
Aalto University
School of Science
Degree Programme in Engineering Physics

Ilari Rissanen

Viscoelasticity and contact aging in a
minimalistic friction model

Master’s Thesis
Espoo, May 26, 2015

Supervisor: Prof. Mikko Alava
Advisor: D.Sc. (Tech.) Lasse Laurson



Aalto University
School of Science
Degree Programme in Engineering Physics

ABSTRACT OF
MASTER’S THESIS

Author: Ilari Rissanen
Title:
Viscoelasticity and contact aging in a minimalistic friction model
Date: May 26, 2015 Pages: 111
Major: Engineering physics Code: F3005
Supervisor: Prof. Mikko Alava
Advisor: D.Sc. (Tech.) Lasse Laurson
Dry friction (friction between solid surfaces in the absence of lubrication) is a
complex phenomenon, involving effects from multiple time and length scales. The
interplay of these effects in turn gives rise to interesting dynamical behaviour
depending on the surface materials and various other parameters, such as the
relative velocity of the surfaces.
One of the intriguing properties of dry friction in the low-velocity regime is the
emergence of so-called ”stick-slip” motion. The name ”stick-slip” originates from
the observed jerky movement of rigid bodies on rough surfaces. This kind of
motion has been linked with wear, and thus has been the subject of consider-
able scientific attention, especially in the field of nanotribology. However, factors
related to stick-slip are plentiful, and many aspects still lack comprehensive ex-
planation.
Stick-slip motion is often characterized by power law distributed quantities. The
critical exponents of these distributions divide stick-slip dynamics into different
universality classes, meaning that systems with seemingly little in common can
exhibit similar fundamental dynamics.
In this thesis, a numerical simulation was conducted to investigate the properties
of the stick-slip motion of a 1D elastic chain on a disordered substrate in the
presence of viscoelastic effects and contact aging. The charateristic distributions
and the critical exponents were determined from the avalanche statistics and
compared to the experimental and computational values from existing research
papers. Additionally, the onset of motion and the phenomena related to it were
studied.
It was observed that extending the model with viscoelasticity and contact ag-
ing both have both qualitative and quantitative consequences, introducing new
kinds of avalanches and altering the critical exponents of the avalanche distribu-
tions. However, the results obtained with the extended model still differ from
those found in laboratory experiments on dry friction. Possibilities for future
improvements of the model are discussed at the end of this thesis.
Keywords: friction, nanotribology, stick-slip phenomenon, numerical sim-

ulation, viscoelasticity, contact aging
Language: English
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Voitelemattomien pintojen välinen kitka (kuiva kitka) on monimutkainen ilmiö,
johon usean aika- ja pituuskaalan tapahtumat vaikuttavat. Näiden tapahtumien
vuorovaikutus puolestaan saa aikaan dynamiikkaa, joka riippuu pintojen materi-
aaleista ja useista muista parametreista, kuten pintojen suhteellisesta nopeudesta
toisiinsa nähden.
Yksi kuivan kitkan mielenkiintoisista ominaisuuksista on niin sanotun ”stick-
slip”-liikkeen syntyminen alhaisilla nopeuksilla. Stick-slip -liikkeen nimi juontaa
juurensa kokeista, joissa jäykän kappaleen havaittiin liikkuvan nykivästi karhealla
pinnalla. Tällainen liike on yhdistetty pintojen kulumiseen ja siksi sitä on tutkit-
tu huomattavasti etenkin nanotribologiassa. Tästä huolimatta kaikkia stick-slip
-liikkeeseen liittyvistä lukuisista ilmiöistä ei ole vielä kyetty täydellisesti selittä-
mään.
Yleinen Stick-slip -liikkeelle tunnusomainen piirre on potenssilakien mukaan ja-
kautuneet suureet. Näiden potenssilakien kriittiset eksponentit jakavat stick-slip
liikkeen erilaisiin universaalisuusluokkiin: systeemeihin, jotka voivat olla näennäi-
sesti suurista eroista riippumatta fundamentaaliselta dynamiikaltaan samanlai-
sia.
Tässä työssä tutkittiin numeerisen simulaation avulla yksiulotteisen elastisen ket-
jun stick-slip liikettä epäjärjestyneen substraatin päällä, sekä kahden ilmiön, vis-
koelastisuuden ja kontaktin vanhenemisen, vaikutusta ko. liikkeeseen. Stick-slip-
ilmiön kannalta keskeiset jakaumat ja niiden kriittiset eksponentit määritettiin
vyörystatistiikasta ja niitä verrattiin olemassaoleviin kokeellisiin ja laskennallisiin
arvoihin. Lisäksi tutkittiin liikkeen alkua ja siihen liittyviä ilmiöitä.
Työssä havaittiin viskoelastisuuden ja kontaktin vanhenemisen muuttavan elas-
tisen ketjun liikettä sekä kvantitatiivisesti että kvalitatiivisesti: uudentyyppisiä
vyöryjä havaittiin, ja vyöryjakaumien eksponentit muuttuivat. Muutoksista huo-
limatta simulaatioista saadut tulokset eroavat laboratoriokokeiden tuloksista. Pa-
rannusehdotuksia malliin esitetään työn lopussa.
Asiasanat: kitka, nanotribologia, stick-slip-ilmiö, numeerinen simulaatio,
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Introduction

There seems to be trend in physics that the more banal a phenomenon ap-
pears outward, the more complex its actual physical explanation. Such is
also the case of probably the most mundane thing in existence: friction.

Friction is the force resisting motion between two bodies in contact. Being
an omnipresent part of everyday life, it’s usually not friction but its absence
that is problematic, a fact any pedestrian walking on a frozen walkway can
attest. In the modern times, however, attention has turned to the detrimen-
tal sides of friction: when it comes to machinery performing repetitive tasks
(car engines, industrial robots etc.), friction causes heating and wear, de-
grading moving components and eventually leading to breaking down of said
machinery. In 2000, it was estimated that in Germany alone the economic
losses due to friction were between 30 and 40 billion euro [1]. Worldwide,
the losses are likely to be immense. Hence it’s no surprise that friction (and
especially how mitigate or eliminate it) has been the subject of intense re-
search since industrialization. In fact, friction has spawned an entire branch
of science, tribology, around it.

Friction is often categorized according to the types of surfaces in contact.
The category considered in this thesis is friction between two solid surfaces
in the absence of lubrication, commonly referred to as dry friction.

The earliest attempts to find out the characteristics of dry friction were
made by Guillaume Amontons and Charles-Augustin de Coulomb, who dis-
covered the so-called phenomenological laws of friction: that the friction
force is directly proportional to the applied load (Amontons’ 1st law), that
the force is independent of the area of contact (Amontons’ 2nd law) and that
kinetic friction is independent of sliding velocity (Coulomb’s law). The most
universally known friction model (Coulomb model), characterized by con-
stant static friction coefficient µs and kinetic friction coefficient µk, is based
on these laws. In the macroscopic level, this simple model is often good
enough depiction of friction. Nonetheless, modern studies reaching down to
nanometer length scales have revealed that the Coulomb model is severely
lacking. Violations of the phenomenological laws have been demonstrated in
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2

experiments (e.g. [2, 3]), and some counterintuitive results have been uncov-
ered, such as the existence of negative coefficient of friction (friction decreases
with larger normal load) [4].

It’s evident that better explanation for dry friction is required. However,
despite numerous experimental, computational and theoretical studies, dry
friction has eluded a comprehensive description so far. One major difficulty
in constructing a complete theory is that a multitude of factors in various
time and length scales (schematically illustrated in Fig. 1) contribute to the
total friction force. The current consensus seems to be that dry friction is
intimately linked with adhesion between surfaces [5–7], a phenomenon which
itself can extend from nanometer and -second scale [8] up to micrometers
and hours [9].

m

µm

nm

N

FFμ

Chemical bonding

Van der Waals forces

Electrostatic adhesion

True contact area

Asperity deformation

Capillary condensation

Figure 1: Even the classic ”Pulling a block on a table” experiment
becomes highly nontrivial when all relevant effects are considered (just
a couple of them named in the picture).

A phenomenon found ubiquitous in many length scales of dry friction is so-
called stick-slip motion: movement characterized by abrupt slips between
long periods of stillness. In general, the term stick-slip refers to dynamics
exhibiting a non-equilibrium phase transition between two states: the pinned
state (stick) and the unpinned state (slip). In the pinned state, a system is
stationary with respect to time due to some pinning potential, but can accu-
mulate energy via external influences. When unpinned, the system rapidly
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releases the accumulated energy, relaxing to another pinned state or slipping
indefinitely (if the pinning potential vanishes or enough energy is constantly
supplied to the system). These sudden relaxations are called avalanches,
and the transition from pinned to unpinned state is named the depinning
transition.

A system near the depinning transition displays qualities similar to other
critical phenomena (such as second order thermodynamic phase transitions):
various observables become power law distributed, depending only on the dis-
tance from criticality and a critical exponent corresponding to the observable
in question. This kind of critical behaviour is interesting since stick-slip is not
necessarily limited to friction; other phenomena following similar dynamics
include earthquakes [10], Barkhausen noise in ferromagnetic substances [11]
and crack propagation in brittle materials [12], to name a few examples. It
would seem then that these processes might have in some way similar ori-
gins, and hence considerable effort has been made to uncover the underlying
principles of general stick-slip motion.

Frictional stick-slip motion is encountered nearly everywhere, in both mi-
croscopic and macroscopic forms. The creaking of door hinges and the sound
of a violin are caused by the microscopic stick-slip motion of the materials
in contact [5]. A macroscopic example can be found by imagining a body
being dragged along a surface by a spring pulled with a slow constant veloc-
ity. The movement alternates between stationary and sliding states causing
visible stick-slip behaviour: the body is stationary (in the pinned state) un-
til the pulling force exceeds some critical force (commonly called the static
friction force), after which the body slips forward (an avalanche) and relaxes
the force of the pulling spring. As the pulling force drops below the force
required to keep the body in motion (the dynamic friction force), the body
sticks in place until the force from the spring once again overcomes the static
friction force. Depending on the parameters of the system and the environ-
ment (such as the average spacing of surface inhomogeneities), the stick-slip
motion can be regular or chaotic [13].

This kind of macroscopic jerky movement is possible only when the drag-
ging velocity and the spring constant of the pulling spring are sufficiently
small; above certain (material dependent) velocity and spring constant, the
macroscopic stick-slip behaviour ceases and the smooth sliding regime is
achieved. This does not necessarily mean that sticking and slipping does
not occur, since the microscopic relaxations of the asperities in contact and
even the nano-level bond breaking and forming are types of stick-slip motion.
However, these small-scale stick-slip events are asynchronous and they av-
erage out on larger timescales, leading to apparently steady motion [5]. An
example of the time development of the friction force of a body (in this case,
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a mica surface) pulled forward by a spring under different pulling velocities
is shown in Fig. 2.

Figure 2: Friction force as a function of time in various dragging velocity
regimes. Higher velocities tend to smooth out the stick-slip motion. In
this experiment, the chaotic stick-slip motion regime appears near the
smooth sliding regime. At small velocities, the motion is regular. [13]

Various models for simulating dry friction have been proposed over the years,
ranging from phenomenological rate-and-state models to molecular dynamics
simulations [14]. In this thesis, the stick-slip motion dynamics of a system
incorporating two novel effects, viscoelasticity and contact aging, is studied
with one of the so-called ”minimalistic” models, the 1-dimensional Frenkel-
Kontorova-Tomlinson (FKT) model. In the FKT model, a chain of particles
is pulled by springs atop a potential surface representing a rigid substrate.
This model was used because it’s computationally (relatively) light and easy
to implement, yet exhibits many phenomena found in dry friction. Addition-
ally, extending the model with viscoelasticity and contact aging was straigh-
forward.

The structure of the thesis is as follows. The first chapter discusses ex-
periments that have been made to study dry friction and stick-slip motion
in laboratory conditions. In the second chapter, the FKT model and its ori-
gins are presented. The third chapter introduces the quantities of interest
that can be obtained from the model. In Chapters 4 and 5, the implemen-
tation of the model and the novel effects that were the primary subjects of
examination of the work are presented, respectively. Chapter 6 deals with
the numerical results obtained from the simulations and how they compare
to values found in other literature. Finally, the conclusion of the study and
possibilities for future research are discussed in Chapter 7. Observations not
directly related to contact aging or viscoelasticity but nevertheless deemed
interesting are included in Appendices A and B.



Chapter 1

Experimental background

Laboratory experiments have greatly advanced the knowledge of dry friction,
especially in the twentieth century. Theoretical understanding has progressed
from the phenomenological level to incorporating effects from smaller scales
such as chemical adhesion. Though an adhesive theory of friction was pro-
posed as early as 1734 by Desanguliers, it was long rejected due to an appar-
ent contradiction with Amontons’ 2nd law. In the 1950s, Tabor and Bowden
performed seminal experiments with metal-metal surfaces and verified that
adhesion indeed is a major component of friction [15]. Their micro-contact
interface model lead to the introduction of the so-called true area of contact,
which consists of the numerous small contact areas of the microscopic asper-
ities of the surfaces, and is usually very small compared to the apparent sur-
face area (approximately 0.1%). The concept of true contact area reconciled
the adhesion-based friction of Desanguliers and the observed independence
of the area of contact dictated by Amontons’ 2nd law.

Modern experiments have uncovered various other facts about the nature
of dry friction. In fact, even the term ”dry friction” has turned out to be a bit
misleading, since contaminants from the surrounding environment will always
adhere to both surfaces, providing a small lubrication layer of sorts [16].
Experiments performed in high vacuum and with atomically smooth surfaces
resembling truly dry friction have demonstrated phenomena deviating from
the conventional concept of dry friction, such as cold-welding, where two
smooth (typically metal) surfaces adhere to each other very strongly [17].

It has been realized that in the absence of contaminants and other en-
vironmental effects, the commensurability (ratio of lattice constants) of the
materials in contact plays a large role in the observed friction behaviour.
S. Aubry predicted in 1978 that sufficiently rigid, incommensurate (the ratio
of lattice constants is an irrational number) lattices would display vanishing
amounts of friction (superlubricity) [18]. This kind of elimination of friction
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CHAPTER 1. EXPERIMENTAL BACKGROUND 6

has been one of the primary motivations for dry friction research due to the
considerable amount of potential applications. Superlubricity arising from
incommensurability has recently been successfully demonstrated in experi-
ments with graphene surfaces as large as 1 cm × 1 cm [19]. However, it is
not yet known how (or whether it is possible at all) to achieve superlubricity
in larger scales and closer to ambient pressure, temperature and humidity.
It has been proposed that one of the limiting factors in superlubricity is the
appearance of stick-slip motion caused by elasticity of materials when dealing
with macroscopic surfaces [20].

1.1 Stick-slip motion studies
The first laboratory experiments concerning frictional stick-slip motion were
macroscopic in nature. The experimental setups usually followed the Burridge-
Knopoff model or a derivation thereof, in which a collection of blocks (or
beads) are attached to each other and to a driving ceiling or block via springs.
The blocks are slowly driven on top of a rough surface and their displacements
recorded continuously, providing data on avalanches. Analysing experimen-
tal results, W. F. Brace and J. D. Byerlee proposed in 1966 that stick-slip is
one of the mechanisms behind shallow earthquakes [21]. The claim was later
confirmed in a series of experiments, and the results heightened the interest
in laboratory stick-slip motion studies.

Later on, the smaller scale mechanisms of stick-slip motion, especially
those found in dry friction, became a subject of research, and sophisticated
experiments were carried out in hopes to understand dry friction on a more
fundamental level. Fig. 3 depicts one experimental setup in which the as-
perities of a surface were emulated by metal beads embedded on a wooden
block [22]. The block was then driven atop a similarly beaded surface. Other
popular experimental setups include surface force apparatus and various pin-
on-disc configurations [23, 24].

Contemporary studies have concentrated increasingly on the micro- and
nanoscopic stick-slip motion, perhaps owing to advances in measurement
technology. Experiments have been performed using atomically thin mono-
layers [25] and NaCl crystals [26], among other systems. The emergence of
atomic force microscopes has made it possible to drag nanoscale chains or
surfaces on top of substrates and measure the forces involved [20]. These
kind of microscopic experiments within a well-controlled environment make
it easier to study only few selected effects contributing to stick-slip motion.

The systems used in the described experiments are examples of self-
organized criticality [27]: the system does not need to have parameters tuned
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to specific values to achieve criticality, but instead is driven towards the crit-
ical point repeatedly. Thus the system oscillates around the critical point,
alternating between the pinned and unpinned states. Utilizing these kind of
experimental setups is a useful way of obtaining large data sets of avalanches,
from which the characterizing aspects of the motion such as critical expo-
nents can be determined. Many experiments demonstrate the power law
distributions of the slip events, but regular stick-slip motion has also been
found [28].

Figure 3: The experimental setup that was used to study stick-slip
motion in Ref. [22].

One of the effects influencing stick-slip motion which is numerically investi-
gated in this thesis, contact aging (the increase of static friction force with
time), has also been studied in laboratory conditions. Experiments have
shown that a multitude of effects can cause contact aging. The larger scale
effects (for example moisture condensating between the surfaces and forming
liquid bridges) can be studied with simple apparatuses, such as placing a
block of material atop a plane and adjusting the inclination by a motor [9].
Recently, advanced experiments with atomic force microscopes have shown
contact aging also in the nanolevel, likely resulting from individual atom
bonding and bond breaking [29]. Despite the abundance of different origins
of contact aging, a simple quasi-logarithmic time dependence for the increase
in the static friction coefficient has consistently been found (more about this
in Chapter 5).
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1.2 Investigating the onset of motion
Only in relatively recent times has it become possible to experimentally in-
vestigate movement in small enough time and length scales to actually ob-
serve and record the processes leading to the depinning of surfaces and single
avalanche events. Consequently, one of the emerging popular research topics
is the transition from static to kinetic friction (the onset of frictional motion)
and the mechanisms it entails.

Some recent experiments have had success in applying high-speed cameras
and translucent blocks to perform real-time imaging of the true contact area
[30, 31]. One such experimental setup is depicted in Fig. 4. With sufficiently
high-speed and high-resolution cameras, this kind of setup can provide time
and length resolutions up to a few micrometers and -seconds [31], which is
enough to observe the behaviour of single asperities forming the true contact
area. Such investigations of the surface deformation and depinning on a small
scale are fascinating since they can provide information about how the single
minuscule events contribute to the overall stick-slip motion, making way for
novel theories that encompass micro- and nanolevel friction processes.

Figure 4: The experimental setup used in Ref. [31]: a translucent block
(slider) is placed atop a translucent surface (base) and laser light is pro-
jected through the interface. The materials are such that the asperities
in contact let the light through while in the base-air interface a total
internal reflection happens. The light is captured via a camera, and
the areas of contact are determined by the light intensity.



CHAPTER 1. EXPERIMENTAL BACKGROUND 9

Indeed, modern experiments have yielded many interesting results, many of
which are well presented in Ref. [32]. In addition to being able to verify the
true contact area theory of Tabor and Bowden [33], renewal of the contact
area during loading/unloading cycles and small avalanche events (precursory
events) before actual movement of the sliding object have been observed.
As an explanation for the contact renewal, Rubinstein et al. have proposed
Poissonian expansion/contraction, in which the system expands/contracts in
orthogonal directions as normal load is increased/decreased. The expansion
and contraction also lead to contact aging and de-aging with time. The
appearing of precursor events when increasing shear loading are shown to
arise from a crack in the contact interface caused by the locally high shear
stress in the trailing edge from which the load is applied.

A curious aspect of the onset of motion found in Ref. [31] is the crack-
like process of contact rupture. It was observed that a slip starts with a
front of contact area reduction (rupturing contacts) that propagates through
the interface like a wave (Fig. 5), starting from the trailing edge where the
block is pushed forward. The leading edge only moves after this wave has
reached it. An unusual behaviour of the waves was also documented in the
experiment: after reaching the Rayleigh velocity of the material, the waves
split into two, one traveling with very high velocity and the other traveling
very slowly. The slow-speed waves reduced the contact area significantly,
whereas the fast waves had little effect on the area.

Figure 5: A time series depicting the increase (lighter shades) and
decrease (darker shades) of contact area during the initiation of a slip
event, displaying the wave-like propagation of the contact area (the
block is pushed in the x-direction). [31]



Chapter 2

Minimalistic models for dry fric-
tion

Alongside laboratory experiments, computational models have been and still
are popular instruments in qualitative and quantitative analysis of friction.
Broadly speaking, there are two approaches to nano- and mesoscale mod-
eling of friction: minimalistic models and molecular dynamics simulations
[14], both of which have their own advantages and shortcomings. The mini-
malistic models tend to make various simplifications and assumptions about
the system, typically providing a qualitative view of the frictional processes.
Sometimes this leads to difficulties in explaining the behaviour of the model
in physical terms. Molecular dynamics simulations, on the other hand, use
accurately modeled atomic interactions as a starting point, aiming for a more
quantitative analysis of friction. With modern computers, even relatively
large systems of particles can be simulated with high precision. However,
the computational complexity still limits molecular dynamics to very short
time and length scales.

In this thesis, a combination of two well-known and popular minimalistic
models, the Tomlinson model and the Frenkel-Kontorova model, is used to
study the stick-slip behaviour of an elastic chain on a disordered substrate in
the absence of lubrication. The elastic chain can be interpreted in multiple
ways. It can represent a monolayer or the lowest atomic layer of a crystalline
block being dragged on the substrate, the disorder representing atomic de-
fects on the surface. On a larger scale, the individual particles of the chain
could be thought to represent the asperities of the above surface, and the
disorder of the potential would then mimic the microscale roughness of the
substrate.

10



CHAPTER 2. MINIMALISTIC MODELS FOR DRY FRICTION 11

2.1 Tomlinson model
Tomlinson model (also known as Prandtl-Tomlinson model) is one of the
simplest nanotribological models for dry friction. It was first suggested by
L. Prandtl in 1928 to describe plastic deformations in crystals. More recently,
it has been used in analyzing the behaviour of forces present in atomic force
microscopes [34].

In the 1D Tomlinson model, a point mass (or multiple point masses,
though in the absence of interparticle interaction there’s little difference) is
driven by an external force along a rigid substrate represented by a potential
surface. The basic Tomlinson model is illustrated in Fig. 6. Neglecting the
random force due to temperature, the particle obeys the equation of motion

mẍ = Fd + Fs(x)− ηẋ, (2.1)

where x is the coordinate of the moving particle and m its mass, Fd is the
driving force, Fs is the force due to interaction with the substrate and η is the
damping coefficient. The potential surface is usually taken to be sinusoidal
or some other periodic function. The driving is typically elastic, represented
with a spring dragging the particle with velocity V , such that Fd(t) = k0(x0+
V t− x), where x0 is the starting location of the particle and k0 is the spring
constant of the driving spring.

Despite the simplicity of the Tomlinson model, it captures many prop-
erties of friction at the nanoscale, such as the appearance of static friction
and different kinds of movement regimes for under- and overdamped motion
(superlubricity and stick-slip motion, respectively) [35].

V

k0

Figure 6: Depiction of the Tomlinson model with a single particle on a
sinusoidal potential surface.
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2.2 Frenkel-Kontorova model
Frenkel-Kontorova (FK) model is a general computational model that can
be utilized in various different physical systems. It was first conceived in
1938 by Y. Frenkel and T. Kontorova, who used the model to study the
dynamics of a crystal lattice near a dislocation core. Later on, the FK
model has been applied to other nonlinear nonequilibrium phenomena, such
as DNA dynamics, adsorbed atomic layers and friction [36]. In continuum,
the Frenkel-Kontorova model with sinusoidal potential becomes the exactly
integrable sine-Gordon equation. The sine-Gordon equation (and by exten-
sion, the Frenkel-Kontorova model) is attractive in friction studies because
it exhibits elementary excitations also known to occur in the interaction be-
tween solid surfaces undergoing relative movement, most notably topological
solitons (kinks and antikinks). [37]

The basic 1-dimensional Frenkel-Kontorova model consists of a chain of
particles with nearest neighbor interactions atop a substrate-induced poten-
tial. In contrast to the Tomlinson model, the FK model has the interparticle
interaction as the main contributor to the dynamics instead of driving. Thus
there are two competing mechanics: the interparticle interaction and the in-
teraction with the potential surface, leading to different kinds of relaxation
depending on the strength ratio of these interactions (Fig. 7).

Kink

Antikink

k
1

Figure 7: A simple Frenkel-Kontorova system exhibiting a kink-antikink
(compression-expansion) pair due to mismatched lattice constants be-
tween the surface and the chain.
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The equation of motion for particle i in the FK model with zero tempera-
ture, periodic boundary conditions, uniform elastic interparticle interaction
(springs) and without external driving is

mẍi = k1(xi+1 − xi − a0)− k1(xi − xi−1 − a0)− Fs(xi)
= k1(xi+1 + xi−1 − 2xi)− Fs(xi),

(2.2)

where k1 is the spring constant of the interparticle springs, a0 the equilibrium
distance between two particles and Fs(xi) the force from substrate-particle
interaction at the location of a particle xi, similarly to the Tomlinson model.

2.3 Frenkel-Kontorova-Tomlinson model
As its name implies, the Frenkel-Kontorova-Tomlinson (FKT) model is a
unification of the Frenkel-Kontorova and Tomlinson models: the external
driving from the Tomlinson model is combined with the interatomic interac-
tions of the Frenkel-Kontorova model. From Eqs. (2.1) and (2.2), we obtain
the equation of motion for a single particle in the one-dimensional case:

mẍi = Fd + k1(xi+1 + xi−1 − 2xi) + Fs(xi)− ηẋi. (2.3)

The system then consists of the substrate and N particles, each driven by a
force Fd and attached to its neighboring particles with springs of spring con-
stant k1. From the equation of motion one can see that the FKT model has
three competing interactions: the driving, the nearest-neighbor interparticle
interaction and the particle-substrate interaction. The relative strength and
rate of change (for example, how the driving force increases with time) in
these interactions determines the behavior of the system.

In the context of this work we consider an overdamped system, in which
the acceleration term mẍi can be neglected. This makes calculations easier
and is often a good approximation for friction processes because of their
highly dissipative nature. The driving of the system can be executed in
various ways, the most popular being constant force or constant velocity
driving via springs. Since the latter approach can be used to obtain a large
amount of avalanches, it was the main focus of this thesis. The driving force
for each spring in this case is the same as in spring-driven Tomlinson model,
Fd(xi) = k0(x0i + V t − xi), where the driving spring stiffness k0 is taken to
be equal for all particles. The springs are attached from their other end to a
driving slab which is dragged forward with a constant velocity V .

The driving direction relative to the chain can be chosen to be perpendic-
ular or parallel. In parallel driving, all the particles are on the same potential
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surface (a true 1D case), whereas in the perpendicular driving each particle
has its own randomized potential surface (representing different parts of the
substrate in the direction of the chain). Fig. 8 depicts the scheme of the
FKT model along with the different ways of driving. Though the perpendic-
ular and parallel driving cases appear very different, previous works seem to
indicate that the driving direction has little effect on the results [5, 38, 39].

V

V

Parallel driving

Perpendicular driving

k
0

k1

k
0

k1

Figure 8: The 1-dimensional Frenkel-Kontorova-Tomlinson model and
the two possible ways of driving. Periodic boundary conditions are not
shown in the picture. In the case of perpendicular driving, the particles
are locked in place in the direction perpendicular to the driving slab.



CHAPTER 2. MINIMALISTIC MODELS FOR DRY FRICTION 15

Reorganizing the terms in Eq. (2.3), dropping the acceleration term due to
the overdamped system and inserting the constant velocity driving in place
of Fd we find the equation of motion for a single particle i:

ηẋi = k0(x0i + V t− xi) + k1(xi+1 + xi−1 − 2xi) + Fs(xi). (2.4)

As for Fs(xi), we use a potential surface consisting of numerous randomly
distributed Gaussian potential wells to represent a naturally rough substrate.
The force Fs(xi) affecting particle i due to a single potential well located at
point x is thus defined as

Fs(xi) = C(x− xi)e−
1
2

(x−xi)
2

σ2 , (2.5)

where C and σ are the depth and width of the potential well, respectively.
When driven with small V and k0, the system exhibits stick-slip motion

[40]. The stick-slip motion has two characteristic timescales determined by
k0, k1 and Fs: the timescale in which the driving force becomes large enough
to cause a new avalanche (ti, slip interval timescale), and the timescale in
which an avalanche is exhausted (td, slip duration timescale). In the ideal
case, the driving is very slow compared to the response of the particles, so
that the driving force during avalanches remains constant and the timescales
are well separated (td � ti).



Chapter 3

Avalanche statistics

Computer simulations are advantageous in that all ”observables” of the sys-
tem are explicitly known at all times. Hence the main priority when con-
ducting simulations and analyzing the results is determining the physical
quantities of interest and their behaviour when various control parameters
are changed. This chapter introduces the quantities that were primary ob-
jects of study in this thesis and explains how they are related to each other
and to the parameters of the FKT model.

3.1 Correlation length, interface roughness
and avalanche distributions

A quantity strongly related to many properties of the system is so-called
correlation length, denoted by ξ. In general, correlation length is a measure
representing the order in a system. In the case of the FKT model, this means
how the positions of the particles are correlated in space. After a section of
the FKT particle chain has experienced an avalanche, the positions of the
particles in that section are strongly correlated (Fig. 9).

When a system is driven closer the critical force Fc, avalanches become
larger and larger, and the correlation length grows accordingly. At the critical
force, the system depins completely. In the thermodynamic limit (number
of particles goes to infinity), this leads to an infinite-sized avalanche and
a sharp phase transition characterized by the divergence of the correlation
length, whereas in any finite system, the transition from pinned to depinned
state is gradual and the correlation length has a well-defined maximum (the
length of the system). The relationship between the distance to criticality

16
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Figure 9: An illustration of the correlation length in a perpendicularly
driven chain. N is the number of the particle and x− x̄ is the deviation
from the mean displacement. Here ξ ≈ 40. Picture adapted from [5].

and the correlation length is characterized by the critical exponent ν:

ξ ∝ |F − Fc|−ν . (3.1)

Above the critical force Fc, the particle chain is never completely stationary,
even though it may contain unmoving sections. In this case, the correla-
tion length can be thought of as representing the correlations in the moving
interface, being finite even when above the critical force [5].

With constant velocity driving, the driving force and by extension the
distance to criticality depend on the driving velocity V and the spring con-
stant of the driving spring k0. Consequently, correlation length also becomes
a function of V and k0. In the stick-slip motion regime (quasistatic driving
V = 0+), the correlation length attains a dependence on the ratio of the driv-
ing spring stiffness and the interparticle spring stiffness [5]. The dependence
can be found by considering the energies of particles in a system of length l.
The energy Ed stored in the driving springs and the energy Ep stored in the
interparticle interactions can be written as

Ed(N) = k0

2

N∑
i=1

(di)2,

Ep(N) = k1

2

N∑
i=1

(∆di)2,

(3.2)

where N is the number of particles in length l, di is the distance to the driv-
ing slab and ∆di is the distance between two neighboring particles. From
the above equation, it can be inferred that the driving energy increases pro-
portionally to the number of particles in the system and the driving spring
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stiffness, i.e. Ed ∝ k0N . The total energy of the interparticle interactions
also scales with N , but ∆di scales inversely proportionally to the density of
the particles, which in a fixed-length chain means scaling inversely propor-
tionally to the number of particles: ∆di ∝ 1/N . Hence we find out the
scaling of the energies with N :

Ed(N) ∝ k0N,

Ep(N) ∝ k1N
( 1
N

)2
= k1N

−1.
(3.3)

For large N , the driving energy contribution dominates over the interparticle
interaction and the particles are mostly uncorrelated. With smaller values
of N , the interparticle energy term becomes significant, resulting in highly
correlated displacements. Hence it’s natural to define the correlation length
as the number of particles where the contributions from driving and interpar-
ticle interactions match. This way we find how the correlation length scales
with k0 and k1:

Ed(ξ) ∝ Ep(ξ)
=⇒ k0ξ ∝ k1ξ

−1

=⇒ ξ ∝
(k1

k0

)1/2
.

(3.4)

As Eq. (3.4) shows, increasing the strength of the interparticle interactions
(spring stiffness k1) increases the correlation length. Thus correlation length
also serves as a measure of rigidity of the system.

In numerical simulations, the width of avalanches (as in how many par-
ticles take part in the avalanche) ranges from 1 up to the correlation length.
In order to avoid finite-size effects arising from reaching or exceeding the
correlation length, k0 and k1 were chosen such that the correlation length
is less than the size of the system. Appendix B elaborates on the effects of
having correlation length equal to the system size.

Related to correlation length is a measure called interface roughness (or
typical width) W , which in the 1D FKT model is defined as the standard
deviation of the displacements of the particles [39]:

W (t) =

√√√√ 1
N

N∑
i=0

(
xi(t)− x̄(t)

)2
, (3.5)

where N is the amount of particles, xi(t) is the displacement of particle
i at the time t and x̄(t) is the mean value of the displacements. Though
the interface roughness is a function of time due to the repositioning of the
particles during avalanches, near the critical point (i.e. after some driving if
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the chain starts at rest) it attains a fairly stable value that scales with the
correlation length via the so-called roughness exponent ζ:

W ∝ ξζ . (3.6)

In the constant velocity driving simulations, the roughness exponent ζ can
then be determined with the help of Eq. (3.4) by considering how the interface
roughness behaves as a function of the driving spring stiffness k0 when k1 is
held constant:

W ∝ k
−ζ/2
0 . (3.7)

In the perpendicular driving case, the notion of roughness is intuitive. How-
ever, roughness can be defined similarly for the parallelly driven chain, one
just has to take into account that the displacements are in relation to driver
(which is not equal for all particles in the parallel case). [39].

When driven for long enough, the simulated system generates a large
ensemble of avalanches with varying sizes and durations. The avalanche
intervals (times between avalanches) are also of interest. Determining the
sizes, durations and intervals of the avalanche events can be accomplished in
a couple of ways. One method is measuring the drops of the friction force,
in which the local maxima and minima indicate the beginning and end of a
slip, respectively. This way of slip characterization is illustrated in Fig. 10.
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Figure 10: Determining the slip sizes, durations and intervals from the
friction force drops.
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Another method, which was primarily used in this thesis, is to set a certain
velocity threshold and identify the start and end of an avalanche as the events
of particles crossing the threshold and falling below the threshold, respec-
tively. The avalanche sizes can then be calculated from the total movement
of the particles while above the threshold. Both methods for determining
slips are more closely examined in the next chapter.

The main interest in the avalanche events lies in their probability density
distributions. To save space, the word ”probability density” is hereafter
omitted in the thesis, and all probability density distributions will be referred
to only as ”distributions”. The distributions of interest are the avalanche
size distribution P (S), the avalanche duration distribution P (T ) and the
avalanche interval distribution P (I). The size and duration of the avalanche
events are distributed as power laws with certain critical exponents and cut-
off values [5]. The interval distribution is controlled mostly by how the
system is driven, and thus it’s difficult to determine whether the distribution
is a simple power law distribution or something more complex. Some results
obtained in this work would seem to indicate that the interval distribution
is similar to a power law, at least within a certain parameter regime.

The size and duration distributions are of the form

P (X) = X−τXg
( X
X0

)
, (3.8)

where X is the quantity in question and τX the critical exponent correspond-
ing to the quantity. Here g(x) is a cut-off function which decays rapidly when
x > 1, and X0 is the cut-off value.

The cut-off values of these distributions are controlled by several param-
eters. The cut-off of the avalanche size distribution S0 is related to the
dimension of the system d, correlation length ξ and roughness exponent ζ
[5]. The relation between these quantitities is

S0 = ξd+ζ . (3.9)

Using Eq. (3.4) for correlation length, we can find out how the cut-off of the
size distribution behaves as a function of the driving spring stiffness:

S0 ∝ k
−(d+ζ)/2
0 . (3.10)

The cut-off for avalanche duration is also related to the correlation length,
but with it’s own critical exponent, the dynamic exponent z:

T0 ∝ ξz ∝ k
−z/2
0 . (3.11)
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3.2 Scaling relations
The exponents described in the previous section are not totally independent,
but instead related to each other via so-called scaling relations. These rela-
tions can be used to reduce the number of exponents to keep track of, and
to verify the correctness of the values obtained from simulations. Scaling
relations can be written in various forms, depending on which exponents one
decides to use to calculate others. In this thesis, the scaling relations are
based on the roughness exponent ζ and dynamic exponent z, which are used
to predict theoretical values for the critical exponents of size and duration
distributions (τS and τT , respectively).

For the avalanche size, we can establish a scaling relation by considering
that on average, the total distance traveled by the particles during a slip
(denoted as ∆x) scales proportionally to the average force a slip relaxes
and inversely proportionally to the driving spring stiffness, 〈∆x〉 ∝ 〈∆F 〉

k0
.

However, the average force relaxed by a slip is a constant depending on
properties of the surface and the chain. Thus we get

〈∆x〉 ∝ 1
k0
∝ ξ2. (3.12)

The size of a slip, S, is equal to the total movement ∆x, and thus we know
that 〈S〉 = 〈∆x〉 ∝ ξ2. On the other hand, the average avalanche size
can be calculated directly from power law part of the probability density
distribution:

〈S〉 =
∫ S0

0
SP (S)dS =

∫ S0

0
S · S−τSdS ∝ S2−τS

0 . (3.13)

Equating these results and remembering from Eq. (3.9) that S0 ∝ ξd+ζ , we
get the scaling relation for τS:

ξ2 = ξ(d+ζ)(2−τS)

=⇒ 2 = (d+ ζ)(2− τS)

=⇒ τS = 2− 2
d+ ζ

.

(3.14)

The scaling relation for slip duration critical exponent τT can be derived
with the help of the above scaling relation, the fact that S = T (d+ζ)/z (from
Ref. [5]), and the transformation property of probability density functions:

P (T ) = |dS
dT
|P (S). (3.15)
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Since the avalanche durations cannot be negative, the derivative dS
dT

is always
positive and we can leave out the absolute value, leading to

P (T ) = T
d+ζ
z
−1P (S)

=⇒ T−τT = T
d+ζ
z
−1S−τS .

(3.16)

Noting that S−τS is equal to T−( d+ζ
z

)τS , we can write Eq. (3.16) as a function
of T only, and then compare the exponents:

=⇒ T−τT = T
d+ζ
z
−1−( d+ζ

z
)τS

=⇒ −τT = d+ ζ

z
− 1−

(d+ ζ

z

)
τS.

(3.17)

Now we can utilize the scaling relation for τS to get

τT = 1− d+ ζ

z
+ (d+ ζ

z
)(2− 2

d+ ζ
)

= 1 + d+ ζ − 2
z

.

(3.18)

Based on the critical exponents, stick-slip motion (and critical phenomena in
general) can be divided into several universality classes: systems which have
similar fundamental dynamics near the critical point which typically depends
only on few so-called relevant parameters (such as dimensions and the range
of the interactions within the system), instead of e.g. material parameters.
As an example, the case where all particles interact (fully connected model),
i.e. mean field stick-slip dynamics, is a universality class characterized by
avalanche size and duration critical exponents τS = 3/2 and τT = 2, re-
spectively. The nearest neighbor interactions present in the model of this
thesis and some previous work tend to yield exponents τS ≈ 1.1 − 1.3 and
τT ≈ 1.2− 1.4 [5, 39]. Expanding the range of the interactions or increasing
dimensionality of the model takes it closer to the mean field case.



Chapter 4

Implementation of the FKTmodel

In this thesis, a computer program was developed to simulate the stick-slip
motion of the one-dimensional FKT chain presented in Chapter 2. C++
was chosen as the programming language due to it’s relative simplicity and
decent performance. The numerical integration of the equations of motion
in Eq. (2.3) was done with a fourth order Runge-Kutta method, since it was
deemed good enough in terms of stability and accuracy. To obtain smooth
distributions for avalanche sizes, durations and intervals, a large number of
simulations with different random seeds (and thus different potential sur-
faces) were run in parallel, after which the statistics compiled into single files
for analysis.

Two external libraries were utilized in the work: a Mersenne twister ran-
dom number library mtwist.h by Geoff Kuenning [41] and a spline construc-
tion library spline.h by Tino Kluge [42]. Both are distributed under the GNU
Library General Public Licence.

4.1 Simulation basics
The disordered potential surface was created by randomly distributing large
amount of potential wells (pinning centers) in space. The space was then
densely sampled and a natural cubic spline of the potential was calculated.
This speeds up the simulation, since one does not have to evaluate the mul-
tiple exponential functions of the interactions between pinning centers and
individual particles, but instead just calculate the value from the spline, eval-
uating a single third-order polynomial. A typical potential surface created
this way is shown in Fig. 11.

23
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Figure 11: A short slice of a potential surface (blue curve) with a relaxed
parallel particle chain (green dots connected by line). The units are
arbitrary.

At the beginning of the simulation, the particle chain is placed on the po-
tential surface and let relax. After the relaxation, the driving slab starts
moving forward, increasing the driving force. At some point, determined
by checking if each particle has traveled a specific distance along the sur-
face, the chain reaches a steady state. In the steady state, the driving force
stays consistently near the critical force, only experiencing small drops due
to avalanches. The simulations are thus separated into two phases, the onset
of motion and the steady state, both of which were studied in this work.
During the onset of motion, the positions and velocities of the particles are
recorded every few timesteps, providing accurate data about the behaviour
of the chain at the beginning phase of the simulation. In the steady state,
the avalanche size, duration and interval data is collected until a sufficiently
large amount of events have been obtained.

As mentioned in Chapter 3, the avalanche events were registered either
as the drops in the friction force or via the velocity threshold, and the two
different methods should in principle give similar results. In the friction
force method, the friction force, defined as the sum of all the forces due to
the springs driving the system, Fdtot(t) = ∑N

i=1 k0
(
V t − xi(t)

)
, is monitored

during each timestep. When the force starts to decrease, the maximum force
Fdmax and the simulation time t1 are stored in memory. Once the force starts
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increasing again, the minimum force Fdmin and time t2 are stored, and the
slip size is then calculated as

SFD = Fdmax − Fdmin
k0

, (4.1)

where SFD stands for the slip size measured via the friction force derivative
method. The durations of the slips and the intervals between them are
calculated from the stored times: the duration is T = t2− t1 and the interval
I = t

(2)
1 −t

(1)
2 , where the superscripts denote two consecutive avalanche events.

In the velocity threshold method, the recording of slip events went accord-
ing to the following: when a particle crosses the relaxation velocity thresh-
old (henceforth shortened as RVT) the sum of the locations of all particles
xtot(t1) = ∑N

i=1 xi(t1) is saved into memory. Once the chain has relaxed, indi-
cated by the velocity of each particle dropping below the RVT, the locations
of the particles are saved again as xtot(t2). The size of the avalanche is thus
the total distance covered by the particles:

SRV T = xtot(t2)− xtot(t1) =
N∑
i=1

(xi(t2)− xi(t1)), (4.2)

where SRV T is the slip size measured by the relaxatiohn velocity threshold
method and t1 and t2 are the start and end times of the slip, respectively.
The durations and intervals of the slips are calculated same way as with the
force derivative method.

The velocity threshold and force derivative methods of determining slips
are nearly equivalent, and when driven slowly and using the basic FKT
model, both slip determination methods indeed give the same results. The
minor differences between the methods are elaborated in Appendix A. For
consistency, velocity threshold method was used in all the simulations.

4.2 The timescale issue
When simulating stick-slip motion with the Frenkel-Kontorova-Tomlinson
or similar model, an approximation called narrow wells approximation and
space discretization are typically used to improve calculation speed. In the
narrow wells approximation, the potential wells forming the disorder are ap-
proximated as infinitesimally thin. This way the jumps made by particles in
stick-slip motion are always discrete, and continuous integration with respect
to time and space is not required [5]. In this thesis, however, such approxima-
tions were not made in order to preserve as much similarity to real stick-slip
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motion as possible. However, this brings forth a problem related to the time
span of the simulation.

When an avalanche event occurs in the system, the driving slab should
stay as stationary as possible in order to not cause other avalanches, since
the new avalanches would mix with the initial avalanche. This would in
turn result in some avalanches being registered as too large and long in
duration, distorting the avalanche distributions. The effect can be avoided
by driving the system with smaller velocities. However, when the driving
velocity is lowered, the simulation takes longer to reach the steady state,
and the triggering of avalanches is also slowed down. In some cases, the
simulation time could increase to somewhat intolerable levels.

Two approaches were used to mitigate the problem, the first being the
option to stop the driving during avalanches, so that only one avalanche is
resolved at a time. This removes the distortion from the avalanche distribu-
tions (Fig. 12), and thus the driving velocity is not as large an issue. However,
the driving velocity still had to be sufficiently small to not induce multiple
avalanches in one timestep. The velocity threshold also had an effect on the
critical exponents of the distribution (more about this in Appendix A).
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Figure 12: If the driving is not stopped while the system is slipping,
multiple small slips can be accidentally recorded as one large slip, and
thus the higher end of slip size distribution can become bloated. Similar
effect happens with the duration distribution. The distributions in the
picture were obtained with perpendicular driving.
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To reach the steady state faster, a possibility was added to drive the system
faster in the beginning (if not investigating the onset of motion), and slow
down when the steady state is reached and the avalanche measurements
started. This solution greatly sped up the simulation process, since reaching
the steady state with low velocities could take considerable amount of time.

4.3 Control parameters
The simulation takes various parameters (control parameters) as input, for
example the amount of particles, the length of the potential surface, the
stiffnesses of the springs in the system. The disordered potential surface has
quite a complex dependence on three parameter values: the depth and width
of the potential wells, expressed as C and σ in Eq. (2.5), and the density of
the wells ρ.

In a continuous simulation, the chain is continously creeping forward,
even when seemingly pinned. This can result in an unwanted accumulation of
infinitesimally small ”avalanches”, which must be in some way distinguished
from the actual avalanche events [5]. When the avalanches are measured by
the drops in the total friction force, this is not an issue, since the total force
still grows despite the small movements. In the velocity threshold case, the
creep has to be taken into account by setting a sufficiently large velocity
threshold to disregard the mini-slips caused by the creep. Additionally, an
option to disregard slips that were beneath certain size was included in the
simulation options.

The aim of the simulations was not to accurately emulate a specific phys-
ical material or situation, and thus the relations of the control parameters
were more important than their actual values. Due to the large size of the
parameter space, not all combinations could be tested; the most essential
parameters were deemed to be the driving spring stiffness and the driving
velocity, both of which need to be relatively small to reach the stick-slip mo-
tion regime. Since the properties of the simple 1D FKT model have been
examined previously in literature [40, 43], the main point of this work was to
alter the model with novel features introduced in the next chapter and see
how the control parameters related to these features affected the dynamics.



Chapter 5

Augmenting the FKT model

Though exhibiting many properties encountered in friction, the purely elastic
interactions of FKT model fail at describing frictional processes adequately.
Both quantitative and qualitative differences exist when compared to exper-
imental data [5]. The purpose of this work is to implement and investigate
in the FKT model two properties that have seen less study but are widely
considered to affect the dry friction between surfaces: viscoelasticity and
contact aging. So far the research on the subject has been scarce, especially
with continuous numerical models. An excellent study on viscoelastic effects
in a discrete setting is in Ref. [5].

The goal was not to come up with the real physical interactions caus-
ing viscoelasticity and contact aging, but instead look at the consequences
that these effects have in the stick-slip motion and the avalanche statistics.
Therefore the effects are quite artificially plugged on top of the dynamics
already present in the FKT model.

5.1 Viscoelasticity

Linear elastic materials obey Hooke’s law (σ = Eε), meaning their stress re-
sponse to a fixed strain is instant and linear with the proportionality constant
E, the Young’s modulus. Contrasting elasticity there are viscous materials,
in which the stress is dependent on the strain rate instead of the strain it-
self: σ = η dε

dt
, where η is the viscosity [44]. Though most solids are usually

presented as linear elastic materials, no material is ideally elastic (even if the
approximation is good in small deformation regimes). A natural extension
in the treatment of solids is to include viscous effects, leading to a concept
of viscoelasticity.

28
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Viscoelastic materials exhibit both elastic and viscous characteristics. As a
result, viscoelastic materials display various time-dependent phenomena, the
most important in the context of this work being the viscoelastic relaxation,
during which stress decreases with time as strain is held constant [44]. The
stress-strain response in viscoelastic materials also exhibits hysteresis (curved
response as seen in Fig. 13 bottom), differing from the straight line response
of linear elastic materials.

ε

σ

ε

σ

Linear elastic solid Standard linear solid

Figure 13: A mechanical circuit representation and the stress-strain
curve of a linear elastic solid element versus a standard linear solid
(viscoelastic) element during loading and unloading.

The inner relaxations of materials and the time-dependent response to exter-
nal stimulus are considered to have a large impact in the frictional behaviour
of solid surfaces [5, 13, 45]. Hence it’s sensible to include viscoelastic effects
in the FKT simulation, introduced to the model by replacing the springs
between particles with standard linear solid (SLS) elements. The SLS ele-
ments consist of a spring and a dashpot in a series, parallel to another spring
(Fig. 13 top). These elements add a new term to the dynamic equations
of the particles, and a set of separate equations for the elongations of the
dashpots [46]:{

ηẋi = k0(x0i + V t− xi) + k1∆xi + k2(∆xi − ui) + Fs(xi)
ηuu̇i = k2(∆xi − ui),

(5.1)
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where k2 is the spring constant of the new springs and ui and ηu are the
elongation and viscosity of dashpot i, respectively (all dashpots are assumed
to have the same viscosity). ∆xi is the distance between nearest neighbors
written in a more concise notation. The spring constant and dashpot viscosity
of the SLS elements become control parameters for the simulation.

The term k2(∆xi − ui) represents the effect of the dashpots on the dy-
namics of the particles in Eq. (5.1). When the chain is completely relaxed,
the elongations of the dashpots are equal to the distances of the particles,
ui = ∆xi ∀i, and the term k2(∆xi − ui) is zero. However, if the relaxation
of the dashpots is slow compared to the chain (ηu � η), the dashpots don’t
have enough time to fully relax during avalanches. This leads to probably
the most distinquishing feature of the viscoelasticity, the emergence of af-
tershocks: the relaxation of the dashpots takes place between avalanches,
making it possible for new avalanches to occur without the increase in ex-
ternal driving. This introduces time-dependency even in a seemingly pinned
state and memory effects which are absent when the interparticle interactions
are purely elastic.

5.2 Contact aging
Another effect studied in this thesis is contact aging, already briefly touched
upon in Chapter 1. Contrary to the phenomenological laws of friction, static
friction is known to exhibit an increase over time, a phenomenon arising
from various different causes. In fact, the viscoelastic effects described in the
previous section have also been linked to contact aging [5]. Experiments have
established that the static friction coefficient µs grows with time roughly as

µs(t) = µ0 + α ln(1 + t/tα), (5.2)

where µ0 is the static friction coefficient immediately after contact, α is the
adhesive increase coefficient for static friction, and tα is the characteristic
contact aging timescale [9]. When the system slips, the contact aging is
rapidly reversed due to the breaking of contact between asperities and atoms.
In this thesis, a simple exponential function e−t/tβ , was used to model the
de-aging. Here tβ is the de-aging timescale (tβ � tα).

The change of friction coefficient is implemented in the simulation by
strengthening the surface force felt by a particle i remaining in place (de-
termined by its velocity being below the relaxation velocity threshold) via a
”surface force increase coefficient” µi, which represents the term α ln(1+t/tα)
in Eq. (5.2). The coefficient µi grows during the stick phase, and when a
particle slips (crossing the relaxation velocity threshold), µi drops back to 0
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following the exponential function e−t/tβ . The de-aging of the contact results
in a rapid decrease in the friction force felt by the particle at the beginning
of an avalanche. This behaviour is qualitatively depicted in Fig. 14. Contact
aging increases the control parameters of the simulation by three, with α, tα
and tβ.
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Figure 14: The logarithmic increase of the static friction coefficient µs
while pinned and the exponential drop when slipping.

The addition of contact aging to the stick-slip motion is likely to make the slip
interval distribution skewed towards the larger interval side, since the force
resisting movement grows with time along with the driving force. Depending
on dragging velocity V and the adhesive friction increase coefficient α, the
time between slips can grow very high. However, due to the logarithmic
increase in the friction force and linear increase in the driving force, the
chain cannot become pinned for an indefinite amount of time.

Because of the aging contact, the occurring avalanches are likely to be
larger and last longer, since generally a greater force is needed to unpin the
chain. Another contribution to the avalanche size increase is the fact that
the friction force due to contact aging vanishes very fast in an unpinning
event, leading to less resistance when sliding.



Chapter 6

Results

The simulations conducted in this thesis are divided to four categories: the
FKT model without either viscoelasticity or contact aging, then simulations
with one of these effects, and finally with both effects on at the same time.
Separate simulations were run for perpendicular and parallel driving. In the
parallel driving case the particles at the ends of the chain were not connected,
whereas in the perpendicular driving case the chain had periodic boundary
conditions.

Since the magnitudes of the control parameters relative to each other
were of more significance than the specific values themselves, some control
parameters were fixed to a value and not altered in any simulations unless
otherwise stated. These parameters are listed in Table 6.1. With parallel
driving, the equilibrium distance between particles greatly influences the re-
sults, as it controls the relative density of the pinning centers with respect to
the length of the chain. In the perpendicular driving case, the equilibrium
distance is not a relevant variable (since the periodic boundary conditions
eliminate it from the equations of motion), and so was simply set to 1.

Table 6.1: The constant control parameter values.

Control parameter Value
Number of particles N 1000
Damping coefficient η 1

Interparticle spring constant k1 1
Disorder strength parameter D 1

Well width σ 0.3
Pinning density ρ 2

Timestep ∆t 0.1

32
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6.1 The vanilla FKT model with a
perpendicularly driven chain

The first simulations were perfomed with perpendicular driving and with-
out the inclusion of viscoelastic effects or contact aging, to see if the results
obtained from the model matched with those previously found in literature.
Additionally, the effect of control parameters k0 and V to the onset of motion
are documented. The onset of motion is relatively recent as a research sub-
ject, and thus there is not a lot of material covering it. Some experimental
and numerical investigations can be found in Refs. [32] and [47].

6.1.1 Onset of motion
There are various quantities to study in the onset of motion, the most in-
teresting being the friction force and the mean and individual values for the
velocities and positions of the particles which show how the slip propagates
in the chain. The velocities of the particles and the total friction force ex-
perienced by the chain as a function of time are presented in Fig. 15 for
different values of k0. Other control parameters are kept constant with val-
ues as presented in Table 6.2. Since avalanche statistics are not collected
from the onset of motion, there was no need to stop the driving when the
chain slips in these simulations.

From theory it is known that k0 has a dramatic effect on the movement
due to increased correlation length, and this shows also in the simulations:
with a stiff driving spring (Fig. 15 top), the avalanches are very small and
highly localized. By contrast, with small k0 (Fig. 15 bottom) the avalanches
cover relatively wide regions (with largest avalanhces being roughly 200 parti-
cles wide) of the chain. The critical force becomes smaller with increasing k0,
since the driving starts to dominate over the nearest neighbor interactions,
and the resulting local slips lower overall the friction force.

Table 6.2: The relevant control parameter values used when running
the initial onset of motion simulations.

Control parameter Value
Driving velocity V 0.005, 0.05

Driving spring stiffness k0 0.1, 0.01, 0.001
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Figure 15: The growth of slip sizes when k0 → 0 for a perpendicularly
driven chain of 1000 particles. The values for k0 from top to bottom
are 0.1, 0.01 and 0.001, respectively. The velocity values of individual
particles (left) are shown in logarithmic scale for better viewability. The
friction force (right) shows that the maximum friction force is smaller
with k0 and it is achieved faster. Insets display enlarged view of the
force fluctuations at the steady state.
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The size of the force fluctuations appear larger in the higher k0 case, but this
is likely due to the simultaneous slips and the fact that the data is averaged
over 30 timesteps. Fluctuations caused by individual slips were seemingly in-
dependent of k0. Since the avalanches don’t cover the whole system, the fluc-
tuations in the friction force are quite smooth instead of the typical sawtooth
behavior observed in macroscopic stick-slip motion. However, system-wide
slips (Appendix B) display a sawtooth-like curve.

Increasing the driving velocity also leads to fluid motion, but the mecha-
nism seems to be a bit different: instead of the avalanches becoming smaller,
new avalanches are started before the others are exhausted, and thus the sys-
tem enters an infinite avalanche with only few temporarily stopped regions
(Fig. 16). The steady state friction force is increased with the velocity and
the fluctuations become smaller. The increase in friction force due to velocity
has been observed in experiments and named velocity strengthening of dry
friction [48]. A contrasting behaviour, velocity weakening is not present in
the vanilla FKT model.
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Figure 16: The smooth sliding due to increase in the driving velocity
for the perpendicularly driven chain of 1000 particles. The velocity in
this case is V = 0.05, i.e. tenfold compared to Fig. 15, and k0 = 0.001.
The inset illustrates the fluctuations in the steady state.

6.1.2 Avalanche statistics
The initial simulations concerning avalanches were conducted to see how
the roughness and cut-off values for size, duration and interval distributions
scaled with the driving spring stiffness k0, in order to determine the roughness
exponent ζ and the dynamic exponent z. Much like in the onset of motion
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simulations, the value of k0 was varied in the range 10−3 – 10−1 while other
parameters were kept constant (Table 6.3).

When investigating avalanche statistics, three new parameters affected
the distributions: the way the slips are determined (”Slip characterization
method” in Table 6.3), whether the driving is paused when the system slips
(”Pause driving while slipping”) and the velocity below which the particles
are considered relaxed (”Relaxation velocity threshold”). The values in Table
6.3 for these three parameters gave results best conforming to those found
in other literature. However, changing the parameters, different results were
also obtained. The response of the system to the changes is discussed in
Appendix A.

It was theorized that the maximum values of the distributions would scale
similarly to the cut-off values, and thus the maximum values were measured
instead of fitting an exponential cut-off function in each distribution (as this
would’ve been tedious to do by hand for 60 different values of k0 and 3
distributions). The scaling of the values is plotted in Fig. 17. However, it
was later noted that the maximum values of each distribution seem to not
scale exactly with the same exponents as the cut-offs (demonstrated with
slip size and duration cut-offs in Fig. 18), and so the dynamic exponent was
determined using few accurate cut-off values instead.

Table 6.3: The control parameter values used when running the
avalanche distribution simulations.

Control parameter Value
Driving velocity V 0.005

Driving spring constant k0 0.1 – 0.001
Driving paused while slipping True
Slip characterization method Velocity threshold
Relaxation velocity threshold 0.05
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Figure 17: The scaling of roughness and maximum avalanche sizes,
durations and intervals as a function of the driving spring stiffness k0
for the perpendicular chain. The values are scaled so that they’re easily
distinguishable.
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Figure 18: The scaling of the avalanche maximum size and durations
compared to the respective cut-off values of the perpendicular chain,
obtained by fitting an exponential function to the end of the distribu-
tion. There seems to be a slight difference in the scaling exponents.
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From the power law fits made with Matlab and Eqs. (3.7) and (3.11), values
for the roughness exponent ζ and dynamic exponent z were found to be

ζ = 1.22± 0.09 and z = 0.98± 0.14.

Similar values for the roughness exponent have been found in various 1D
depinning models [39, 49–51]. However, in most sources where the roughness
exponent was comparable to the above, the dynamic exponents were larger,
usually 1.4 – 2.0.

The size, duration and interval distributions computed with the control
parameter values in Table 6.3 are shown in Figs. 19, 20 and 21 along with their
critical exponents. The distributions are averaged over 300 simulations, with
a total of 90 000 slips. The curve fitted to the size and duration distributions
is a power law with a ”stretched exponential” cut-off:

f(x) = x−αe−( x
β

)γ , (6.1)

in which the fitting parameter α corresponds to the critical exponent of the
power law part (τS for size and τT for duration), β is the cut-off (S0 and T0)
and γ determines the steepness of the cut-off, with higher values expressing
steeper cut-offs. The function was fitted with a nonlinear least squares fit
using inverse variance weighting, where the variance was calculated between
the different simulations. The variance decreases with larger slips, so the
weights favor the end of the distribution. The function was fitted to the
distribution obtained with the lowest value of k0, since it had the longest
power law.

In all distributions, varying k0 affected the cut-off, which was expected
at sufficiently low velocities [39]. In the size and duration distributions,
however, the critical exponents also seem to become a bit larger with lower
k0.
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Figure 19: The slip size distributions for perpendicular driving, aver-
aged over 90 000 events. The number of small events drops with high k0,
likely due to concurrent slips despite pausing the driving while slipping.
The distribution conforms to the fitted function mostly after S ≈ 10.
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Figure 20: The slip duration distributions, similarly organized as in
Fig. 19. It would seem that the cut-off is a bit sharper in the duration
distributions.
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Figure 21: The slip interval distributions of the perpendicularly driven
chain. The interval resemble power laws only marginally, and hence no
fit was attempted.

The critical exponents found with these parameters are

τS = 1.29± 0.12 and τT = 1.32± 0.13.

The errors were approximated by taking a variable amount of points of the
distribution to the fitting and observing how the exponents and cut-offs
changed. The size and duration distributions are slightly curved, especially at
smaller slips, and thus fitting the power law with more points from the small
slips yielded lower exponents. The interval distribution did not necessarily
have a well-defined linear part in the log-log plot, and thus characterizing
it as a power law distribution is dubious. The values obtained for the size
and duration exponent correspond quite well to results found in literature
[5, 39, 52].

The scaling relations from Chapter 3 can also be used to predict values for
the avalanche size and duration critical exponents. Based on the exponents
ζ and z and the dimensionality of the system, Eqs. (3.14) and (3.18) give
exponents

τS = 2− 2
d+ ζ

= 2− 2
1 + 1.22 ≈ 1.10± 0.04

τT = 1 + d+ ζ − 2
z

= 1 + 1 + 1.22− 2
0.98 ≈ 1.22± 0.14.
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The exponents attained from the perpendicularly driven simulations with
these parameter values correspond within errors to the theoretical predic-
tions, though the size exponent is a bit high. Compared to experiments, the
exponents do not match; a fact that has been noted in articles dealing with
this kind of minimalistic simulations of frictional stick-slip motion [14, 53].
A relatively recent pin-on-disc experiment with aluminum and steel reports
as high size distribution exponents as 2.83 – 3.33 [23].

6.2 The vanilla model with parallel driving
With perpendicular driving, the slips are always chaotic, since each particle
has its own unique potential surface. In the parallelly driven chain, all the
particles see the same potential to an extent, the movement will eventually
become semi-regular and periodic if the system is underdamped and large
relative to the amount of particles slipping at once, i.e. finite-size effects are
not persent. The period of the motion depends on the density of potential
wells compared to chain length, which is controlled by the equilibrium dis-
tance between particles. Two distinct types of parallel chain were identified
in the simulations: a chain with many potential wells between individual par-
ticles (large equilibrium distance, for example 20), from here on referred to
as the sparse chain, and a chain with few wells between particles or even mul-
tiple particles in the same well (requires small equilibrium distance, e.g. 1),
dubbed dense chain. The motion and avalanche statistics of the two chains
have considerable differences.

For example, with the same parameters that were used in perpendicular
driving (Table 6.4) and a dense chain, the motion of the chain is almost
continuous (particles slip frequently) and very regular as is seen in Fig. 22.
Disregarding the regularity, the behaviour is otherwise similar to the per-
pendicular case: with large k0, the driving spring dominates over the nearest
neighbor springs, increasing the amount of small independent slips.

Table 6.4: The parameters used in the onset of motion simulations for
the dense parallel chain.

Control parameter Value
Driving velocity V 0.005, 0.05

Driving spring stiffness k0 0.1, 0.01, 0.001
Particle equilibrium distance d 1
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Figure 22: The onset of motion with parallel driving and a dense chain.
As in the perpendicular case, the values for k0 from top to bottom are
0.1, 0.01 and 0.001, respectively, and the velocity values are displayed
in logarithmic scale for better viewability. The insets show the small
fluctuations of the friction force.
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Figure 23: The smooth sliding due to increase in the driving velocity
(V = 0.05 in this case) for the dense parallelly driven chain. Like in
the perpendicular chain, the total friction force is increased, and the
fluctuations become smaller.

An increase in driving velocity also has an effect comparable to what was
seen with perpendicular driving: the time between avalanches becomes very
small or nonexistent (Fig. 23), and velocity strengthening is observed.

In this parameter regime, a couple of dissimilarities to the perpendicular
case can be noted: new avalanches start before others are exhausted even with
low k0, leading to smoother motion, and the slips seem to propagate more
eagerly to the driving direction (in the perpendicular chain, the propagation
was roughly equal in both directions). Both of these are related to the
property unique to the parallel chain: two or more particles can occupy the
same potential well, forming a local compression (kink) in the chain, provided
the well is deep and wide enough. This leaves an extension (antikink) of the
chain in some other location. The dynamics of kinks and antikinks change
how particles slip in and out of the wells in the parallel chain.

6.2.1 Kinks and the particle equilibrium distance
When the chain is let relax on the potential surface, kinks and antikinks can
form in various locations. Though any compression can be counted as a kink,
the most visible effects on the slip propagation is seen when the equilibrium
distance is small enough to have multiple particles occupy the same potential
well. The kinks and antikinks are good start points for an avalanche, since
they are somewhat unstable: the nearest neighbor interactions push/pull
the nearest particles in addition to the driving spring, so they leave their



CHAPTER 6. RESULTS 44

potential wells easily. When the particle slips to a new potential well, its
neighbor might then jump to the next potential well due to the relaxed
nearest neighbor interaction, causing the next particle to jump and so forth,
moving the kink along the chain. Finally some particle either reaches a
potential well deep and wide enough to contain multiple particles for an
extended amount of time, trapping the kink, or the kink reaches the end of the
chain, moving the particle on the boundary forward and thus disappearing.
An example of the kink behaviour is illustrated in Fig. 24.

An antikink is also sent backwards through the chain, though if the start-
ing location of the slip was a kink (which it usually is), the chain relaxes, and
the antikink propagation is not seen. The size and velocity of the kink are
determined by the interparticle spring stiffness and the equilibrium distance:
with a low stiffness (or small distance), the particles can more easily occupy
the same potential well and the kinks are localized, whereas high stiffness
(or large distance) requires more movement from the neighboring particles
to allow a slip, widening the compression but at the same time making it
move (and thus disappear) faster.
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Figure 24: Kink and antikink propagation and trapping in a chain of
100 particles. The picture depicts the distance of neighboring particle
pairs: lighter colors mean that the distance is larger, while darker colors
indicate shorter distance. A moving kink (antikink) is highlighted by
the green (red) dashed line.



CHAPTER 6. RESULTS 45

When a kink encounters an antikink, they annihilate and the chain relaxes
at that location. There’s also a possibility of a moving kink encountering
a well with more than one particle, i.e. another (more stable) kink. In this
case, typically a ”kink exchange” happens: if the potential well is not deep
enough to accommodate more particles at the time, the first particle ”in
line” is pushed out when the last enters the well. Similar kink configurations
(though with an underdamped chain) are noted in Ref. [54] and appropriately
dubbed ”traffic jams”. This explains the type of onset of motion seen in the
previous subsection: the steady state slips consist of single kinks leaving the
deepest wells and moving through the system. The period is small due to
the forwardmost particles in each deep well having a relatively small energy
barrier (the Peierls-Nabarro barrier [36]) to overcome in order to leave the
well.

When the equilibrium distance is increased, the period of the motion also
grows. The reason for this is twofold: Firstly, the particles have to travel
a larger distance in order to end up in the same configuration (or almost
the same configuration, since the boundaries are shifted forward equal to
the equilibrium distance) as in the beginning. Thus the slips in between
the initial configuration and shifted configuration contribute to the length
of the period. Secondly, small equilibrium distances allow particles to be in
the same well without the repulsive force from interparticle springs growing
too large, but larger equilibrium distances prohibit this. Since there aren’t
traffic jams in the same well to diminish the backward propagation of the
avalanche, the avalanche advances in both forwards in the driving direction
and backwards. Dense and sparse chains atop a potential surface are shown
in Fig. 25, and the effect of increasing equilibrium distance on the onset of
motion and avalanche size distribution is shown in Fig. 26.
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Figure 25: Parts of a dense (left) and sparse (right) chains relaxed on
potential surface.
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Figure 26: The onset of motion with 1000 particles with equilibrium
distances 1 (top), 2 (middle) and 5 (bottom) and their corresponding
slip size distributions.
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Due to the particles not aggregating in the same wells with higher equlibrium
distance d, the driving required to cause slips is increased, and thus the steady
state is pushed further away in time. The avalanche size distribution behaves
curiously when d is increased: at d = 1, the distribution doesn’t seem to have
a well-defined power law part or cut-off. Increasing d, two power laws appear,
one with a low τS and one with high τS. There’s also a clearer cut-off. As
the equilibrium distance still increases, the two power laws seem to merge
into one with a critical exponent between the two values, leaning towards the
higher one.

6.2.2 Precursory avalanches
Both parallel and perpendicular driving display small avalanches after the
driving has begun but before reaching the steady state. In the parallel chain,
these can possibly be identified with the precursors to stick-slip motion found
in the experiment of Ref. [32], which are similar kind of small slips inside the
material that cause drops in the measured friction force even before the actual
steady-state stick-slip motion starts. This behaviour is depicted in Fig. 27
for a sparse parallel chain of 200 particles. The shorter chain was used to be
able to better observe the precursors; the transition to steady state is quite
smooth with a large chain because of the aforementioned uniform driving
and the system size: some parts of the system can slip independently and
getting closer to criticality increase the amount of these slips. Consequently,
the number of force drops increase while the force keeps growing in other
parts of the chain, leading to a smoother transition.

It should be noted that the simulation differs from the experiment in
that the driving slab used in the simulation is effectively infinitely rigid,
and the notion of ”height” in the 1D case is irrelevant. Thus the simulated
interface is not pushed from the trailing edge like in the experiment, but each
particle is driven forward uniformly. Therefore the precursor slips are not
necessarily created at the trailing edge, but can start from anywhere in the
system. Additionally, the small slips are present even in the steady state if
the chain is not too rigid. In a rigid chain, the steady state consists mostly
of the whole chain slipping at once and the small slips are absent (Appendix
B), but the precursory slips still show up in the beginning and the overall
stick-slip motion in this case resembles the experiment more closely.

A good numerical study on precursor events can be found in Ref. [26]. It
is pointed out that with uniform loading, the precursors should be absent, at
least in systems with long range interactions. However, in disordered systems
with short range interactions, the precursory slips are expected to occur.
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Figure 27: The precursor slips can be seen as a drop in the friction
force when the loading is increased. The chain used here was a parallel
sparse chain consisting of 200 particles. The three larger precursors
and some smaller ones are shown in the inset.

6.2.3 Avalanche statistics
The equilibrium distance of particles influences not only the onset of motion,
but also the avalanche statistics. Using the control parameter values in Table
6.5 (same as in the perpendicular driving case) separately for the sparse
and dense chains, quite different statistics were obtained. The dense chain
(equilibrium distance 1), where the avalanches are mostly kinks traversing
between ”traffic jams” as seen in the initial onset of motion simulations, the
distributions tend to be more curved and the cut-offs are smaller. For the
sparse chain (equilibrium distance 20), the dynamics resemble those of the
perpendicular chain, with large portions of the chain slipping at once. In
either case, the movement becomes periodic in the steady state, with only
small variations.
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Table 6.5: The control parameter values used when running the
avalanche distribution simulations for parallel chain.

Control parameter Value
Driving velocity V 0.005

Driving spring constant k0 0.1, 0.01, 0.001
Driving paused while slipping True
Slip characterization method Velocity threshold
Relaxation velocity threshold 0.05
Particle equilibrium distance d 1, 20

The scalings of roughness and maximum avalanche distribution values with
k0 for both chains are shown in Fig. 28. The scalings were quite similar in
both parallelly and perpendicularly driven systems. Curiously, with the dense
chain the scaling of maximu size and duration are closer to the perpendicular
case, even though the observed onset of motion was considerably different.
However, the roughness and interval scaling differ considerably. by contrast,
the sparse chain had somewhat different scaling in the maximum size and
duration but intervals and roughness closer to the perpendicular chain.

In the dense chain, the values for the dynamic exponent could not be
determined like in the perpendicular case (i.e. from the accurate cut-off val-
ues), since the exponential fits did not yield cut-offs that would show sensible
power law scaling (Fig. 29). Thus, the dynamic exponent was instead deter-
mined by the scaling of the maximum duration. The exponents for the dense
chain measured this way were

ζ = 1.45± 0.21 and z = 1.22± 0.08.

With the sparse chain, the roughness scaling with k0 is much smoother, and
the roughness exponent and the dynamic exponent are closer to that of the
perpendicular chain. The cut-off values also display power law scaling better
in this case (Fig. 30), yielding exponents

ζ = 1.29± 0.11 and z = 1.02± 0.18.
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the perpendicular driving case (top). With a sparse chain (bottom),
the values are closer to those of the perpendicular chain, but the size
and duration scalings are seemingly different.
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In the dense chain, the fluid kink-propagating motion does not resemble
avalanches and thus cannot be well characterized with the the correlation
length and roughness as defined in Chapter 3. This, and possibly concurrent
motion of the kinks in different parts of the chain are likely the cause for the
unusual scalings, resulting in roughness and dynamic exponents clearly dis-
tinct from the perpendicular or sparse parallel chain. This effect is lessened
for larger values of k0, since the stiffness of the driving springs somewhat pre-
vent the aggregation of particles in the same wells. As a result, distributions
somewhat reminiscent to power laws with exponential cut-offs were obtained
for large values of k0. However, due to the short power law part, the critical
exponents τS and τT are difficult to determine. With lower k0, the size and
duration distributions of the dense parallel chain corresponds better to an
exponential function instead of a power law (Fig. 31).

With the sparse chain and thus increased period and more avalanche-like
motion not based on kinks, the power laws in the distributions become more
clearly visible (Fig. 32) with all k0 values and the cut-off behaves as in the
perpendicular case, though they might be a bit steeper.

The theoretical predictions based on these values are collected in Ta-
ble 6.6 along with the actual values measured from the distributions. The
values obtained with the sparse chain correspond better to the theoretical
predictions, likely due to the motion resembling single avalanches instead of
continuous kink propagation. However, the values from both chains compare
adequately to similar simulations [5, 39, 52], at least within this parameter
regime.

Table 6.6: The critical exponents for dense and sparse parallel chains.
For the dense chain, the values are for k0 = 0.1.

Exponent Dense chain Sparse chain
τS prediction 1.18± 0.06 1.12± 0.04
τS measured 1.07± 0.19 1.24± 0.11
τT prediction 1.37± 0.21 1.28± 0.19
τT measured 0.92± 0.21 1.19± 0.15
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Figure 31: Having an equilibrium distance d = 1 makes it more difficult
to determine the linear part of the logarithmic plot for low k0, and the
cut-off does not behave like in the perpendicular chain.
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Figure 32: With larger particle equilibrium distance (d = 20), the
distributions of the parallelly driven chain become similar to the distri-
butions of the perpendicularly driven chain.
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6.3 Viscoelasticity
The viscoelastic response of the chain depends primarily on the damping
coefficient for the dashpots ηu. It determines the timescale of the viscoelastic
relaxation: if the relaxation is very fast, the dashpots have little effect and
the main change to the model comes from the additional spring. Conversely,
if the relaxation is slow, the dashpots won’t have time to relax until the
external driving triggers a new avalanche. For this reason, an addition was
made to the option of pausing driving when slipping: the driving would
start only after the dashpots were relaxed, determined by the viscoelastic
force falling below certain threshold. This way the relaxation could be slow
without new avalanches caused by the driving during relaxation.

The control parameter values for the simulations incorporating viscoelas-
ticity are collected in Table 6.7. It was noticed that the spring stiffness k2
had very little effect on the dynamics so value k2 = 1 was used. As was done
in the vanilla model simulations, the avalanche distributions are averaged
over 300 simulations and 90 000 events.

Table 6.7: The control parameter values for viscoelastic chain.

Control parameter Value
Driving velocity V 0.005

Driving spring constant k0 0.1, 0.01, 0.001
Particle equilibrium distance d 1, 20

Dashpot viscosity ηu 1, 10, 50
Dashpot spring stiffness k2 1

Driving paused while slipping True
Slip characterization method Velocity threshold
Relaxation velocity threshold 0.05

6.3.1 Perpendicular chain: onset of motion
The onset of motion is not very much affected by the viscoelasticity, at least
when viewing the chain as a whole. When examining individual slips, how-
ever, a slight change in dynamics can be seen (Fig. 33): due to the viscoelastic
relaxation, the particles taking part in a slip don’t immediately stop moving
after hitting the next potential well. In some cases, the relaxation can push
the neighboring particles to initiate a new slip. Additionally, the viscoelas-
ticity makes it possible for a particle to be pushed backwards by the relaxing
dashpot, though this effect is not very pronounced.
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Figure 33: The avalanches of the vanilla FKT model (top) compared
to avalanches with the inclusion of viscoelastic effects (bottom), with
perpendicularly driven system. The ηu used was 50.
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6.3.2 Perpendicular chain: avalanche statistics
The consequences of viscoelasticity had a somewhat more visible effect on
the avalanche statistics, especially with sufficiently high values for ηu. Fig. 34
shows that the avalanches in viscoelastic model tend to be visibly clustered,
unlike in the basic FKT model, where the start times of the avalanches are
seemingly random. After a large event in the viscoelastic case, the relaxation
of the dashpots can trigger new, usually smaller, events. In Ref. [46], these
are identified as aftershocks in the seismic context.
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Figure 34: The slip profiles of single runs consisting of 1500 slips show
the clustering of avalanches in the viscoelastic model.

In the viscoelastic model, few avalanches are caused by the driving, and most
of the avalanches are ”relaxation avalanches” (caused by the relaxation of the
dashpots). This can be seen as in the avalanche distributions: the size and
duration critical exponents in this kind of system are a few tenths higher
than in the basic FKT model.

The interval distribution also acquires a power law distribution, with the
exponent inversely proportional to the dashpot viscosity. The power law
portion most likely represents the intervals between aftershocks induced by
the inner relaxations of the chain. This observation is supported by the fact
that faster relaxation (smaller ηu) shortens the power law part.

The avalanche distributions for damping coefficient values ηu = 10 and
ηu = 50 are plotted in Figs. 35, 36 and 37.
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Figure 35: The slip size distributions for perpendicular driving with
viscoelasticity. The top three distributions are for ηu = 10, while the
bottom three are for ηu = 50. The distributions are scaled so that they
don’t overlap.
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Figure 36: The slip duration distributions (similarly arranged as the
size distributions) also display a change in exponent when ηu grows.
The cut-off seems to be a bit steeper than in the size distributions, not
corresponding as well to the exponential cut-off.
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Figure 37: The interval distributions show a power law and a bump at
high intervals with the viscoelastic model.

At control parameter value ηu = 50, it would seem that both size and dura-
tion exponents experience a roughly 0.2 increase. Since ηu determines how
fast the dashpots relax, larger values typically mean greater ratio of relax-
ation avalanches to avalanches caused by driving (as the dashpots don’t relax
as much during these slips). Thus the higher value for ηu can be considered
to more accurately represent the avalanche distributions of the aftershocks.
The increase in avalanche size exponents coincide with results in [46], though
the critical exponent change is not as drastic. This might be due to the fact
that the simulations in this thesis are performed in only one dimension. The
simulations are also continuous in time, meaning the dashpots might still
have relaxed somewhat even during the slips caused by driving, resulting in
less aftershocks and thus τS and τT closer to the basic FKT model. However,
having ηu > 50 did not have a significant effect on the exponents.

A possible explanation for the increase in exponents is the so-called
avalanche oscillator : due to the viscoelastic relaxations, the distance from
critical force is not stationary in time [55]. Since the cut-off of the size and
duration distributions are related to the distance from criticality, the cut-offs
and by extension the probability distributions of avalanche sizes and dura-
tions oscillate in time. The probability distributions are then sampled from
all over the oscillations, leading to a distribution with higher exponents. The
value of the driving spring stiffness affected the size and duration distribu-
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tions: higher k0 values had a tendency to skew the distributions towards
small slips, further increasing the critical exponents.

A bump appears at the end of the interval distribution after the power
law part. The bump is formed due to the intervals between the last after-
shocks and a new global slips. This increase in probability happens because
the driving is paused when slipping, and the driving continues only after the
dashpots have relaxed. Thus even if the relaxation won’t cause new after-
shocks, the system can stay still for some time before a new global event,
seen as the bump in probability for larger intervals. Curiously, the cut-offs of
the interval distribution are seemingly independent on k0 in the viscoelastic
case.

6.3.3 Parallel chain: onset of motion
The effect of viscoelasticity on the parallel chain is in many ways compara-
ble to the perpendicular chain, at least for the sparse chain (Fig. 38 ). In
the onset of motion simulations, the relaxation of the dashpots changed the
motion of the sparse chain similarly, i.e. individual slips were slightly larger
and the particles don’t stop immediately after the slip.
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Figure 38: The onset of motion for the sparse chain. Like the perpen-
dicular chain, the relaxation can keep particles moving after the initial
slip and cause new slips.
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In the sparse and dense parallel chains, the viscoelastic relaxation also served
to make the motion a little more chaotic. The general slipping trends are still
there, but the movement pattern is not exactly the same for each particle.

In contrast to the perpendicular chain and the sparse parallel chain, where
the effects of viscoelasticity are mostly visible when examining individual
slips, the dense chain displays differences also at a larger scale (Fig. 39). The
period between slips seems to be increased, and larger regions of the chain
seem to be moving at the same time than in the dense chain of the basic
FKT model. It’s likely that in addition to the particles arriving at the traffic
jams pushing the forward particles out, the viscoelastic relaxations can also
make a particle leave the jam, inducing new avalanches.
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Figure 39: The onset of motion for the dense chain. Compared to
the vanilla model, the movement of the chain is considerably different,
though still somewhat periodic.

6.3.4 Parallel chain: avalanche statistics
In the presence of viscoelastic effects, the avalanche distributions of the sparse
parallel chain behave almost identically to the perpendicular chain (Figs. 40,
41 and 42). The response to change in dashpot viscosity coefficient ηu seems
to be a bit weaker, though the effect is within the error limits and thus may
just be a result of fitting to slightly different points.
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Figure 40: The slip size distributions for ηu = 10 (top three distribu-
tions) and ηu = 50 (bottom three distributions) using parallelly driven,
sparse chain with viscoelasticity.
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Figure 41: The slip duration distribution of the sparse chain reacts to
the increase in ηu much like the perpendicularly driven chain.
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Figure 42: The interval distributions exhibit a power law also in the
sparse parallel chain.

The dense parallel chain, on the other hand, has a more interesting reaction
to the viscoelasticity. High values for k0 give distributions with a short power
law part and cut-off, but with low k0, it would seem that the cut-off of the
vanilla FKT model becomes a power law (Figs. 43 and 44). Thus it’s hard
to find a distinct cut-off in the size and duration distributions. The critical
exponents are very high, with size exponents larger than 2 and duration
exponents being close to 3. The duration distributions might also have two
separate power law parts, a small one in the short slip regime with exponent
roughly τT ≈ 1.80 and longer where the cut-off was in the basic model with
τT ≈ 2.80. The interval distribution displays a power law part like the sparse
parallel chain and the perpendicular chain, but the bump in probability near
the cut-off is smaller.
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Figure 43: The size distribution of the dense parallel chain is greatly
altered by viscoelastic effects. Once again the top three distributions
are for ηu = 10 and the bottom three for ηu = 50.
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Figure 44: The duration distribution of the dense parallel chain seems
to have two power law parts, at least with low values for k0.
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Figure 45: Unlike the perpendicular and sparse parallel chains, the
interval exponent of the dense chain seems to depend on k0, with lower
values giving higher τI .

Overall, the viscoelasticity affected the slip statistics in both parallel and
perpendicular chains in two ways: the aftershock-dominated distributions
tended to have higher critical exponents, and the viscoelastic relaxation gave
the interval distribution a power law part. The cut-offs of interval distri-
bution of all chains also became more dependent on ηu than k0, roughly
characterizing the timescale of the viscoelastic relaxation of the whole chain
after each global event. The critical exponents along with their estimated
errors for all the chains are collected in Table 6.8.

Table 6.8: The critical exponents in the viscoelastic model for the per-
pendicular chain and the dense and sparse parallel chains. The listed
values are for parameter values dashpot viscosity coefficient ηu = 50
and driving spring stiffness k0 = 0.001.

Exponent Perpendicular chain Dense chain Sparse chain
τS 1.44± 0.08 2.19± 0.08 1.40± 0.10
τT 1.42± 0.09 2.80± 0.08 1.42± 0.10
τI 1.36± 0.12 1.51± 0.14 1.43± 0.11
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6.4 Contact aging
Even though contact aging does not introduce new avalanches like the after-
shocks in the viscoelastic model, it alters the existing dynamics by introduc-
ing a form of memory to the system. The prominency of contact aging can
be tuned with the aging coefficient α, the aging timescale tα and the de-aging
timescale tβ.

If the aging of the contact is rapid, the surface force increase coefficient µi
saturates very fast when a particle is stationary. Hence the aging timescale
was set such that with the lowest driving spring stiffness, k0 = 0.001, the sur-
face force multiplier saturates slowly enough so that particles with different
rest times have significantly different surface force multipliers. The de-aging
timescale tβ was chosen to be very small, so that the contacts de-age rapidly
when the system moves. This means that the surface force increase coeffi-
cient µi decays by about 63% in 10 timesteps (by comparison, the shortest
slips typically last about 100 timesteps). The control parameter values are
collected in Table 6.9.

Table 6.9: The control parameter values for contact aging simulations.

Control parameter Value
Driving velocity V 0.005

Driving spring constant k0 0.1, 0.01, 0.001
Particle equilibrium distance d 1, 20

Aging coefficient α 0.1, 0.3, 0.5
Aging timescale tα 10000
De-aging timescale 1

Driving paused while slipping True
Slip characterization method Velocity threshold
Relaxation velocity threshold 0.05

6.4.1 Perpendicular chain: onset of motion
Contact aging tends to promote large slips, especially in the beginning (since
the chain is at rest for a long time in the start, giving the contacts time to
age). The preference for larger slips can be seen also in the velocity data for
the particles (Fig. 46).
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Figure 46: Compared to the basic model (top), the contact aging in-
creases the size of the slips, depending on the aging coefficient α (0.3
in the middle, 0.5 at the bottom). With high α system-wide slips can
occur even in the 1000-particle chain.
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The friction force without contact aging and with aging coefficient values
0.1, 0.3 and 0.5 is illustrated in Fig. 47. Due to the roughly system-wide
slips at higher values for α, the time development of the friction force starts
resembling the sawtooth-like curve of macroscopic stick-slip.
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Figure 47: The friction force during the onset of motion for a perpen-
dicular chain with and without contact aging.

Due to the contact aging, the friction force starts showing velocity weakening
behaviour: higher driving velocities give the contacts a smaller time window
for aging, resulting in smaller slips and overall lower friction force (Figs. 48
and 49). When the velocity increases sufficiently, the friction force starts in-
creasing again. This naturally happens only when the driving is not stopped
while slipping, and thus does not show up in the avalanche statistics, which
are performed simulating quasistatic driving. However, velocity weakening
has been observed in stick-slip motion, and thus the model incorporating
contact aging could be considered more realistic than the vanilla FKT model
in this regard [48].
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Figure 48: The weakening of the friction force with α = 0.5 for velocities
0.005, 0.01 and 0.05 for a perpendicular chain of 1000 particles. The
basic FKT model does not display velocity weakening. On the contrary,
the steady state friction force is strengthened with higher velocities.
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Figure 49: The average steady-state friction force for multiple velocities
in the basic model and the model with contact aging.
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6.4.2 Perpendicular chain: avalanche statistics
The contact aging has an effect on the slip statistics in the form of increased
cut-off for all distributions and a small bump in probability at largest/longest
slips for high values of α. With stiffer driving spring, the effect is diminished,
since (like in the increased velocity case seen above) the contacts don’t have
time to age as much. Fig. 50 presents the comparison between the basic
model and the model with contact aging for k0 values 0.1, 0.01 and 0.001.
Since the case k0 = 0.001 displays the effects of contact aging the most, the
simulations for different α values were run for this driving spring stiffness
only.
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Figure 50: When k0 is large, the contacts don’t have time to age and
so the distributions look similar with or without contact aging. The
distributions are scaled to separately show the effects of the different
values of k0.

Much like in the viscoelastic case, the avalanche size and duration exponents
grow due to contact aging (Figs. 51 and 52), and the increase is higher
with larger α. An explanation for this might be that on average, the larger
slips tend to require longer driving, feeling the effects of contact aging more.
Thus the larger slips of the basic FKT model have a higher chance to be
”converted” to still larger slips (which form the probability bump/plateau
after the power law section in the distributions) because of contact aging.
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Hence the slips of the contact aging model tend to be more divided in size
than in the vanilla model; there are the small slips, for which the contact
aging has little effect, and the larger, possibly system-wide slips. The high
values of α enforce this division. The larger slips are accompanied by longer
intervals (Fig. 53), but otherwise the interval distribution is similar to the
vanilla model.

It’s also possible that like in the viscoelastic case, an avalanche oscillator
is induced by the nonstationary dynamics: the aging contact competes with
the increase in driving, causing oscillations in the distributions. The total
distribution is sampled over all phases of the oscillation, and thus has higher
exponents.

The increase of probability of large slips causes the distributions to not
conform to fitting a power law with exponential cut-off. Thus the critical
exponent of the power law part was determined by fitting a line to the log-
log plot to the power law part before the bump in the distribution.
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Figure 51: The critical exponent τS grows with stronger contact aging,
and the cut-off is pushed towards larger slips.
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Figure 52: The duration critical exponent τT also follows a similar
pattern as the size exponent, but the exponents are little higher.
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Figure 53: The contact aging increases the cut-off of the interval dis-
tribution, but other than that, the effects of contact aging are minor.
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6.4.3 Parallel chain: onset of motion
In onset of motion of the sparse chain, the effects of contact aging are com-
parable to the perpendicular chain: the slips become larger and the intervals
get longer. The periodicity is reduced because of the memory effects from
the contact aging (Fig. 54).
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Figure 54: Comparison between parallelly driven 1000-particle sparse
chains without contact aging (top) and with aging coefficient α = 0.5
(bottom).



CHAPTER 6. RESULTS 74

In the dense chain, the behaviour of particles in the deepest wells is altered
somewhat. In addition to the traffic jams and single propagating kinks seen
in the basic model, the deep wells start to accumulate particles if the contact
aging is strong enough. When the forwardmost particle exits the well, the
friction force it is experiencing decreases rapidly, and as a result the particle
slips far enough to cause the next particle in the well to accelerate above the
relaxation threshold velocity. Thus the contact strength diminishes also for
the second particle, and it too slips, dragging the next particle and so on.
The effect propagates through most of the particles in the well, resulting in
a large avalanche (Fig. 55).
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Figure 55: In the dense parallel chain, the smooth motion of the basic
model (left) is disturbed by the contact aging. The avalanches originat-
ing from the deep wells are large enough to show up as large fluctuations
in the friction force (right).
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6.4.4 Parallel chain: avalanche statistics
The results for the sparse parallel chain resemble those of the perpendicu-
lar chain: the cut-offs of size and duration distributions are pushed towards
larger and longer slips, respectively, and the intervals also become longer.
The size and duration critical exponents increase depending on α. The dis-
tributions for the sparse chain are presented in Figs. 56, 57 and 58.

Surprisingly the dense parallel chain behaves a quite like in the viscoelas-
tic simulations: the power law section (if there can be said to be one) seems
to move towards larger slips and the cut-off disappears (Fig. 59), though the
part with smaller slips does not change as much as in the viscoelastic case
and the critical exponents τS and τT are not as high. Interestingly, the expo-
nent seems to decrease a bit with the highest α. The cut-off of the interval
distribution moves toward longer intervals.
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Figure 56: The sparse parallel chain behaves comparably to the per-
pendicular chain in the model incorporating contact aging.



CHAPTER 6. RESULTS 76

10
1

10
2

10
3

10
4

10
−10

10
0

T

P
(T

)
Slip duration distributions

(Sparse parallel chain)

 

 
α = 0.1
α = 0.3
α = 0.5

τ
T
 = 1.51

τ
T
 = 1.62

τ
T
 = 1.73

Figure 57: The bump in the duration distributions seem more pro-
nounced than in the size distributions.
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Figure 58: The interval distribution of the sparse parallel chain is also
nearly identical to that of the perpendicular chain.
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Figure 59: The size distribution of the dense chain reacts to the contact
aging similarly to viscoelasticity: the larger slips seem to become power
law distributed.
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Figure 60: The duration distribution of the dense chain seems to retain
the same very short linear part in the small slip region. Like in the size
distributions, the cut-off might turn into a power law.
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Figure 61: The cut-off of the interval distribution of the dense parallel
chain reacts to the increasing α, most likely due to the large collective
slips from traffic jams.

All in all, the effects of contact aging were relatively minor, at least in the
perpendicular chain and the sparse parallel chain. The critical exponents
increased roughly like in the viscoelastic model, though the growth in the
exponents was a bit more pronounced. The cut-offs were moved toward the
larger and longer slips, which was expected.

The dynamics of the dense parallel chain experienced a qualitative change
in the form of ”traffic jam avalanches”, which were likely the cause of the
power law -like distribution of larger avalanche sizes. The critical exponents
for α = 0.5 and k0 = 0.001 are collected in Table 6.10.

Table 6.10: The critical exponents in the contact aging model for the
perpendicular chain and the dense and sparse parallel chains.

Exponent Perpendicular chain Dense chain Sparse chain
τS 1.51± 0.07 2.06± 0.18 1.54± 0.11
τT 1.68± 0.08 2.55± 0.19 1.68± 0.10
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6.5 Simulations with both contact aging and
viscoelasticity

When both effects are on, the dynamics of the system consist mainly of large
slips because of the contact aging, followed by numerous aftershocks due to
the viscoelastic relaxations. However, there’s some interplay between the
two effects. Since the viscoelastic relaxations happen below the relaxation
velocity threshold, the contacts age also during the relaxations, and might
impede the movement. Additionally, since a slip combined with a relaxation
event takes more time than just slipping, the parts of the chain not taking
part in the slip have their contacts strengthened more. This leads to the
cut-off moving even further towards larger slips.

In order to avoid finite size effects, the aging coefficient value used was
0.3 instead of 0.5 (with α = 0.5, system-wide slips were frequent). To be able
to best observe the combined effects of viscoelasticity and contact aging, the
viscoelastic relaxation was kept slow, with ηu = 50. The parameters used in
the simulations are presented in Table 6.11.

Table 6.11: The control parameter values used with simulations incor-
porating both viscoelasticity and contact aging.

Control parameter Value
Driving velocity V 0.005

Driving spring constant k0 0.1, 0.01, 0.001
Particle equilibrium distance d 1, 20

Dashpot viscosity ηu 50
Dashpot spring stiffness 1

Aging coefficient α 0.3
Aging timescale 10000

De-aging timescale 1
Driving paused while slipping True
Slip characterization method Velocity threshold
Relaxation velocity threshold 0.05

6.5.1 Perpendicular chain: onset of motion
In the onset of motion simulations, the combined effects resulting in larger
slips are not easily noticeable, since the chain is not stopped during slips
and viscoelastic relaxations. Thus the contact aging and viscoelasticity had
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seemingly independent effects: the slips were made larger by the aging con-
tacts, and viscoelastic relaxation happened between the larger slips, possibly
causing aftershocks. The contact aging seems to dominate the onset of mo-
tion, since the effects of viscoelasticity show better at smaller length scales.
However, when comparing the onset of motion of the model with only contact
aging and model with both effects (Fig. 62 top and bottom, respectively), it
can be seen that there are more precursory slips and smaller slips in general,
and the larger individual slips extend longer in time and space. Both changes
can be attributed to the viscoelastic relaxations.
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Figure 62: The onset of motion of the perpendicular chain with just
contact aging (top) and with both effects (bottom). The size of larger
slips is increased when both effects are incorporated in the simulations,
though there seem to be more slips of smaller size as well.
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6.5.2 Perpendicular chain: avalanche statistics
The critical exponents τS and τT don’t change drastically for the system with
both viscoelasticity and contact aging when compared to just contact aging,
though one has to take into account that α = 0.3 was used when obtaining
the avalanche distributions (Figs. 63 and 64). Higher values of k0 tend to
reduces the effects of contact aging, and the results thus match better to the
model incorporating only viscoelasticity. Distributions acquired with low k0
show the cut-off increase seen with contact aging, but the effect is further
strengthened due to the viscoelastic relaxations.

The interval distribution displays similarities to the viscoelastic case, in-
dicating the presence of aftershocks (Fig. 64). However, the value of k0 has
a larger effect on the results than in the simulations incorporating only vis-
coelasticity. Increase in k0 makes the aftershock intervals (assumed to be the
middle portion of the distribution) curved. The sharp increase in probability
after the power law part is also mitigated by the contact aging, and is only
visible with the lowest k0.
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Figure 63: The size distributions for various values of k0. Growing k0
diminishes the bump in the larger size events, since the system stays
pinned less and the contacts don’t age as much.
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Figure 64: As usual, the interval distributions follows a similar pattern
as the size distributions.
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Figure 65: The interval distribution is changed the most when combin-
ing both contact aging and viscoelasticity.
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6.5.3 Parallel chain: onset of motion
The sparse parallel chain seems to experience a more drastic change with
both viscoelastic effects and contact aging: even with α = 0.3, the slips
cover much wider area of the chain than with just contact aging (Fig. 66).
The dense chain also sees an increase in larger slips originating from the
traffic jams, and the periodicity is further lessened (Fig. 67). In both dense
and sparse chains, the number of small precursory slips is increased.
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Figure 66: The onset of motion of the sparse parallel chain with contact
aging (top), and with both viscoelasticity and contact aging (bottom).
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Figure 67: When compared to simulations with only contact aging
(top), the dense chain becomes more chaotic when viscoelasticity is
also included (bottom). The number of ”traffic jam” avalanches seems
to increase.
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6.5.4 Parallel chain: avalanche statistics
Other than possibly slightly larger critical exponents, the avalanche statis-
tics of the sparse parallel chain do not differ much from the perpendicular
chain, which at this point could be expected. The size, duration and interval
distributions are shown in Figs. 68, 69, 70, respectively.

In the case of the dense chain, the size distribution is similar to the one
obtained from the model with only contact aging (Fig. 71), but surprisingly
the size exponent τS is a bit lower. The power law part is also more easily
distinquished from the cut-off than in the contact aging simulations. The
duration distribution becomes curved with k0 = 0.001 (Fig. 72), and there
might even be three power law parts: short one at the smallest slips, steep
in the middle, and one with low τT for the largest slips. The slip interval
distribution experiences barely any change at all, when compared to the
viscoelastic case.
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Figure 68: The sparse parallel chain exhibits similar behaviour as the
perpendicular chain: longer cut-off with small k0, and distribution
closer to the viscoelastic case with large k0.
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Figure 69: Like in the contact aging model, the durations show a larger
bump in the distribution at lower values of k0.
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Figure 70: The interval distribution shows similar curved behaviour as
in the perpendicular case.



CHAPTER 6. RESULTS 87

10
0

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

S

P
(S

)
Slip size distributions
(Dense parallel chain)

 

 
k

0
 = 0.001

k
0
 = 0.01

k
0
 = 0.1τ

S
 = 1.96

Figure 71: In the dense chain, the bump at large slips is more visible
with both effects than with only contact aging, and the exponent τS is
smaller.
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Figure 72: The avalanche duration distribution of the dense chain be-
comes curved at the shorter avalanches.
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Figure 73: The interval distribution did not experience significant
changes when using both contact aging and viscoelasticity when com-
pared to simulations with only viscoelasticity.

The critical exponents of the distributions are collected in Table 6.12. Though
the interplay of viscoelasticity and contact aging increased the cut-offs of the
distributions and made the interval distribution somewhat k0 dependent, the
overall changes to the statistics were relatively slight when compared to the
model with just contact aging (or viscoelasticity, in the case of the interval
distribution).

Table 6.12: The critical exponents in the FKT model incorporating
both viscoelasticity and contact aging, with k0 = 0.001, ηu = 50 and
α = 0.3.

Exponent Perpendicular chain Dense chain Sparse chain
τS 1.58± 0.13 1.91± 0.19 1.61± 0.11
τT 1.81± 0.15 2.46± 0.21 1.88± 0.13



Chapter 7

Conclusions

In this work, the Frenkel-Kontorova-Tomlinson model was used to study the
stick-slip motion of a 1-dimensional elastic chain on a disordered substrate
and how said motion corresponds to frictional stick-slip motion. The basic
FKT model was enhanced with two properties, viscoelasticity and contact
aging, that have not been extensively studied as of yet. The central features
of stick-slip motion investigated in this thesis were the onset of motion and
the avalanche statistics.

Three kinds of chains were investigated: a perpendicularly driven chain,
a parallelly driven with multiple wells between individual particles (sparse
chain), and parallelly driven dense with few to no wells between individual
particles (dense chain). Due to the comparatively large parameter space and
time constraints, the effects of varying every parameter could not be studied.
Hence a couple of primary control parameters were selected and altered in
the simulations, while the rest were simply kept constant.

Out of the three types of chains, the perpendicular chain and the sparse
parallel chain behaved similarly in most simulations, whereas the parallel
dense chain acted in a completely different way. The main reason for this is
the accumulation of multiple particles in same well and forming "traffic jams",
which strongly affect the dynamics. In fact, the single kink movements in the
dense parallel chain are hardly avalanche-like, which explains the differences
to the perpendicular chain and sparse parallel chain in both the onset of
motion and the avalanche statistics. However, when the kink propagation is
stifled and multi-particle traffic jams made less probable by a stiffer driving
spring, the dense chain too starts showing statistics characterized by a power
law and an exponential cut-off.

The qualitative similarities to dry frictional motion in the basic FKT
model were limited to stick-slip and velocity strengthening. Perpendicular
and sparse parallel chains showed both, whereas the motion of the dense par-
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allel chain resembled stick-slip only in at high k0. Quantitatively, the critical
exponents of the vanilla FKT model with either perpendicular or sparse par-
allel chains correspond quite well to experiments where the asperities are
emulated with macroscopic objects, for example glass beads [56]. However,
experiments concerning actual frictional stick-slip motion tend to have higher
exponents [23, 57, 58]. In this regard, the basic FKT model does not pro-
vide comparable results. Another difference is that in macroscopic stick-slip
motion, the friction force typically displays a sawtooth-curve, whereas in the
simulations the force evolution was quite smooth. However, this happens due
to the elasticity of the chain; having a rigid chain, the sawtooth-curve ap-
pears. Similarly, in the onset of motion the rigid chain displayed a wave-like
propagation of the slip, which could be considered to correspond to the prop-
agation of contact rupture measured in Ref. [32]. This effect was lessened in
a more pliant chain, in which the slips could occur relatively independently.
The small precursory slips were observed in the perpendicular and parallel
chains, rigid or pliant. However, the steady-state of the rigid chains consisted
mostly of system-wide slips, whereas the more pliant chains experienced slips
with a wide range of widths.

These results would seem to indicate that in conventional laboratory dry
friction experiments, elasticity does not play a large part and the sliding
surfaces could be considered rigid. Considering that neither the rigid chain
or the elastic chain produce critical exponents that are comparable to dry
friction experiments, the elasticity does not seem to be a deciding factor
from a realism viewpoint. Though it’s likely that at the atomic level elastic
deformations in the surfaces take place, few to none experiments have been
made at such a small scale, as observing the motion becomes problematic.

When including viscoelastic effects in the model, the depinning dynamics
of the chain changed into few avalanches caused by driving followed by af-
tershocks in between. The distributions of the avalanches differed from the
basic model: the critical exponents τS and τT were roughly 0.2 – 0.3 higher
in the perpendicular and sparse parallel chains, and the avalanche intervals
became power law distributed with exponents τI ≈ 1.3 − 1.7 (depending
on the viscoelasticity of the dashpots) in all three types of chains. The in-
crease in size and duration exponents have two possible explanations: either
the aftershocks have a distribution of their own, or the system is taken fur-
ther away from the critical force due to the relaxation avalanches, leading to
the oscillation in the cut-offs of the distribution and hence higher exponents
when integrating the distribution (avalanche oscillator). Qualitatively, the
increase in the critical exponents is similar to other simulations dealing with
viscoelasticity [5, 55], but quantitatively the increase of exponents in this
thesis is somewhat smaller.
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Though the critical exponents of the avalanche size and duration dis-
tributions were closer to those of dry friction experiments, the presence of
aftershocks is a phenomenon which has not been documented in microscopic
or macroscopic friction experiments, excluding earthquakes. It’s possible that
in laboratory experiments, the systems are stiff enough to effectively prevent
aftershocks (or the aftershocks are so small that they are not in measurement
range), and the viscoelasticity is only displayed as contact aging due to the
surfaces relaxing against each other, strengthening contacts. Thus the effects
of viscoelasticity shown in this thesis may be better applicable to earthquakes
than smaller scale dry friction. Velocity weakening in the friction force was
observed in Ref. [5], however in this work the effect was absent. It’s possible
that the parameter regime where the velocity weakening would be observed
was simply not found in this thesis.

Contact aging also showed an increase in the critical exponents, with high
values for the contact aging coefficient boosting the size and duration expo-
nents about the same magnitudes as the viscoelastic effects. The increase
can be attributed to the avalanche oscillator phenomenon, since the contact
aging and driving are competing in the same timescale. The cut-off is also in-
creased substantially for the perpendicular chain and the sparse parallel chain
for low values of k0. The increase in cut-off can be caused by the contact
aging inducing system-wide slips when α was high. In the dense chain, a new
kind of ”traffic jam avalanche” appeared, and the cut-off of the distribution
seemed to become linear like in the viscoelastic case. With contact aging,
however, the cut-off isn’t linear to the end, as the larger slips have a slight
bump in probability. During the onset of motion, contact aging reduces the
amount of precursory slips while increasing their size in the perpendicular
and sparse parallel chains. The model also starts showing velocity weakening
in addition to the velocity strengthening of the basic FKT model. In this
regard, the behaviour is closer to that found in dry friction [48].

Using both effects together heightened the effects of contact aging due to
the slow relaxation of the dashpots, and the critical exponents were possibly
a bit higher in the perpendicular and sparse parallel chain. It’s possible
that the oscillations in the avalanche distributions are larger in this case,
leading to larger exponents. Otherwise, no significant changes were observed.
In the dense parallel chain, the larger slips become more noticeable in the
distribution, possibly due to the increase in avalanches originating from traffic
jams. In the onset of motion, precursory avalanches were more prominent
with both effects on when compared to only contact aging.

Overall, viscoelasticity and contact aging bring about qualitative and
quantitative changes in the FKT model and the model with these extensions
appears to give results closer to those found in dry friction experiments.
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However, the model and the results are still far from realistic depiction of
frictional stick-slip motion, especially in the avalanche distribution critical
exponents. It would seem that a more fundamental change is required should
one wish to quantitatively model friction with the FKT model. Some results,
mainly the aftershocks in the viscoelastic model, can also be more easily
connected to earthquake dynamics than dry friction.

7.1 Future prospects
Though many interesting aspects from the Frenkel-Kontorova-Tomlinson model
with added viscoelasticity and contact aging were found, there’s still lot of
room for improvement.

A fundamental deviation from reality is that the simulations were one-
dimensional. Thus a simple but likely effective improvement would be to
extend the simulation to two or even three dimensions. Another way to en-
hance the simulation would be to model the substrate similarly as the chain,
i.e. as particles attached to each other with springs, or possibly viscoelastic
elements. It would probably make for a more realistic surface than the rigid
potential surface. Adding some form of wear mechanism to the substrate
could also give interesting results, though one would have to define what
exactly wear would mean in this case, and the implementation could prove
difficult.

One thing left unclear was whether it is possible to have chaotic motion
in the paralllel chain without the nearly system-sized slips. If the substrate
potential is sinusoidal, literature indicates the logical conclusion that the
movement always becomes regular at some point, but for a disordered sub-
strate the question remains open. This might be a simple problem of utilizing
the right parameters, but despite many attempts, such parameters were not
found during this work.

In this thesis, the effects of viscoelasticity and contact aging, rather than
their physical causes, were studied. An interesting endeavor would be to
create a model where the possible causes for viscoelasticity and contact aging
would be simulated, making these effects arise from the system itself.
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Appendix A

Driving and slip characterization

As introduced in Chapter 3, the slips can be determined in two ways: looking
at the change in the derivative of the friction force (from positive to negative
indicates the beginning of a slip, and from negative to positive correspondigly
indicates a stop), or with a velocity threshold (a particle crossing the thresh-
old indicates the start of a slip, and all particles dropping below the threshold
indicates the stop). If the driving is paused while slipping with a low relax-
ation threshold, the results obtained with either slip characterization method
are essentially the same. Discrepancies between the methods show up when
the chain is driven continously, or when the relaxation threshold is large.
The behaviour is similar in parallelly and perpendicularly driven chains and
doesn’t change qualitatively with the inclusion of viscoelasticity and con-
tact aging, and thus only the perpendicular case without the extension is
documented here.

In practice, the force derivative method keeps track of the change in the
total friction force between steps. Thus the slips are indicated by the average
velocity of the chain growing larger than the driving velocity:

∆F = F (t+ ∆t)− F (t)

= k0

N∑
i=0

(
[V · (t+ ∆t)− xi(t+ ∆t) + xi0]− [V t− xi(t) + xi0]

)

= k0

N∑
i=0

(
V∆t− xi(t+ ∆t) + xi(t)

)

= k0

N∑
i=0

(V∆t− vi∆t) = k0∆t(NV −
N∑
i=0

vi).
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Since a particle that does not slip has vi ≈ 0, we can sum only over the
slipping particles:

∆F = k0∆t(NV −
∑

i={Is}
vi) = k0∆t(NV −Nsv̄s)

= k0∆tN(V − Ns

N
v̄s),

where Ns is the amount of slipping particles, and v̄s is their average velocity.
Since k0, ∆t and N are all positive, the term V − Ns

N
v̄s determines whether

the change is positive or negative and thus whether the system is slipping or
pinned.

Determining slips this way, their ”visibility” depends on the system size
and the driving velocity. If only a small amount of particles slip and the driv-
ing is not paused while slipping, the decrease in friction force is somewhat
mitigated by the increase of driving force of the other particles. This can
lead to an increase in the amount of small slips relative to large ones. Using
very low driving speeds or pausing the driving when slipping helps with this
problem. However, low speeds extend the simulation time, and when paus-
ing is used, the relaxation velocity threshold has an effect on the statistics.
Fig. 74 shows how the size distribution behaves with a couple of different
velocities and relaxation velocity thresholds. Pausing the driving while the
system slips with a low threshold seems to give the longest straight power
law portion in the distribution, but the exponents τS ≈ 0.85− 0.95 are a tad
lower than those found in literature. Further lowering either driving velocity
or relaxation velocity threshold had little effect on the distribution.

An additional problem with the slip characterization based on the friction
force derivative is that when examining viscoelastic effects in the model, the
viscoelastic relaxation may cause some particles to move backwards, increas-
ing the friction force and hence skewing the avalanche distributions.
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Figure 74: The slip size distributions of 1000 particles, with slips char-
acterized via the force derivative. RVT stands for relaxation velocity
threshold. When the driving is not paused while slipping, the avalanche
size exponent τS can get be high as 1.3 (blue + signs), whereas low relax-
ation threshold can yield size exponents as low as 0.85 (cyan squares).

When using the velocity threshold characterization of avalanches, the velocity
of an individual particle has more impact than in the force derivative method,
and thus slips with fewer particles are more easily detected than in the force
derivative method. However, the value of the relaxation velocity threshold
greatly affects results, especially when the driving is not paused when the
system slips: with a high threshold, very few slips are registered, and they
have a tendency to be small. This happens mostly because the particles
experiencing a slip quickly fall below the threshold if the threshold is large.
By contrast, with a very low relaxation threshold, the chain never slows down
enough for any slips to be registered, or multiple slips can be registered as one
(as was shown in Chapter 4, Fig. 12). Pausing the driving in this case would
also intuitively seem preferable, since it reduces the amount of concurrent
slips happening. Still, the change in the avalanche critical exponents raises
some doubts about the method’s validity.



Appendix B

Finite-size effects

All the distributions in this thesis were acquired from simulations where
the systems were large compared to the correlation length, and only parts
of the system slipped at a time. Another interesting aspect of simulations
with finite chains is to see how the behaviour changes when the correlation
length becomes equal to or exceeds the system length, necessitating system-
wide slips. This was achieved by making the system smaller by decreasing
the amount of particles and having a small driving spring stiffness, mainly
k0 = 0.001. The values used for the simulations are collected in Table B.1.
The effects were tested with chain lengths of 10, 50 and 100 particles. For
the parallelly driven chain, the systems were tested for both sparse and dense
chains.

Since the systems consisted of relatively few particles and the idea was
to make most or all of them slip at once, the probability of simultaneous
avalanches was small, and therefore it was not necessary to stop the driving
when an avalanche occurred. To be sure, a lower driving velocity was used.

Table B.1: The control parameter values for the simulations concerning
finite-size effects.

Control parameter Value
Number of particles N 10, 50, 100
Driving velocity V 0.0005

Driving spring constant k0 0.1 - 0.001
Particle equilibrium distance d 1, 20
Pause driving while slipping false
Slip characterization method force derivative
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B.0.1 Parallel driving
When the amount of particles taking part in a slip is large relative to the
number of particles in the chain and the particles slip for long distances,
greater portions of the chain explore new potential surface and the chain
does not necessarily slip into the same configuration shifted by the equi-
librium distance, as was typically the case with simulations of the parallel
chain without finite-size effects. Due to the long distance traveled and new
potential explored, the motion becomes nonperiodic and chaotic even in the
steady state. Due to most of the particles slipping at once, the friction force
acts more like in macroscopic friction experiments, with sawtooth-like fluctu-
ations (Fig. 75). The precursory avalanches are more noticeable in the dense
chain.

The avalanche statistics of the chain are also considerably different when
compared to simulations with longer and more pliant chains. When the
equilibrium distance is large (sparse chain) the slips up to the chain length
seem to be power law distributed, with somewhat lower exponents (τS ≈
0.82), and there’s a sharp increase in probability at the chain length. By
contrast, with a small equilibrium distance and having fewer particles and
thus overall short chain, the slips that are larger than the total length of the
chain appear to be power law distributed, and the critical exponent of the
size distribution is similar to the ones found for longer perpendicular and
parallel chains. Interestingly, there’s a smaller ”cut-off” at the system size,
after which the power law part starts. The other cut-off at the end of the
distribution seems a bit less steep, possibly even a power law.
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Figure 75: The onset of motion velocities (top) and friction force
drops (middle) show system-wide slips occurring in parallelly driven
50-particle dense (left) and sparse (right) chains with driving spring
stiffness of k0 = 0.001. Both size distributions (bottom) seem to ex-
hibit a power law.
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The avalanche distributions with short parallel driving showed in general
interesting, though somewhat logical, behaviour: with 10 particles and equi-
librium distance 1, there’s a bump in the size distribution at the multiples
of 10 (Fig. 76), indicating that each particle jumps 1,2,3 etc. units of dis-
tance forward, i.e. approximately to the location occupied by its 1st, 2nd,
3rd neighbor, respectively. The effect diminishes quite fast, however; at 40,
the bump is barely noticeable.

The behaviour can be explained by considering the length of the chain
and boundary effects: the chain is relaxed at a local potential minimum, and
when it is driven to an avalanche, it relocates to the next local minimum.
When the equilibrium distance is small, the nearest a local minimum is likely
a similar configuration the chain is in at the start of the slip, shifted by one
or more equilibrium distances forward, depending on how far the driving
slab has moved before a slip is initiated. For a single particle, this means
that the locations of the neighboring particles tend to be attractive places
for relocation.
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Figure 76: The slip sizes for parallelly driven chain of 10 particles
with equilibrium distance 1 (total length 10). Having a driving spring
stiffness of 0.1 has cut-off value smaller than the system, so the discrete
bump does not appear.
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At the boundary, however, the particles experience new potential. The more
the chain slips, the more particles explore the unfamiliar potential, possibly
resulting in an overall different configuration. Thus the particles don’t neces-
sarily move to the locations previously occupied by their neighbors, ”blurring
out” the slip sizes at higher multiples of the chain length.

With particle equilibrium distance d = 20, the total length of the system
is 200. Taking the length into account, the system behaves similarly to the
one with smaller equilibrium distance: there’s a bump in the system-length
slips (i.e. 200, 400 etc.), though large value for k0 induces a cut-off smaller
than the system size, so the bumps might not be visible. Interesting notion
is that even though there are only 10 particles, there are only very slight
bumps at 10, 20, 30 etc. in the longer system (Fig. 77).
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Figure 77: The slip sizes for parallelly driven chain of 10 particles with
equilibrium distances 20 (total length 200).

The reason for this is probably the fact that larger distance between particles
means more potential wells and thus more potential minima before arriving
to the location of the neighboring particle. Since the wells are randomly
distributed in space, the slip sizes do not display any preference, provided
that the slips are relatively small. However, if the particles end up in a par-
ticularly deep potential minimum, the driving slab can advance far before
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initiating a new avalanche. Once the avalanche finally occurs, the particles
must slip far in order to relax the driving springs. In this case, the particles
are likely to cross over small local minima and end up in another deep poten-
tial minimum, which again is typically the similar configuration from which
the slip started (excluding boundary particles). This explains the probability
spikes that appear at 200, 400 etc.

Curiously, 50 particles with equilibrium distance 1 do not display a similar
bump in the size distribution at the total chain length. Instead, there’s a
rather large drop in the probability, but a slight bump at 100 as seen in
Fig. 78. Similarly, a chain of 100 particles and d = 1 has a probability drop
instead of increase at 100 (Fig. 79). Both 50- and 100-particle chains show
a little bit of power law reminiscent behaviour after the drop in the d = 1
case.

In the case of d = 20, the 50-particle and 100-particle chains have similar
avalanche distributions: power law distributed sizes up to the total chain
length, a probability spike at roughly the total length (though in the 100-
particle chain, the cut-off obscures the bump at 2000), then decline and
finally cut-off.
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Figure 78: The slip size distributions for a parallelly driven, 50 parti-
cle chain with equilibrium distances 1 (top three distributions) and 20
(bottom 3 distributions). With a long but sparse chain, there seems to
be a power law distribution of slip sizes up to the chain length. The
distributions are scaled so that they do not overlap.
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Figure 79: The slip size distributions for a parallelly driven, 100 particle
chain with equilibrium distances d = 1 (top three distributions) and
d = 20 (bottom 3 distributions). The behaviour is very similar to the
50-particle chain, though the exponent τS is larger in the d = 20 case.

The rigidity of the chain (strength of the interparticle interaction) influ-
ences the collective movement. If the interparticle interactions are relatively
strong (short chain or large k1), the chain has a tendency to move in rigid
jumps. This can be seen when increasing the interparticle spring stiffness
to k1 = 5 in the particle chain of 50 particles: the slips start showing an
increased probability at 50 and it’s multiples (Fig. 80 left), similarly to the
10-particle chain did with the multiples of 10. With weaker interparticle in-
teractions, the probability for chain-wide slips decreases, since parts of the
system can slip individually, though there’s still possibility for slips larger
than the system size (Fig. 80 right).
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Figure 80: When the interparticle interaction is strong (left), the parti-
cles of the parallel chain like to make discrete jumps, causing peaks in
the distribution at the multiples of the chain length. The effect is more
easily seen from the time-size slip profile of the chain (bottom left).

To study the possible power law in the slips larger than the system, a
simulation was run with 100 particles, equilibrium distance 1 and a driving
spring stiffnesses k0 = 0.001 and k0 = 0.0001. The obtained distributions are
presented in Fig. 81, and the results would indeed seem to indicate a power
law distribution. The exponent is comparable to the critical exponent of the
previous simulations, though the cut-off is only barely visible.
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Figure 81: The slips that are larger than the system size have a power
law distribution with exponent τS = 1.21 in the parallelly driven chain.

B.0.2 Perpendicular driving
In the perpendicular driving case, having a small system and large correlation
length had surprisingly little effect. Only with 10 particles there’s some
noticeable drop in the probability of system-wide avalanches similar to the
parallel driving case, but the larger slips didn’t seem to have a well defined
power law distribution (Fig. 82). 50 particles displayed a slight bump in the
distribution in the larger slips, but otherwise there were no changes (Fig. 83).
It was noticed that power laws similar to the ones obtained from simulations
with 1000 particles could be obtained with just 100 particles, though the
distributions are a bit more curved (Fig. 84). This would seem to imply that
the correlation length is the same order of magnitude as the chain length in
these simulations when k0 = 0.001, and indeed it was noticed with the larger
chain that the correlation length was roughly 200-300.

The perpendicular chain is different when compared to parallelly driven
chain likely because each particle in the perpendicular chain has it’s own
unique potential surface. Since each particle constantly explores new poten-
tial, there are no preferred slipping locations like there were in the parallel
chain, and hence no probability spikes either. When the chain is made more
rigid by increasing the strength of the interparticle interactions, the likeli-
hood of small slips decreases. With 10 particles, the drop is visible already
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with k1 = 1. Similar effect can be achieved with larger chains by increasing
k1, as demonstrated in Fig. 85.
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Figure 82: A perpendicular chain of 10 particles displays a probability
drop at system-wide slips.
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Figure 83: A 50-particle long chain has a quite nice linear part, though
the distributions are curved slightly and the critical exponent is small.
There’s a slight bump in the distribution for larger slips.
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Figure 84: The avalanche size exponent of a 100-particle chain is close
to the exponent obtained with significantly larger number of particles,
though the linear part is questionable since the distribution is quite
curved. Especially with k0 = 0.1 and k0 = 0.01 the exponent τS is
closer to 0.7− 0.8.
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Figure 85: A perpendicular chain of 50 particles displays a drop in slip
sizes at 50 when the nearest neighbor interaction is strong enough.


	Cover page
	Contents
	Introduction
	1 Experimental background
	1.1 Stick-slip motion studies
	1.2 Investigating the onset of motion

	2 Minimalistic models for dry friction
	2.1 Tomlinson model
	2.2 Frenkel-Kontorova model
	2.3 Frenkel-Kontorova-Tomlinson model

	3 Avalanche statistics
	3.1 Correlation length, interface roughnessand avalanche distributions
	3.2 Scaling relations

	4 Implementation of the FKT model
	4.1 Simulation basics
	4.2 The timescale issue
	4.3 Control parameters

	5 Augmenting the FKT model
	5.1 Viscoelasticity
	5.2 Contact aging

	6 Results
	6.1 The vanilla FKT model with a perpendicularly driven chain
	6.1.1 Onset of motion
	6.1.2 Avalanche statistics

	6.2 The vanilla model with parallel driving
	6.2.1 Kinks and the particle equilibrium distance
	6.2.2 Precursory avalanches
	6.2.3 Avalanche statistics

	6.3 Viscoelasticity
	6.3.1 Perpendicular chain: onset of motion
	6.3.2 Perpendicular chain: avalanche statistics
	6.3.3 Parallel chain: onset of motion
	6.3.4 Parallel chain: avalanche statistics

	6.4 Contact aging
	6.4.1 Perpendicular chain: onset of motion
	6.4.2 Perpendicular chain: avalanche statistics
	6.4.3 Parallel chain: onset of motion
	6.4.4 Parallel chain: avalanche statistics

	6.5 Simulations with both contact aging and viscoelasticity
	6.5.1 Perpendicular chain: onset of motion
	6.5.2 Perpendicular chain: avalanche statistics
	6.5.3 Parallel chain: onset of motion
	6.5.4 Parallel chain: avalanche statistics


	7 Conclusions
	7.1 Future prospects

	A Driving and slip characterization
	B Finite-size effects
	B.0.1 Parallel driving
	B.0.2 Perpendicular driving



