. Moreover the confir-
mation message has to be secure and generated specifically for the bike lock
to confirm the user is indeed using the right bike.

From user’s point of view, the usage of the wireless authentication would
mean picking a bike in the system and letting the phone connect to the smart
bike lock. For NFC the communication would mean tapping the phone on
the smart lock of the bike. For BLE it would mean being in a distance of a
few meters from the bike.

3.3.3 GSM

While BLE and NFC deliver communication link between the lock and the
mobile, there’s also a possibility to implement a direct link between the lock
and the server. This is possible with GSM and a m2m SIM card. The
lock could exchange text messages with the server on the status of the bike,
reservations and users wanting to unlock it. The idea to implement a GSM
system for access control has however a which is that the user communicating
with the server can fake being next to the bike, which a short range wireless
could confirm. That means the system would have a security hole that could
be abused by pranksters. However the m2m communication could be used
to track the bikes in the city if combined with GPS.

3.4 Security and location tracking

Currently, the project requirements are based on an assumption that users
are not malicious. Therefore the security of the current implementation con-
centrates mostly on access control, but there is another security issue which
is bike localization.

Using smartphone’s GPS

In the current implementation of the system, the smartphone is used as a
proxy to the server to communicate the state of the bike. The information
is based on the action of the user as the bike lock has no connection to the

CHAPTER 3. SYSTEM DESIGN 25

smartphone. If the bike lock was capable only of short range communication,
the smartphone would become a gateway to communicate with the server.
The lock could communicate its state, logs, recent access and tampering
attempts. It would however still be limited to only when the bike is paired
with a smartphone. It does not protect the bike when it is left alone on
the street and thief could break the lock and take the bike away. Another
security measure should be implemented to remedy this.

Long range wireless

The bike itself should be able to communicate periodically to the server its
location and maybe notification of theft attempts. The best tool for that is
GPS paired with GSM. While it is possible to use GSM and distance from
base stations to determinate the location, it would require a contract and
interaction with the network provider to get the locations.

Another alternative could be using WiFi if the places bike was parked
at had its own wireless network. It would mean the sharing system would
only allow moving between a limited number of stations with safe wireless
networks. Moreover the network would be accessible for potentially malicious
attackers in a large area around the station and the communication between
the bike and the server would be in danger. In case of poorly implemented
security protocols the attackers could generate fake bike reports and take the
bike away unnoticed.

GPS and GSM

Location based only on the WiFi could be inaccurate compared to GPS,
which could result in the users walking a around the location to find the
bike. Based on those reasons GPS and GSM are the technologies of choice
to locate the bike and report its state to the server.

Chapter 4

Implementation

This chapter concentrates on the implementation of the smart bike lock hard-
ware and software. The subchapters go in detail through design choices and
issues for each hardware part. Last part of the chapter describes in detail
the software of the lock.

4.1 Tools used to develop the bike lock

Developing a smart bike lock with a variety of features including wireless
functionality requires working with embedded devices. There are many ar-
chitectures with various features that can be used to develop such a project,
from 8bit to 64bit chips. Aside from architecture, there is difference also in
the popularity, ease of use, vendor and community support. Unfortunately
for some platforms it is harder to find materials to learn from. That limits
what could be used as a prototyping platform. Moreover since the project
is still in early stages when the platform is selected, it is hard to estimate
what architecture properties would be necessary to make a good prototype.
In this project the exact architecture limitations were not known and so the
choice of a platform went towards finding the platform with the best support,
which turned out to be Arduino.

4.2 Bike lock prototyping

While working and testing the prototypes security has lower priority as tests
are done in a controlled environment. Still, functionalities that can be used to
collect information about the users’ and system’s behaviour are important.
This information can be used to diagnose the issues, usage patterns and
flaws in the system. It is worth noting that while the smartphone and server

26

CHAPTER 4. IMPLEMENTATION 27

communicate and log user behaviour and errors, the bike lock lacks a direct
connection which makes it harder to monitor.

The functionality of the completed lock should include a connection to
the server independent of the smartphone, a fine-grained positioning system
and theft-detection system. These are features similar to the Lock8 bike lock,
however they are quite advanced and require much more work to implement.
This is why they were not included in prototypes even though these features
would be handy in a smart bike lock.

Therefore, despite the high requirements for functionalities for the final
bike lock, in the early iterations it is sufficient for the lock to have a form
factor similar to the Lock Box. It is a simple box that fits a key for a
traditional bike lock accessible only with a correct numeric code. In order to
restrict the access to bikes to users who have used them before. With that
as a goal, the bike lock in early prototypes includes electronics to generate
new codes in sync with the server to ensure better access control.

4.2.1 Arduino

Arduino[5] is an open-source hardware platform developed in Italy in 2005
based mostly on ATmega chips. In the 10 years on the market it has estab-
lished as a family of products and gained many clones and extensions made
by its developers, users and other companies. These devices of the Arduino
ecosystem are also well supported with libraries and samples of code. It’s
not unusual to find ports of code for this platform. The variety and readily
available amount of material make it a common hobby platform as the entry
barrier is low and it allows for faster creation of working prototypes. There
are many projects shared under an open-source license on websites such as
Instructables (http://instructables.com). These projects vary in quality
and complexity but as most of them are described in detail, they make great
teaching material for beginners. Furthermore there are courses and tutorial
resources available.

The ease of use for this platform comes from simplifications made on two
sides. On one side, Arduino hardware is based on ATmega microcontrollers
which were well-known even before Arduino gained popularity. They have
good support and have been well tested for variety of simple uses. Addi-
tionally, in Arduino the ATmega chip is built into a board that has all the
necessary electronics that deal with power, connecting to a computer and
making the design safe and robust. These components have been designed
to serve multiple applications and it is great for beginners[21].

On the other side, to make the programming simpler, Arduino delivers
its own programming environment and language. It is equipped with a rich

http://instructables.com

CHAPTER 4. IMPLEMENTATION 28

set of libraries and code examples and the programming language is similar
to C, which is wide-spread in embedded programming. Together with this
there’s an IDE, adapted from another open-source project. Its intention is to
make programming for Arduino as easy as plug-and-play. This programming
environment is available online complete with drivers, libraries, compiler and
firmware uploader, which is all that it needs. Its popularity shows that it
does succeed in making usage of Arduino very simple compared to other
embedded devices.

Disadvantages of Arduino

While Arduino is great as a starting hardware platform, it is said to be a bad
choice for designing the final product for sale. In communities of ATmega
users and other embedded programmers there is criticism of Arduino. This
criticism concerns mostly the power inefficiency of the Arduino models and
the low quality of code in the base libraries[38]. While these accusations
are not unbased, the amount of libraries available for the boards and their
extensions simplify development.

Another issue Arduino has is that the regular Arduino models such as
Uno are equipped with on-board elements that use too much power. The
increased power consumption to much higher levels than necessary means
it is very inefficient. This makes Arduino basic models a bad choice for
projects running on battery. However there are also many articles online
on how to keep them in sleep mode to save more power[14]. There are also
many tips about hardware improvements to the board like removal of onboard
components[33] or even building Arduino-compatible circuits with a set of
minimal, low-power components[35].

4.3 Design of the solution

When the project was first planned a large pool of probable solutions and
implementations were considered. The first iterations were chosen to be
small and manageable in a short period of time. The initial goal was to
make a working device and test it during autumn before the beginning of
winter. The second iteration was created during autumn but the testing was
minimal until the spring of 2015.

CHAPTER 4. IMPLEMENTATION 29

(a) Lock lid closed. (b) Lock lid open.

Figure 4.1: The second iteration smart bike lock, Viola, mounted on a bike. It is attached
to the bike frame with screws.

4.3.1 Iterations

There have been so far two major hardware iterations. First iteration, code-
name Marco, is not in use anymore. The second iteration produced 3 devices
called Ilpo, Viola and Satu. All of them are operational, and while Ilpo
and Viola are stable products mounted on bikes, Satu is used for testing of
experimental features.

The created smart bike locks have been equipped with the following hard-
ware:

CHAPTER 4. IMPLEMENTATION 30

Marco Arduino Uno R3, DS1307 Real Time Clock, Batam B2122 servomech-
anism, keypad, red led, green led

Ilpo Arduino Pro Mini, DS1307 Real Time Clock, MicroSD board, Batam
B2122 servomechanism, keypad, bi-color led, button, power switch

Viola Arduino Pro, DS1307 Real Time Clock, MicroSD board, Tower Pro
SG92R servomechanism, keypad, bi-color led, button, power switch

Satu Arduino Pro Mini, DS1307 Real Time Clock, MicroSD board, Batam
B2122 servomechanism, keypad, red led, green led, button, power switch

4.4 Hardware

As mentioned in Section 4.2.1, the project is based on Arduino boards. The
main board does not have all the necessary hardware features, so the project
uses a few extensions.

4.4.1 Main circuit board

The main board of the lock is based on the ATmega328p[6] which is an 8bit
microcontroller with 16MHz at 5V, 2KB SRAM and 32KB flash memory.
The Arduino Uno, the basic model made by Arduino LLC, was chosen at
the beginning for the first implementation and was named Marco. Since
there were no major issues with running the first versions of the firmware,
we decided to continue with the same architecture and use Arduino Pro and
Arduino Pro Mini for the second iteration. These two boards produced by
SparkFun are using a very similar design to Arduino Uno, with ATmega328p.
Locks Ilpo and Satu were based on Arduino Pro Mini and Viola was based
on Arduino Pro.

The difference is that the Arduino Uno is less energy-efficient than Pro
and Pro Mini, as the SparkFun models have no USB controller and their
voltage regulators are more energy efficient compared to the one Uno has.
Because the USB controller is gone, the Pro and Pro Mini both have to be
programmed with a separate board providing the serial connection to the
computer. In this project we use an FTDI chip that plugs into USB port.

Moreover Arduino Pro Mini has been designed to fit all the electronics in
1/8th of the area Arduino Uno takes. The smaller size is both an advantage
and a disadvantage. It takes less space but also it is harder to connect the
other elements. Due to that there was a lot of work soldering and re-soldering

CHAPTER 4. IMPLEMENTATION 31

Figure 4.2: Electrical design of the hardware. The diagram displays the ready-made
boards looking very similar to the physical elements. The lines have been coloured to
make it easier to distinguish the lines that cross in the picture but are not actually
connected. Black and red lines are power and ground respectively. All grounds are
common and all power lines have the same voltage of 5V and draw power from the
same source: the battery pack. Brown color is used for the power line going to the servo
which supplies 5V but is not connected all the time. All other colors are just regular
signal lines.

the Arduino Pro Mini sets to find the best fit for all the electronics in the
housing box.

Lastly, the Arduino Pro Mini comes with 2 more pins made available
to the user. While the number of pins is defined by the microcontroller,

CHAPTER 4. IMPLEMENTATION 32

Arduino Uno does not have all of them available to the user. Arduino Pro
tries to imitate the shape of the board and also hides those two pins. This
is the only incompatibility between all the three boards. Otherwise, they
can all run the same firmware and perform the same way except for the Uno
consuming more power.

The compatibility was important as the development of the firmware did
not require rewriting to accommodate for change of the board. Also because
all used versions are compatible with the Arduino flagship model, the chances
that Arduino libraries will work correctly are highest. However the develop-
ment is now coming to a point where a change to the microcontroller might
be required either to reduce the power of this particular implementation or
to use a microcontroller with more static RAM (SRAM).

4.4.2 Keypad

The keypad is the way a user communicates with the device to unlock it.
In this implementation a small numeric keypad is used. If this keypad were
implemented as single buttons, it would need at least 10 buttons for numbers
from 0 to 9. To make the number smaller, it is created as a grid of rows and
columns that intersect to create a button-like setup.

To read a key press from the keypad, the software needs to check each
button in a loop, waiting for input. Reading is done by powering each line for
short moments and waiting for a reading from the lines that would intersect
with them. There is a total of 7 pins, which are 3 columns and 4 rows. Aside
from the numbers from 0 to 9, the keypad has space for 2 more characters,
which are a * and a #, suitable for a phone keypad. While these buttons
aren’t necessarily required in this project, they are in line with 0, which is
important and that means all the rows and columns are in use.

This means that it takes 7 digital pins on the Arduino to connect the
keypad. Their location is not restricted as long as they are correctly mapped.
The simplest would be to connect them in a row next to each other. In this
project that was not possible as they would overlap with special pins such
as the hardware interrupt pins 2 and 3, the pins used by SPI bus and the
PWM pins used by servos.

4.4.3 Real Time Clock

Arduino can be turned into a somewhat accurate clock by programming with
the help of a software library. The downside is that aside from imperfect
accuracy the clock will forget the time once it loses battery power[27]. That
would mean every time the bike lock’s batteries are replaced, the current time

CHAPTER 4. IMPLEMENTATION 33

is lost or replaced with a time set at the moment the program was compiled
and uploaded to the board. Moreover to have Arduino keep counting the
time, it would be impossible to put it into deepest sleep (see Figure 4.6) as
it uses the timers to count the time.

The solution used in this project is use of an external board equipped
with an RTC chip, a crystal to keep the clock in better synch and a small
CR1220 battery that will keep the counter even when the Arduino battery
dies. Since the first iterations the board used for this was the cheapest option
offered by Adafruit DS1307 Real Time Clock breakout board kit[1] running
on 5V. While there is a warning about DS1307 being slightly imprecise, we
expected it would be enough to keep the code generation close enough to the
server side’s.

The use of a dedicated time-keeping circuit is a valuable element in the
numeric code-based solution. However this particular chip has issues, which
have caused problems in the project. The first main problem is that except
for the servomechanism, it is the only element requiring 5V to work with the
Arduino. Other chips, like ChronoDot offered by Adafruit require only 3V,
but are twice as expensive and have a number of redundant features. It was
deemed unnecessarily complex when the hardware was first planned. Yet, if
an RTC like that was used instead, the Arduino could have a different power
source and possibly also save more power.

Another important issue is that in original RTC board extension, the main
chip is a non-industrial version. In this case it means DS1307 is incapable of
working in a wide range of temperatures, including below 0 ◦C. Even storing
it in too low temperature during winter could cause problems. The problem
was noticed before winter and changes in that area became a priority. While
it was not planned, we decided it is better to be ready in case the device
stayed in low and freezing temperatures. Thankfully, the same chip is also
produced in industrial variant DS1307N with a wide-range of temperature-
resistance and better accuracy.

Another argument for replacing the chip with an industrial counterpart
was an unexpected event when the RTC’s time changed by 7 minutes com-
pared to real time, which made the Arduino board generate a wrong code
for the user. Since replacing the chip with an industrial one, the issue has
not resurfaced.

4.4.4 Servomechanism

The bike lock needs a physical lock with a moving element controlled by the
board. There are several types of motors, like stepping motors, solenoids,
DC motors and servomechanisms[27]. Most of them were deemed unsuitable

CHAPTER 4. IMPLEMENTATION 34

for this project. For example stepping motors need connecting with at least
4 cables and with software counting their steps, that is not always accurate.
Solenoids are connected with with only 2 cables, but advice from the Helsinki
Hacklab members was that they are sensitive to movement and could unlock
when shaken. As this box was planned to be mounted to a bike frame, use
of solenoid was ruled out.

Out of two remaining choices, a DC motor requires a board with an H-
bridge to be operated, which would be an extra cost for the project. The
last choice, a servomechanism (also called servo) can be connected directly
to the pins of Arduino, which is why it was chosen[27]. Servos found in shops
at the beginning of the project required a minimum of 5V. This requirement
for the servo was one of the reasons to keep using 5V during the course of
the project.

There are two servomechanisms used in the project. The first one is a
more expensive Analog Feedback Micro Servo with metal gears Batam B2122.
The second one, bought later is a cheaper Micro servo Tower Pro SG92R.
Both were ordered from Adafruit Industries shop. We could not find detailed
specification for either of them. The known differences between them, aside
from price is that Batam has a position feedback line in addition to the basic
connectors. However that functionality has not been used in the project so
later we decided to try Tower Pro servo which has only internal feedback. The
two servos are set to use slightly different values for lock positions requiring
code changes.

The servos and voltage

Later in the project we noticed a difference in power draw and operational
voltage. The Batam servo, which was used with Arduino Pro Mini models,
works by drawing power directly from the board. However the Tower Pro
servo, paired with the Arduino Pro board, would not work when connected
directly to the board. Instead it had to be connected to the battery pack. It
might be either the difference in their current draw or difference in onboard
regulators of the Arduino boards.

While this workaround makes the Tower Pro servo harder to use, this
model is better than Batam because it can also work with voltage as low as
3V. This was confirmed during power tests done on the devices, described
in Section 5.4. This means that the initial assumption that the system will
require 5V to power a servo in false and the system can be also implemented
with lower voltage.

CHAPTER 4. IMPLEMENTATION 35

Power draw of the servos

Another issue, originally unknown but noticed in power measurements, was
that both of the servos used in the project draw power constantly, even when
not moving. They do that to hold a set position. While for some projects
that feature might be desired, here it is useless. The lock is designed to hold
its position without exerting the servo. The power the servo is drawing is
lost. Additional power loss happens also when the servo is creeping, which is
a movement happening randomly when servo has trouble setting a position.

The power lost by the idling servo has been estimated and described in
detail in Section 5.4. These numbers are not high but over time the power
loss becomes a large issue. Currently the servo is separated from the battery
with a power switch described in Section 4.4.6.

4.4.5 SD card board

It is quite valuable to know what is happening with the device during use,
especially in early stages of development. However the Arduino series based
on chip ATmega328 has only small EEPROM storage and extracting the logs
from it would require extra work. This is why the project includes also an
extension board giving access to a microSD card. The board chosen for the
project was picked from AdaFruit store[1] due to convenience. It has a simple
design, uses different pins than the RTC and it can be powered by both 3V
and 5V. It is also compatible with existing libraries and a detailed tutorial
explains how to format microSD cards for logging purposes.

Currently the easiest to buy are microSDHC, high speed and high capac-
ity cards. They can provide more than enough capacity for logging and are
easy to plug in and insert and remove from the locket. A few 4GB capac-
ity cards were bought for the project, but they were not used much due to
problems described in Section 5.2.2.

4.4.6 Power switch for the servo

The project’s main concern was to keep the design free of self-designed elec-
tronics so there is less risk the bugs in the implementation will be caused
by this. However there are still elements that had to be added externally.
The main addition in this area is the power switch board made by Eero af
Heurlin[2], a member of the Helsinki Hacklab. He made the design as well
as produced the board. Its schematic can be seen in the Figure 4.2 in the
yellow rectangular frame.

CHAPTER 4. IMPLEMENTATION 36

In software, the power switch is driven by one of the pins of the board
sending a signal for the power switch to supply power to the servo on demand.
Most of the time the servo has no connection to the battery and is not
attached by the software.

The importance of this addition was noticed during detailed power mea-
surements done at the Helsinki Hacklab. The main point of it is to reduce
the passive power draw of the servo, which contributes to faster draining of
the battery (see Sections 4.4.4 and 5.4).

The Helsinki Hacklab is a hackerspace located in Helsinki. It is a non-
profit organization that maintains a space for people to use for working on
various projects such as hardware design and electronics. During this project
we have visited the Hacklab to use their tools. Power measurements described
in Section 5.4 were done there.

4.4.7 Other peripherals

Last to be described are the most basic elements: a bi-color red and green
led and a button to interact with the user. They are connected to the board
with long cables and glued inside the enclosure with hot glue.

The button was used as a solution to the problem of waking up the Ar-
duino from deep sleep which it would enter to conserve energy. It is connected
to pin 2, which is a physical interrupt. There is also another physical inter-
rupt pin, number 3, which was used for the test feature which would detect if
the lid of the bike lock box was closed. For now it has only been implemented
in Satu lock. Currently the feature is on hold as with implementation of the
power switch, which is a high priority feature, the Arduino Pro Mini ran out
of pins. In Arduino Pro, which has 2 pins less, the microSD board has been
disconnected to use other high-priority features.

The lid detection still needs some improvements. Once an elegant version
is implemented it could be used in the stable versions. It will be useful for
checking the lid before locking the box as well as automatic closing of the
lock once the lid is lowered.

The button and the lid detection all require a pull up or pull down resistor.
Without it, the connection to the board will have a problem with floating
signal. When that happens, the microcontroller might read incorrectly a
change of value on the pin. The led requires a current limiting resistor or it
will draw very large amounts of power.

CHAPTER 4. IMPLEMENTATION 37

Figure 4.3: The enclosure of the first iteration bike lock, Marco. It was made out of
plywood, hot glue and metal. Inside it has an Arduino Uno, a pack with 6 batteries, the
RTC board and a bike lock key.

4.4.8 Enclosure

The bike lock in the first iteration had an enclosure made out of plywood cut
with a laser-cutter. After cutting it was hand-modified to work as a box and
while it was functional, it didn’t look too advanced (see Figure 4.3). This size
and shape went against the project’s goal of making an appealing enclosure
and for the future iterations a professional designer was employed to design
and order prototypes made by rapid prototyping method (see Figure 4.1).
The new enclosure is attached to the bike on the bike frame with screws
going through the standard screw holes available in many bike models. The
design however still lacks certain features and requires further remodelling.
More on it in Section 5.3.

4.5 Power use of the device

The power source of the first prototype was a classic battery pack with 6
AA 1.5A batteries giving together an average of 9V and providing about
2000mAh. The Arduino Uno equipped with the peripheral boards and the
servo would last about 2-3 days before the batteries would have to be changed.
This is why sleep was pursued as a strategy to decrease power consumption.
However the power consumption remained large and the size of both the
board and the battery pack drove the decision to move to Arduino Pro and

CHAPTER 4. IMPLEMENTATION 38

Arduino Pro Mini.
In the second iteration with the new boards, deep sleep was implemented

extending the life of the battery making it possible to have the lock work
for 10-14 days on one set of batteries. After the measurements described in
Section 5.4 were done and the power switch was applied, the time of working
on the battery was extended to 11-13 months. Now, with knowledge of the
recent improvements in battery life, we are looking into other ways of further
improving it.

The change of boards was a minor step because all other elements re-
mained the same. Among them, were notably a cheap RTC extension and a
servo, both of which required 5V input voltage. As all the other elements in
the system can either run on 3.3V or 5V, it was decided to keep using 5V.
However, as the project progressed, it became apparent that it would have
been better to move to lower voltages to reduce the power draw.

As mentioned in Section 4.4.1 Arduino Pro and Pro Mini both were cre-
ated to use less power than Uno. Additionally, for each board SparkFun
has a 3.3V and a 5V version. All of them are based on ATmega328p, but
the 3.3V versions operate with 8MHz. It can be seen in the manual for this
ATmega series[6], that the power draw of the microcontroller depends on its
speed, so a chip working at 8MHz consume less than at 16MHz.

The difference between a 5V and a 3.3V Arduino in this case is the speed
at which it is running. Moving from 5V to 3.3V would mean decreasing
the speed. The current implementation of the hardware and software is
actually very fast and deals only with user input, which in slow compared to
the microcontroller’s processing speed. The decrease from 16MHz to 8MHz
would go unnoticed by the end user. The benefits from lowering the voltage
are worth checking this alternative.

4.5.1 Batteries

There are multiple ways to power an Arduino. Picking the most suitable one
requires planning and understanding of how the board operates as well as
how the power source behaves. If the source delivers a stable 5V over time,
it could be fed directly to the board. However, that is not the case for most
sources, such as batteries or accumulators. Moreover, depending on the type
of the battery, the voltage might drop steadily over time and require using a
voltage regulator.

Arduino Uno is equipped with a voltage regulator, which is robust but
inefficient. It lowers the voltage of the source to a stable 5V while losing
some power. It also requires that the source stays a bit above 5V so it can
transform it to a stable 5V. This means at least 6-7V should be used as input.

CHAPTER 4. IMPLEMENTATION 39

Figure 4.4: Diagram of voltage change in function of capacity of batteries[41]. It com-
pares the characteristic of the alkaline and NiMH batteries in function of lowering voltage
over time. It is clear that NiMH batteries mainting a stable value of 1.2V much longer
than alkaline batteries.

Following that, the first iteration was equipped with a commonly used box
holding 6 disposable, alkaline 1.5V AA batteries, giving together an average
9V.

In the second iteration, it was decided to lower the voltage a bit and
move to a reusable source with a more stable voltage. The choice were
NiMH batteries, because the voltage they output has a flatter, more stable
curve while discharging. Regular NiMH aren’t however recommended for low
power applications as they have high self-discharge rate, meaning they lose
power over time. Fortunately in recent years a new variant of NiMH, called
Low Self Discharge (LSD) has been introduced and it was thought to be a
type good battery to continue the project with[41]. Firstly, it would deliver a
more stable voltage around 1.2V (see Figure 4.4). Secondly, the LSD variant
delivers much longer shelf-life, which would be quite important for keeping
the bike lock in use for over a year.

However, in both iterations where AA batteries were used, a downside
to the choice became apparent quite fast, which was the size of the battery
pack. The first iteration’s battery enclosure fit 6 batteries. In an attempt to
shrink it, the second iteration moved to 5 using batteries. At first they were
connected by soldering on the cable connectors but this turned out to be too
flimsy. To fix this, an uncommon enclosure for 5 batteries was found and

CHAPTER 4. IMPLEMENTATION 40

ordered from China via the Alibaba online shop. Unfortunately, out of the
minimal order of 5 enclosures, 2 were broken and only 3 could be used. Now
they are used for the three prototypes, and while AA are easy to replace, the
packs are still quite large.

The devices use currently locally sourced Varta High Rechargeable ACCU
Ready to Use accumulators with the capacity of 2400mAh. It was noted
in first weeks of use that they did not hold for the expected 2 weeks, but
would discharge completely before that time. The voltage of the batteries
ended up uneven even though when connected they were all with the same
voltage. That behaviour is unexpected and troubling. Plausible causes are
poor quality of the battery packs or the accumulators themselves.

An alternative to the AA accumulators are Lithium Ion batteries, which
are smaller. They are also commonly used in mobile devices nowadays. How-
ever a one cell Li-Po delivers only 3.7V which means the battery would either
have to be made of 2 cells, requiring delicate charging, or it would need an
additional board acting as a step-up, increasing the voltage to 5V. The latter
case is more recommended, but stepping up the voltage also adds slightly to
power consumption of the system. The amount of power lost by stepping up
depends on the chip used but sellers like Pololu[32] estimate about 10-30%
power lost in their devices.

It is worth noting the if the bike lock was built on 3.3V Arduino Pro
Mini, it could be fine with a 3.7V battery without a step-up. It would
require testing though.

4.6 Software of the device

As the project is in prototyping phase to reduce the amount of work, it has
been started using the wealth of libraries and ready code examples offered
by Arduino environment.

In development of the software good code quality guidelines are followed.
The code has been split into files and well commented. Once connected to
a computer, the device produces debugging messages over serial connection
about its internal state and actions. Each area of the program’s operation is
described below in more detail.

Code logic

The code of the bike lock went through multiple major versions, each adding
new functionality or being a refactored iteration. Figure 4.5 presents the

CHAPTER 4. IMPLEMENTATION 41

simplified logic of the device. A more detailed diagram of the program is in
Figures A.1 and A.2.

Figure 4.5: Simplified logic of the bike lock program.

4.6.1 Main

Function main() is a part of the software that the microcontroller will keep
executing in a loop unless it has been disturbed by another task. In this
project, the main() started as a large, monolithic function and was subse-
quently refactored to performing small, atomic actions. In the beginning, all
numeric inputs were caught in one run of the function and the code numbers
were compared one by one on the spot.

While changing the way user input is handled, also keypad event listeners
were temporarily tried out. The listeners are quite powerful and abstract
feature of the library that allow catching various keypad events, not only key
presses. Each key press could be caught and handled in 3 separate moments:
when the key gets pressed, when it is held and when it is released. While it is

CHAPTER 4. IMPLEMENTATION 42

a very powerful tool, it came with a price of higher size of the compiled code
and much higher SRAM usage. It had to be abandoned when new features
were added that would not fit in the memory size limit for the ATmega328p.

Now, main() catches only key and button presses with a simple function
and forwards it to another function to handle it. The functions save some
values in global variables and process them in suitable loops.

Aside from handling user input, function main() is keeping track of user
inactivity and puts the device to sleep when there are no actions for a specified
period of time. Figure 4.5 marks the functions the main() function goes
through every time.

4.6.2 Input

User input is caught in main() and processed in later functions and the result
is returned to the function to give the user feedback. The way the input is
processed changed a few times in a significant way.

In the first prototype, code was accepted prefixed with # symbol. That
made the code extremely easy, but at the same time added more work for
the user. After a rewrite the code, it became more complex. In the following
code iterations the feedback logic was created to flash a red light every time
a wrong button is pressed. While it is not a secure logic as it could lead to
a malicious user easily cracking the code and opening the lock, it was quite
useful during the first tests of the code comparison logic.

The logic originally also would reset the comparison of the input against
the code once an error has been made. During internal tests, user feedback
about this feature was quite negative. Users reported that it is confusing and
it would be better if each input series was the length of the numeric code,
not of variable length depending on the user input.

That comparison logic was removed during refactoring due to security
and usability concerns to be replaced with a simple check the length of the
numeric code. The user receives feedback after they have finished putting in
all numbers and if the input does not agree with the numeric code, user can
put in the correct code right away.

One remaining security concern that has not been yet addressed is de-
tecting multiple failed attempts to unlock the device. Setting a reasonable
limit for failed code input attempts in a row would be a good security im-
provement. It is a goal of future iterations to add that feature.

CHAPTER 4. IMPLEMENTATION 43

4.6.3 Code validation

The numeric code to compare the user input against is generated when user
starts interacting with the bike lock. It is calculated using the current time
and a secret value using the TOTP library for Arduino. A small deviation
from the library is the period in which one numeric code is valid as it has
been customized to match the situation.

Additionally an advanced feature was added later in the development to
prevent a special case and increase the lock’s reliability in face of unreliable
RTC chip. The change was made for the corner case of the user getting
an old code from the mobile application and putting it with a delay long
enough for the bike lock to already generate a new code and evaluate the
user input against it. The device has been programmed to have a short
period of dual validity of old and new code, called BOTH VALID in Figure
A.2. This feature improves the usability but also lowers the security of the
device, since for a short time there is a higher possibility to guess the code
as two are valid instead of one. The code has been written to make sure only
the new or old code are accepted, not a mix of both.

The code entered by the user is sent from main() to a function that
generates a fresh numeric code and compares the input against the first
number in the numeric code. Two global variables are incremented then:
one is incremented for each input, one when the input matches the numeric
code. Next input will be matched against the next number of the code until
the length of the code is traversed. If all numbers typed in by the user
match the numeric code, the increment and the comparison variables will be
equal to the code length which will mean the code is correct. Otherwise the
comparison variable will be lower, which means the input was not equal and
the comparison failed. The mechanism is detailed in Figure A.1.

4.6.4 Locking

Once the user input is confirmed to be same as the numeric code, the Arduino
sends a signal to the servo to move into a position allowing the user to open
the lid of the box and retrieve the key. That position of the servo is a
number that has been determinated through experiments. Different servos
have different values for their positions. To make sure the same code will
work with the same servo, the latter also has to be put in the correct position
with a correctly attached ending. These are important factors to remember
if more prototypes are going to be assembled.

The project now has two different servomechanisms, and they are both
using different values. However the code base is common for all the bike

CHAPTER 4. IMPLEMENTATION 44

locks, which means it has to be written in a way to allow easy switching of
the definitions of the values before compiling and uploading the code to the
boards.

Currently, the bike lock tracks internally if the lock has been opened or
closed to prevent powering up the servomechanism unnecessarily. However
it is possible to press the button to close the lock when the lid is not closed.
If a user were to press the button in that situation, they would have to
input a correct code again to relock it. Work has been done to prevent this
scenario by detecting if the lid is closed or not. The work is however still
in an incomplete state and needs more work both in electrical design and
programming.

4.6.5 Sleep

Figure 4.6: The sleep modes of the ATmega328p microcontroller[6]. The modes differ
by the numer of features that are turned off to conserve energy. The most power saving
mode is called Power-down listed third in the table.

The ATmega microcontrollers are capable of sleep to save power. Sleep
means setting up wake up conditions and turning off all other functionalities
and entering a power saving mode. The ATmega328p offers various stages of
sleep (see Figure 4.6), which can be picked depending on the powered down
features and available wakeup conditions. In this project, the wake up condi-
tion is an external interrupt on one of two special pins of the microcontroller.
These interrupts are able to wake up the ATmega328p from power-down, the
deepest sleep, which is used in this project.

The sleep is entered after a period of no input from outside and the
signal to wake up is given by the user in the form of a button wired to the

CHAPTER 4. IMPLEMENTATION 45

microcontroller’s interrupt pins INT0 and INT1 (see Figure 4.6). During
development there were multiple attempts to wire the numeric pad to the
Arduino in a way that would allow wake up on any keypress from the user
and also on pin change interrupt. All attempts however produced unreliable
solutions due to the how the numeric pad is wired in a matrix. The work was
moved to using a button, which initially was also unreliable due to electrical
reasons: the floating of the pins. Solution turned out to be adding a simple
pull-up resistor to the button.

Managing sleep and interrupts can be done in Arduino using the embed-
ded C libraries and functions as well as the default Arduino libraries. There
are also projects trying to make a layer on top of that offering power saving
functions. One of them is the Narcoleptic library[22]. There seem to be many
ways to go around coding that behaviour since both Arduino and native C
libraries provide a variety of functions. In this project, we use both native
functions and the Arduino functions.

The project uses a large number of Arduino libraries to manage all the
hardware elements: serial communication for debugging, keypad, servomech-
anism and RTC. There are also two embedded C libraries for sleep: avr/sleep.h
and avr/power.h as well as a hash library to work with a TOTP library found
online. Since they are all tailored for embedded programming, it is expected
that only the necessary functions are included in the final binary uploaded
to the Arduino to optimize for size.

Chapter 5

Evaluation

This chapter starts with technical evaluation, which includes the power con-
sumption measurements of the device. It then proceeds to report the results
of user surveys from internal testing.

5.1 Evaluation methods

We evaluated the project and the service from different sides. The first side
is the hardware suitability for the task which was noted during development
of the smart lock.

The next side is an evaluation which looked at the long-term use of the
device and how suitable the product is to be used by the service in the
condition it is in now. We take into account the security, maintainability
and power-management.

The last side, described at the end of the chapter is an evaluation of the
service as a whole done. It is achieves through two surveys. These surveys
were conducted in the office on the participants of the internal beta testing.
This trial was running for 2 weeks at the end of April, 2015.

5.2 Hardware limits

During the development of the project the limitations of the ATmega328p
have been reached more than once. The project is still missing certain fea-
tures that could prove to be too much for the architecture of the current chip.
ATmega328p is an 8bit microcontroller which is an older and less powerful
architecture type compared for example to ARM chips.

Aside from the architecture, it is also possible that the large software size
and high SRAM use are caused by the inefficiency of the libraries provided for

46

CHAPTER 5. EVALUATION 47

Arduino. Unfortunately the second hypothesis is impossible to check exactly
at this stage as it would most likely take too much time to implement the
same functionalities better than the libraries do. However, faced with the
limitations, the firmware has been optimized a few times to reduce the use
of resources. The four main issues have been listed in following subsections.

Table 5.1 illustrates the code size and the SRAM use for each major
iteration. The table also gives a short list of features per iteration, such as
basic operations (serial connection, keypad logic, numeric code generation
and comparison), sleep, microSD handling, box lid position checking, servo
power switch and improvements in code.

5.2.1 Logic optimisation

The code of the bike lock has been growing as more features were added.
Table 5.1 compares the code size in bytes. The maximum size of the code
that can be uploaded to the device is 30 720 Bytes. While none of the
numbers in the table get that exact number, during development of each
iteration, the code has been very close. Each time it was optimized as much
as possible resulting in the sizes given in the table.

The largest increases in the code size are the addition of microSD func-
tionality, sleep and the keypad listeners. All of these functions require addi-
tional library functions which add to the code size as well as the logic required
to use them.

Creation Code size SRAM Features
date [B] use [B]

27 Jul 2014 14 916 1255 basics
2 Sep 2014 15 064 1219 basics, logic improvements

15 Oct 2014 17 968 1277 keypad listener, sleep
20 Oct 2014 28 496 1724 keypad listener, sleep, microSD
20 Oct 2014 20 062 1680 basics, sleep, improved debugging
17 Nov 2014 28 084 1739 basics, sleep, microSD, lid check
29 Apr 2015 20 152 1688 basics, sleep, power switch

30 720 2048 max. values for ATmega328P

Table 5.1: Resources used by each large firmware iteration. The table contains the
dates on which each program was created, the size of the most recent version of the code
after compiling and the use of SRAM calculated after the program was loaded on the
board. Last column lists main features implemented in the code. Basics mean the serial
connection, basic numeric code check logic and running RTC

CHAPTER 5. EVALUATION 48

The microSD functionality causes the largest increase of code size but
there is not much code written in the application to use it, which means the
libraries are the issue here. On the other hand, sleep functionality mostly
uses direct C programming commands to the processor, so the library size
cost is low. Last are the keypad listeners which are taking only little extra
space in comparison.

5.2.2 SRAM optimisation

Another resource drain was discovered later, and it was the use of the SRAM.
The SRAM size on the boards used in the project is 2KB or 2048 Bytes. The
attached Table 5.1 lists the SRAM usage per iteration. The measurement
are collected right after initialization of the code and before the system starts
processing tasks, so the processor is idle.

We can see in the table that the SRAM use increases with each itera-
tion. Largest increases were caused by introduction of the microSD card
handling and the keypad listener. Decreases in the use can be noted at the
improvements in logic and debugging.

The debugging in this project are messages sent over serial connection to
the pc. They exist in the code as plain-text strings. By default, Arduino
programmer stores all the static values in SRAM, even though they do not
change and could be therefore stored in static memory. It is possible to
change that default using a macro F(”string”), which causes the ”string”
value to be stored inside flash memory. After applying that patch SRAM use
dropped. It is not noticeable in the table, as the iteration afterwards also
included new, resource-consuming features.

While testing the SRAM, we also checked an example code for writing
to a microSD card and the SRAM use was at 1054 Bytes when the program
was writing to the card and sending debugging messages over the serial con-
nection. We checked that the base features such as serial connection should
use about 100-200 Bytes. This means that microSD handling functions in
the example would need between 800-900 Bytes of SRAM free. Looking at
the Table 5.1, the largest increase of SRAM use between any iterations was
of about 500 Byte, which is smaller than expected 800-900 Bytes. On the
other hand, there is only one iteration with enough unused SRAM. All other
had larger SRAM use.

We deduced the microSD libraries were using the SRAM but as there
was not enough SRAM, they would fail. We based this also on the observa-
tion that no iteration that includes microSD card support managed to write
anything to the microSD card. Later we learned that because the microSD
cards are formatted in FAT32, the library has to write a sector of 512 Bytes,

CHAPTER 5. EVALUATION 49

which is reserved as a buffer in SRAM in advance. As there was not enough
SRAM, the buffer was never created and writing to the card failed.

Logging

The microSD board was incorporated into the hardware prototypes and the
example projects were ran to determine if it is set up correctly. This was a
success so the project moved to incorporating the logging to microSD func-
tionality into the main project. Adding the microSD logging to the code did
not work and the section above detailing the SRAM use explains why.

An alternative to microSD logging could be making use of the EEPROM
memory of the Arduino chip. This has not yet been implemented or tested,
but from research on the topic, it is noticeable that extracting the information
from the board might be problematic. It might require loading a special
program for extracting the data from the EEPROM and then loading back
the original program. Additionally, EEPROM can be written only a limited
amount of times, so it would have to be done efficiently.

5.2.3 Arduino connectors

Another hardware limit of the board turned out to be the number of pin
connections. With the current setup, all the pins Arduino Pro Mini offers
are in use and adding new hardware functionalities would require attaching
more pins.

There is a possibility to add more extensions via the SPI connector, where
they would be managed in a master-slave mode by the microcontroller, how-
ever that would mean that the new extension would have to use this con-
nection and that all the devices connected via SPI would have to take turns
communicating to the microcontroller. Currently the microSD board occu-
pies the SPI pins. Either it would have to be removed permanently from
the design or the program on the microcontroller would have to manage this
situation.

Alternative option for that would be adding a pin extender or moving to
use a board or a microcontroller with more pins.

The Arduino Pro has 2 pins less than Arduino Pro Mini, so Viola based
on it has to work now with the microSD board completely disconnected to
make space for the power supply pin.

CHAPTER 5. EVALUATION 50

5.3 Internal hardware testing

In addition to the software testing, the prototypes have been continuously
tested during development.

Enclosure

The enclosure shape and functionality was difficult to plan and predict. In
first iteration of the enclosure, the materials and shape were sub-optimal,
which lead to employing a designer to make a professional design. However
the design turned out to have a few design flaws that were hard to foresee
before the enclosure was used.

One of the interesting issues was the problem of screws touching the
electronics and making the lock inoperable. This was fixed by wrapping
the electronics in bubble wrap. Another issue with the design was lack of
battery holder, which at the beginning was remedied with soldering of the
batteries together. However the soldering points would not hold together
which prompted us to find and order a suitable small enclosure online (see
Section 4.5.1).

Another seemingly small issue was the size of the bike key compartment
in the lock. As it turns out only very small keys fit in it, which has limited
us to use lower quality bike locks in the project. In the future the design will
have to be corrected if we wish to use or example U-locks.

While some of the problems were solved with temporary fixes, some still
remain. Among them there is low security as the box can be opened with a
particular screw-driver type. Additionally when the lid of the box is open,
the compartment with electronics of the box can be also accessed through
the hole in the lock. This is a danger in case the user would try to access it.

The many issues are mostly due to the fact the enclosure was still in its
first phase of prototyping. It did not get enough iterations and attention,
which resulted in continued security and design issues.

5.4 Power measurements

The power consumption is among the biggest issues in the project. The
smart bike lock needs to be able to work for as long as possible without
a change of batteries, or it will be too tedious to maintain it. Being able
to measure that power consumption would have been a great advantage.
However the only sensitive enough tool, a multimeter, would require checking
the power readings multiple times to be able to average it over time. Best for

CHAPTER 5. EVALUATION 51

Figure 5.1: Power consumption of the bike lock while in use. The figure is a measurement
of opening and closing of the lock. It was done with a lock not equipped in a servo power
switch. The servo is therefore connected and drawing power all the time. There are no
spikes of power for the two moments the servo moves. The overall power draw is high.
This measurement is the worst case scenario in which the servo is connected the whole
time the device is awake.

measurements are devices that supply the power while measuring the draw
at the same time.

To measure the power consumption, we have visited the Helsinki Hacklab
to use their hardware for power monitoring. Measurements were done with
a HP 6632b power supply on the latest hardware and software iterations.

Results

The results from measurements reveal that there is a very large power draw
from external elements that are not in use, but as they are directly plugged
to Arduino or the battery, they use power while idle. The measurements
have shown which elements those were and allowed for separating them.

In the Figure 5.1 we can see how the bike lock uses the power. At first the
bike is asleep and the power consumption is low. Then as it wakes up, starts
to charge its capacitors, flashes the led light and adjusts the servo position.
These actions show up as a momentary power increase. Then the power draw
lowers to a certain level and stays there during normal operation: receiving
input from the users, flashing the light, opening the lock and waiting for
more input from the user to close the lock again. After a certain amount of

CHAPTER 5. EVALUATION 52

time passes without user interaction, the lock goes back to sleep.

Variations P. awake P. awake P. sleep P. sleep
[mW] ∆ [mW] [mW] ∆ [mW]

board, RTC 82.34 mW - 1.26 mW -
board, RTC, power switch 83.42 mW 1.08 mW 1.23 mW -0.03 mW
board, RTC, servo 118.18 mW 35.84 mW 36.34 mW 35.08 mW
board, RTC, microSD card 99.41 mW 17.06 mW 9.50 mW 8.24 mW

Table 5.2: Average power used by the elements of the smart bike lock. The first row has
the values measured and calculated for the necessary basic elements: the Arduino board
and the RTC chip. Following rows have connected additional elements. The P.awake
column has values measured while the device was awake, while the P.awake ∆ calulcates
the increase of power consumption using first column as a base value. Similarly P.sleep
column has values of the device that is sleeping and the P.sleep ∆ column has the difference.
All these values have been calculated from measurements done on a recent iteration of a
bike lock by disconnecting and reconnecting various elements to get detailed measures for
each feature.

Issues identified in the measurement

Table 5.2 contains multiple average values of power consumption of the de-
vice with different hardware elements connected in order to determine their
power consumption. The first and third columns are the total average for
measurement. First column is the power of the awake and idle device. Third
column is the power of the sleeping device. Second and fourth column are
the difference calculated by subtracting the power consumption of the base,
which is Arduino Pro Mini board with RTC. All measurements were done on
an idle device over a span of 3 minutes.

From the measurements we can see there are a few things that increase
the power consumption of the device. The main issue is the servo, which
draws the most power even when idle. Connecting it through a power switch
to the board reduces that consumption significantly. The second issue is the
microSD board, which when it has a microSD card in the socket, draws a
lot more power when awake. When asleep, it draws less power, but still a
significant amount.

There is one negative value in the table for the difference between no
devices connected and servo connected through a power switch. It might be
that it is due to floating pins being reduced as the pin driving the power
switch disconnected without the power switch and may float.

CHAPTER 5. EVALUATION 53

5.4.1 Power consumption model

From the measurements we can create a model to determine how long the
battery will last with known power usage. We can use the known average
idle power and the power of the two actions: unlocking and locking of the
smart bike lock. The scheme follows assumptions that once a bike lock is
opened, it has to be also closed. This means we have a simple Equation 5.1
that depends on the number of times n these two actions are performed.

Energytotal = n · Energymove + Poweridle · timeidle (5.1)

From measurements shown in Figure 5.1 we can calculate that act of
opening and closing the lock uses 4.06J over 43.6s, which in Equation 5.1 is
called Energymove. When unused the bike is sleeping and the lock consumes
1.23mW, called Poweridle. The bike lock is powered by a set of batteries
that we assume have about 2000mAh and 6V. That is 43200W, which is our
Energytotal.
From these assumptions we get values listed in Equations 5.2. We then put
them in Equation 5.1 and get the result in Equation 5.4.

Energymove = 4.06J = 4060mJ

Poweridle = 1.23mJ

timeidle = timetotal − n · 43.6s

Energytotal = 43200J = 43200000mJ (5.2)

43200000mJ = n · 4060mJ + 1.23mW · (timeidle − 43.6s) (5.3)

timeidle = 35121994.81s− n · 3300.81s (5.4)

n yearly use time

0 none 1 year 41 days
365 1 a day 1 year 27 days
730 2 a day 1 year 13 days

1095 3 a day 1 year
1460 4 a day 11 months 16 days

Table 5.3: Battery expectancy with bike use over time with daily frequency of use
projected for a year.

CHAPTER 5. EVALUATION 54

The results presented in Table 5.3 show that with the bike used once a
day on average, the battery should last it a full year. With larger amount of
rentals per day the battery time lowers slowly. The results show that with
moderate use, the bike lock can work without issues for 8 months which is
close to the length of the biking season in Finland.

5.5 Feedback from users

In last 2 weeks of April 2015, the project ran a closed internal beta at In-
lineMarket Evolutions. The beta used prototype of the mobile application
for iPhone and a cloud server. The test system offered two bikes, a male
mountain bike called Ilpo and a female city bike called Viola (see Figure
5.2). Both were equipped with a prototype bike lock.

The beta was a test run before external testing could be started. It was
to check stability of the solution and gather more feedback on software and
hardware. At the end 5 people from the company decided to use the company
bikes. Almost all of the testers in this beta own bikes so the bike sharing
service competes against their own bikes. Additionally two users have a
technical background, while the rest are marketers and managers.

After the beta was over, we gave users two surveys. One of them is the
standardised System Usability Scale. The second one was a custom, project-
related survey asking questions about the usability of the elements of the
system and the functionalities that are not implemented yet.

5.5.1 The System Usability Scale

The System Usability Scale (SUS) survey was developed in 1980s by John
Brooke[9] as a quick way to evaluate system’s usability. The recommended
use[34] for it is right after the users had a chance to use the system but
before any discussion about it. The testers are presented then a set of 10
statements. They have to evaluate the statements on scale of 1 to 5 if they
agree with them or not. The statements are arranged so every odd one is
positive and every even one is negative. The answer values are normalized:
answers for negative statements subtracted from 5, so 2 becomes 3, and for
positive ones are lowered by 1 to get numbers from 0 to 4. Results can be
seen in the attached Figure 5.3. Five open ended questions were added to
the survey to gather also free form feedback about the system.

Despite the recommendation, due to project limitations, the test had to
be ran a few days after the testing was over. Moreover the tests were internal

CHAPTER 5. EVALUATION 55

Figure 5.2: The second iteration bike lock, Viola, mounted on a woman’s city bike. It
was one of two bikes used for the internal testing.

and testers were from the same workplace as developers of the system. These
circumstances may have impacted how the testers graded the system.

Lastly, the users were grading the system as a whole, not just the smart
bike lock which is the focus of this thesis. To get more specific answers we
have created the custom survey described below.

System Usability Scale results

The values on the scale are all higher than the middle value, but at the
same time the error bars are very long. It is possible that the positive feed-
back might be inflated by the environment explained above. Similarly the
error bars can be caused by the different situations of the testers. Further
explanation can be found in the open text questions.

Open text feedback

The open text questions were asked in the same survey as SUS questions to
complete the users’ image of the system. These questions were:

• What was good in the bike sharing system?

• What was bad in the bike sharing system?

• What would you change or add?

• If the system would work perfectly, how would you integrate it into
your schedule?

CHAPTER 5. EVALUATION 56

0 1 2 3 4

I think that I would like to use
this system frequently

I found the system unnecessar-
ily complex

I thought the system was easy
to use

I think that I would need the
support of a technical person to
be able to use this system

I found the various functions in
the system were well integrated

I thought there was too much
inconsistency in the system

I would imagine that most peo-
ple would learn to use this sys-
tem very quickly

I found the system very cum-
bersome to use

I felt very confident using the
system

I needed to learn a lot of things
before I could get going with
this system

2.8

2.8

3.2

3.8

3

3

3

3

2.8

3.2

Average score (higher is better)

Figure 5.3: The mean SUS scores by question. Error margin bars represent a 95%
confidence interval.

0 1 2 3 4

Mobile application’s navigation
is easy to use.

Mobile application is easy to
use to unlock the bike.

It is easy to unlock the bike
lock and get the key.

It is easy to unlock the bike
lock to return the key.

The mobile application is com-
fortable to use.

The bike lock is comfortable to
use.

3.4

3.3

2.6

2.6

3.4

3

Average score (higher is better)

Figure 5.4: The custom survey’s mean scores for system evaluation. Error margin bars
represent a 95% confidence interval.

CHAPTER 5. EVALUATION 57

• For what sort of purpose or what activities would this work best?

In answer to the first questions all testers wrote that the system is easy
to use. The downsides of the system were mostly targeted at the setup and
the mobile application. One user wished for native applications for other
platforms than iPhone and one reported the tracking on the iPhone was not
satisfactory. The system setup issues found by one user were too few test
bikes and no bike helmets.

When asked what could be added, most users commented on the mobile
application, poor instructions and bike identification. Another user asked for
reservation system and another for better map. Only one user asked for a
smarter bike lock that could communicate wirelessly with the server and the
smartphone.

Lastly, asked how frequently the users would use it if it was flawless, three
users responded they would definitely use it, and two users would probably
use it. The supplied use-cases were lunch trips and visits to clients. One user
said the bike serves better than a taxi in the city center.

Overall the feedback gathered with these questions looks quite positive.
The SUS closed questions give an overall high score. The answers to addi-
tional open questions are directed mostly at the smartphone application.

5.5.2 Custom survey

The second survey that was sent to the testers was created as a set questions
that were though worth asking. The survey is larger and asks more questions.
The main reasoning behind it is to collect project-specific feedback with a
section dedicated only to wireless questions.

This survey contained a matrix question asking to evaluate the elements
of the system (see Figure 5.4). This question shows more in detail which
parts of the system were better than others. We can see again that while all
the values pass over the middle, similarly to previous survey the error margin
bars are very large. The bike lock is graded lower than the mobile application
showing that this part of the system still could be improved usability-wise.

Open questions in custom survey

The open questions in the survey asked about the issues encountered while
using the system and improvements to introduce. Some testers listed more
things in this survey than in the previous survey.

Two users reported they had issues with entering the code into the lock.
One user also complained during the testing period as well as in the sur-
vey about the lock not always flashing the led when the wakeup button was

CHAPTER 5. EVALUATION 58

pressed. This was fixed during the testing period. The same user also com-
plained that the box does not close itself and the user is forced to click a
button to make it close. This feature is currently under development.

In suggestions about improvements, one user asked for simplified pickup
logic, which might mean also the need to press buttons on the lock. Another
user noted that the system is more prone to errors such as key loss and there
is no backup plan when that happens. This is an important remark which
should be taken into account in further development.

Custom survey’s wireless section

The last section of the custom survey asked only about users’ smartphones
and their wireless capabilities. As the answers were anonymous, it is hard
to guess which answers were given by developers and which by non-technical
team members. However we can see clearly that two testers did not know
what new wireless technologies their phones had, along with another user
they did not care about getting them in their next phone.

One tester had a BLE smartphone and only two testers expressed interest
in getting a smartphone with BLE. It is possible though that more people
answering the survey have a BLE-enabled phone but have never used it and
do not know about it.

Two users were fine with using a keyfob if their phone could not be used
with the smart lock. One tester would consider getting a phone that would
support the wireless standard. Only one user would abandon the service
altogether if their smartphone could not be used with the smart bike lock.

Overall if we were to base our smart lock design only on answers from
the survey, we would have to forgo the use of short range wireless. However
knowing that over half of the testers lack the knowledge about the wireless
standards we can assume at least a few do have BLE in their smartphones
but do not know about it.

Chapter 6

Discussion

The main topic of this chapter are the future improvements of the smart bike
lock. The options are explained based on the progress of the work and the
feedback.

6.1 Project improvements

The project is currently in the prototyping phase and the largest issue that
should be discussed are the future directions and improvements that can be
made to it. The paths for the project are: improving on the current design,
starting a parallel project with a different architecture and switching to using
wireless technologies.

6.1.1 Design improvements

The current prototype of the bike lock hardware is nearing its final form with
the embedded design using the ATmega328p. While it lacks some features
and only relies on numeric input, most of the functionalities are close to
stable now. The list of significant changes to improve the design is small
and low-effort now. These changes would be, for example, switching to use a
3.3V Arduino Pro Mini with suitable peripherals, a more robust RTC chip,
a more solid numeric keypad or an enclosure with improved design.

The improved design of the enclosure is an important element in the list
in large part because the company has no design specialist on the team. The
design was done by an contractor but still is not perfect. Further design
would again require support from a specialist who could work closely with
the team on improvements and changes to the overall design.

The list of changes contains no major software changes as the largest

59

CHAPTER 6. DISCUSSION 60

changes would most likely be too much of a time investment, like rewriting
the libraries, or not possible in the current architecture, like logging to the
microSD card turned out to be. Adding support for larger features like
wireless could mean moving to a different architecture.

6.2 Alternative solutions

As the ATmega328p has proven to be too limited for expanding this project,
alternative architectures should be considered. There are many alternative
options but with initial research, they can be limited to two major possibili-
ties.

6.2.1 Arduino Mega

One solution would be to simply use an ATmega model with more SRAM,
pins and flash, like ATmega2560, which is used as the core of the Arduino
Mega board. This would make it possible to maintain the similar architecture
reusing the code and redesigning the current arrangement to suit the new
main board. SparkFun shop offers a Pro Mini version of the Arduino Mega,
where improvements were made similar to those in the Arduino Pro Mini
compared to the original Arduino Uno. There are however some changes
that would have to be taken into account, like different pin connectors, a
larger size and a higher price.

6.2.2 ARM chips

While working on the project, we have consulted various embedded program-
mers like Kliment Yanev and Teemu Hakala. Their advice was to have a look
at the ARM architecture and use it in another prototype. ARM is an ar-
chitecture that offers faster chips with more RAM and flash memory as well
as additional features. The ARM architecture offers chips more powerful
than this project requires. However this means that it would be possible to
implement wireless communication as well as better security for the commu-
nication protocols, logging and all the existing features.

The downside to using the ARM chips is a less accessible user commu-
nity and seemingly worse access to training and materials in comparison to
Arduino. This was one of the reasons ARM was not the architecture first
selected for this project. The second reason was that at the beginning, the
ARM chips seemed too overpowered for such a small project. However this

CHAPTER 6. DISCUSSION 61

turned out to not be true as the project has reached the hardware limits of
ATmega328p more than once.

For beginners starting with ARM, there are ready-made boards such as
STM32 Nucleo. However it is not optimized to size or functionality for this
particular project, so a programming prototype could be made partially with
the board, but eventually the project would need a custom board design.
Moving to the ARM architecture would also mean completely new code and
assembly. It would be a completely separate project where only the hands-on
experience from the ATmega iterations would be useful. The advantages of
custom design would however include the possibility to add all the electrical
improvements found while developing the Arduino iterations.

6.3 Other hardware issues

Aside from alternative architectures, there are other interesting improve-
ments and modifications that could be researched. Following are the most
interesting issues, such as power generation, wireless and mass production.

Alternative energy sources

The project has encountered many issues with powering the hardware and
it needs more improvements to be energy efficient. However there is another
approach to consider, which are energy sources that could gather power for
the hardware while it is in use. One of the possibilities would be to use a dy-
namo, like the Lock8 product. It would, however require strategic placement
to give the lock access to the bike tire to use its movement.

Another possibility is to use solar power, like the SkyLock does. It would
require that part of the bike lock box be covered in solar cells. This is
challenging to do with the current setup relying on numeric buttons. It
would be possible to implement it with a wireless lock, but with wireless the
power draw would be significantly higher posing a question if the solar panels
would be sufficient. Also, just like dynamo, it would be nearly useless while
the bike is stored away in dark room.

Adding alternative energy sources to extend the battery life of the bike
lock is an interesting idea. It would require a lot of work to develop, measure
and determine a suitable solution.

Wireless solutions

While no implementation has been made in the wireless area, the possibility
has been considered the whole time the project was in development. This

CHAPTER 6. DISCUSSION 62

is partially because wireless is seen as the most user-friendly technology in
this context compared to numerical input. Another reason is that in the
oncoming smart lock market all solutions use a short-range wireless.

The user feedback given in two surveys has shown that users were inter-
ested in using short-range wireless to open the lock. No user was against it
and most answers showed more interest in BLE than in NFC.

Size of the numeric pad

The current prototypes are using a large numeric pad, which includes all
numbers from 0 to 9 and additional two characters. The size could be however
decreased to fewer digits to shrink the size of the enclosure. Fewer numbers
to use in the numeric code may require increasing the length of the code and
a modification to the algorithm that generates it. However the benefit would
be drastic decrease in size of the enclosure. This modification is another
intersting prospect to try out in the future iterations.

Location tracking with GPS

This project has already been in planning and development for a year. At
the beginning of the project, the search for a combined GPS and GSM mod-
ules turned up only one solution that was bulky, expensive and packed with
features that were not needed for this project, such as a loud-speaker and
buttons for a phone.

Since then new and more suitable products have become available and
they could be used in the future to develop alternative solutions for this
project. The existence of a complete module for GPS and GSM functionality
will considerably expedite the prototyping.

Large-scale production

The current prototypes are all based on ready-made boards which have been
carefully designed and tested. They still require modifications to be of use in
this project. However if an opportunity arose to manufacture this product
in large quantities, the design of Arduino would have both redundant and
missing features. Additionally, buying ready-made boards to incorporate
into a custom board would be inefficient and expensive. The design would
most likely have to be custom, and therein would lie possibility to move to
ARM microcontrollers or another alternative.

CHAPTER 6. DISCUSSION 63

6.4 Future use case: Campus bikes

During the development of the project another, non-corporate use case has
appeared, namely bike sharing on the Otaniemi campus of Aalto University
in Espoo. There are currently bikes for rent called Campus Bikes[20], but
they are only for staff members and borrowing requires asking the building
personnel for assistance. The bikes are branded with Aalto logo and placed
in a number of larger buildings to wait for users.

Due to the shape of the campus, which is made of scattered buildings, an
automated bike service for not only staff but also students could be beneficial.
It is possible that also a classic, 3rd generation station-based bike sharing
system could be implemented there. This would however require a lot of
planning and work to build the official bike stations. A smart bike lock
based solution would be free of that issue and could be implemented quickly
and with existing bike racks on the campus.

Although we have not analyzed the campus use case deeper, we expect
it to be slightly different from company bikes. First it would be on a much
smaller area, so localization would have to be quite accurate. Second, if not
only staff but also students were allowed to use the bikes, it would have a
very high turnover. It is hard to predict how the use case would advance as
it was noticed later in the project and prioritized less.

Chapter 7

Conclusions

This chapter presents the project work and lessons learned from it in distilled
form. These conclusions are intended to be a guiding light in the future,
related projects.

7.1 Lessons learned

This project was started with the goal of creating a complete solution which
enables bike sharing for. It has been scoped to be a manageable project
using as many ready elements as possible, in order to iterate fast over stable
and usable versions. At the current moment, the prototype is close to being
completed in the originally planned scope. The bike lock prototypes have
been used internally and user testing shows that the usability is acceptable,
but also that it should be improved in certain ways.

Still, the development has reached the architectural limits of the Arduino
platform, that has been used in these prototypes. This means that adding
more functionality to the current prototype would likely be challenging. As
a consequence, other alternatives should be considered if features such as
wireless communication are to be added to the solution.

The main lesson learned from this thesis project is related to the develop-
ment in a constrained environment, an embedded platform in this case. We
have learned valuable lessons while trying to optimize the memory footprint,
design and power consumption of the device. The knowledge from the latter
part especially will be used in the design of new devices that use external
elements such as servomechanisms. The challenges related with power con-
sumption have taught us how to design for improved battery life which is
quite important in these kind of projects.

64

CHAPTER 7. CONCLUSIONS 65

Power efficiency

The power efficiency of the project has been a considerable problem. The
causes were discovered only after meticulous power measurements. Over-
coming that limitation is a major step towards turning the design into a
functional product. In this project, it was necessary to solder a custom-
made board to add more power control. This exemplifies the limitation of
relying on ready elements which are not equipped with such features.

Some devices come with manuals that have an estimated power consump-
tion given by the manufacturer, like the ATmega chips. Other devices are
provided without this information, like the servos used in the project. Over-
all, it is difficult to predict the power usage of the complete system before
building a prototype first.

Still, creating a design that is highly power efficient would require strict
power control for all elements connected to the board like the servomecha-
nisms. The power control would most likely require a custom-design board
that would do the power control for the main board. Such functionality
could also be incorporated into a custom main board if the prototype of this
project is to be manufactured.

Voltage

From the beginning of the project we used the default 5V voltage of the
Arduino Uno. We continued with it even when we moved to the professional
series of boards, which support the lower voltage of 3.3V. In retrospect, we
should have moved to the lower voltage. It would have given us many ad-
vantages, such as lower power consumption and the possibility of connecting
3.7V lithium ion batteries directly, without voltage converters.

We noticed how problematic the higher voltage is after buying parts that
required 5V. This prevented in practice the transition to the lower voltage.
Moreover, we originally thought 5V parts were cheaper or that it would
be difficult to obtain low voltage alternatives. Later, with more research, we
found that is not the case. While some parts would indeed be more expensive,
supplying the system with a steady 5V would be also expensive.

Product development and user feedback

From working in this project, we learned also that users value the external
elements of the system, such as the design of the box and presentation of
the application. A functional prototype was not well received because it did
not have an elegant enclosure. The elegance of the device should have been
given a higher priority from the beginning, to make a better impression.

CHAPTER 7. CONCLUSIONS 66

Another lesson learned from the user feedback was how much they pre-
ferred a simplified system. The system is considered subpar if it takes too
long to access the service and start using it. Any mechanical or technological
improvement that could speed it up would be welcome. The speed of service
should be a high priority for future system design.

In this project, that simplified design would mean combining a mechanical
bike lock and the smart bike lock into one device. This has not been done
due to lack of experience in designing mechanical locks. Instead, a simple
box was built to house a key for a regular bike lock.

7.2 Future work

Although the project for the thesis is over, the work on the smart bike lock
will continue. The previous chapter described the possible directions of de-
velopment, starting from simple power improvements to different boards to
finally a custom design. As working on the project has been rewarding, we
plan to continue working on the development in the near future.

7.3 The future of bike sharing

During this project, we have found that this and other similar smart lock
projects show the development of bike sharing is progressing. The products
will enter the markets in the next few years and, possibly, change how bike
rental and sharing is done. Technology is now advanced enough to create
democratized bike sharing, which can lower the entry barrier to biking in
more areas than bike has sharing already done. Moreover, it can be a base
for creating small, local enterprises. While it is not a certainty that such a
change will happen, it is still an interesting possibility to consider and worthy
of support.

The success of bike sharing systems that use smart bike-mounted locks
depends heavily on the users. If the users find the system easy to work
with and feel incentivized to care, the bikes will be well secured and in good
condition. In contract, if the users do not care and lock the bikes in bad,
insecure ways or just leave them too far away from where other users could
access them, the bikes will be easily lost and broken. This is one of the reasons
why the smart bike lock system is suitable for small sharing programs, where
users share a connection, by belonging to the same company, for example.

Bibliography

[1] Adafruit Industries. Adafruit. http://www.adafruit.com/, 2015.
Accessed 15 Apr 2015.

[2] af Heurlin, E. Series ultracap balancer. https://github.com/rambo/

ultracap_balancer, 2015. Accessed 10 May 2015.

[3] Akar, G., and Clifton, K. J. Influence of individual perceptions
and bicycle infrastructure on decision to bike. Transportation Research
Record: Journal of the Transportation Research Board 2140, 1 (2009),
pp 165–172.

[4] Alli, G., Baresi, L., Bianchessi, A., Cugola, G., Margara,
A., Morzenti, A., Ongini, C., Panigati, E., Rossi, M., Ro-
tondi, S., Savaresi, S., Schreiber, F., Sivieri, A., Tanca, L.,
and Depoli, E. Green Move: Towards next generation sustainable
smartphone-based vehicle sharing. In Sustainable Internet and ICT for
Sustainability (SustainIT), 2012 (Oct 2012), pp. 1–5.

[5] Arduino LLC. Arduino. http://arduino.cc, 2015. Accessed 15 Apr
2015.

[6] Atmel Corporation. Atmel 8-bit microcontroller with
4/8/16/32KBytes in-system programmable flash datasheet, 2014.

[7] Berezdivin, R., Breinig, R., and Topp, R. Next-generation wire-
less communications concepts and technologies. Communications Mag-
azine, IEEE 40, 3 (2002), pp 108–116.

[8] Brandon, J. Review: Fuz Designs Noke. http://www.wired.com/2015/
02/review-fuz-designs-noke/. Accessed 17 Mar 2015.

[9] Brooke, J. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), pp 4–7.

67

http://www.adafruit.com/
https://github.com/rambo/ultracap_balancer
https://github.com/rambo/ultracap_balancer
http://arduino.cc
http://www.wired.com/2015/02/review-fuz-designs-noke/
http://www.wired.com/2015/02/review-fuz-designs-noke/

BIBLIOGRAPHY 68

[10] Buck, D., Buehler, R., Happ, P., Rawls, B., Chung, P.,
and Borecki, N. Are bikeshare users different from regular cyclists?
Transportation Research Record: Journal of the Transportation Research
Board 2387, 1 (2013), pp 112–119.

[11] Cavill, N., and Davis, A. Cycling and health. What’s the evidence
(2007).

[12] DeMaio, P. Bike-sharing: History, impacts, models of provision, and
future. Journal of Public Transportation 12, 4 (2009), pp 41–56.

[13] DeMaio, P. J. Smart bikes: Public transportation for the 21st century.
Transportation Quarterly 57, 1 (2003), pp 9–11.

[14] Dicola, T. Low Power WiFi Datalogger — Adafruit Learning
System. https://learn.adafruit.com/low-power-wifi-datalogging/,
April 2015. Accessed 19 Apr 2015.

[15] Firnkorn, J., and Müller, M. What will be the environmental
effects of new free-floating car-sharing systems? The case of car2go in
Ulm. Ecological Economics 70, 8 (2011), pp 1519–1528.

[16] Free2Ride. The Lock Box - built for YOU by Free2Ride. https://www.
kickstarter.com/projects/free2ride/the-lock-box/, 2014. Accessed
17 Apr 2015.

[17] FRENZEL, L. E. NFC DON’T LEAVE HOME WITHOUT IT. Elec-
tronic Design 60, 12 (2012), pp 30–37.

[18] FUZ Designs. Noke U-lock World’s Smartest U
Lock. https://www.kickstarter.com/projects/fuzdesigns/

noke-u-lock-worlds-smartest-u-lock, 2015. Accessed 10 May
2015.

[19] Goasduff, L., and Rivera, J. Gartner Says Smartphone Sales Sur-
passed One Billion Units in 2014. http://www.gartner.com/newsroom/

id/2996817, Mar 2015. Accessed 2 May 2015.

[20] Häkkinen, H., and Löyttyniemi, M. Sustainable transporta-
tion - Campus services - Aalto Inside. https://inside.aalto.fi/

pages/viewpage.action?title=Sustainable+transportation. Accessed
13 May 2015.

https://learn.adafruit.com/low-power-wifi-datalogging/
https://www.kickstarter.com/projects/free2ride/the-lock-box/
https://www.kickstarter.com/projects/free2ride/the-lock-box/
https://www.kickstarter.com/projects/fuzdesigns/noke-u-lock-worlds-smartest-u-lock
https://www.kickstarter.com/projects/fuzdesigns/noke-u-lock-worlds-smartest-u-lock
http://www.gartner.com/newsroom/id/2996817
http://www.gartner.com/newsroom/id/2996817
https://inside.aalto.fi/pages/viewpage.action?title=Sustainable+transportation
https://inside.aalto.fi/pages/viewpage.action?title=Sustainable+transportation

BIBLIOGRAPHY 69

[21] Jamieson, P. Arduino for teaching embedded systems. are computer
scientists and engineering educators missing the boat? Proc. FECS
(2010), pp 289–294.

[22] Knight, P. narcoleptic - Sleep library for Arduino. https://code.

google.com/p/narcoleptic/, 2010. Accessed 10 May 2015.

[23] Lella, A. comScore Reports January 2015 U.S. Smartphone Subscriber
Market Share. http://www.comscore.com/Insights/Market-Rankings/

comScore-Reports-January-2015-US-Smartphone-Subscriber-Market-Share,
Mar 2015. Accessed 2 May 2015.

[24] LOCK8. LOCK8 - the World’s First Smart Bike
Lock. https://www.kickstarter.com/projects/lock8/

lock8-the-worlds-first-smart-bike-lock, Dec 2013. Accessed 9
Mar 2015.

[25] M'Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., and
Ranen, O. Hotp: An hmac-based one-time password algorithm. The
Internet Society, Network Working Group. RFC4226 (2005).

[26] M'Raihi, D., Machani, S., Pei, M., and Rydell, J. Totp: Time-
based one-time password algorithm. Internet Requests for Comments,
Internet Engineering Task Force (IETF), RFC 6238 (2011).

[27] Margolis, M. Arduino cookbook. ”O’Reilly Media, Inc.”, 2011.

[28] Martin, C. iPhone 6 NFC chip is restricted to ApplePay but may open
to developers soon. http://www.pcadvisor.co.uk/news/apple/3572112/
iphone-6-nfc-chip-is-restricted-applepay/, Sep 2014. Accessed 08
May 2015.

[29] Mesh Motion Inc. BitLock: Turning your smart phone into
your bike key. https://www.kickstarter.com/projects/126495570/

bitlock-turning-your-smart-phone-into-your-bike-ke, Nov 2013.
Accessed 9 Mar 2015.

[30] Midgley, P. The role of smart bike-sharing systems in urban mobility.
Journeys 2 (2009), pp 23–31.

[31] Noland, R. B., and Ishaque, M. M. Smart bicycles in an urban
area: Evaluation of a pilot scheme in London. Journal of Public Trans-
portation 9, 5 (2006), pp 71–95.

https://code.google.com/p/narcoleptic/
https://code.google.com/p/narcoleptic/
http://www.comscore.com/Insights/Market-Rankings/comScore-Reports-January-2015-US-Smartphone-Subscriber-Market-Share
http://www.comscore.com/Insights/Market-Rankings/comScore-Reports-January-2015-US-Smartphone-Subscriber-Market-Share
https://www.kickstarter.com/projects/lock8/lock8-the-worlds-first-smart-bike-lock
https://www.kickstarter.com/projects/lock8/lock8-the-worlds-first-smart-bike-lock
http://www.pcadvisor.co.uk/news/apple/3572112/iphone-6-nfc-chip-is-restricted-applepay/
http://www.pcadvisor.co.uk/news/apple/3572112/iphone-6-nfc-chip-is-restricted-applepay/
https://www.kickstarter.com/projects/126495570/bitlock-turning-your-smart-phone-into-your-bike-ke
https://www.kickstarter.com/projects/126495570/bitlock-turning-your-smart-phone-into-your-bike-ke

BIBLIOGRAPHY 70

[32] Pololu Corporation. Pololu 5V Step-Up Voltage Regulator
U1V11F5. https://www.pololu.com/product/2562, 2015. Accessed 10
May 2015.

[33] Rustie0125. Arduino low Power Project. http://www.instructables.

com/id/Arduino-low-Project-and-code/, September 2014. Accessed 19
Apr 2015.

[34] Sauro, J., and Lewis, J. R. Quantifying the user experience: Prac-
tical statistics for user research. Elsevier, 2012.

[35] Seidle, N. Adventures in Low Power Land - SparkFun Electronics.
https://www.sparkfun.com/tutorials/309, August 2011. Accessed 19
Apr 2015.

[36] Seik, F. T. Vehicle ownership restraints and car sharing in Singapore.
Habitat International 24, 1 (2000), pp 75–90.

[37] Siekkinen, M., Hiienkari, M., Nurminen, J. K., and Nieminen,
J. How low energy is bluetooth low energy? comparative measurements
with zigbee/802.15. 4. In Wireless Communications and Networking
Conference Workshops (WCNCW), 2012 IEEE (2012), IEEE, pp. 232–
237.

[38] Urdiain, L. O., Romero, C. P., Doggen, J., Dams, T., and
Van Houtven, P. Wireless Sensor Network Protocol for Smart Park-
ing Application Experimental Study on the Arduino Platform. In AM-
BIENT 2012, The Second International Conference on Ambient Com-
puting, Applications, Services and Technologies (2012), pp. 45–48.

[39] Velo Labs Inc. SKYLOCK. http://skylock.cc/, 2015. Accessed 17
Mar 2015.

[40] Vogel, M., Hamon, R., Lozenguez, G., Merchez, L., Abry,
P., Barnier, J., Borgnat, P., Flandrin, P., Mallon, I., and
Robardet, C. From bicycle sharing system movements to users: a
typology of Véloflv cyclists in Lyon based on large-scale behavioural
dataset. Journal of Transport Geography 41 (2014), pp 280–291.

[41] Vorkoetter, S. Choosing and Using Nickel-Metal-Hydride (NiMH)
Rechargeable Batteries. http://www.stefanv.com/electronics/using_

nimh.html, March 2008. Accessed 19 Apr 2015.

https://www.pololu.com/product/2562
http://www.instructables.com/id/Arduino-low-Project-and-code/
http://www.instructables.com/id/Arduino-low-Project-and-code/
https://www.sparkfun.com/tutorials/309
http://skylock.cc/
http://www.stefanv.com/electronics/using_nimh.html
http://www.stefanv.com/electronics/using_nimh.html

BIBLIOGRAPHY 71

[42] Wikimedia Commons. A Vélib station with its distinctive
grey bicycles. http://upload.wikimedia.org/wikipedia/commons/f/f7/
Velibvelo1.jpg, 2007. Accessed 12 May 2015.

[43] Wu, G., Talwar, S., Johnsson, K., Himayat, N., and Johnson,
K. D. M2M: From mobile to embedded internet. Communications
Magazine, IEEE 49, 4 (2011), pp 36–43.

[44] Wu, X.-g., and Zhang, R.-h. The Popularization and Application
of Bicycle Sharing System in Urban Transportation System. In Pro-
ceedings of the 10th International Conference of Chinese Transportation
Professionals (2010), pp. 2616–2628.

[45] YLE. Helsinki Suspending Free City Bike Programme. http://yle.

fi/uutiset/helsinki_suspending_free_city_bike_programme/1597732,
2012. Accessed 10 May 2015.

[46] YLE. Helsinki haluaa kaupunkipyörät osaksi joukkoliikennettä.
http://yle.fi/uutiset/helsinki_haluaa_kaupunkipyorat_osaksi_

joukkoliikennetta/7467249, 2014. Accessed 10 May 2015.

http://upload.wikimedia.org/wikipedia/commons/f/f7/Velibvelo1.jpg
http://upload.wikimedia.org/wikipedia/commons/f/f7/Velibvelo1.jpg
http://yle.fi/uutiset/helsinki_suspending_free_city_bike_programme/1597732
http://yle.fi/uutiset/helsinki_suspending_free_city_bike_programme/1597732
http://yle.fi/uutiset/helsinki_haluaa_kaupunkipyorat_osaksi_joukkoliikennetta/7467249
http://yle.fi/uutiset/helsinki_haluaa_kaupunkipyorat_osaksi_joukkoliikennetta/7467249

Appendix A

Flowcharts

72

APPENDIX A. FLOWCHARTS 73

Figure A.1: Detailed logic the bike lock program.

APPENDIX A. FLOWCHARTS 74

Figure A.2: Detailed logic for generating and validating the numeric code.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Thesis structure

	2 Background
	2.1 Bike rental and bike sharing
	2.2 Bike sharing systems
	2.2.1 Impact of bike sharing systems
	2.2.2 Bike sharing history
	2.2.3 Contemporary bike sharing

	2.3 Car sharing services
	2.4 Smart bike locks
	2.4.1 The Lock Box
	2.4.2 BitLock
	2.4.3 Skylock
	2.4.4 Noke U-lock
	2.4.5 Lock8

	2.5 Wireless technologies
	2.6 The smartphone as a key

	3 System design
	3.1 Project setting
	3.2 The service
	3.2.1 User guide
	3.2.2 Service architecture
	3.2.3 Requirements
	3.2.4 Stakeholders
	3.2.5 Long term use

	3.3 Access control
	3.3.1 Numeric code
	3.3.2 Short range wireless
	3.3.3 GSM

	3.4 Security and location tracking

	4 Implementation
	4.1 Tools used to develop the bike lock
	4.2 Bike lock prototyping
	4.2.1 Arduino

	4.3 Design of the solution
	4.3.1 Iterations

	4.4 Hardware
	4.4.1 Main circuit board
	4.4.2 Keypad
	4.4.3 Real Time Clock
	4.4.4 Servomechanism
	4.4.5 SD card board
	4.4.6 Power switch for the servo
	4.4.7 Other peripherals
	4.4.8 Enclosure

	4.5 Power use of the device
	4.5.1 Batteries

	4.6 Software of the device
	4.6.1 Main
	4.6.2 Input
	4.6.3 Code validation
	4.6.4 Locking
	4.6.5 Sleep

	5 Evaluation
	5.1 Evaluation methods
	5.2 Hardware limits
	5.2.1 Logic optimisation
	5.2.2 SRAM optimisation
	5.2.3 Arduino connectors

	5.3 Internal hardware testing
	5.4 Power measurements
	5.4.1 Power consumption model

	5.5 Feedback from users
	5.5.1 The System Usability Scale
	5.5.2 Custom survey

	6 Discussion
	6.1 Project improvements
	6.1.1 Design improvements

	6.2 Alternative solutions
	6.2.1 Arduino Mega
	6.2.2 ARM chips

	6.3 Other hardware issues
	6.4 Future use case: Campus bikes

	7 Conclusions
	7.1 Lessons learned
	7.2 Future work
	7.3 The future of bike sharing

	A Flowcharts

