
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Jussi Knuuttila

A radio coexistence simulator

Master’s Thesis
Espoo, May 27, 2015

Supervisor: Professor Heikki Saikkonen
Advisor: Vesa Hirvisalo D.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80715818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Jussi Knuuttila

Title:
A radio coexistence simulator

Date: May 27, 2015 Pages: 77

Major: Embedded Systems Code: T-106

Supervisor: Professor Heikki Saikkonen

Advisor: Vesa Hirvisalo D.Sc. (Tech.)

Simulation is commonly used to study complex systems without having to ob-
serve the actual systems, which might be difficult to observe or which might not
even exist yet. Simulating in advance is very valuable, as such systems can be
extremely expensive and could take a long time to build. One example of such a
system is a cellular handset that utilizes new radio technology.

We built a light-weight discrete-event simulator to study the in-device radio co-
existence (IDC) problem, which arises when different radios in the same device
interfere each other. We studied IDC especially in the context of 3GPP LTE and
the 802.11 family of wireless LAN. The use of simulation was motivated by both
the need for rapid experimentation with different mitigation strategies and, at
the time, the absence of commercial hardware with the required capabilities.

The simulator was successfully used to build a detailed model comprising of a
mobile multi-radio device in combination with an LTE base station (eNodeB)
and a WLAN access point. The model was then used to develop several coex-
istence strategies that were measured to improve radio throughput and spectral
efficiency due to a decreased amount of failed transmissions due to interference.
The developed strategies led to academic publications and two patents.

Keywords: simulation, mobile, radio, coexistence, lte, wlan, discrete
event simulation

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Jussi Knuuttila

Työn nimi:
Radiorinnakkaisuussimulaattori

Päiväys: 27. toukokuuta 2015 Sivumäärä: 77

Pääaine: Sulautetut järjestelmät Koodi: T-106

Valvoja: Professori Heikki Saikkonen

Ohjaaja: TkT Vesa Hirvisalo

Simulaatiota käytetään yleisesti monimutkaisten järjestelmien tutkintaan ilman,
että tarvitsee havainnoida todellisia järjestelmiä, joiden havainnointi saattaa olla
haastavaa, tai joita ei voida lainkaan havainnoida koska ne eivät ole vielä edes ole-
massa. Simulointi etukäteen on hyvin arvokasta, koska monet järjestelmät saatta-
vat olla äärimmäisen kalliita ja pitkäkestoisia rakentaa. Yksi esimerkki tällaisesta
järjestelmästä on matkapuhelin, joka käyttää uutta radioteknologiaa.

Kehitimme kevyen diskreetin tapahtumasimulaattorin tutkiaksemme laitteen
sisäisen radiorinnakkaisuuden (in-device radio coexistence, IDC) ongelmaa, jo-
ka syntyy saman laitteen eri radioiden häiritessä toisiaan. Tutkimme ongelmaa
erityisesti 3GPP LTE:n ja 802.11 -perheen langattomien lähiverkkoprotokollien
yhteydessä. Simulaation käyttöä tutkimiseen motivoi sekä tarve tehdä nopeita
kokeita lievennysstrategioilla että sellaisten kaupallisten laitteiden puute, joissa
olisi ollut tarvittavat ominaisuudet.

Simulaattoria käytettiin onnistuneesti yksityiskohtaisen mallin luomiseen, joka
käsitti moniradioisen mobiililaitteen yhdistettynä LTE- ja WLAN-tukiasemiin.
Mallia käytettiin useiden rinnakkaisuusstrategioiden kehitykseen, joiden mitat-
tiin parantavan radioiden kokonaissuoritustehoa ja spektritehokkuutta pienenty-
neen siirtovirheiden määrän vuoksi. Kehitetyt strategiat johtivat sekä akateemi-
siin julkaisuihin että kahteen patenttiin.

Asiasanat: simulaatio, mobiili, radio, koeksistenssi, lte, wlan, diskreetti
simulaatio

Kieli: Englanti

3

Acknowledgements

I wish to thank my thesis advisor Vesa Hirvisalo for his seemingly inex-
haustible patience, and my girlfriend Lisa Tirkkonen, without whom this
thesis would never have gotten completed.

Espoo, May 27, 2015

Jussi Knuuttila

4

Abbreviations and Acronyms

3GPP 3rd Generation Partnership Project
2G 2nd generation
3G 3rd generation
4G 4th generation
ACK Acknowledgement
ACP Adjacent channel power
ADC Analog-to-digital converter
AM Amplitude modulation
AP Access point
API Application programming interface
ARQ Adaptive repeat and request
ASK Amplitude shift keying
AWGN Additive white Gaussian noise
BB Baseband
BSR Buffer status report
CPU Central processing unit
CSMA/CA Carrier sense multiple access with collision avoidance
CTS Clear to send
DAC Digital-to-analog converter
DCF Distributed coordination function
DIFS DCF interframe space
DRX Discontinuous reception
EIFS Extended interframe space
FDD Frequency division duplexing
FM Frequency modulation
FSK Frequency shift keying
GLONASS Globalnaya navigatsionnaya sputnikovaya sistema

(Russian)
GNSS Global navigation satellite system
GPS Global positioning system

5

GUI Graphical user interface
HARQ Hybrid adaptive repeat and request
HSPA High speed packet access
IDC In-device coexistence
IP Internet protocol
ISM Industrial, scientific and medical
JIT Just-in-time
JVM Java virtual machine
LAN Local area network
LNA Low-noise amplifier
LO Local oscillator
LTE Long-term evolution
MAC Media access control
MIMO Multiple-input and multiple-output
MS Mobile station
NACK Negative acknowledgement
NAV Network allocation vector
OFDM Orthogonal frequency division multiplexing
OFDMA Orthogonal frequency division multiple access
OPT Optimistic partial transaction
PA Power amplifier
PAPR Peak-to-average power ratio
PHY Physical interface
PM Phase modulation
PS-Poll Power saving poll
PSK Phase shift keying
QAM Quadrature amplitude modulation
QPSK Quadrature phase shift keying
RAM Random access memory
RCOEX Radio coexistence
RF Radio frequency
RTL Register-transfer level
RTS Ready to send
RX Reception
SC-FDMA Single-carrier frequency division multiple access
SIFS Short interframe space
SISO Single-input and single-output
SNR Signal-to-noise ratio
SPICE Simulation program with integrated circuit emphasis
SR Scheduling request
TCP Transmission control protocol

6

TDD Time division duplexing
TLB Translation lookaside buffer
TX Transmission
UE User equipment
W-CDMA Wideband code division multiple access
WLAN Wireless local area network
VoIP Voice over IP

7

Contents

Abbreviations and Acronyms 5

1 Introduction 11

2 Radio systems 13
2.1 Radios . 13

2.1.1 General concepts . 13
2.1.2 Radio hardware . 14

2.1.2.1 The transmitter 15
2.1.2.2 The receiver 16

2.1.3 Noise, distortion and interference 16
2.1.3.1 Noise . 17
2.1.3.2 Distortion and linearity 17
2.1.3.3 External interference 18

2.1.4 Modulation and error correction 18
2.1.4.1 Basic modulation techniques 19
2.1.4.2 Quadrature amplitude modulation and con-

stellations . 19
2.1.4.3 Orthogonal frequency division multiplexing

and multiple access 20
2.1.4.4 Error correction 21

2.2 LTE . 22
2.2.1 Modulation and coding 23
2.2.2 Frame structure . 24

2.2.2.1 Synchronization and timing advance 25
2.2.2.2 Broadcast and random access channels 25

2.2.3 Duplexing . 26
2.2.4 Scheduling . 27
2.2.5 Hybrid adaptive repeat and request 27
2.2.6 Discontinuous Reception 28

2.3 802.11 . 29

8

2.3.1 WLAN architecture . 30
2.3.2 Media access control using CSMA/CA 30

2.3.2.1 Carrier sensing 30
2.3.2.2 Backoff and contention 31
2.3.2.3 RTS/CTS and transaction frame spacing . . . 32

2.3.3 Power saving mode . 32

3 Radio coexistence 34
3.1 Coexistence strategies . 35

3.1.1 Unmanaged coexistence 35
3.1.2 Anticipation and information sharing 35
3.1.3 Traffic shaping . 36
3.1.4 Priority override . 36
3.1.5 Optimistic partial transactions 37
3.1.6 Scheduler interaction 38
3.1.7 Link adaptation . 38
3.1.8 Coexistence strategies with scheduled radio protocols . 39

4 System analysis and simulation 40
4.1 System analysis . 40
4.2 Simulation . 42
4.3 Simulators . 43

4.3.1 Programming model 44
4.3.2 Discrete event simulators 45

5 The RCOEX simulator 47
5.1 Design goals . 47
5.2 Implementation overview . 48
5.3 Configuration and launcher 48
5.4 Tasks and events . 49

5.4.1 Waiting primitives . 49
5.4.2 Event firing and reception 50
5.4.3 Reception timeouts . 53
5.4.4 Interrupts . 54
5.4.5 Implementation . 55

5.4.5.1 Tasks and threads 55
5.4.5.2 Simulation cycles 55
5.4.5.3 Primitive implementation 57

9

6 Simulating in-device radio coexistence 58
6.1 Coexistence cases . 58
6.2 Models . 59

6.2.1 Radio models . 59
6.2.2 Interference model . 59

6.3 Implementation . 60
6.3.1 Implementation overview 60

6.3.1.1 Radio models and pipes 60
6.3.1.2 Layer 2 events 61

6.3.2 Abstract protocol and PHY 62
6.3.3 Workload generation 62
6.3.4 Interference caster . 63
6.3.5 Tracing and analysis 63

7 Discussion 66
7.1 Design goals . 66

7.1.1 Ease of simulation development 66
7.1.2 Performance . 67

7.1.2.1 Benchmarks 68
7.1.2.2 Future optimization 69

7.1.3 Easy reproducibility 70
7.2 Implementation schedule . 70
7.3 Simulator features . 71

8 Conclusions 72
8.1 Conclusions . 72
8.2 Future work . 73

10

Chapter 1

Introduction

This thesis describes the development and use of a discrete-event simulator
and an associated model for studying the in-device radio coexistence problem.

In-device radio coexistence, or IDC for short, is the situation where a
device, such as a cellular phone, contains several radio transceivers in close
proximity to each other. If these transceivers operate on certain problematic
frequency bands relative to each other, it is possible that the radios interfere
each other. We call this kind of intereference in-device interference.

Up until recently, in-device interference hasn’t been a serious problem,
because the 3G radios prevalent in cellular phones, such as W-CDMA and
HSPA, have operated at safe frequency bands relative to the industrial, sci-
entific and medical (ISM) radio band widely used for wireless communication
protocols such as WLAN and Bluetooth. However, with the advent of 4G and
the 3GPP Long-term Evolution (LTE), modern mobile radios sometimes now
operate on frequency bands which can interfere and are sometimes interfered
by devices which use the ISM band.

When left unmitigated, in-device coexistence can significantly lower the
effective throughput of the radios in a device, leading to wasted spectrum
and energy. On the other hand, if the radios in the device can be made to
co-operate so that they proactively avoid overlapping transmissions, overall
throughput can be greatly improved. We call this kind of cooperation a
coexistence strategy.

This thesis was made as a part of a project to research these kinds of coex-
istence strategies. A substantial part of this research involved experimenta-
tion to see how different radio protocols interact in an in-device environment.
Experimentation with actual hardware would have been highly problematic
due to reasons including hardware availability, inability to experiment with
cellular base stations and available project resources, so a computer simulator
was developed instead.

11

CHAPTER 1. INTRODUCTION 12

We chose to simulate coexistence on an abstract protocol level, in which
the simulation deals with abstract protocol packets and the lower level details,
such as radio symbols and analog signals, are not modeled. This was done
both due to the significant difficulty of modeling such concepts and because
their accurate modeling is not crucial for studying in-device coexistence. In-
stead of accurate analog modeling, we used a conservative approximation
where all interference fully interferes the affected signals. As real-world in-
terference does not always result in the signal being fully lost, this approxi-
mation should be pessimistic. Furthermore, coexistence strategies that can
cope with the conservative interference model should also perform well in the
real world.

As no suitable and publicly available simulators were available to us, we
developed the Radio Coexistence (RCOEX) simulator, a custom process-
oriented discrete-event simulator for simulating radio hardware on an ab-
stract protocol level. The simulator is implemented in the Java programming
language. It supports programming simulation models directly using Java,
as well as higher level configuration of simulation parameters.

The main contribution of this thesis is the design and implementation of
the simulator core, consisting of task, event and configuration subsystems, of
the RCOEX simulator. This thesis was a part of a successful research project
on coexistence strategies for radio communication inside a cellular device. In
particular, coexistence strategies were developed for 3GPP Release 8 (LTE)
and 802.11 (WLAN) coexistence within a single mobile multi-radio device,
and these strategies were measured to improve overall radio throughput and
spectral efficiency in simulation. The research led to two academic publi-
cations [18, 19] presenting our findings and measurements, and two patents
[20, 35].

The structure of this thesis is as follows. In chapter 2 we review the basics
of radio transceivers and provide a short overview of the WLAN and LTE
protocols. In chapter 3 we present the problem of in-device radio coexistence
and introduce some strategies for managing it. In chapter 4 we review the
principles of computer simulation in general. In chapter 5 we introduce the
main features and some implementation details of our simulator. In chapter 6
we introduce the problem of in-device radio coexistence and how we modeled
this using our simulator. Finally, in chapter 7 we discuss our results and in
chapter 8 we draw our conclusions and offer suggestions for future work.

Chapter 2

Radio systems

2.1 Radios

As the in-device radio coexistence problem is caused by the physical proper-
ties of radios, understanding basic radio operating principles is highly useful
for understanding IDC. In this section we provide a basic overview of radios
and how they generally operate. For more details, the interested reader can
refer to [28], which most of this section is based on.

2.1.1 General concepts

Most radio systems communicate by manipulating high-frequency sinusoidal
electromagnetic signals called carriers or carrier signals. This manipulation,
called modulation, encodes information into variations of the carrier’s phase,
frequency and amplitude. [28] lists several good practical reasons for the use
of modulated high-frequency sine waves:

• To achieve a good gain, the size of the antenna should be a significant
fraction of the signal wavelength. In practice, this means that the
frequency should be fairly high.

• Usually, it is legal to transmit only on certain frequencies. These fre-
quencies are controlled and allocated by national or international or-
ganizations.

• It is sometimes convenient for the design of the radio hardware.

Even though high-frequency carrier signals are desirable for the actual
transmission, such signals are difficult to process in hardware. Consequently,
radios usually convert the signals between the low and the high frequencies

13

CHAPTER 2. RADIO SYSTEMS 14

and process signals at low frequencies. This low frequency area is called the
baseband (BB), and the high frequency is called the radio frequency (RF).
Additionally, the frequency area, also called a frequency band might be sub-
divided into smaller areas called channels. We say that frequencies inside
and outside the frequency band of interest are in-band and out-of-band, re-
spectively.

Radio architectures can be classified as being either analog or digital.
An analog architecture transmits and receives analog waveforms like sound,
while a digital architecture transmits and receives information in the form
of bits. Since radio waves are fundamentally analog signals, all radios are at
least partially analog devices. However, whereas an analog architecture deals
wholly in analog signals, a digital architecture converts between analog and
digital by means of analog-to-digital converters (ADC) and digital-to-analog
converters (DAC).

Different radio architectures and techniques can be compared in terms of
performance, which can be either in terms of operating range, quality, speed,
or power efficiency. The operating range is the maximum possible distance
the radio is able to satisfactorily operate at. Quality is the ability of the
receiving radio to faithfully reproduce the transmitted signal in the face of
interference. Speed, for a digital architecture, is the amount of bits that can
be transmitted per unit of time. Quality and speed are related in the sense
that we can achieve larger speeds if we can improve the quality. Finally,
power efficiency is the amount of power consumed in relation to the amount
of data transmitted.

As we are interested in radios in the context of in-device radio coexistence
in modern mobile devices, we shall mainly focus on digital radio architectures
since all radios in these devices are digital.

2.1.2 Radio hardware

The operation and the corresponding structure of a radio can be logically
divided into four parts. Radios usually have different signal paths for trans-
mission (TX) and reception (RX), called the transmitter and receiver, respec-
tively. The TX and RX paths can be further divided into parts dealing with
the high radio frequencies and baseband frequencies, called the RF section
or front end, and baseband section.

The RF section, also called the front end, is the intermediary between
the antennae and the baseband section. Because the RF section necessarily
deals both with high frequencies and wildly varying power levels (the power
difference between a transmitted and a received signal can be as high as
120 dB), it is the most demanding part of the entire radio.

CHAPTER 2. RADIO SYSTEMS 15

The baseband section modulates information into or demodulates it from
a carrier signal. This is called analog modulation if the information is an
analog signal, and digital modulation if the information is a stream of bits.
In the case of digital modulation, the baseband section can be further divided
into the analog baseband and the digital baseband, which are separated by
D/A converters in the transmitter and A/D converters in the receiver.

Below, we describe the RF and baseband sections of the transmitter and
receiver of a simple digital radio architecture. For actual radios, the bound-
aries of the RF and baseband sections might not always be clear. For ex-
ample, in some architectures modulation and upconversion (and the corre-
sponding demodulation and downconversion) are performed simultaneously,
although we present them below as separate operations residing in separate
sections.

2.1.2.1 The transmitter

In the transmitter, the baseband section modulates the signal and converts
it into analog form for the RF section, which then upconverts the signal
to the carrier frequency and amplifies it to the necessary power level for
transmission.

At first, the input signal is in the form of a bit stream of ones and zeroes.
It goes through the modulator, which employs a digital modulation scheme
to form the modulated carrier signal. Then, a D/A converter converts the
signal into an analog waveform to be transmitted by the TX front end.

Then, in the front end, a mixer upconverts the signal. A mixer is a
component that shifts a signal from one frequency band to another. In the
transmitter, it shifts the baseband signal to the carrier frequency band.

The mixer requires a frequency reference to function, which is generated
by a local oscillator (LO). The LO might be adjustable if the radio is to
operate on several carrier frequencies, or it might be fixed.

Upconverting the signal introduces additional noise. In order to avoid
amplifying this noise, a bandpass filter discards the noise before amplification.

Actually transmitting the signal over the air requires much more power
than the original signal contains. To achieve the necessary power, the signal
goes through a power amplifier (PA). Because the power amplifier is usually
the biggest power consumer in the radio, we generally want it to have good
power efficiency. The transmitted signal might, however, restrict the choice
of PA, as different kinds of modulation have different linearity requirements.
For example, frequency shift keying tolerates nonlinearity much better than
phase shift keying.

After the power amplifier, to avoid interfering other frequency bands, a

CHAPTER 2. RADIO SYSTEMS 16

second bandpass filter filters the signal before it finally passes to the antennae
for the actual transmission.

2.1.2.2 The receiver

In the receiver, the RF section listens to the signal from the antennae, and
then amplifies and downconverts it for the baseband section, which then
converts it into digital form and demodulates it, forming a digital bit stream
as a result.

The reception starts from the antennae. They convert electromagnetic
waves into a weak voltage signal that is then processed further. However,
this signal probably contains out-of-band frequencies. To avoid amplifying
these, which would effectively be noise for the actual transmission signal,
the signal is first filtered by a bandpass filter that admits only the desired
frequency band.

Although the signal now contains only desired frequencies, it is still too
weak for processing, and must be amplified before downconversion. To avoid
exacerbating noise-related problems later on, the receiver uses a low-noise
amplifier (LNA).

After amplification, a mixer converts the amplified signal from the carrier
frequency to baseband, again using a mixer in combination with a local
oscillator. If both the transmitter and the receiver utilize the same carrier
frequency (which might not always be the case), it is possible and common
to share the local oscillator between paths.

Once the signal is in the baseband, an A/D converter converts the signal
into digital form. The demodulator then demodulates and error corrects the
signal to yield the final output bit stream.

Although the baseband sections presented here are rather simple at the
conceptual level, the modulation and error correction schemes can be rather
complex. We defer the study of modulation and error correction to subsection
2.1.4.

2.1.3 Noise, distortion and interference

Radios, like all electronic systems, have to deal with noise and interference.
Noise is the random variation present in all real-world electronic signals,
and distinct from interference, which is unwanted variation caused by other
signals.

CHAPTER 2. RADIO SYSTEMS 17

2.1.3.1 Noise

Since all real-world electronic components generate noise, noise is unavoid-
able. However, circuits can be designed to generate less noise and to be less
sensitive to noise.

A very important noise-related number is the signal-to-noise ratio (SNR).
It specifies how strong our signal is compared to the amount of noise in the
system. A low SNR means that it is hard to distinguish our signal from
the noise, which might mean that we are unable to correctly extract the
information from the signal.

Not all kinds of noise are equal. Different kinds of noise differ by their
spectral density, which specifies how the noise power is distributed across the
spectrum. Some common kinds of noise are white noise, which is equally
distributed across all frequencies, and 1/f noise, which is strongest at low
frequencies and gets weaker at high frequencies.

A particularily important kind of noise is additive white Gaussian noise
(AWGN), which is frequently used to characterize background noise of a
radio transmission due to factors such as cosmic radiation and thermal noise
in the circuits.

Finally, it is common to describe components in radio systems in terms of
their noise figures. The noise figure measures how much the SNR of a signal
degrades as it passes through the component.

2.1.3.2 Distortion and linearity

Ideally, we would like all amplifiers to be perfectly linear. However, all real
hardware is nonlinear at least to some degree. While good linearity can be
achieved, it is usually possible only for some specific frequency band and at
the cost of other desirable features like power efficiency and the amount of
amplification.

When a signal passes through a nonlinear amplifier, it is distorted, intro-
ducing noise. One kind of distortion resulting from this, which is especially
relevant to IDC, is harmonic distortion, which introduces frequency compo-
nents at integer multiples of the original signal. For example, a 1.2 GHz
signal will have harmonic components at frequencies 2.4 GHz, 3.6 GHz and
so on.

Intermodulation interference introduces frequency components at frequen-
cies that are linear combinations of the frequencies in the original signals. Of
particular interest is the third-order intermodulation interference, which for
given frequencies ω1 and ω2 occurs at frequecies 2ω1−ω2 and 2ω2−ω1. If ω1

and ω2 are near to each other, these third-order intermodulation components

CHAPTER 2. RADIO SYSTEMS 18

will also be on nearby frequencies, possibly in the same or neighboring chan-
nel. Third-order intermodulation interference is so important that there is a
measure for amplifiers, the third-order intermodulation intercept point (IP3),
that quantifies how much a given amplifier exhibits this effect.

In addition to applying to amplifiers, real-world filters also exhibit similar
effects.

2.1.3.3 External interference

Radios can receive external interference from many sources, including cosmic
radiation and atmospheric conditions. Usually, however, the most important
interference source for radios is other radios.

Other in-band radios are an obvious source of interference. Some of them
that transmit on neighboring channels will often leak some power to the
channel of interest. The extent to which this happens is quantified by a
measure called adjacent channel power (ACP).

In-band interference is especially relevant for radios operating in the in-
dustrial, science and medical (ISM) frequency band due to the large amount
of devices that operate in that band. Devices that utilize the ISM band in-
clude not only wireless LANs, Bluetooth devices, and cordless phones, but
also non-radio devices like microwave ovens.

In addition to in-band radios, out-of-band radios might also interfere
with our signal. Although we try to filter out-of-band frequencies during
reception, out-of-band transmitters can also generate frequency components
in our band and channel due to harmonic distortion and intermodulation
interference. This kind of interference can be very hard to filter.

2.1.4 Modulation and error correction

Modulation is the process of manipulating the properties of a carrier wave to
carry information. Demodulation is the reverse, extracting information from
the properties of a received waveform.

A modulated waveform can be divided into symbols. A symbol is some
state of the waveform (e.g. a particular amplitude or frequency) that carries
a fixed amount of information, measured in bits. Each symbol lasts for a
fixed time, and the amount of symbols per unit time is called the symbol
rate.

In digital radio communication, the modulator encodes information into
symbols which are then transmitted, and the demodulator tries to extract
the same information based on the received symbols.

CHAPTER 2. RADIO SYSTEMS 19

2.1.4.1 Basic modulation techniques

A sine wave has three fundamental properties that completely describe it:
amplitude, phase and frequency. Correspondingly, there are the three basic
modulation techniques, each encoding information into one of these prop-
erties. The analog versions are called amplitude modulation (AM), phase
modulation (PM), and frequency modulation (FM), while the digital versions
are called amplitude shift keying (ASK), phase shift keying (PSK) and fre-
quency shift keying (FSK). We concentrate on the digital versions here. An
amplitude shift keying modulator assigns specific amplitude values for ones
and zeroes. For each input bit, we transmit the carrier at the corresponding
amplitude for one symbol period. To perform the reverse operation, the ASK
demodulator measures the average amplitude during each symbol period and
compares it to the amplitudes for one and zero. The output will be the bit
whose amplitude is closer to the measured amplitude.

A phase shift keying modulator assigns a phase shift for ones and zeroes.
Usually opposite phase shifts are assigned, such as 0 ◦ and 180 ◦ or vice versa.
For each input bit, we transmit the carrier at a constant amplitude and
frequency, but with the corresponding phase shift added. For the common
case of 0 ◦ and 180 ◦, this reduces to transmitting either the unmodified carrier
or the inverted carrier (i.e., y(t) or −y(t)). To perform the reverse operation,
the PSK demodulator examines the phase of the received signal compared to
a reference. The output will be the bit that better matches the received phase
difference. However, for this to work, the reference signal of the demodulator
needs to be synchronized to the carrier of the modulator.

A frequency shift keying modulator alternates the carrier between two
different frequencies, one of which corresponds to one and the other to zero.
The FSK demodulator compares the received signal to two different refer-
ences, and outputs either one or zero depending on which reference is a better
match. A notable advantage of FSK is that since the information is essen-
tially carried in the amount of zero crossings of the transmitted signal, an
FSK system can tolerate more nonlinearity in the power amplifier.

2.1.4.2 Quadrature amplitude modulation and constellations

The amount of symbols that can be transmitted using a certain amount of
bandwidth is limited by the Nyquist rate [25]. Since our bandwidth is usually
limited, there exists a maximum symbol rate that we can hope to achieve. If
we want to transmit more bits per second than we can transmit symbols, we
have to transmit several bits in each symbol. One common way to do this is
quadrature amplitude modulation (QAM) [5].

CHAPTER 2. RADIO SYSTEMS 20

As opposed to phase shift keying techniques, which only transmit one bit
per symbol, QAM works by dividing the input bit stream in larger blocks of
several bits each, and then transmitting each block in a single symbol. The
blocks are usually some power of two in length, and the length is indicated
as part of the name of the modulation scheme. Some common QAM schemes
are 4-QAM, which is usually called quadrature phase shift keying (QPSK),
16-QAM and 64-QAM.

QAM makes use of a concept called I/Q data, where the instantaneous
state of a sine wave is decomposed into two components, the phase and the
amplitude. When these components are interpreted as polar coordinates,
the corresponding Cartesian x coordinate is called the in-phase data, or I,
and the y coordinate is called the quadrature data, or Q. I/Q data is often
represented by complex numbers such that I corresponds to the real part
and Q corresponds to the imaginary part. In this context, the complex plane
is called the IQ plane.

The QAM modulator maps each possible input bit pattern to some point
in the IQ plane. This arrangement is called a constellation. Usually the
points are arranged in a rectangular grid, but it is also possible to use, for
example, a circular arrangement. When transmitting a bit pattern, the mod-
ulator determines the corresponding I and Q coordinates, which are then
used to amplitude modulate the in-phase and quadrature carriers. To per-
form the reverse operation, the QAM demodulator correlates the received
signal with the in-phase and quadrature references, giving the I and Q co-
ordinates. Then it outputs the bit pattern whose point in the IQ plane is
closest to the received coordinates.

Noise and interference manifest in QAM as offsets in the demodulated
I and Q coordinates. The more dense our constellation is, the less distance
there is between points, and the larger relative errors a given noise level intro-
duces. Denser constellations therefore have a worse bit error rate but better
speed. This makes QAM a straightforward way to turn better transmission
quality into more speed.

2.1.4.3 Orthogonal frequency division multiplexing and multiple
access

Orthogonal frequency division multiplexing (OFDM) [6, 34] is a common tech-
nique to subdivide a frequency band or channel into smaller pieces called sub-
carriers. As the name suggests, these subcarriers are chosen to be orthogonal,
which means they don’t interfere with each other. Each subcarrier can then
be used in parallel to transmit symbols, modulated using some modulation
scheme such as QAM.

CHAPTER 2. RADIO SYSTEMS 21

Although OFDM necessitates a slower symbol rate, OFDM has many
advantages. Because of parallel data streams, it is able to transmit infor-
mation near the Nyquist rate, making it very spectrum efficient. The slow
symbol rate also means that intersymbol interference elimination using guard
intervals becomes affordable because guard intervals are short relative to the
symbol period.

Because OFDM transmissions are spread across many frequencies, OFDM
is also able to tolerate severe frequency-specific interference conditions. If
some subcarriers have worse conditions than others, it is possible to use more
robust modulation for those subcarriers, while still using high speed modu-
lation, such as 64-QAM, for subcarriers with good conditions. Additionally,
OFDM transmissions themselves have a very flat spectrum, and they appear
as white noise to other transmissions, a relatively benign form of interference.

OFDM also facilitates the use of a frequency band by many radios simul-
taneously. It is possible to assign subcarriers exclusively to some radios and
other subcarriers to other radios. This enables, for example, a base station
to easily communicate with many cellular phones at once. This technique of
using OFDM to enable multiple radios to use the frequency band simultane-
ously is called Orthogonal Frequency Division Multiple Access (OFDMA).

Finally, yet another advantage of OFDM is its suitability for very efficient
digital implementation using the Fast Fourier Transform algorithm.

2.1.4.4 Error correction

Noise in a received signal results in the demodulator making wrong decisions
and manifests as bit errors, i.e. ones in place of zeroes and vice versa. As
radios frequently have to operate in noisy conditions, a coping method is
required. One method used by many digital radios is forward error correction,
where we add redundant error correction bits to every transmission. Even
though some transmitted bits are corrupted, we might still be able to recover
the correct bits with the help of the error correction bits, thus avoiding a
costly retransmission.

Most error correction codes used in radios are either convolutional codes
or block codes. Convolutional codes are codes that depend only on some
amount of previously transmitted symbols. Block codes operate on fixed size
blocks of information.

Modern radios use Turbo coding [3], where a recursive convolutional code
is decoded iteratively using likelihood estimates. Turbo codes are attractive
because of their very good performance, making it possible to transmit data
near the Shannon limit, combined with the relative simplicity of decoding
them in hardware.

CHAPTER 2. RADIO SYSTEMS 22

2.2 LTE

The 3rd Generation Partnership Project (3GPP) Release 8 is a global stan-
dard for telecommunications. It is primarily intended for mobile phones,
tablets and similar handheld devices, along with the associated base stations
and network infrastructure. Release 8 is more often called by its other name,
Long Term Evolution (LTE), and sometimes marketed as ”4G” (cf. the use
of ”3G” for the previous generation of 3GPP standards). We will use the
abbreviation LTE to refer to Release 8. In this section, we present the basics
of LTE protocol operation, as described in [1, 11, 14], to which we direct the
interested reader.

LTE is very focused on efficiency, even at the cost of implementation
complexity. Of particular interest is spectral efficiency. Since LTE is usually
operated by mobile operators that have paid a large sum of money for their
band of radio spectrum, those operators desire good performance out of it.
Unsurprisingly, LTE expends significant effort to utilize the radio spectrum
very efficiently.

LTE also strives to be scalable in the sense that the available system
bandwidth (which depends on the amount of radio spectrum and transmis-
sion conditions) can seamlessly transition from offering fast data rates to few
users to offering acceptable data rates to a large amount of users, and vice
versa. In addition, LTE aims to minimize user latency, something that has
been problematic with earlier mobile standards.

Although the many advanced techniques employed by LTE drive imple-
mentation complexity up, LTE tries to concentrate this complexity to the
base station, which is called the eNodeB in LTE terminology, as much as pos-
sible. The amount of eNodeBs is relatively small compared to the amount of
mobile devices, which are called User Equipment (UE), and it will typically
be connected to the main power grid, which means that the eNodeB is not
constrained by cost or by power to the same degree as the UE is.

A significant difference between LTE and its predecessors is that LTE is
purely packet switched, which means that all traffic is sent in discrete, inde-
pendent packets. This is in contrast to circuit switching, where a dedicated
connection can be set up between two endpoints to guarantee some data rate
and latency. Earlier 3GPP releases used a combination of packet and circuit
switching, the latter typically being used for voice communication. In LTE,
voice communications are also packet switched, and the system relies on the
eNodeB scheduler to provide good enough quality of service (QoS).

CHAPTER 2. RADIO SYSTEMS 23

2.2.1 Modulation and coding

LTE employs different modulation methods in its downlink (eNodeB to UE)
and uplink (UE to eNodeB). These methods have different tradeoffs, and
using both instead of just one allows the tradeoffs to be made so that UE
complexity and power concerns are minimized.

In the downlink direction, LTE utilizes Orthogonal Frequency Division
Multiple Access (OFDMA). OFDMA along with the closely related OFDM
were both briefly introduced in subsection 2.1.4.3. OFDMA is very attractive
for LTE downlink use, as it combines very high spectral efficiency with simple
receiver design. The use of OFDMA also makes it possible to allocate non-
contiguous frequency bands (i.e. resource blocks, which will be introduced
later in this section) for a single UE, granting more freedom to the eNodeB
scheduler, and thus also improving total system performance on average.

In LTE, OFDMA is used with symbols that are narrow in the frequency
domain and relatively long in the time domain. A separate cyclic prefix is
used for each symbol, obviating the need for handling intersymbol interfer-
ence in the UE receiver. On the transmitter side, the OFDMA signal is
transmitted using multiple physical carrier frequencies, which results in the
waveform having a high peak-to-average power ratio (PAPR). This, in turn,
requires good linearity from the power amplifier, which means bad power
efficiency. However, in the case of LTE, the transmitter power amplifier is in
the eNodeB, where amplifier cost and power usage are more acceptable.

In the uplink direction, LTE uses Single-Carrier Frequency Division Mul-
tiple Access (SC-FDMA). [23, 24, 27] SC-FDMA is closely related to OFDMA
conceptually: in both techniques, a large frequency band is split into smaller
orthogonal sub-carriers. Where SC-FDMA differs, however, is that each
transmitter transmits using only a single physical carrier frequency, and the
sub-carriers are purely virtual (i.e. they exist only in the inverse Fourier
transform inputs used to generate the time domain signal, and not as phys-
ical carrier waves). Like in OFDMA, a transmitter may utilize one or more
sub-carriers, but in SC-FDMA they must be adjacent, forming a contiguous
frequency band. Each transmitter, then, has a contiguous frequency band
which it uses to transmit symbols which are potentially wide in the frequency
domain but relatively short in the time domain. Although single transmitters
are restricted to contiguous bands, multiple transmitters (i.e. multiple UEs)
can still transmit simultaneously on separate bands, which can be received
normally by the receiver (i.e. the eNodeB) similarly to OFDMA.

The advantage of SC-FDMA lies in the fact that transmitting the sig-
nal using just a single physical carrier results in the signal having a good
PAPR, and thus imposing lighter restrictions on the quality of the trans-

CHAPTER 2. RADIO SYSTEMS 24

mitter power amplifier. This means that the PA in the UE can have good
power efficiency, which is important for battery-powered devices. However,
because SC-FDMA uses short symbols, the use of a separate cyclic prefix for
each symbol (as in the downlink direction) would have an unacceptably high
overhead. Therefore, SC-FDMA uses cyclic prefixes only between blocks of
several symbols. Unfortunately, this means that the blocks suffer internally
from intersymbol interference, which must be addressed using an equalizer in
the receiver, driving receiver complexity up. Again, in this case, the receiver
is in the eNodeB, where additional complexity is more acceptable.

Fom encoding the data stream in both downlink and uplink directions,
LTE uses 1/3 rate Turbo coding [3] with block sizes of up to 6144 bits.
Turbo coding was briefly introduced in subsection 2.1.4.4. Although Turbo
decoding has very significant processing requirements, the high performance
of Turbo codes is very helpful in achieving LTE’s spectral efficiency goals, in
addition to being well suited for HARQ soft recombining as described later
in this section.

2.2.2 Frame structure

The eNodeB scheduler is responsible for allocating all radio resources for
UE use, except the random access channel. The unit of these allocations is
the resource block. A resource block is 180kHz (equal to 12 subcarriers) in
the frequency domain and 1ms in the time domain. The reason why resource
blocks contain 12 subcarriers instead of just one is that the signaling overhead
for transmitting scheduling information would otherwise be needlessly large.

Resource blocks form larger units called frames. Each frame is 10ms long,
consisting of 10 subframes, each of which is 1ms long. Each subframe is a
single resource block in the time domain, and a varying amount of resource
blocks in the frequency domain. Then, the total amount of resource blocks
in a frame depends on the total width of the frequency band or bands in
use. Some of these resource blocks are taken by reference signals for channel
estimation, and some contain eNodeB signaling information, but most are
allocated for UE use by the eNodeB scheduler.

Each resource block can be modulated differently, which allows the sys-
tem to exploit differing transmission characteristics. Interference might be
dependent on frequency (e.g. high-power transmitter on a nearby frequency
band) or time (e.g. strong temporary interference). Additionally, UEs in dif-
ferent locations might experience different interference characteristics. For
example, one UE might be near a strong short-range narrowband interferer,
which makes using resource blocks in that band very undesirable, whereas
another UE in a different location might be completely unaffected by that

CHAPTER 2. RADIO SYSTEMS 25

interferer.
The eNodeB requires UEs to perform channel estimation by sending and

receiving pre-determined reference signals, which can then be measured at
the other end to estimate the amount of interference present for those UEs
at different frequencies. These estimates are used to try to determine which
resource blocks are good for which UEs, and to be able to select the best
possible modulation scheme for those resource blocks. For UEs with very
low interference, a high throughput modulation scheme such as QAM-64 can
be used, while UEs that are being heavily interfered might have to resort to
QPSK.

2.2.2.1 Synchronization and timing advance

When transmitted, radio waves do not reach the receiver instantaneously.
Instead, they travel at the large but finite speed of light. The speed of light
in air is approximately 300000km/s, or 300km/ms. As an eNodeBs can po-
tentially service an area that covers tens of kilometers, the signal propagation
delay between the eNodeB and various UEs at different distances can vary
significantly relative to the time scales the eNodeB scheduling operates at.

In LTE, the eNodeB’s clock is authoritative, which means that all schedul-
ing is in terms of the eNodeB’s clock, and all UEs are required to synchronize
to it. The mechanism by which this is done in LTE is called the timing ad-
vance.

Timing advance works by the eNodeB measuring the approximate trans-
mit time tTA to each UE. When the UE transmits data that is scheduled to
arrive at the eNodeB at time t, it will actually transmit at time t − tTA so
the eNodeB receives the transmission at time t. Correspondingly, when the
UE receives data that the eNodeB sent at time t, it will attempt to receive
it at t + tTA.

The measured timing advance is not exact, but it reduces the timing error
and the interference caused by neighboring transmissions overlapping in the
time domain. Additionally, the timing advance is not constant, as the UEs
are often moving physically. To take this into account, the eNodeB can re-
adjust the timing advance if it determines that the current timing advance
is not satisfactory.

2.2.2.2 Broadcast and random access channels

When a UE wishes to associate with an eNodeB, the first thing it must do is
listen to that eNodeB’s broadcast channel if it is known, or scan for broadcast
channels if not. The eNodeB periodically transmits system-wide parameters

CHAPTER 2. RADIO SYSTEMS 26

on the broadcast channel, such as the random access channel parameters for
that eNodeB, and synchronization information.

After obtaining the necessary information from the broadcast channel, the
UE will next attempt to transmit on the random access channel according
to the parameters received. The random access channel is the only radio
resource in LTE which is not synchronized or scheduled by the eNodeB. Its
only purpose is to allow UEs that don’t have any allocated traffic or that
have not yet been recognized by the eNodeB to issue a scheduling request
(SR), which will be further discussed in subsection 2.2.4 below.

2.2.3 Duplexing

In LTE, two-way communication, also called duplexing, works differently de-
pending on which frequency band is used. On some bands, frequency division
duplexing (FDD) is used, while on others, time division duplexing (TDD) is
used. We say that the LTE radio is in FDD or TDD mode to indicate which
is being used.

In FDD mode, the frequency band is divided into two parts, with a guard
band in between. One part is for RX and the other for TX. FDD allows
truly simultaneous two-way communication, which can improve latencies,
while also being simple to implement in the UE. However, FDD can’t utilize
the entire frequency band effectively if traffic is mostly one-directional, and
the guard band wastes a part of the used frequency band. Additionally, FDD
requires a higher quality filter in the UE to better separate the RX and TX
bands.

In TDD mode, the entire frequency band is used for both uplink and
downlink traffic, but each UE alternates between transmitting and receiving.
In each LTE frame, there is a split between downlink and uplink subframes
that the eNodeB can schedule traffic into. There are a number of TDD con-
figurations with different relative amounts of downlink and uplink subframes
to exploit different kinds of traffic patterns. Notably, mobile devices typically
receive much more data than they transmit, so it can often be desirable to
have, for example, a 9 : 1 or 8 : 2 split between downlink and uplink sub-
frames. If the eNodeB detects that the average traffic patterns have changed
and the current configuration is no longer optimal, the configuration can be
changed on the fly. TDD can offer better total spectral efficiency in the face
of varying user traffic patterns, at the cost of worse average latency.

CHAPTER 2. RADIO SYSTEMS 27

2.2.4 Scheduling

When scheduling, the eNodeB can consider many things when making deci-
sions. These can include the amount of data a UE has to send (reported via
BSRs, see below), the amount of time a UE has spent waiting to send, the
amount of downlink traffic buffered for a UE and the time it has been wait-
ing in the buffer, the estimated channel quality of a UE for different resource
blocks, the type of subscription (e.g. user pays extra for higher throughput
and/or better latency), the total amount of users, and the estimated total
throughput of the system.

After scheduling decisions have been made for a frame, the scheduling
information is transmitted to UEs in the control region of that frame, which
takes up a varying amount of symbols at the beginning of each frame. To
minimize latency and signaling overhead, downlink traffic for a UE can ap-
pear in any frame without prior notification, except when DRX (see below)
is in use.

UEs must receive and decode the control region of all frames to determine
whether there is any downlink traffic for that UE in the rest of the frame. If
there is not, the UE can skip receiving and decoding the rest of the frame to
conserve energy. If there is traffic, the control region indicates the resource
blocks that the UE must decode.

Uplink traffic allocation must be explicitly requested using scheduling re-
quests (SRs). When a UE has traffic to send, it uses the random access chan-
nel to send a scheduling request to the eNodeB. The eNodeB then responds
with a grant which gives the UE permission to transmit some resource block.
Since a single resource block can’t contain much data, and since requesting
each block explicitly would result in huge overhead, the UE attaches a buffer
status report (BSR) to each transmission. The BSR contains the amount
of bytes the UE still wants to send, which the eNodeB uses to issue more
grants until the UE sends a BSR of zero. After sending a zero BSR, the UE
must send another scheduling request if it wants to send again. The use of
grants allows the eNodeB to dynamically dedicate bandwidth to those UEs
that need it most, and the use of SRs and BSRs allows large transmissions
to be made with minimal overhead.

2.2.5 Hybrid adaptive repeat and request

LTE handles low-level data transmission using hybrid adaptive repeat and
request (HARQ) processes. All downlink and uplink data is split into packets,
each of which is assigned to a single HARQ process. A HARQ process can be
thought of as an attempt to transmit a single packet, including the associated

CHAPTER 2. RADIO SYSTEMS 28

retransmissions and acknowledgements. There are 8 HARQ processes, which
operate in parallel, each attempting to transmit a separate packet.

Acknowledgements are the fundamental mechanism of HARQ processes.
For each transmission, the recipient sends either a positive acknowledgement
(ACK) if decoding was successful or a negative acknowledgement (NACK)
if decoding failed. The sender, upon receiving a NACK or if no acknowl-
edgement is received, retransmits. When the sender receives an ACK, the
HARQ process is completed and a new one begins. There is also a limit
for the maximum number of retransmissions. If the HARQ process hasn’t
completed when the limit is reached, the HARQ process fails and the data
is dropped.

The HARQ processes in LTE are based on the principles of soft recombin-
ing, chase combining and incremental redundancy [10]. Soft recombining is
the practice of storing a received transmission even though its decoding fails.
Upon retransmission, the new transmission is combined with the previously
stored one, resulting in more total information and an increased decoding
probability compared to simple retransmissions. When chase combining is
used, the retransmissions are identical, which results in noise averaging out.
When incremental redundancy is used, the retransmissions contain additional
error correction bits for the original transmission, which enable the receiver
to decode more effectively. LTE supports both chase combining and incre-
mental redundancy. The selected soft recombining method can depend on
the operating conditions and the used modulation scheme.

HARQ can be used in several modes. The one used in LTE is called
the stop-and-wait mode, where a HARQ process halts as soon as decoding
fails and requests for retransmissions. To hide the resulting latency, LTE
uses several parallel HARQ processes, so other processes can complete while
some are retransmitting.

The use of HARQ improves LTE reliability and performance. However,
it is not foolproof due to the maximum limit for retransmission. This is by
design, as some data might expire and not be worth retransmitting, and we
might want to transmit newer data instead. If high reliability is required, it
can be provided by means of a higher level protocol such as TCP.

2.2.6 Discontinuous Reception

LTE also has a discontinuous reception (DRX) mode [4] for reducing power
consumption. A UE can request that the eNodeB puts it in DRX mode. In
DRX mode, the UE has a configured constant-duration DRX cycle, which is
further divided into the on-time and the DRX opportunity.

During the on-time periods the UE functions as normal, but during the

CHAPTER 2. RADIO SYSTEMS 29

DRX opportunity periods, the UE is allowed to power down its receiver as
soon as it has no more already scheduled traffic and has completed all ongoing
HARQ processes. While it is inactive due to DRX, the UE does not need to
receive control regions of incoming frames, as it would normally be required
to do. The eNodeB knows when the UE is inactive due to DRX, and does
not schedule downlink traffic for it during those periods.

Usually, the on-time is configured to be short relative to the DRX cycle,
which can allow the UE to be inactive most of the time, which can yield power
savings as large as 95%. As a trade-off, DRX increases average latency, as
transmissions during inactive periods have to wait until the next on-time
period.

2.3 802.11

The 802.11 family of wireless communication standards, often referred to as
either Wi-Fi or Wireless LAN (WLAN), are very common means of wireless
communication. The 802.11 family of protocols are relatively simple and
cheap to implement, and can be supported by many kinds of devices ranging
from devices such as music players and cellular phones to laptop computers
and game consoles.

There are many standardized versions of the 802.11 protocol in existence.
The original standard was published in 1997, and was followed by 802.11a
and 802.11b in 1999, 802.11g in 2003 and 802.11n in 2009. At the time of
writing, the next version of the protocol, 802.11ac, is being standardized. The
later protocols have introduced improved modulation schemes and 802.11n
also added MIMO support to significantly improve throughput. From now
on, we will refer to the 802.11 protocols collectively as WLAN.

WLAN is designed to be relatively simple to implement, with few manda-
tory transmissions, which allows it to be supported by cheap devices. The
downside to this is that WLAN’s spectral efficiency is not as good as some
other protocols, such as LTE. However, since WLAN devices mostly operate
on the industrial, scientific and medical (ISM) band, which is free to use,
spectral efficiency is not as crucial as for devices which operate on dedicated,
paid-for radio bands.

A distinguishing characteristic of WLAN is that it uses continuous time.
While many other protocols, such as LTE and Bluetooth, divide time into
fixed size synchronized pieces and allocate transmissions in those pieces,
WLAN transmissions can start at any time and are timed using specified
inter-transmission delays.

This section presents the basics of WLAN operation. Specifically, we

CHAPTER 2. RADIO SYSTEMS 30

present the WLAN network architectures, the WLAN MAC protocol, and
the WLAN power saving mode. Most material in this section is based on
[12], to which we also direct the interested reader.

2.3.1 WLAN architecture

WLAN networks can be broadly classified into two categories: infrastructure
networks and ad hoc networks.

In infrastructure networks WLAN devices, often called Mobile Stations
(MS), communicate with outside networks through a special device called the
Access Point (AP). Often the Access Point is a dedicated device, for example
a WLAN router, but it can also be something else, such as a cellular phone
sharing its LTE Internet connection using WLAN (a process sometimes called
tethering).

Ad hoc networks, in contrast, are WLAN networks without an Access
Point and which operate in a peer-to-peer fashion. Ad hoc networks are
relatively uncommon, and we will not consider them further in this section.

2.3.2 Media access control using CSMA/CA

At the Media Access Control (MAC) layer, WLAN uses the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) protocol to control
access to the radio medium. In this subsection we describe its operation at
a general level, as presented in [8] and [16].

Because wireless devices cannot, in general, detect collisions when trans-
mitting, WLAN devices try to proactively avoid collisions instead of detecting
them as they happen, as is done in the Ethernet protocol, for example. The
mechanisms used for this are carrier sensing (both physical and virtual),
interframe spacing and binary exponential backoff.

2.3.2.1 Carrier sensing

CSMA/CA prohibits devices from starting transmissions if another device
is already transmitting, since that would likely cause a collision and failure
of both transmissions. When a device wants to transmit, it will first carrier
sense to see if another device is transmitting. WLAN devices utilize both
physical and virtual carrier sensing.

Physical carrier sensing is done by listening to the radio medium and
checking if there is a signal present. Virtual carrier sensing is done using the
Network Allocation Vector (NAV), which is a counter present in all WLAN
devices. Whenever WLAN devices send frames, they set a special duration

CHAPTER 2. RADIO SYSTEMS 31

field in the frame to contain the estimated duration of the transaction (i.e.
the entire sequence of frames and their responses, not just the single frame) in
progress. Whenever WLAN devices receive frames not meant for themselves,
they set their NAVs to match the duration field. Whenever the NAV is non-
zero, the transaction of some other device is highly likely to still be in progress
and trying to transmit would probably cause collisions. Thus, whenever the
NAV is non-zero, virtual carrier sensing reports the medium as being busy.

2.3.2.2 Backoff and contention

WLAN frames are separated by interframe spaces, which are simply time
delays of specified lengths. The three most important of these are, listed from
shortest to longest, the Short Interframe Space (SIFS), the DCF Interframe
Space (DIFS), and the Extended Interframe Space (EIFS).

Before starting a transmission, a WLAN device is required to first carrier
sense for the duration of a DIFS (or, if errors were detected in the previ-
ously received frame, the duration of an EIFS instead). If no transmissions
are detected during that time, the device is then free to immediately start
transmitting. If a transmission is detected, the device will start contention
using the binary exponential backoff procedure.

If devices were to start transmitting immediately after a transaction is
over, each one would find the DIFS period after the transaction empty, and
then start transmitting simultaneously, causing a collision. To avoid this,
after a transaction ends, each WLAN device that wishes to transmit must
select a time period randomly (the backoff time) and carrier sense for that
period in addition to the DIFS. If several devices are unlikely to choose the
same time period, collisions are unlikely.

The random backoff time is chosen uniformly from a range called the
contention window. The contention window is initially small, so devices will
choose small backoff times. Whenever a collision occurs (which is indicated
by the recipient failing to acknowledge), the contention window is doubled
and a new random backoff time is selected. Each doubling of the contention
window makes it exponentially more unlikely for all of the contending WLAN
devices to select the same backoff period, so it is very probable that one of
them is able to successfully start its own transaction.

Once set, the backoff time is never reset during the backoff procedure
unless the device participates in a collision. The backoff time is kept in a
counter which is decreased whenever carrier sensing detects that the medium
is unused. A device which chose a large backoff time initially will keep de-
creasing its backoff time until it reaches zero and the device attempts to
transmit. This behavior ensures that devices which have already waited for

CHAPTER 2. RADIO SYSTEMS 32

a long time are more likely to win contention and start transmitting next.

2.3.2.3 RTS/CTS and transaction frame spacing

A WLAN device starts each transaction with a short Ready-to-Send (RTS)
frame, which also serves to set the NAVs of all devices that can hear the
sender. The recipient replies to this with a Clear-to-Send frame (CTS) which
both acknowledges to the sender that no collision occurred, and also sets the
NAVs of all devices that can hear the recipient. In the case of the so-called
hidden terminal problem, the set of devices that can hear the sender and the
recipient can be different, so both the RTS and CTS are required to try to
ensure that nearby devices will not try to transmit simultaneously.

After the RTS and the CTS, the sender sends a number of data frames,
and the recipient acknowledges each of them with an ACK frame. All frames
in a transaction are separated by SIFS time periods. Because a SIFS is
shorter than a DIFS, it is guaranteed that the next transaction frame will
start before any other potential transmitter has had time to carrier sense for
the required DIFS period, essentially giving higher priority to the transaction
frames.

2.3.3 Power saving mode

WLAN devices have two operating modes: infrastructure mode and power
saving mode. In infrastructure mode, the device’s radio is always powered
up and it is always either receiving or transmitting, allowing for maximally
fast operation and minimal latency. In power saving mode, the device sleeps
by keeping its radio powered off most of the time, powering it up only to
transmit and to receive anticipated transmissions. Since radios are significant
consumers of power in battery-operated devices, keeping them powered off
in this manner can conserve a considerable amount of power and prolong
battery life.

Because the radio is powered off most of the time, devices in power saving
mode are unable to receive frames from the Access Point unless they expect
them. Devices entering power saving mode inform the Access Point, so the
Access Point knows to put data for that device in a queue. Devices in power
saving mode periodically wake up at predetermined times to listen for beacon
frames sent by the Access Point at regular intervals. If the beacon frame
indicates that there is queued data for the device, the device next sends a
PS-Poll frame to request for it. After receiving a PS-Poll frame, the Access
Point responds with the actual data frame. Each frame sent by the Access
Point contains information whether there is still more data available, so the

CHAPTER 2. RADIO SYSTEMS 33

device knows to keep receiving. After there is no more data, the device can
immediately resume sleeping until the next known beacon frame.

Chapter 3

Radio coexistence

We define in-device radio coexistence or in-device coexistence [15, 17] as the
situation where a mobile device contains several radios that need to operate at
the same time. Depending on the particular frequencies and radio protocols,
these radios may interfere each other. We call this interference caused by
other radios in the same device in-device interference.

In in-device interference cases, the interfering radio is in the same device
and thus very close to the interfered radio. The close proximity means that
signals are not attenuated because of distance and interfere at full transmitter
power. Since the difference between the transmit power of the interferer and
the received signal power of the interfered radio can be as high as 120 dB, the
interference can be very strong even if only a small part of the transmitted
power leaks to the receiver of the other radio.

Radio transactions are exchanges of one or more separate transmissions
between radios that form a larger whole. Let’s look at WLAN as an example,
where a WLAN mobile station polls the access point for data, which then
responds by sending the data. After receiving the data, the mobile station
sends an acknowledgement. These three separate transmissions form a single
coherent transaction. Transactions are a useful concept when discussing in-
device interference, because in-device interference often interferes strongly
during very specific time periods. This might cause specific transmissions of
a transaction to fail, which can lead to the transaction failing as a whole,
despite most of its transmissions succeeding.

We also differentiate symmetric and asymmetric in-device interference.
The interference between two radios is symmetric if both radios interfere
each other and asymmetric if one of the radios interferes the other but not
vice versa.

A prominent cause of problems is nearby frequencies that leak power into
adjacent frequencies because of nonidealities in filters and amplifiers such as

34

CHAPTER 3. RADIO COEXISTENCE 35

intermodulation interference. Problems arising from nearby frequencies are
typically symmetric, so coexistence measures have to be implemented in both
radios.

One specific symmetric case is the LTE TDD band 40 (2.3 GHz – 2.4 GHz)
with the ISM band (2.4 GHz – 2.5 GHz). These bands are right next to each
other, so transmitters on either band are likely to interfere with receivers on
the other. An example of asymmetric interference would be the LTE FDD
band 7, whose TX band is 2.5 GHz – 2.57 GHz, close enough to interfere
receivers on the ISM band. The RX band for FDD band 7, however, is
2.62 GHz – 2.69 GHz, which is far enough to not get interfered by transmitters
on the ISM band.

A second, more theoretical, cause of problems is frequency bands whose
harmonic distortions lie on other important bands, causing difficulties for
receivers on those bands. As harmonic distortions always occur on higher
frequencies, this type of problem is asymmetric and only the higher frequency
band is interfered. Fortunately, the bands in use for mobile radios are for the
most part selected so that the harmonics do not occur on important bands.

3.1 Coexistence strategies

3.1.1 Unmanaged coexistence

The simplest possible form of coexistence is the unmanaged coexistence,
where the radios do not cooperate in any way. It is mostly useful as a base-
line for comparison of different coexistence strategies. In practice, we expect
that real devices will at least use overriding (see below) and not resort to
unmanaged coexistence.

3.1.2 Anticipation and information sharing

Usually, it is possible for a radio to anticipate some or all of its activities
at least some time in advance. This information is very useful for making
good coexistence decisions. Since coexistence problems concern all radios in
a system, it is necessary to share this information between radios.

The most obvious form of anticipation is whether we have outgoing data
of our own: if we do not, we will not transmit until we do. However, some
protocols might require us to transmit acknowledgements to incoming trans-
missions that cannot be anticipated. Therefore, while the absence of outgo-
ing data does not absolutely guarantee that we will not transmit, it is useful
information nevertheless.

CHAPTER 3. RADIO COEXISTENCE 36

Even though it is impossible to predict sporadic incoming transmissions,
we can predict constant known traffic. Examples include things like WLAN
beacons and voice calls, where we know that after receiving a piece of data,
we do not need to receive more until some period of time has passed.

Regardless of whether we can predict when transactions will start, since
the contents of transactions are rigorously specified, we can accurately predict
the traffic patterns of those transactions once they have started. Because the
transactions generally have a short duration, we can only predict in the short
term, on the order of some milliseconds in advance, but this is often enough
for other radios to make decisions.

3.1.3 Traffic shaping

When we have data to transmit, but can decide the exact moment the trans-
mission will occur and perhaps the amount of data to transmit, we can utilize
traffic shaping. Traffic shaping in the context of coexistence is when we de-
lay and prioritize transmissions so they occur at a time where interference is
minimized. In practice, this could mean a number of things:

• If we know some other radio is receiving and our transmission is non-
critical, we wait until the other radio is done before transmitting.

• If we have choice in what data packet to transmit, e.g. a short packet or
a long packet, we can prioritize the shorter over the longer if we know
that transmitting the shorter will not interfere with other radios but
transmitting the longer will.

• If we know that that transmitting would start a longer transaction of
multiple transmissions (e.g. a poll packet, the response, the acknowl-
edgement to the response) and that we cannot receive some part of
that transaction because some other radio is transmitting, we don’t
start that transaction in the first place.

Not all radio protocols are amenable to traffic shaping. In LTE, for ex-
ample, all transmissions are scheduled by the base station, so little flexibility
is left to the UE and most of the above techniques cannot be used. However,
the widely used WLAN protocol is very flexible and can utilize all of the
above.

3.1.4 Priority override

When we have a critical transmission, but it would either interfere or get
interfered by some other less important transmission, we can override the

CHAPTER 3. RADIO COEXISTENCE 37

other transmission, interference notwithstanding. If we need to transmit,
we transmit right away even if it interferes the other radio. If we need to
receive, we shut down the power amplifier of the other radio to stop it from
interfering us.

Overriding other radios can be rather disruptive, but it is frequently nec-
essary in, for example, cellular phones, where the LTE radio utilizes expensive
spectrum and resource blocks scheduled for us would be wasted if we cannot
use them. On the other hand, WLAN utilizes the free-to-use ISM band, so
it is very desirable for LTE traffic to override WLAN traffic.

3.1.5 Optimistic partial transactions

When we only have a short interference-free window that is just long enough
for our data payload, but not for the following acknowledgement, we can
sometimes use optimistic partial transactions. Optimistic partial transac-
tions (OPT) are transactions where we know in advance that the acknowl-
edgement to our transmission is very likely to be interfered, and treat the
lack of acknowledgement the same as ”positive acknowledgement” instead of
”negative acknowledgement” as is commonly done.

This can improve performance of radios with coexistence problems be-
cause, in good operating conditions, the data payload is likely to be success-
fully transmitted and the acknowledgement is likely to be positive. If the
acknowledgement is in fact negative, a higher protocol layer, such as TCP,
will resend the data anyway if necessary, so correct operation is not jeopar-
dized. Essentially, optimistic partial transactions optimize the common case
at cost to the exceptional case.

We can only use OPTs if we are the transmitter, and in that case we
can always do so, because the receiver side cannot distinguish them from de-
modulation errors with the acknowledgement. Whether we should is another
question, but for throughput-oriented data, as opposed to latency-sensitive
data, and in good operating conditions, using OPTs can improve overall
throughput.

If we are the receiver, we are completely agnostic regarding OPTs. We
will always transmit the acknowledgement anyway, unless we are overridden.
Whether the transmitter will then interpret the missing acknowledgement
as positive or negative acknowledgement is beyond our control. However,
radios could conceivably negotiate whether OPTs should be used, although
no current radios do.

CHAPTER 3. RADIO COEXISTENCE 38

3.1.6 Scheduler interaction

With some protocols, especially LTE, the mobile device has very little or no
control as to when transmissions occur, and must obey whatever instructions
are given by the scheduler. In these situations, we would like to be able to
inform the scheduler about our in-device coexistence problems, so the sched-
uler could make decisions that improve our situation without degrading the
performance of the system as a whole. In particular, we would like to dis-
courage the scheduler from scheduling certain kinds of traffic at certain times
and to disregard in-device interference when choosing modulation schemes.

Normally, the scheduler can allocate to mobile devices whatever resources
it deems best for the performance of the whole radio system, while trying to
guarantee some amount of minimum performance to each device. However,
it might be beneficial for us to accept some performance loss as a tradeoff for
significant improvement in the performance of some other radio. We want
to inform the scheduler that, if possible, we would prefer to not transmit at
certain times, so we can allow other radios to transmit during those times.
We call these kinds of time periods guaranteed unscheduled periods.

In most cases, the scheduler should be able to honor these requests and
allocate the resources in question to some other user. However, a notable
exception is the case when a large proportion of users request to avoid the
same resource slots. This occurs if the in-device interference follows the
same temporal pattern for all users. For example, all of these users might
be watching the same live video stream via WLAN, which results in similar
traffic patterns and similar avoidance preferences. In this case, to avoid
leaving expensive resources unused, the scheduler should deny a proportion of
avoidance requests to make sure the resource usage and the resulting overall
system performance stays high.

3.1.7 Link adaptation

To optimize throughput, we aspire to use the fastest possible modulation
scheme that works well in the current operation conditions. In good con-
ditions, we can use very high speed modulation, such as 64-QAM, but in
noisy conditions we cannot demodulate it reliably, so we have to use a slower
scheme, such as QPSK. This is called link adaptation.

When choosing the modulation scheme, schedulers estimate the oper-
ating conditions by counting how often transmissions fail. Transmissions
lost due to in-device interference are also taken into account, because the
scheduler does not know the reason why the transmission failed. Since the
transmissions failed because of in-device interference, they would have failed

CHAPTER 3. RADIO COEXISTENCE 39

regardless of the speed. On the contrary, by reducing the speed we only
exacerbate the problem, because the transmissions take longer, which only
increases the probability of in-device interference causing more failures. This
leads to even more failed transmissions, which causes link adaptation to even-
tually drop the speed to the minimum possible rate, leading to needlessly bad
performance.

This kind of vicious circle is especially bad when it wastes dedicated re-
sources, such as LTE allocations, which could have been used by someone
else, thus degrading the performance of the entire system. For this reason
among others, LTE will always override in-device interferers: wasting expen-
sive spectrum is inexcusable.

For good performance in in-device interference conditions, we want to
make the scheduler disregard failures due to in-device interference or at least
adapt the link less aggressively. In some scenarios we might even want to use
faster modulation than what would otherwise be optimal, if the gain from
being able to utilize time windows that would otherwise be unusable is higher
than the loss from the increase in inherent failure rate.

3.1.8 Coexistence strategies with scheduled radio pro-
tocols

To be able to handle in-device coexistence scenarios well with radio protocols
that have an authoritative scheduler, we need to have means of informing the
scheduler of our coexistence problems. The granularity of this information
determines how well the scenarios can be handled. The more information
the scheduler has, the better decisions it can make.

Unfortunately, although current radio protocols have some coexistence
signaling features, they are rarely used in practice. Despite this, features
designed for power saving could be used to obtain guaranteed unscheduled
periods. Still, issues with link adaptation cannot be handled using power
saving features, and remain problematic in low-priority radios that cannot
use overriding to avoid it.

Chapter 4

System analysis and simulation

In this chapter, we provide a brief introduction to system analysis, simulation,
simulators and their implementation. Simulation is a widely used technique
and well studied in the literature. The material in this chapter is largely
based on [21, 31], to which we direct the interested reader for more detailed
takes on the subject.

4.1 System analysis

The two most fundamental concepts in system analysis are the system itself
and the system model. A system is defined as the actual situation or pro-
cess of interest along with all participating entities. A model is an abstract
representation of the system, often a simplified one.

Throughout this subsection, we look at the n-body problem as an example
system. In the n-body problem, the system consists of a number of celestial
objects such as stars and planets that attract each other gravitationally and
move according to Newton’s laws.

Systems can be broadly classified into two categories: open and closed. A
closed system is one that exists in a conceptual vacuum and doesn’t interact
in any way with external entities. An open system is one that exists as a
part of a larger environment that it interacts with. The n-body problem can
be treated as a closed system if we look at the bodies in a vacuum, but it
can also be treated as an open system if we look at the bodies as a part
of a larger system. In the open system example, the bodies of interest (the
system in question) might constitute a solar system as a part of a galaxy (the
environment).

In order to analyze the system, we must construct a mathematical model
of the system. As most real-world systems are much too complex to analyze

40

CHAPTER 4. SYSTEM ANALYSIS AND SIMULATION 41

in their entirety, the model is usually an abstraction. The level of abstraction
necessarily depends on the use of the model. We want to abstract everything
that is too detailed for the analysis, but not so much that we lose the infor-
mation we are interested in. In the case of the n-body problem, it is often
acceptable to model the bodies as points (as opposed to spheres or more com-
plex shapes), but going further, such as by abstracting also the trajectories,
can result in the model being unusable for analyzing the phenomena we are
interested in.

Like systems, models can be categorized according to their characteris-
tics. One important categorization is determinism: a model is deterministic
if it does not depend on any probabilistic inputs, and therefore always pro-
duces the same output for a given input. If a model does have probabilistic
inputs, it is called a non-deterministic model. We note that the determinism
of the model does not necessarily correspond to determinism of the analyzed
phenomenon. Non-deterministic phenomena can sometimes be modelled de-
terministically and vice versa.

The most straightforward way to analyze a system is to actually observe
it in operation and measure interesting quantities. However, this requires
that the system already exists and it is possible to perform the required
measurements within the budget and allotted timeframe. Furthermore, it
might be necessary to experiment with the system, such as by tweaking
some system parameters. All these limitations make measurement of real
systems usually an infeasible option. When using this approach with the
n-body problem, we are obviously unable to meaningfully alter the system
and are thus restricted to just observing the actual motions of the planets
and stars, e.g. by telescope.

If the model is simple enough, it might be possible to solve it analytically,
yielding the quantities of interest as mathematical functions over some other
quantity such as time. While analytical solutions are highly precise and are
straightforward to examine, actually determining the solution can be very
difficult or even impossible for complex models. In the case of the n-body
problem, it is possible to analytically solve the trajectories in some simple
specific cases, such as the case with only two bodies, but impossible in the
completely general case.

The main analysis method of interest to us is simulation. Simulation
means using numerical inputs to directly execute the model without solving
it first. Compared to measuring real systems, while less accurate, simulation
has several advantages. Any quantity within the simulation can be measured
relatively easily, and it is feasible to freely experiment and tinker with the
model and simulation parameters. Furthermore, a simulation can often run
significantly faster than real-time, allowing simulations of extended time pe-

CHAPTER 4. SYSTEM ANALYSIS AND SIMULATION 42

riods to run in a short time. Compared to analytic solutions, simulating is
often easier, at the cost of accuracy, although both approaches are limited
by the accuracy of the model being analyzed. Simulating the n-body prob-
lem could be done by numerically integrating the differential equations that
describe the trajectories of the bodies.

4.2 Simulation

Simulations, where the simulation state changes only at specific times, called
events, are called discrete event simulations. [2] Discrete event simulation
can be used to simulate a very wide variety of systems, including network
protocols and queuing systems.

On the other hand, if the simulation state contains continuous quantities
(i.e. the state is changing all the time), the corresponding simulations are
called continuous simulations. Commonly, continuous simulation involves
simulating systems described using differential equations, such as fluid dy-
namics or electronic circuits.

There are also simulations where the passage of time does not play a
significant role. Such simulations are called static simulations. One example
of static simulation is Monte Carlo simulation [22] being used to numerically
evaluate integrals that are very hard or impossible to solve analytically.

The most crucial part of a simulation is the simulation model, which
describes how the simulation behaves at the desired level of detail. Choos-
ing the appropriate level of detail often involves trade-offs involving model
complexity, simulation time and result accuracy.

As an example, we look briefly at simulating a microprocessor, something
which is commonly done to validate a microprocessor design before physical
manufacturing.

A very detailed model could describe the actual transistors in terms dif-
ferential equations, which could then be numerically solved. This kind of
model can be very accurate, and could be used to study problems related
to analog signal behavior inside the microprocessor, such as crosstalk. How-
ever, simulating this sort of model is computationally extremely heavy and
nowhere near real-time.

A slightly more abstract model could describe the microprocessor at the
so-called register-transfer level (RTL), where the microprocessor is modeled
in terms of abstract digital signals (as opposed to analog in the transistor
model above) and the logical operations performed on them. Simulating this
sort of model is much faster than analog simulation, and the simulation can
still be used to verify the microprocessor correctness and study its behavior

CHAPTER 4. SYSTEM ANALYSIS AND SIMULATION 43

at the logical level. This kind of model could still be cycle-accurate (i.e. the
simulated microprocessor uses an equivalent amount of simulated cycles as
the real microprocessor would use clock cycles, even though what happens
inside a single cycle has been partly abstracted), in which case it could be
used for estimating and analyzing the performance of short programs (e.g.
inner loops) executed by the microprocessor. Cycle-accurate simulation is
usually still not real-time, and often too slow to simulate long runs of com-
plex real programs like operating systems, although real-time simulation can
be possible if the simulation system is very powerful and the simulated mi-
croprocessor very simple.

An even more abstract model could model whole subsystems (e.g. de-
coders, arithmetic-logic units, caches, etc.) of the microprocessor at a func-
tional level, forgoing cycle accuracy for more simulation speed. This enables
simulation of more complex programs such as entire operating systems run-
ning processes. This kind of model could be used, for example, to study
cache behavior of programs.

In addition to the model, a simulation needs input data, called the work-
load. We can obtain a workload using several methods.

If a real system is available, we can observe the workload used by the
real system and use that as simulation input. We can then use such a work-
load to validate that the simulation is working correctly by comparing the
simulation results to those produced by the real system. When the simula-
tion is working correctly, analyzing the simulation output can provide insight
into the operation of the system. Furthermore, it might be difficult or even
impossible to measure that kind of data from a real system.

We can also generate the workload randomly, by drawing the different in-
puts from various probability distributions. As this doesn’t require detailed
observations of the real inputs, it is much easier to implement than recording
real workloads. If we can choose a distribution that describes the real in-
puts well, a reasonable assumption for many inputs, the simulation can also
produce accurate results.

If the simulation has been verified and validated, generated inputs can
also be used to explore the input space and study how the simulated system
works in extreme scenarios or edge cases.

4.3 Simulators

A simulator is a computer program for doing simulation, either by means of a
custom simulation package or by writing the simulation in a general-purpose
programming language.

CHAPTER 4. SYSTEM ANALYSIS AND SIMULATION 44

Simulators need to be correct, so their results can be relied upon. We
need to verify that our simulator faithfully implements the simulation model,
and we need to validate that our model adequately represents reality. It is
said that verification is asking the question ”are we building the thing right?”
whereas validation is asking the question ”are we building the right thing?”.
[29]

Another important property of simulators is the relation of simulated
time to real time. Many simulators need to be able to run simulations faster
than real-time, so that phenomena that would normally take weeks or years
can be studied in shorter time periods. On the other hand, some phenomena
in the real world happen so fast that it’s hard to observe the details of what
is happening. When simulating those phenomena, it is useful to simulate in
expanded time, which can be thought of as simulating in slow motion.

Some simulation problems, such as those involving many complex differ-
ential equations, might be desirable to be simulated in real-time, but cannot
because it is computationally hard or intractable to simulate it fast enough.
With these kinds of problems, performance optimization of the simulator is
very important.

4.3.1 Programming model

To use a simulator, we describe our simulation model to the simulator using
the simulator’s programming model. Depending on the simulator, the model
can be defined by using a graphical user interface or by writing it using either
a special simulation language or a general purpose programming language.
All approaches have different benefits and trade-offs.

Using a GUI for modeling is easier for non-programmers to do, but can
be inconvenient for complex models. Special simulation languages often have
convenient simulation-specific features to ease modeling, but sometimes lack
the expressive power and abstraction mechanisms available in general pur-
pose languages. In addition, GUIs and special languages usually have worse
runtime performance than general purpose languages. General purpose lan-
guages offer the best abstraction capabilities and performance, at the cost of
a more complex implementation.

The more complex special simulation languages become, the closer they
get to general purpose languages. Indeed, Simula [7], an early simulation lan-
guage, had a strong influence in the development of modern object-oriented
languages like C++ and later Java.

Many modern simulation packages use a general purpose language, of-
ten augmented with package-specific libraries or tools, for modeling. For
example, CSIM [30], a fast and widely used simulation package, uses the C

CHAPTER 4. SYSTEM ANALYSIS AND SIMULATION 45

programming language, while the NS-3 network simulator [13] uses the C++
and Python programming languages.

4.3.2 Discrete event simulators

Discrete event simulators [2] advance time (and thus the simulation state)
only at certain times, either using a fixed timestep or using next-event time
advance. A fixed timestep means that the simulator advances the simulation
time by a constant in each simulation cycle. Next-event time advance means
that the simulator, upon finishing a simulation cycle, determines the event
that will occur next, and advances the simulation time to the time of that
event. Since there are, by definition, no events in between and since only
events change the simulation time, we don’t miss any state changes by ad-
vancing directly to the next event. In practice, most discrete event simulators
use the next-event approach, but a fixed timestep can still be useful in e.g.
CPU simulation, where the timestep can be set to a single clock cycle of the
CPU being simulated.

Commonly, the next-event time advance mechanism is implemented using
a priority queue. All events in the simulation are timestamped and then put
into a priority queue. After each simulation cycle, the simulator removes
the first event from the priority queue and sets the simulation time to be
equal to the time of the removed event. The new time can be the same
as the previous time, which allows instantaneous events and reactions to
occur. These kinds of simulation cycles where new events occur but time
does not advance, are sometimes called delta cycles, especially in the context
of hardware simulation.

In addition to the time advance mechanism, the simulation logic in dis-
crete event simulators is usually organized in one of two ways: the event-
scheduling approach or process-oriented approach.

In the event scheduling approach, the simulation logic resides in event
processing code. The simulator determines the next event to run, and then
runs the event handling code, which modifies the simulation state. The
advantage is that the event scheduling approach is easy to implement very
efficiently, but at the cost of making implementing complex models difficult.

In the process-oriented approach, the simulation logic resides in the enti-
ties that comprise the simulation. Instead of the events directly altering the
state, the processes can react to occurring events and alter the state based
upon that. In general purpose languages, these processes are often imple-
mented using objects and/or threads, while specialized simulation languages
might offer first-class constructs for them. The advantage of the process-
oriented approach is that it makes complex models easier to understand,

CHAPTER 4. SYSTEM ANALYSIS AND SIMULATION 46

implement, modify and add upon. However, using it requires either special
language or library support.

Additionally, process-oriented simulators need to have a mechanism for
processes to react to events. Two common options are broadcast events and
event ports. In a broadcast event system, each event can be observed by every
process, while in an event port system, events are sent to designated ports,
and can be observed only by processes that are attached to those ports.
A broadcast system is more flexible and doesn’t require coupling between
event senders and recipients, but broadcast systems are harder to implement
efficiently.

Chapter 5

The RCOEX simulator

In this chapter, we introduce the Radio Coexistence (RCOEX) simulator
that we implemented and used for studying the in-device radio coexistence
problem. We present the design goals, a general implementation overview and
a more detailed look at some particular features of the RCOEX simulator.

5.1 Design goals

To guide us through the design decisions of the RCOEX simulator, we set
down three major design goals that the simulator should be able to meet:
ease of modeling, interactive performance and reproducibility of results.

Ease of modeling means that writing (i.e. programming) radio simulation
models should be easy and straightforward. Ideally, the programmer should
be able to concentrate on the model itself and not generic programming
concerns like memory management and configurability.

Interactive performance is required to be able to tweak simulation settings
rapidly once the models have been developed. Good performance also facil-
itates running simulation batches with a significant amount of runs, which
can help with the statistical significance of results.

Reproducibility of results means both determinism and easy installation
and use. A deterministic simulator makes it possible to reliably reproduce
interesting results once they are obtained, while easy installation and use
make it possible for people other than the simulation authors to reproduce
simulation experiments in their entirety.

47

CHAPTER 5. THE RCOEX SIMULATOR 48

5.2 Implementation overview

The RCOEX simulator is a process-oriented discrete-event simulator that
uses next-event time advance and broadcast events. It is implemented using
the Java programming language[26], which is also its programming model
(i.e. the simulation models are implemented using Java, and are compiled
along with the simulator core). This is similar to the approach taken in [9].

The RCOEX simulator is composed of two generic subsystems, each of
which we will discuss in more detail in subsequent sections:

Configuration and launcher , which initializes the simulator upon startup.

Tasks and events , which the simulation model is programmed with.

5.3 Configuration and launcher

The configuration and launcher subsystem is responsible for initializing the
simulator into the desired state from scratch. It accepts both command
line parameters and configuration files, mostly in the form of configuration
variable assignments, which are hierarchical dot-separated names followed
by an equals sign and the desired value, e.g. wlan0.atim-period=1000ms

or lte0.drx.offset=0. In addition to configuration variable assignments,
command line parameters are also used for specifying which models are in-
cluded in the simulation. For example, the command line could contain
--proto=wlan,wlan0 to add a WLAN model with the name wlan0 to the
simulation.

The configuration subsystem uses reflection to make it easy for simulation
models to allow configuration with only a minimal amount of code. Listing
5.3 presents a minimal example of a model class that can be configured.
The model in question just has to implement the Configurable interface
by implementing the getConfiguration method. Then, at runtime, the
simulator core will update the object returned by that method, called the
configuration object, to contain the active configuration values, which the
model can use by just accessing the fields of the object directly.

The configuration object itself is just a very simple data container class
with annotated public fields for each configurable variable. Each public field
that has a Description annotation and/or a VariableDefinition anno-
tation can be configured using a configuration variable assignment. The
Description is used for defining a runtime help text, while also serving as a
comment. The VariableDefinition can be used for renaming the variable
using the id parameter or specifying the physical units accepted.

CHAPTER 5. THE RCOEX SIMULATOR 49

public class ConfigurableModel implements Conf igurab le {
private ModelConf conf = new ModelConf () ;

public Object ge tCon f i gura t i on () {
return conf ;

}
}

public class ModelConf {
@Descr ipt ion ("Configurable duration value")
@Var iab l eDe f in i t i on (id = "duration" , un i t = Time . class)
public long durationNs = 1000 ;

}

Figure 5.1: Minimal configurable model

5.4 Tasks and events

The task and event system is the part of the RCOEX simulator that handles
the simulation processes which form the simulation model. The model is
composed of tasks, which are autonomous simulation entities that are able
to send and receive events. The tasks interact with the simulation using
programming primitives provided by the simulator core.

Tasks are defined by extending the Task class and overriding the simulate
method. The simulate method starts to run when the task is started, which
can be t = 0 if the task exists at the beginning of the simulation.

There are four main primitives available for tasks to interact with the
simulation. For waiting, tasks can use delay and waitUntil. For firing and
receiving events, tasks can use fireEvent and receive.

5.4.1 Waiting primitives

The RCOEX simulator supports two kinds of waiting primitives, which allow
the simulation tasks to model time passing in the simulation. delay is used
to wait for a specific duration and waitUntil is used to wait until a specific
moment in simulated time.

Listing 5.2 demonstrates the use of the waiting primitives and fireEvent.
The example task first waits until the simulation time is exactly t = 100 ms,
fires an event, waits for 1 ms (the simulation time at this point is therefore
t = 101 ms) and then fires another event.

CHAPTER 5. THE RCOEX SIMULATOR 50

public class DelayWait extends Task {
public void s imulate () {

// Stops the t a s k s imu la t i on u n t i l the s imu la t i on
// time i s e x a c t l y 100 ms .
wai tUnt i l (Time .ms (1 0 0)) ;

// The s imu la t i on time i s now 100 ms .

f i r eEven t (new ExampleEvent ()) ;

// Stops the t a s k s imu la t i on f o r a durat ion o f
// 1 ms o f s imu la ted time .
delay (Time .ms (1)) ;

// The s imu la t i on time i s now 100 ms .

f i r eEven t (new ExampleEvent ()) ;
}

}

Figure 5.2: delay, waitUntil and fireEvent

5.4.2 Event firing and reception

The event system of the RCOEX simulation is built upon two primitives,
fireEvent and receive. Of these, fireEvent is extremely simple: given a
simulation event, which can be any Java object that inherits the Event class,
it makes that simulation event occur at the current simulation time. The
events are broadcast to all tasks in the simulation.

The most interesting part of the task system is receive, which tasks use
for reacting to events. It is based on Erlang’s receive statement, and uses
a fluent API [32] to offer a convenient interface that is able to benefit from
tooling such as type-aware automatic completion.

The receive construct has three major features: filtering, timeouts and
pattern matching. Filtering enables tasks to declare which events they are
interested in. Timeouts enable tasks to stop reacting if no suitable event oc-
curs within the desired timeframe. Pattern matching allows tasks to declare
several filtering criteria simultaneously.

When we want to receive events, we first call receive to obtain a receiving
context, which defines the time scope of the events we are interested in.
Only those events that occur after the creation of the receiving context are

CHAPTER 5. THE RCOEX SIMULATOR 51

// Accept any event .
Event e = r e c e i v e () . matchAny () . get () ;

// Accept on ly even t s o f type SomeEvent .
SomeEvent e = r e c e i v e () . eventType (SomeEvent . class) . get () ;

// Accept on ly even t s o f type PHYEvent t ha t
// are r e l a t e d to the g iven PHY ”somePhy ” .
PHYEvent e = r e c e i v e () . match (PHYEvent . phy , somePhy) . get () ;

// Accept on ly even t s o f type PHYEvent t ha t
// are r e l a t e d to the g iven PHY ”somePhy” and
// are a l s o RX even t s .
PHYEvent e = r e c e i v e () . match (PHYEvent . phy , somePhy)

. match (PHYEvent . isRX , true)

. get () ;

// Accept on ly even t s o f type NumEvent
// t ha t re turn 123 from t h e i r .num() method .
NumEvent e = r e c e i v e ()

. eventType (NumEvent . class)

. when(new Predicate<NumEvent>() {
public boolean apply (NumEvent e) {

return e .num() == 123 ;
})

. get () ;

Figure 5.3: Filtering with receive

considered, so events in the past are not received.
Using the receiving context, we can define any amount of criteria using

one or more of the matchAny, eventType, match, and when methods. Finally,
we can call the get method, which halts the task until the specified event
occurs and then returns that event object or null if a timeout occurs. Listing
5.3 contains several filtering examples.

receive utilizes the available static type information so that if we have
specified that only events of type SomeEvent should be accepted, the static
return type of get is also SomeEvent, relieving us of superfluous type casts.

Sometimes, it is convenient to have several alternative criteria for incom-
ing events. For example, we might like react differently based on whether
event x or event y occurs first. receive supports this with pattern matching.

CHAPTER 5. THE RCOEX SIMULATOR 52

// ob ta in a r e c e i v i n g con t ex t
Rece iver r = r e c e i v e () ;

// match a SomeEvent t ha t has an in tVa l o f 123 and
// a boo lVa l o f f a l s e
for (SomeEvent e : r . match (SomeEvent . intVal , 123)

. match (SomeEvent . boolVal , fa l se)) {
doSomething (e) ;

}

// otherwise , match any SomeEvent
// t h i s does NOT match i f the above matched !
for (SomeEvent e : r . eventType (SomeEvent . class)) {

doSomethingElse (e) ;
}

// i t wasn ’ t an IntEvent , match an OtherEvent in s t ead
for (OtherEvent e : r . eventType (OtherEvent . class)) {

andNowForSomethingCompletelyDifferent (e) ;
}

// done wi th t h e s e a l t e r n a t i v e s , ob ta in a new con tex t
r = r . again () ;

Figure 5.4: Pattern matching

Listing 5.4 presents an example of pattern matching. First, we call
receive to obtain the receiving context, which we store in the variable r.
Then, we can use that receiving context together with the desired criteria in
a Java for-each loop to match on those criteria and bind the matching event
in a variable. To define several alternatives, we can use several for-each loops.
We say that each of these for-loops is a pattern, and is read as ”for these
kinds of events, do this”. Once we are done with the patterns, we can use
again to obtain a fresh receiving context to receive more events.

The patterns share the receiving context, which makes it possible for
them to be mutually exclusive. As soon as a pattern matches and the code
inside the for-statement is executed, all subsequent patterns automatically
fail to match. This is similar to Erlang, where the first matching pattern
takes precedence.

CHAPTER 5. THE RCOEX SIMULATOR 53

// when us ing . g e t () , a t imeout re turns a nu l l
AnEvent e = r e c e i v e () . t imeoutAfter (Time .ms(50))

. eventType (AnEvent . class)

. get () ;

i f (e == null) {
// timed out !

}
else {

doSomething () ;
}

// when us ing pa t t e rn matching , t imeouts can
// be checked wi th . timedOut ()
Rece iver r = r e c e i v e () . timeoutAt (Time .ms (1 0)) ;

for (AnEvent e : r . eventType (AnEvent . class)) {
doSomething () ;

}

i f (r . timedOut ()) {
// timed out !

}

Figure 5.5: Timeouts

5.4.3 Reception timeouts

We are frequently interested in some event only if it occurs during some time
period. receive supports this using the timeout feature, which can be used
via the methods timeoutAfter, timeoutAt, neverTimeout, and dontBlock.
neverTimeout is the default and also the simplest: it disables timeouts, so
the task always waits until a matching event occurs. timeoutAfter specifies
a relative timeout, where only events that occur within the given duration,
starting from the current simulation time, are considered. timeoutAt is the
absolute counterpart, where only events that occur before the given simula-
tion time are considered. dontBlock allows the task to poll without blocking
(get always returns instantly) for events that have already occurred during
the existence of the receiving context. As such, it can be considered a relative
timeout of zero. Listing 5.5 contains several examples of timeout use.

CHAPTER 5. THE RCOEX SIMULATOR 54

try {
// enab l e i n t e r r u p t s
i n t e r rup t i b l eBy (EventMatcher . matcher ()

. eventType (WindowExpired . class)

. p r ed i c a t e ()) ;

// the f o l l ow i n g code i s au t oma t i c a l l y i n t e r r up t e d when
// a WindowExpired event occurs
while (true) {

i f (c a r r i e r S en s e ()) {
delay (waitDuration) ;

}
else {

attemptTransmiss ion () ;
waitForAcknowledgement () ;

}
}

}
catch (In t e r rup t i) {

// WindowExpired occurred
waitForNextWindow () ;

}
f ina l ly {

// d i s a b l e i n t e r r u p t s again
i n t e r rup t i b l eBy (null) ;

}

Figure 5.6: Interrupts

5.4.4 Interrupts

The simulator also supports interrupts, which allow a task to specify that
certain events will interrupt any ongoing waiting, such as delay or waiting
for an event using receive, and cause an Interrupt exception to be thrown.
As always when using exceptions, interrupts are intended to be used for
exceptional cases only, where the equivalent interrupt-less code would be
needlessly convoluted.

Listing 5.6 presents an example of using interrupts. We can use the
primitive interruptibleBy along with a boolean predicate to specify the
exceptions that cause an interrupt, and later interruptibleBy with null

to disable the interrupt mechanism.

CHAPTER 5. THE RCOEX SIMULATOR 55

5.4.5 Implementation

The heart of the task and event system is the task scheduler, which is im-
plemented using a next-event time advance mechanism, which in turn uses a
conventional priority queue approach. The task scheduler is responsible for
selecting which simulation task is run and when, and for broadcasting events
to tasks.

5.4.5.1 Tasks and threads

In the RCOEX simulator, tasks are implemented using threads. The task
scheduler and all tasks run in their own threads and contain a dedicated sema-
phore. Initially, the scheduler is executing and each task thread is blocked on
its semaphore. When resume is called, the scheduler releases the semaphore
of that task and immediately blocks on the scheduler semaphore. When
suspend is called later, the task thread releases the scheduler semaphore and
immediately blocks on its own semaphore.

The semaphore scheme means that, although there are several active
threads in the simulator, only one thread is ever executing at a time. Thus
the RCOEX simulator is logically single-threaded, even though it is imple-
mented using several threads. Threads are used only for having a separate
call stack for each task and not for parallel execution. Additionally, the
RCOEX simulator always exactly controls which thread is executing at any
given time, which means that no nondeterminism is introduced because of
thread scheduling.

Each task also has its own mailbox, which is a simple queue of events.

5.4.5.2 Simulation cycles

After initialization, the RCOEX simulator runs simulation cycles in a loop.
Each simulation cycle is a single run of the task scheduler. A cycle always
advances the state of the simulation, either by advancing the simulation time
(if there were no events) or by resuming tasks in reaction to events.

The task scheduler has a few key data structures that it uses. The ready
list contains all tasks that will be run (i.e. resumed) during this cycle. The
new event list contains all events that were fired by tasks during this cycle.
The wakeup queue contains all suspended tasks in ascending time order such
that the task to wake up soonest is the first in the queue. The waiting set
contains all tasks that need to be resumed whenever an event occurs, regard-
less of the wakeup time, each with an optional wakeup predicate. Similarly,
the interruptible set contains all tasks that have an interrupt predicate set.

CHAPTER 5. THE RCOEX SIMULATOR 56

At the start of each simulation cycle, the scheduler goes through every
task in the ready list and calls resume for each task, which enables the
model code of that task to immediately execute. During task execution, the
scheduler collects all events fired using fireEvent into the new event list.
Eventually, one of the following happens:

• The task throws an exception, which causes the simulation to be im-
mediately terminated with an error message.

• The task code terminates, in which case the task is removed from the
simulation.

• The task calls suspend, which returns the control to the scheduler.

After a task calls suspend, if it set a wakeup time, it is put into the wakeup
queue. Additionally, the task might have placed itself into the waiting set
and/or the interruptible set to react to events. At any given time, the sched-
uler upholds the invariant that all tasks must reside in either the ready list or
one or more of the wakeup queue, the waiting set, and the interruptible set.
A task that is in the ready list is never in any of the other data structures
and vice versa.

After all tasks in the ready list have been run, the ready list is empty and
the scheduler goes through the new event list. For each event, the scheduler
goes through the waiting set and the interruptible set. If a task is in the
waiting set and it either has no wakeup predicate or its wakeup predicate
returns true for the event in question, the scheduler wakes it up, puts the
event in its mailbox and places it into the ready list. If a task is in the
interruptible set and its interrupt predicate returns true for the event in
question, that task is interrupted, which means that it is put into the ready
list and an Interrupt exception is thrown when the task resumes execution.
Additionally, all events in the new event list are outputted into the global
event trace.

Finally, the scheduler determines the new simulation time for the next
simulation cycle. If there are events in the ready list, which is the case if
an event woke up a task that was waiting, the new time is the same as the
current time. Otherwise, the wakeup queue is examined. The first task (i.e.
the task with the nearest wakeup time) in the wakeup queue is extracted,
put into the ready list and the new simulation time is set to be equal to the
wakeup time of that task. If there is no such task, which means that the
wakeup queue was empty, the simulation terminates as there is nothing left
to run.

CHAPTER 5. THE RCOEX SIMULATOR 57

5.4.5.3 Primitive implementation

In the simulator core, delay, waitUntil, and receive are implemented using
the low-level primitives suspend, resume, waitForEvent, and acceptsOnly.
These low-level primitives are below the level used by the user-written sim-
ulation models, and are not used by the models directly. Additionally, there
is the interruptibleBy primitive, which is used by tasks directly.

resume transfers the control from the scheduler to a task, allowing it
to execute arbitrary code until it voluntarily yields execution back to the
scheduler using suspend. Before calling suspend, the task implementation
can optionally set a wakeup time by setting the wakeUpAt variable. delay

and waitUntil are implemented by simply computing the absolute wakeup
time and setting the wakeUpAt variable to that value.

waitForEvent is like suspend, except that the task is also put in the
waiting set. To implement receive, the code calls waitForEvent and upon
waking up, checks that the received event (which is taken from the task’s
mailbox) matches the receive criteria. Optionally, as a performance op-
timization, the task can also set its wakeup predicate using acceptsOnly

before calling waitForEvent, which enables the scheduler to check for valid
events without a context switch. The receive implementation does this
whenever it knows the entire set of valid events, which is whenever get is
used. However, acceptsOnly cannot be used when receive pattern match-
ing is used.

interruptibleBy is exactly like waitForEvent, except that the task is
put in the interruptible set instead of the waiting set, and the interrupt
predicate is mandatory.

Chapter 6

Simulating in-device radio coex-
istence

After developing the RCOEX simulator as described in the previous chapter,
we used it to study the previously introduced problem of in-device radio
coexistence (IDC). In this chapter we describe how we used the simulator to
perform our simulations.

6.1 Coexistence cases

As our subjects of study, we selected two particular coexistence cases that
we deemed especially valuable to solve.

Both of our studied cases were related to interference between LTE and
WLAN. As introduced in chapter 3, this can occur when LTE and WLAN
symmetrically interfere each other near LTE TDD band 40 and when LTE
transmitters on LTE FDD band 7 interferes WLAN receivers. We identified
two particular real-world cases where this is likely to happen, if the device is
operating on the bands mentioned above.

Mobile hotspot The device is connected to the Internet using LTE, and
shares its Internet connection with nearby devices by acting as a WLAN
access point. Because traffic from one connection is usually routed to
the other, the traffic patterns of both connections are very similar to
each other. If the device suffers from in-device interference, hotspot
users may suffer from bad connectivity.

WLAN off-loading The device is simultaneously using its LTE and WLAN
connections. For example, the device may wish to route low-latency
traffic, such as VoIP, through LTE, which offers stronger guarantees on

58

CHAPTER 6. SIMULATING IN-DEVICE RADIO COEXISTENCE 59

when and how much the device is able to transmit. However, it might
make sense to the device to route non-critical high-bandwidth traffic,
such as streamed video, through WLAN, which might not carry usage
charges for high data amounts. LTE-to-WLAN interference in this case
can severely degrade WLAN throughput and lead to much spectrum
being wasted, hurting other possible users of the WLAN network.

6.2 Models

6.2.1 Radio models

In order to study these cases in detail, we built detailed protocol-level simula-
tion models of both LTE and WLAN. Protocol-level means that we simulate
on the level of protocol packets, and abstract lower level concepts such as
radio symbols and analog signals.

The LTE model includes both time-division duplex and frequency-division
duplex modes, as well as realistic framing with different TDD subframe con-
figurations, HARQ processes and DRX support. The model has separate
support for both eNodeB and UE.

The WLAN model includes beacons, power-saving mode support and
realistic link adaptation in the face of interference. Like actual WLAN, it
uses CSMA/CA with random backoff.

Both LTE and WLAN models support MIMO operation, allowing them
to utilize several RX and TX radio pipes at once. We will define pipes in
subsection 6.3.1.1 below.

6.2.2 Interference model

To model the coexistence cases introduced in the beginning of this chapter,
we built an abstract switchboard-like interference model. It allows connecting
any two radio pipes using a one-way connection that causes interference in
the other pipe whenever the other pipe is transmitting (in the case of TX
pipes) or receiving (in the case of RX pipes).

Because the connection is one-way, this easily allows modeling of asym-
metric interference. In addition, the model allows configuring RX pipes to
interfere TX pipes. While this doesn’t seem sensible from a physical stand-
point, it can be used to model real-world priority override scenarios where
the transmitter of a low-priority radio, such as WLAN, is hard-wired to be
powered off whenever a high-priority radio, such as LTE, needs to be able to
receive transmissions.

CHAPTER 6. SIMULATING IN-DEVICE RADIO COEXISTENCE 60

Finally, although real-world interference is not absolute in the sense that
interfered transmissions might still succeed, our abstract model is conserva-
tive and causes all interfered transmissions to fail entirely. If the developed
IDC mitigation techniques work well even using this conservative approxima-
tion, their real-world performance should hopefully be more than adequate.

6.3 Implementation

The most important parts of our simulation system are of course the radio
models, the important features of which were introduced above. The radio
models are responsible for deciding when and what to transmit and receive,
which in turn leads to those transmissions either succeeding or failing, based
on interference conditions.

In addition to the radio models and the interference model, the system
contains a simple scripted workload generator. While simple, it was adequate
to model the coexistence cases introduced above.

Finally, our simulation also contains tracing and analysis subsystems,
which graphically visualize the simulation results, allow interactive inspection
of the simulated timeline, and calculate statistics such as throughput and
packet loss.

6.3.1 Implementation overview

As described in chapter 5, our simulator is process-oriented. The radio mod-
els, workload generators, interference managers and tracing and analysis sys-
tems are implemented as autonomous simulation processes that communicate
mostly by firing and receiving events.

6.3.1.1 Radio models and pipes

Each radio model has associated pipes for which it generates and receives
radio events. A pipe is a representation of a radio resource which is uni-
directional (i.e. it can either send or receive transmissions, but not both)
and atomic (i.e. it can’t be subdivided further). As such, a pipe is roughly
analogous to a physical radio antenna. However, a physical antenna can be
bidirectional, which would be modeled as an RX/TX pair of pipes in our
model. A pipe can be in a number of distinct states. Transitions between
the states are marked by by radio events. The allowed states are as follows:

Powered A pipe can be either powered on or powered off, which repre-
sents the physical power state of the power amplifier connected to the

CHAPTER 6. SIMULATING IN-DEVICE RADIO COEXISTENCE 61

antenna.

Transceiving A pipe can be either idle or transceiving, which represents
whether meaningful traffic is being transmitted through it. We say
that transceiving RX pipes are receiving and that transceiving TX
pipes are transmitting. Pipes that are powered off cannot transceive,
which means that a transceiving state implies that the pipe is also
powered on.

Interfered A pipe can either be uninterfered or interfered, which represents
whether the pipe is receiving so much interference that no transmissions
through it will succeed. We generally assume that pipes are uninter-
fered, and say that a pipe is being interfered when it is in the interfered
state.

Each state has a corresponding on/off pair of radio events, which are
directly implemented as simulation events. Whenever a pipe moves from
one state to another, the corresponding events are fired using fireEvent.
These events completely describe the physical behavior of the simulated radio
interfaces, and are visualized by our tracing and analysis system.

6.3.1.2 Layer 2 events

The low-level radio events allow determining if a particular transmission
succeeded or not, and its duration in simulated time, but they are not enough
on their own. For example, determining throughput requires knowledge of
the modulation being used (i.e. amount of bytes per second) and the amount
of protocol overhead. To enable these kinds of statistics to be computed,
our system uses the concept of frames. Frames are the unit of work that
the workload generators generate; each frame is simply defined as a total
of bytes. Each radio model is responsible for determining how frames map
to actual physical transmissions and for determining when and if they are
completely transmitted. Then, accordingly, the radio models fire following
kinds of layer 2 events to enable analyzing high-level information:

Physical A physical transmission has finished. The event contains addi-
tional status information, such as amount of bytes transmitted and
whether the transmission succeeded or failed.

New A new frame has been accepted for transmission or reception, and will
be simulated by the radio model.

Complete A frame has successfully completed, which means that the re-
ceiver has successfully received all bytes in that frame.

CHAPTER 6. SIMULATING IN-DEVICE RADIO COEXISTENCE 62

Aborted The frame transmission has failed, and all bytes in the frame were
lost.

The tracing and analysis subsystem utilizes the layer 2 events to com-
pute many useful statistics for each radio model. The statistics include the
following:

Protocol-level throughput How many bytes were successfully transmit-
ted per second by each protocol?

Packet loss How many and what percentage of frames were lost due to
interference?

Latency distribution How long did frames take to successfully complete?

These computed statistics were used to evaluate the severity of different
coexistence cases and the effectiveness of developed mitigation techniques.

6.3.2 Abstract protocol and PHY

Even though the high-level logic is vastly different for our radio models, all
radio models nevertheless have some common characteristics. We have im-
plemented these common characteristics as an abstract protocol, an abstract
class which the actual radio model implementations inherit from.

The most obvious common characteristic is that all our radio models have
a virtual PHY, short for virtual physical interface, which is a collection of
RX and TX pipes. A SISO model will have at most one each, while a MIMO
model can have several. The abstract protocol includes a virtual PHY and
offers a number of utility methods to easily manipulate the associated pipes.

In addition to a virtual PHY, all radio models process workload frames, so
the abstract protocol also includes helper methods to automatically produce
the proper layer 2 events when workload frames are queued for transmission
or reception and when they succeed or fail.

6.3.3 Workload generation

Our workload generator subsystem is a very simple scripted system. As a
part of the simulator configuration, the user can add one or several workload
generators into the simulation. Each workload generator has a configurable
starting time (the time of the first transmission) and an optional repeat
interval, after which it will periodically repeat the transmission. The amount
and size of RX and TX packets per transmission is also configurable.

CHAPTER 6. SIMULATING IN-DEVICE RADIO COEXISTENCE 63

While this system is very simple, it is possible, if somewhat arduous, to
build arbitrarily complex predetermined workloads out of these generators,
as individual packets can be scripted using single-packet workload generators.
Fortunately, we found that simple arrangements were enough for analyzing
our coexistence cases.

6.3.4 Interference caster

Our simulator supports two kinds of interference: in-device interference be-
tween different radios in the simulated device and scripted external interfer-
ence.

Scripted interference works similarly to workload generation. As a part of
simulator configuration, the user can add any number of single interference
events and periodic interference events that affect some radio model in the
simulation. If interference that affects several radio models at once is desired,
it can be modeled as simultaneous single-radio interference events.

Perhaps more interesting is the in-device interference system. As de-
scribed in subsection 6.2.2, the user can configure that the RX or TX of
some radio model casts interference to the RX or TX of some other radio
model. MIMO RX and TX are considered as a single unit for the purposes
of in-device interference modeling.

The interference casting system allows easily modeling actual transmis-
sion interference, e.g. when the TX of LTE interferes the RX of WLAN,
by configuring the LTE TX to interfere WLAN RX. In-device interference
because of transmission priorities, e.g. WLAN TX being powered off when
LTE needs to receive, is also straightforward to model by configuring the
LTE RX to interfere WLAN TX. The system supports an arbitrary number
of these kinds of configurations.

6.3.5 Tracing and analysis

Figure 6.1 shows a screenshot of our trace visualizer GUI. The visualizer
displays a left-to-right timeline, where all TX and RX pipes in the simulation
are shown on different lines. The pipes are labeled in the left side of the
window.

The differently colored sections in the timeline correspond to different
states a pipe can be in. A transparent section (i.e. no bar at all) means
that the pipe is completely powered off at that time. A green section means
that the pipe is powered on, but not actively transmitting or receiving. A
black section means that the pipe is either transmitting (if it is a TX pipe)
or receiving (if it is an RX pipe). The endings of transmissions are marked

CHAPTER 6. SIMULATING IN-DEVICE RADIO COEXISTENCE 64

Figure 6.1: Trace visualizer

with small notches in the black bars, so that consecutive transmissions can
be distinguished. Finally, a red section means that the pipe is interfered.
For RX pipes, this means actual radio interference, while for TX pipes this
means that the pipe is being overridden by a more high-priority radio.

In the example in figure 6.1, the sources of the displayed interference
are straightforward to see. Whenever WLAN is transmitting, it interferes
WLAN RX in the same device. Also, whenever LTE is receiving in the UE,
the WLAN TX of the device is overridden.

In addition to the bars, the visualizer offers more detailed information
about the individual transmissions. When the mouse cursor (not shown in
figure 6.1) is hovered over a transmission (black bar), protocol-level details
of that transmission appear in the lower text area. In figure 6.1, the trans-
mission in question is shown to be a PS-POLL packet.

To be able to obtain numerical results that can be easily compared be-
tween different simulations, our system also computes some statistics about
the simulated workload. These statistics include:

• Effective TX and RX throughput of all protocols in the simulation

• Total amount of transmissions

• Amount of failed transmissions

• Total seconds transmitted

• Total seconds that were spent transmitting failed transmissions

• Amount of payload bytes successfully transmitted

• Amount of payload bytes lost due to failed transmissions

• Total and failed amounts of various low-level WLAN frames

CHAPTER 6. SIMULATING IN-DEVICE RADIO COEXISTENCE 65

• Latency histogram of transmitted payloads

When comparing different approaches for in-device interference mitiga-
tion, such as our implemented coexistence strategies, these statistics can be
used to quantitatively support one approach over another.

Chapter 7

Discussion

In this chapter, we discuss, review and evaluate the results of the RCOEX
simulator and coexistence simulation development. In particular, we attempt
to answer the following questions:

• Did we meet our design goals (as given in section 5.1) for the simulator?

• Was the simulator development completed within the allotted time?

• What simulator features proved useful and successful?

• What simulator features were unnecessary or lacking? Where a feature
was found lacking, how could it be improved?

• Was the simulator used successfully for in-device coexistence research?

7.1 Design goals

In section 5.1 we set the following three main design goals for the simulator:
ease of simulation development, adequate performance for interactive use and
easy reproducibility of results. We review each of these goals individually
below.

7.1.1 Ease of simulation development

Difficulty is hard to objectively measure, especially when implementing highly
complex systems, such as the LTE model. However, we can attempt to make
some observations.

All models were completed in time, and without having to fight around
limitations in the simulator. The WLAN model in particular benefited much

66

CHAPTER 7. DISCUSSION 67

from the some of the more specialized simulator features, such as interrupts,
simplifying the implementation significantly.

However, the LTE model, which is by far the most complex model de-
veloped in the project, did not end up using many of the simulator’s event
related features. Instead, the LTE model communicates internally using
custom objects, shared state and direct method calls, using the simulator
features only for time delays and firing tracing events. From the features
introduced in chapter 5, the LTE model uses only delay and waitUntil

directly. In addition, fireEvent is used by the pipe simulation mechanism
which the LTE model also uses.

While it appears that the simulator did not make the implementation
of the LTE model more difficult, it did not make the implementation easier
either. In this regard, we can say that the simulator failed to provide features
that would have accelerated LTE model development. The sole exception to
this is the configuration system, which certainly made it easier to tune the
LTE configuration parameters.

Although it might not be the only reason, one possible explanation why
the LTE model eschews event based communication is the complexity of
the LTE protocol state, which has, among other things, several simultane-
ous HARQ processes and their associated timings (see section 2.2). If only
events were used for LTE model communication, all protocol state changes
would need to be encoded using event firing and reception (as opposed to
directly mutating common state), which would have been time-consuming
and unproductive.

Even in retrospect, it is hard to think of general features (i.e. not purely
LTE-specific ones) that would have dramatically simplified the LTE model.
LTE is a complex protocol: it should not be surprising that the model is also
complex.

7.1.2 Performance

The simulations used in coexistence experimentation were predominantly
only 1000ms long in simulated time. When run on a relatively modern desk-
top computer, these kinds of simulation runs usually completed within a few
seconds of being started. We deemed such runtimes to be adequate for in-
teractive use, where the user often visually analyzes the results for periods
much longer than the actual runtime.

While the simulator is fast enough for interactive use, our benchmarks
show it to be far too slow for computationally intensive batch usage, espe-
cially if long simulation runs are required. As an example, a fast simulator
could be used to automatically tune simulation parameters using an opti-

CHAPTER 7. DISCUSSION 68

Simulated time Wall clock time Ratio
1000 ms 4220 ms 0.237
5000 ms 20106 ms 0.249

10000 ms 51106 ms 0.196
20000 ms 141266 ms 0.142
60000 ms N/A N/A

Figure 7.1: Performance benchmarking results

mization algorithm such as simulated annealing. However, as such usage was
not required by the project, we did not find it necessary to do dedicated
performance optimization.

7.1.2.1 Benchmarks

Table 7.1 shows the results of 5 performance benchmarks of the simulator. All
benchmarks were run on the author’s laptop computer (Intel Core i7-740QM
(Clarksfield), 1.73 GHz, 6 GB RAM). It should be noted that even though
the simulator is implemented using multiple threads and a multi-core CPU
was used for benchmarking, the simulator uses only one of the cores, as only
one of the threads is ever in execution at a time. All benchmarks were run
with the same configuration: simultaneous LTE eNodeB, LTE UE, WLAN
device and WLAN access point simulation with a periodic workload such that
all radio pipes in the simulation had transmissions throughout the simulated
duration. The benchmark configuration was one of the configurations that
was used in the project to simulate WLAN throughput in the face of heavy
in-device interference from LTE.

The first column of table 7.1 displays the simulated time durations for
each benchmark. The second column shows the amount of wall clock time
elapsed between the start and end of the actual simulation (simulator ini-
tialization, configuration, trace analysis and visualization are not included),
measured using the timestamps in the simulator’s log output. The third col-
umn shows the simulated time divided by the elapsed wall clock time, which
measures whether the simulator is faster or slower than real-time.

As can be seen from the table, the simulator is noticeably slower than
real-time, taking more than four times the simulated time to perform the
simulation in the best case. Perhaps even more significantly, the simulator
scales significantly worse than linearly with respect to the simulated time.
In other words, doubling the simulated time more than doubles the amount
of time it takes to run the simulation. The time and ratio for the 60000 ms
run are displayed as ”not available”, because the benchmark run was aborted

CHAPTER 7. DISCUSSION 69

after running for 20 minutes at full CPU utilization without terminating. We
suspect this to result from either a non-termination bug in the simulator or
a catastrophic degradation of performance.

While we did not investigate the reason for this worse-than-linear scaling
behaviour, we can venture some educated guesses. Because the simulator
continuously collects data (e.g. trace information) as it runs, a long simula-
tion will need to store much more data than a short one, thus significantly
increasing memory consumption. This can slow the simulator down in several
different ways:

• As the simulator is continuously allocating new objects, garbage needs
to be collected periodically. When there is a large amount of live ob-
jects, garbage collection can become slower.

• When the size of the simulator working set grows, it will eventually
exceed the size of the CPU caches and possibly the TLB, causing per-
formance to degrade. The CPU used for benchmarking contains three
separate cache levels (L1, L2 and L3), so this kind of effect can happen
multiple times. In theory, the working set could also exceed the amount
of physical RAM, causing paging and further performance degradation,
but this did not happen in our benchmarks.

• Any algorithms that are not O(N) or better can start to become bot-
tlenecks. We have not investigated whether such algorithms exist on
the critical paths of the simulation.

• Although the simulator does not appear to leak large amounts of mem-
ory during simulation, it is possible that there are bugs causing need-
less objects to accumulate in simulator data structures, slowing down
the processing of those data structures. For example, it is possible
that some task in the simulation never flushes its event queue, causing
event objects to accumulate. In this case, even if the event filtering
algorithm is O(N), it will start to become progressively slower as it
needs to process more and more events.

7.1.2.2 Future optimization

If good performance for long simulation runs is required in the future, the
reason for the performance problem visible in the benchmarks needs to be in-
vestigated and remedied. A good starting point for this kind of investigation
could be to profile short and long simulation runs separately and attempt to
discover which parts of the simulator take disproportionately longer in the
long runs.

CHAPTER 7. DISCUSSION 70

In addition, to improve the overall simulator performance, one promis-
ing optimization target could be the event reception and matching mecha-
nism. The current implementation does attempt to avoid unnecessary con-
text switching using acceptsOnly where possible, and in such cases performs
the match in the scheduler thread instead of the task thread. However, the
event matcher code still has to be run for each event and for all tasks that
are waiting for events.

Currently, that event matcher code is implemented as a chain of virtual
method calls, which are potentially slow to execute, unless the Java just-in-
time compiler manages to devirtualize and inline them. If it is determined
that the JIT fails to optimize the matching adequately, one possible optimiza-
tion technique would be to manually emit Java bytecode that implements
event matching with lowest possible overhead.

7.1.3 Easy reproducibility

Our results should be straightforward and easy to reproduce, both with re-
gard to simulator installation and its use.

The simulator is written in the popular Java[26] programming language
and uses the widespread Maven[33] packaging and build system. After Maven
and Java are installed, the simulator (along with all our simulation models)
should be buildable with a single mvn package command.

The entire simulation can be configured using plain-text configuration
files, which describe the models used along with their parameters and work-
loads. The configuration files can also include a fixed random seed to repro-
duce any pseudorandomness in the simulation (e.g. pseudorandom workload
generation), so simulation results obtained earlier can be reproduced exactly.

7.2 Implementation schedule

Once the initial design was in place, the development of the RCOEX simu-
lator itself went smoothly and quickly, although some debugging effort was
required to solve issues related to threading and exception handling. The
quick initial development made it possible to spend a significant amount of
the remaining implementation time tweaking the API according to feedback
to make it as pleasant to use as possible in Java. All necessary features were
completed in time for use in the actual protocol modeling and coexistence
simulation.

CHAPTER 7. DISCUSSION 71

7.3 Simulator features

Most of the implemented features proved useful in actual simulation de-
velopment. Most notably, the configuration system (section 5.3) was used
for every subsystem, greatly accelerating both model development and ex-
perimentation with the simulation. The event reception and filtering system
(receive() and match(), subsection 5.4.2) was also widely used, and proved
expressive enough to cover all encountered task communication needs. We
regard these two features to be significantly successful.

Both interrupts (subsection 5.4.4) and timeouts (subsection 5.4.3) were
used in WLAN model implementation, where they simplified the implemen-
tation of tricky protocol details. Even though the WLAN model was the only
place where these features were used, we regard them as mildly successful as
they made the code easier to develop and to read.

Pattern matching (listing 5.4) using for was not used in simulation model
development. We believe that a significant reason for this was the limited
use of events for simulation model communication. The use case for pattern
matching arises when simulation tasks are receiving multiple events of differ-
ent types simultaneously. However, our models do not use events of multiple
types: tracing and WLAN mostly use events of a single type with varying
data fields, and as discussed in subsection 7.1.1, LTE mostly does not use
events at all.

When initially designing the simulator core, the decision to implement
for-style pattern matching was based on our attempt to imitate Erlang’s
message passing as faithfully as possible in Java. We think that if the mod-
els had used more events, which was how we anticipated models to be written,
pattern matching would have been much more useful than it was now. How-
ever, in retrospect, the pattern matching feature could have been omitted
initially and then added later if it became necessary.

Chapter 8

Conclusions

8.1 Conclusions

In this thesis we first briefly reviewed some related radio concepts, radio pro-
tocols and simulation fundamentals in chapters 2 and 4. We also presented
the problem of in-device radio coexistence along with strategies for managing
it in chapter 3. We then presented our custom in-device radio interference
simulator, the RCOEX simulator, with implementation details in chapter 5.
The RCOEX simulator is a process-oriented discrete-event simulator imple-
mented in and programmable using the Java programming language. We
outlined how the simulator was used to simulate in-device radio coexistence
in chapter 6 and discussed our results in chapter 7.

The main contribution of this thesis is the design and implementation of
the simulator core of the RCOEX simulator. The simulator, which was de-
veloped in the project this thesis was a part of, was used to conduct research
on in-device radio coexistence. In particular, it was used to experiment how
radio protocols, such as 3GPP Release 8 (LTE) and the 802.11 family of
wireless LAN protocols, interact with each other in in-device interference
conditions.

During experimentation, the configuration and event filtering features of
the RCOEX simulator, designed and implemented as part of this thesis and
presented in chapter 5, proved very useful for simulation model development.
We regard these features as the biggest successes of the design. Other fea-
tures were also developed and presented, but they were less impactful for the
research project on the whole.

The in-device radio coexistence research led to the development of coex-
istence strategies, which were measured to improve spectral efficiency and
overall radio throughput in simulations. Even in the presence of harsh inter-

72

CHAPTER 8. CONCLUSIONS 73

ference where overlapping transmissions always cause simultaneous transmis-
sions to fail, much of the performance loss can be recovered if the radios can
be made to co-operate. The coexistence strategies are presented with mea-
surements in [18, 19]. In addition to these publications, two patents [20, 35]
were filed. The RCOEX simulator presented in this thesis was instrumental
in obtaining these results.

8.2 Future work

The RCOEX simulator suffers from known performance problems in simula-
tion runs that span a long period of simulated time. These problems were
discussed in chapter 7. By fixing these problems and optimizing the simu-
lator implementation, longer simulation runs could be performed, and the
simulator could potentially be feasibly used for automatically searching for
good tuning parameter values for coexistence strategies. As it is now, the
RCOEX simulator performance is low enough that such automatic searching
would take too long to be very useful.

In addition to improvements on the simulator itself, the simulator could be
used to experiment with protocol combinations other than just 3GPP Release
8 (LTE) and 802.11 (WLAN). Simulation models could be developed for radio
protocols such as Bluetooth, GPS, and GLONASS. Simulation experiments
could then be conducted to find working coexistence strategies for situations
where some or all of these are operating simultaneously within a single mobile
device.

Bibliography

[1] Baker, M. 3GPP LTE - Advanced Physical Layer, 2009. Re-
trieved January 21, 2015 from http://www.3gpp.org/ftp/workshop/

2009-12-17_ITU-R_IMT-Adv_eval/docs/pdf/REV-090003-r1.pdf.

[2] Banks, J., and Carson, J. S. Introduction to discrete-event simula-
tion. In Proceedings of the 18th conference on Winter simulation - WSC
’86 (New York, New York, USA, Dec. 1986), ACM Press, pp. 17–23.
DOI: 10.1145/318242.318253.

[3] Berrou, C., Glavieux, a., and Thitimajshima, P. Near Shannon
limit error-correcting coding and decoding: Turbo-codes. 1. Proceedings
of ICC ’93 - IEEE International Conference on Communications 2, 1
(1993). DOI: 10.1109/ICC.1993.397441.

[4] Bontu, C., and Illidge, E. DRX Mechanism for Power Saving
in LTE. Communications Magazine, IEEE 47, 6 (2009), 48–55. DOI:
10.1109/MCOM.2009.5116800.

[5] Cahn, C. Combined Digital Phase and Amplitude Modulation Com-
munication Systems. IRE Transactions on Communications Systems 8,
3 (1960), 150–155. DOI: 10.1109/TCOM.1960.1097623.

[6] Chang, R. W. Synthesis of Band-Limited Orthogonal Signals for Mul-
tichannel Data Transmission. Bell Syst. Tech. J. 45, 10 (1966), 1775–
1796.

[7] Dahl, O.-J., and Nygaard, K. SIMULA: an ALGOL-based simula-
tion language. Communications of the ACM 9, 9 (Sept. 1966), 671–678.
DOI: 10.1145/365813.365819.

[8] Ergen, M. IEEE 802.11 Tutorial, 2002. Retrieved January 21, 2015
from http://ayman.elsayed.free.fr/msc_student/wlan-tutorial.pdf.

74

http://www.3gpp.org/ftp/workshop/2009-12-17_ITU-R_IMT-Adv_eval/docs/pdf/REV-090003-r1.pdf
http://www.3gpp.org/ftp/workshop/2009-12-17_ITU-R_IMT-Adv_eval/docs/pdf/REV-090003-r1.pdf
http://ayman.elsayed.free.fr/msc_student/wlan-tutorial.pdf

BIBLIOGRAPHY 75

[9] Ermedahl, A. Discrete Event Simulation in Erlang. Master’s thesis,
Uppsala University, 1995. DOI: 10.1.1.40.4956.

[10] Frenger, P., Parkvall, S., and Dahlman, E. Performance com-
parison of HARQ with Chase combining and incremental redundancy
for HSDPA. IEEE 54th Vehicular Technology Conference. VTC Fall
2001. Proceedings (Cat. No.01CH37211) 3 (2001), 1829–1833. DOI:
10.1109/VTC.2001.956516.

[11] Garćıa-aĺıs, D., Stirling, I., and Stewart, B. In-
troduction to LTE 3GPP Evolution. Retrieved August 4,
2013 from http://www.steepestascent.com/content/mediaassets/pdf/

presentations/SA_Introduction_to_LTE.pdf.

[12] Gast, M. S. 802.11 Wireless Networks: The Definitive Guide, Second
Edition. O’Reilly Media, Inc., 2005.

[13] Henderson, T. R., and Riley, G. F. Network Simulations with the
ns-3 Simulator. In SIGCOMM (2008).

[14] Holma, H., and Toskala, A. LTE for UMTS: OFDMA and SC-
FDMA based radio access. John Wiley & Sons, Ltd., 2009.

[15] Hu, Z., Susitaival, R., Chen, Z., Fu, I. K., Dayal, P., and
Baghel, S. Interference avoidance for in-device coexistence in 3GPP
LTE-advanced: Challenges and solutions. IEEE Communications Mag-
azine 50, 11 (Nov. 2012), 60–67. DOI: 10.1109/MCOM.2012.6353683.

[16] Jäntti, R. Wireless communications primer for automation en-
gineers Part II : Medium access control, 2013. Retrieved Jan-
uary 21, 2015 from https://noppa.aalto.fi/noppa/kurssi/as-74.

3199/luennot/AS-74_3199_slides_9.pdf.

[17] Jing, Z., Waltho, A., Xue, Y., and Xingang, G. Multi-radio co-
existence: Challenges and opportunities. In Proceedings - International
Conference on Computer Communications and Networks, ICCCN (Aug.
2007), IEEE, pp. 358–364. DOI: 10.1109/ICCCN.2007.4317845.

[18] Kiminki, S., and Hirvisalo, V. Coexistence-aware scheduling for
LTE and WLAN during hard in-device interference. In Cognitive Ra-
dio Oriented Wireless Networks and Communications (CROWNCOM)
(2012), IEEE, pp. 1–6. DOI: 10.4108/icst.crowncom.2012.249458.

http://www.steepestascent.com/content/mediaassets/pdf/ presentations/SA_Introduction_to_LTE.pdf
http://www.steepestascent.com/content/mediaassets/pdf/ presentations/SA_Introduction_to_LTE.pdf
https://noppa.aalto.fi/noppa/kurssi/as-74.3199/luennot/AS-74_3199_slides_9.pdf
https://noppa.aalto.fi/noppa/kurssi/as-74.3199/luennot/AS-74_3199_slides_9.pdf

BIBLIOGRAPHY 76

[19] Kiminki, S., and Hirvisalo, V. In-Device Coexistence Simulation
for Smartphones. In Proceedings of the 27th European Conference on
Modelling and Simulation (ECMS 2013) (2013), pp. 538–543.

[20] Kiminki, S., Piipponen, A.-V., Zetterman, T., Knuuttila, J.,
and Hirvisalo, V. Method, apparatus, and computer program prod-
uct for coexistence-aware communication mechanism for multi-radios,
Aug. 2013. Patent No. US20130225068.

[21] Law, A. M., and Kelton, W. D. Simulation Modeling and Analysis.
McGraw-Hill, Nov. 1999.

[22] Metropolis, N., and Ulam, S. The Monte Carlo Method. Journal
of the American Statistical Association 44, 247 (Apr. 1949).

[23] Myung, H. G., Lim, J., and Goodman, D. J. Peak-to-average
power ratio of single carrier FDMA signals with pulse shaping. IEEE
International Symposium on Personal, Indoor and Mobile Radio Com-
munications, PIMRC (2006), 3–7. DOI: 10.1109/PIMRC.2006.254407.

[24] Myung, H. G., Lim, J., and Goodman, D. J. Single carrier FDMA
for uplink wireless transmission. IEEE Vehicular Technology Magazine
1 (2006), 30–38. DOI: 10.1109/MVT.2006.307304.

[25] Nyquist, H. Certain Topics in Telegraph Transmission Theory. Trans-
actions of the American Institute of Electrical Engineers 47, 2 (Apr.
1928), 617–644. DOI: 10.1109/T-AIEE.1928.5055024.

[26] Oracle Corporation. The Java Programming Language. Retrieved
January 21, 2015 from http://java.com/en/.

[27] Priyanto, B. E., Codina, H., Rene, S., Sø rensen, T. B.,
and Mogensen, P. Initial performance evaluation of DFT-spread
OFDM based SC-FDMA for UTRA LTE uplink. In IEEE Ve-
hicular Technology Conference (2007), IEEE, pp. 3175–3179. DOI:
10.1109/VETECS.2007.650.

[28] Razavi, B. RF microelectronics. Prentice Hall, Jan. 1997.

[29] Sargent, R. G. Verifying and validating simulation models. In Winter
Simulation Conference (New York, New York, USA, Nov. 1996), ACM
Press, pp. 55–64. DOI: 10.1145/256562.256572.

http://java.com/en/

BIBLIOGRAPHY 77

[30] Schwetman, H. CSIM. In Proceedings of the 18th conference on
Winter simulation - WSC ’86 (New York, New York, USA, Dec. 1986),
ACM Press, pp. 387–396. DOI: 10.1145/318242.318464.

[31] Shannon, R. Introduction to the art and science of simulation. 1998
Winter Simulation Conference. Proceedings (Cat. No.98CH36274) 1
(1998), 7–14. DOI: 10.1109/WSC.1998.744892.

[32] Singh, S., and Nemani, C. Fluent Interfaces. ACEEE Int. J. on
Information Technology 01, 2 (2011).

[33] The Apache Software Foundation. Apache Maven, 2014. Re-
trieved January 21, 2015 from http://maven.apache.org.

[34] Weinstein, S., and Ebert, P. Data Transmission by Frequency-
Division Multiplexing Using the Discrete Fourier Transform. IEEE
Transactions on Communication Technology 19, 5 (1971), 628–634. DOI:
10.1109/TCOM.1971.1090705.

[35] Zetterman, T., Piipponen, A.-V., Kiminki, S., Knuuttila, J.,
and Hirvisalo, V. Methods and Apparatus for In-Device Coexistence,
Aug. 2013. Patent No. US20130194985.

http://maven.apache.org

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Radio systems
	2.1 Radios
	2.1.1 General concepts
	2.1.2 Radio hardware
	2.1.2.1 The transmitter
	2.1.2.2 The receiver

	2.1.3 Noise, distortion and interference
	2.1.3.1 Noise
	2.1.3.2 Distortion and linearity
	2.1.3.3 External interference

	2.1.4 Modulation and error correction
	2.1.4.1 Basic modulation techniques
	2.1.4.2 Quadrature amplitude modulation and constellations
	2.1.4.3 Orthogonal frequency division multiplexing and multiple access
	2.1.4.4 Error correction

	2.2 LTE
	2.2.1 Modulation and coding
	2.2.2 Frame structure
	2.2.2.1 Synchronization and timing advance
	2.2.2.2 Broadcast and random access channels

	2.2.3 Duplexing
	2.2.4 Scheduling
	2.2.5 Hybrid adaptive repeat and request
	2.2.6 Discontinuous Reception

	2.3 802.11
	2.3.1 WLAN architecture
	2.3.2 Media access control using CSMA/CA
	2.3.2.1 Carrier sensing
	2.3.2.2 Backoff and contention
	2.3.2.3 RTS/CTS and transaction frame spacing

	2.3.3 Power saving mode

	3 Radio coexistence
	3.1 Coexistence strategies
	3.1.1 Unmanaged coexistence
	3.1.2 Anticipation and information sharing
	3.1.3 Traffic shaping
	3.1.4 Priority override
	3.1.5 Optimistic partial transactions
	3.1.6 Scheduler interaction
	3.1.7 Link adaptation
	3.1.8 Coexistence strategies with scheduled radio protocols

	4 System analysis and simulation
	4.1 System analysis
	4.2 Simulation
	4.3 Simulators
	4.3.1 Programming model
	4.3.2 Discrete event simulators

	5 The RCOEX simulator
	5.1 Design goals
	5.2 Implementation overview
	5.3 Configuration and launcher
	5.4 Tasks and events
	5.4.1 Waiting primitives
	5.4.2 Event firing and reception
	5.4.3 Reception timeouts
	5.4.4 Interrupts
	5.4.5 Implementation
	5.4.5.1 Tasks and threads
	5.4.5.2 Simulation cycles
	5.4.5.3 Primitive implementation

	6 Simulating in-device radio coexistence
	6.1 Coexistence cases
	6.2 Models
	6.2.1 Radio models
	6.2.2 Interference model

	6.3 Implementation
	6.3.1 Implementation overview
	6.3.1.1 Radio models and pipes
	6.3.1.2 Layer 2 events

	6.3.2 Abstract protocol and PHY
	6.3.3 Workload generation
	6.3.4 Interference caster
	6.3.5 Tracing and analysis

	7 Discussion
	7.1 Design goals
	7.1.1 Ease of simulation development
	7.1.2 Performance
	7.1.2.1 Benchmarks
	7.1.2.2 Future optimization

	7.1.3 Easy reproducibility

	7.2 Implementation schedule
	7.3 Simulator features

	8 Conclusions
	8.1 Conclusions
	8.2 Future work

