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The Internet in the recent years has seen a rapidly growing demand for multimedia
content streaming. In order to deliver the streaming services to every corner of the
Internet, HTTP streaming technologies have been widely adopted to replace the
traditional RTSP/RTP streaming, due to the fact that HTTP streaming can avoid
the issues arising from firewalls and NATs. Among the popular HTTP streaming
technologies, Dynamic Adaptive Streaming over HTTP (DASH) has drawn the
spotlights very recently.

In this thesis, we make comprehensive studies on the HTTP streaming
technologies and specifically on DASH. By investigating various aspects of the
DASH technology together with its underlying protocol and CDN infrastructures,
we are able to identify a major problem posed by CDN caches, which still limits
the performance of DASH. After understanding the advantages and drawbacks
of the solutions proposed by other researchers, we have devised a unique client
side rate adaptation algorithm, hoping to improve the performance of DASH in
CDN networks, with a simple solution. Multiple experiments are designed and
conducted to test our proposed algorithm. By studying the experiment results,
we reveal how DASH performs under various network conditions, and at the
same time make some conclusion on the design principles of a DASH client rate
adaptation algorithm. Apart from the related studies and the algorithm proposal,
some criticism is also made at the end of this thesis, as part of our DASH research
conclusion.

Keywords: HTTP Adaptive Streaming, MPEG-DASH, CDNs, Cache, Rate
Adaptation, DASH-JS, Media Source Extension
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1 Introduction
Over the years, transmitting multimedia streams over the Internet has been deemed
demanding, as the IP network possesses a stateless nature and provides only a
best-effort service. In spite of the challenges posed by the IP network, two types
of multimedia applications have been developing quickly and receiving tremendous
popularity. One type is real-time communication applications such as Skype. The
other type is video streaming applications such as Netflix. Both applications require
the timely delivery of video and audio data over the stateless and mail-system like
IP network, which have led to the design of specific network architectures and QoS
mechanisms. [1]

In traditional video streaming, one popular solution employs a stateful protocol
called Real Time Streaming Protocol (RTSP) [2] to enable the client and the server
to do real time communication. Upon establishing a session with RTSP, the client is
able to give VCR-style commands, such as play and pause, to the streaming server [3].
According to the received commands, the streaming server uses Real-time Transport
Protocol (RTP) together with Real-time Control protocol (RTCP) to guarantee a
timely delivery of the media stream through UDP transport. In this streaming system,
on the one hand the server and the client communicate through the dedicated RTSP
control connection to control the playback of the video. On the other hand, the server
has to perform the congestion control and decide the encoding rate of the stream,
ensuring effective execution of the streaming process. This specially designed video
streaming architecture has encountered obstacles, due to its complexity and firewall
penetration and NAT traversal. Another widely deployed video streaming solution
is the Adobe Flash Media Streaming Server (FMS), which uses proprietary media
servers and protocols. In this Adobe solution, the Flash Media Server is connected by
client endpoints who have installed Flash Player. The FMS talk to the Flash Player
in Real Time Messaging Protocol (RTMP) and provide streaming service. Widely
used and employed by the most famous service YouTube, Adobe FMS, however,
possesses major drawbacks such as server deployment costs, requirement of Flash
Player installation and poor performance on some platforms. [3]

Today video streaming has grown in such a rapid way that it has now claimed
over half of the Internet traffic. [1] However with the help of the increasingly scaling
network capacity and availability as well as the developing video compression tech-
nologies, the old complicated and costly streaming systems have given way to much
simpler solutions , among which is the HTTP Adaptive Streaming (HAS).

As more and more commercially used multimedia streaming systems adopted the
HAS technology, a standard called Dynamic Adaptive Streaming over HTTP (DASH)
has been drawn by the Moving Picture Experts Group (MPEG) with the joint effort
of The 3rd Generation Partnership Project (3GPP). [4] Based on the MPEG-DASH
standard, proposals related to various aspects of DASH implementation have been
made to improve the performance and functionality of the DASH system.
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Based on these existing proposals and solutions, various aspects of the DASH
technology are described and explained in latter chapters of this thesis. Further,
based on an open source DASH library named as DASH-JS1, an improved DASH
adaptation algorithm is implemented by our research team. Under more realistic
usage scenarios, multiple tests are conducted to analyze and evaluate the performance
of our proposed DASH implementation.

1.1 History

In 2009, MPEG called for a specification work, aiming to provide a universal stan-
dard for the HTTP Adaptive Streaming (HAS) technology. The resulting ISO/IEC
23009-1 standard was published in April 2012 [4] and is referred to as MPEG-DASH.
MPEG-DASH defined the basic format of Media Presentation Description (MPD)
and the format of the DASH stream segments, without mendating the architecture
of the DASH client implementations. MPEG-DASH has now laid the foundation for
the interoperability of different DASH implementations.

In October 2014, the fifth version of the HyperText Markup Language (HTML)
was completed and published by The World Wide Web consortium (W3C)2. Com-
pared with the fourth version of HTML, significant changes have been made to
standardize audio and video in HTML5. Although the new video element tag do
not directly support video streaming, W3C has been drafting the Media Source
Extension (MSE) to help solve the streaming support problem in HTML5. As
Scott Kellicker puts [5], MSE has enabled the building of browser-independent video
streaming players. By providing certain application programming interfaces (APIs)
for JavaScript, MSE allows the JavaScript based client to push streaming data into
the HTML media element.

Combining these standards and technologies, namely MPEG-DASH, HTML5 and
MSE, a DASH player functionality can be integrated into a web browser through
JavaScript. However, in order for the web based DASH player to function, the
web browser has to support HTML5 and MSE as well as to provide certain video
and audio codecs. Now Google-Chrome has provided the support for HTML5 and
MSE as well as the codecs and containers of the ISO Base Media File Format [6].
“Firefox and Safari are also actively working on the support for these technologies.” [5]

Around 2012, the Institute of Information Technology (ITEC) at Alpen-Adria Univer-
sity Klagenfurt released a set of DASH tools that can facilitate various experimental
works on DASH. Among these tools is a JavaScript library, named as DASH-JS [7],
that works with the Google Chrome browser. Together with these tools, a DASH
dataset [8] that meet the standard of MPEG-DASH is also provided.

1http://www-itec.uni-klu.ac.at/dash/?page_id=746
2http://www.w3.org/TR/tr-groups-all#tr_HTML_Working_Group

http://www-itec.uni-klu.ac.at/dash/?page_id=746
http://www.w3.org/TR/tr-groups-all##tr_HTML_Working_Group
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1.2 Thesis Goals

This thesis studies HTTP streaming and the DASH technology in particular, aiming
to fulfill the goals listed below:

– By conducting a research on HTTP streaming and the new DASH technology,
the thesis provides a complete picture of how HTTP streaming, specifically
DASH, works. Through the study, the thesis addresses the pros and cons of
HTTP streaming and DASH

– By utilizing the open source library DASH-JS as well as other available tools,
a real DASH system is built. Emulation work is done to test the performance
of DASH under different network conditions.

– A new algorithm is proposed in the attempt to solve the performance problem
of DASH when it is operating in a CDN network, where proxy caches are set
between the origin web server and the clients. Our emulation test bed, in which
there are proxy caches residing, enables us to mimic the DASH operations in
CDNs and seek solutions for building a cache friendly DASH client.

– The performances of the original DASH-JS solution and our modified version
are tested, based on our test bed. Multiple scenarios are emulated to help
analyze and better understand DASH and the effectiveness of its congestion
control.

1.3 Thesis Structure

We first conduct a background study on HTTP streaming in chapter 2. Except for the
study on HTTP streaming technologies, both the HTTP protocol and CDNs as the
HTTP supporting infrastructure, are introduced. With these background information,
in chapter 3 the MPEG-DASH standard and the DASH system structures as well
as some technical details are discussed. In chapter 4, the current research works on
HTTP streaming and DASH are discussed. By learning these research results, the
challenges facing DASH are identified and addressed. In chapter 5, our proposed
algorithm, which aims to tackle the identified challenges, is disscussed in detail. Then
the evaluation of our algorithm against the original DASH-JS algorithm is presented
in chapter 6. Lastly, the conclusion of the thesis research is made in chapter 7. Somce
technical details are included in the Appendix.
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2 Background study
In this chapter, the background information of HTTP streaming is discussed. The
main topics covered in this background study include the important aspects of the
HTTP protocol and the HTTP-based CDN network infrastructure, which provides
content caching services for HTTP streaming. Besides, HTTP streaming in general
and its popular solutions are discussed , before we dive into the latest DASH (Dynamic
Adaptive Streaming over HTTP) technology in chapter 3.

2.1 HTTP protocol and services

2.1.1 Basics

According to RFC 2616, “The Hypertext Transfer Protocol (HTTP) is an application-
level protocol for distributed, collaborative, hypermedia information systems. It
is a generic, stateless, protocol which can be used for many tasks beyond its use
for hypertext, such as name servers and distributed object management systems,
through extension of its request methods, error codes and headers. A feature of
HTTP is the typing and negotiation of data representation, allowing systems to be
built independently of the data being transferred” [9]. The data being transferred
here refers to to the data transferred in the following-up TCP transmission. In
this sense, HTTP easily supports the transfer of different types of data including
multimedia streams.

The HTTP protocol uses plain text. This feature allows easier debugging as well
as network analyzing. Besides, the text-based message is well supported by the
UNIX system , making HTTP preferable for the globally deployed UNIX based web
servers. This feature of HTTP makes it a good candidate for the streaming ser-
vices, since HTTP is widely adopted and supported by web servers, as just mentioned.

Request-response model of HTTP
HTTP is a protocol that uses the request-response model in a client-server system,
meaning that the basic HTTP communication involves the request message from a
client and the response message from the server. This is illustrated in figure 1 quoted
from [10]

Uniform Resource Locator (URL)
For the request-response system to work, the resource that is being requested and
responded with must be located. This location information is provided by a Uniform
Resource Locator (URL). According to RFC 1738, a URL is a unique identifier to
describe the location of a piece of resource on the Internet. The generic syntax for
URLs provides a framework for different schemes to describe this resource location.
Based on its unique URL, a resource piece can be located and operated on. Such
operation may involve access, update, replace and find attributes. Specifically the
Syntax of HTTP URL is : http ://hostname : port/filename
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[10]

Figure 1: The request and response model of HTTP

In actual operation, an HTTP client, typically a browser, sends an HTTP request
message based on a Uniform Resource Locator (URL), to the origin HTTP server,
to fetch the wanted resource which is generally referred to as an HTTP object. On
receiving the request, the server returns an “appropriate response message, which is
either the resource requested or an error message” [10].

As mentioned in RFC2616, the HTTP protocol enables the client and the server to
negotiate the data representation, regardless of what type of data is being trans-
ferred. This feature made HTTP a feasible protocol for multimedia streaming, since
multimedia data can be presented in many different formats. Upon receiving the
requests from the client, the server can respond with the information of the media
stream as well as the actual stream data through TCP transport. This process is
shown in chart 2

Listing 1 shows an HTTP client issues an HTTP GET message, asking for a specific
video segment whose location is indicated by a URL.

Listing 2 shows an HTTP response message sent by the HTTP server. This message
tells the client that the data requested is ready to send; It also includes the media
type (Content-Type) of the requested data, together with the length in bytes of the
data stream. On receiving this message, the client can learn what data it is expecting
to receive in the following-up TCP transmission.
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Client Server

HTTP GET

200 OK

Content through TCP 

TCP Acks

Figure 2: HTTP flow chart

Listing 1: HTTP1.1 Get message

GET /Dataset /OfForestAndMen/ fo r e s t_1s / forest_1s_1400kbit / fo re s t_1s8 . m4s HTTP/1.1\ r \n
Host : 192 . 168 . 227 . 168\ r \n
connect ion : keep−a l i v e \ r \n
Cache−Control : no−cache \ r \n
User−Agent : Moz i l l a /5 .0 (X11 ; Linux i686 ) AppleWebKit /537.36 (KHTML, l i k e Gecko )
Chrome /35 . 0 . 1916 . 153 S a f a r i /537.36\ r \n
Accept : ∗/∗\ r \n
Re f e r e r : http : //192 . 168 . 227 . 168/ OfForestAndMen . html?MPD=http : / /192 . 1 68 . 2 27 . 1 68 : 8 0/
Dataset /OfForestAndMen/MPDs/OfForest720p .mpd\ r \n
Accept−Encoding : gzip , d e f l a t e , sdch\ r \n
Accept−Language : en−US, en ; q=0.8 , zh ; q=0.6 , zh−TW; q=0.4 , zh−CN; q=0.2\ r \n
\ r \n

Listing 2: HTTP1.1 Response message

HTTP/1.1 200 OK\ r \n
Date : Mon, 15 Dec 2014 15 : 02 : 14 GMT\ r \n
Server : Apache / 2 . 4 . 4 (Unix )\ r \n
Last−Modif ied : Mon, 14 Apr 2014 21 : 04 : 49 GMT\ r \n
ETag : "3 e fe−4f70708a fa719 "\ r \n
Accept−Ranges : bytes \ r \n
Content−Length : 16126\ r \n
Keep−Al ive : t imeout=5, max=87\r \n
Connection : Keep−Al ive \ r \n
Content−Type : v ideo / i s o . segment\ r \n
\ r \n
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2.1.2 HTTP Connection features

The legacy problem
In actual HTTP streaming, the video stream is typically divided into a large number
of segments, with each segment containing a certain duration, say 1 second, of the
video stream. These segments are stored in the HTTP server as HTTP objects.
When the streaming starts, the request-response communications between the client
and the server can happen frequently on a segment basis, meaning the client would
send a large number of requests throughout the streaming process, to download the
successive segments of the media stream. The detail of the streaming process can
be found in section 3 of this thesis. The frequent request-response communications
could cause frequent connection establishment and tear down in HTTP 1.0, since
the original HTTP 1.0 specification do not allow multiple requests to use the same
HTTP connection.3 Since HTTP uses TCP as the underlying transport protocol,
the frequent connection break up and establishment can greatly reduce the effective
transmission rate. Besides, frequent connection tear down and establishment also
create unnecessary load for the server, affecting the server performance. According to
Lederer [8], a non persistent connection can lower the performance of HTTP stream-
ing by up to 46%. For these reasons, it is helpful that the established connection is
maintained for the successive requests and responses in HTTP streaming.

In the extended HTTP 1.0 implementation, an additional header, Connection:
keep-alive, can be added in the HTTP request to sustain the same connection
for subsequent requests and responses to use. The server receives a request with such
header also attach the same keep-alive header to the response. With this header
attached to all subsequent requests and responses, the connection is kept, until either
the client or the server decides to tear down the connection.

Persistent connection
HTTP version 1.1 introduced the feature of persistent connection, which by default
enables the same HTTP connection to maintain for multiple requests and responses.
In this sense an HTTP 1.1 compatible system, which include servers, proxies and
clients, can serve as a good HTTP streaming platform without causing unnecessary
connection tear down and reestablishment.

Pipelining
According to krishnamurthy et al. [11], HTTP/1.1 supports pipelining. Although
multiple requests use the same single TCP connection and the server must respond
the requests in order, a client do not have to block until the response of the last
request is received. Instead, the client can keep sending multiple requests over the
same TCP connection without having to wait for any response. Check A.1 for more
information on pipelining in HTTP streaming.

3http://httpd.apache.org/docs/2.2/mod/core.html#keepalive

http://httpd.apache.org/docs/2.2/mod/core.html##keepalive
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2.1.3 Cache control in HTTP

In a typical IP network that serves HTTP, proxy servers are deployed between the
servers and clients, so that the frequently requested content, which is referred to
as HTTP objects, can be cached in the proxy servers and served directly by these
proxies. Apart from the cache in proxies, client browsers can also cache the content
and save it for future access. By allowing content caching, network transmission delay
can be greatly reduced. In addition, traffic load in the network can be balanced by
the proxy caches. More Details about the reason and benefit of caching are discussed
in chapter 2.2.1.

HTTP/1.0 defined some simple mechanism for cache control, which is the cache
control headers. A cache control header is attached in a request or response message.
Clients and servers, as well as proxies in between, who join the HTTP request -
response chain are supposed to perform cache operations based on the directives
given by the cache control headers in the HTTP message.

Basic cache control headers include:

Expires: Used by the server response, this header includes the expiration time
for caching. By including this header, the server indicates that a proxy is allowed to
return the response directly from its cache for subsequent requests as long as the
expiration time is not reached.

If-Modified-since: It happens when a proxy cache need to send the origin server
a request to check the current validity of a response. An If-Modified-Since header
is used in the request, carrying a time value provided by the Last-modified header
of the previously cached response. On receiving this request, the server checks the
status of the requested content. If it has been modified, the sever respond with
200 OK for the proxy cache to replace the cache entry. If the content has not been
modified, the server simply respond with a 304 status code, indicating the proxy
cache that the previously cached entry is still possible to use.

no-cache: Another mechanism is the no-cache header. Unlike other control headers,
this header is set in the request, rather than the response. By using this header, the
client indicates that the requested content shall not be cached by any proxy or by
the browser cache.

These HTTP/1.0 cache mechanisms shown above, however, are heuristic and not
standardized. The control headers can be misinterpreted by servers and proxies who
do not support or understand them. In HTTP/1.1, these cache mechanisms are
extended and clarified. New Cache-control headers are introduced to realize more
functionalities. Several important headers are listed as follow:

“Etag” : In HTTP/1.0, the If-Modified-Since header together with the Last-Modified
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headers are employed for the revalidation of a cache entry. This mechanism however
is vulnerable to clock synchronization faults. HTTP/1.1 introduces a new mechanism.
The origin server generates an identity string called “entity tag” for a requested
content and attach it to the Etag header of the response. As long as the content is
not modified, the entity tag is preserved. Any revalidation operation between cache
and the server is based on this entity tag rather than a time stamp. In this way,
even when caches and the server are out of synchronization, the validation of the
content is not affected.

“Cache-Control: no-cache” : This is the HTTP/1.1 replacement for the “Pragma:
no-cache” header in HTTP/1.0. The difference is that “Cache - Control: no-cache”
can be used both in client request and server response. There are other available
directives for the “Cache-Control”, for example, “Cache - Control: public” indicates
that the piece of data is allowed to cache anywhere along the cache chain which the
request-response communication traverse.

Some of the cache control headers mentioned above can be found in listing 1 and
listing 2, which are from wireshark captures of the HTTP request and response
messages during an HTTP streaming process.

2.2 HTTP supporting Infrastructure

2.2.1 Content Distribution Networks in general

One of the major motivations of using HTTP for streaming service, according to
Stockhammer [2], is the availability of the globally deployed HTTP servers and
the HTTP-based Content Distribution Networks (CDNs). Since HTTP streaming
solutions do not require any none-standard HTTP objects to be handled by the
network, the existing CDNs and its proxy servers can easily provide caching services
for HTTP streaming.

In this chapter, the big picture of CDNs is drawn to help better understand the
network infrastructure that serves the HTTP streaming system. More importantly
this chapter provides a background for understanding the challenges that HTTP
streaming is faced with in the real network environment involving CDNs. Besides,
the study of CDNs also help comprehend why the experiment part of this research
on HTTP streaming is conducted in the way as it is.

In a typical client server system, such as a system involving an HTTP server and
clients, a client downloads data directly from the server. With the global coverage of
the Internet, such simple client server system do not scale due to two major problems.
The first problem is the transmission latency that is caused by geographical distances.
The second problem is the latency caused by network load, as too many clients could
access the same server at the same time. Needless to say, the overwhelming number
of clients all over the world can easily consumes all the bandwidth and the processing
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capacity of a server. Moreover, the swarm of client requests can overload the routers
that connect the server, creating unacceptable queuing delay. To gain a clearer view,
typical network latency can be found in the graph provided by at&t4. Such latency
and congestion problems can impact badly especially on streaming services and real
time communications.

Serving as a key Internet infrastructure, Content Delivery Networks (CDNs), also
known as content distribution networks, have been widely deployed to mitigate these
problems. The basic idea of CDNs is to install edge servers that scatter across
different geographic locations and to use these edge servers to replicate the content
of the original servers. When a client sends a request and tries to access the content
from the original server, the request, instead of being sent directly to the original
server, is redirected to a geographically close edge server, which may have replicated
or is able to replicate the requested content from the original server. In this way, the
client no longer experiences the long latency to the original server. The function of
CDNs, however, do not stops at resolving network latency. CDNs can also redirect
client requests based on information like server load, service cost and so on. In short,
CDNs helps achieve the evenly distribution of network traffic and server loads, as
well as providing better Quality of Service (QoS) to the widely distributed clients.

2.2.2 CDNs topology and architecture

According to Tang et al. [12],the architecture of CDNs has been evolving over time,
from the tree like hierarchical architecture to the distributed architecture and to
the latest Hybrid Content Distribution Network (HCDN) that combines traditional
CDN and Peer to Peer (P2P). Despite the fact that a CDN can be structurally
complex, the basic functional components of a CDN are clear and straightforward.
According to Tran et al. [13], a typical CDN network is composed of origin servers,
edge servers (or referred to as replica servers), Clients, Access Network, Distribution
Network, Content Manager and Redirector. Figure 3 illustrates the structure of a
typical CDN. As explained in [13], the origin server holds the various types of data
provided by content providers. In order for clients residing in different geographic
locations to easily access the data, the origin server distributes the data to edge
servers via the distribution network. The content manager facilitates such distri-
bution operation and stores the information of the data distribution at the same
time. The content manager also provides to the redirector this information of where
and how the data is distributed in the edge servers. When a client issues a request,
the redirector would intelligently redirect the request to the edge server of best choice.

Figure 3 shows a CDN case for the conventional RTP/RTSP streaming. HTTP
streaming, however, can smoothly utilize the existing CDNs like the one shown in
figure 3, since HTTP is well supported by todays Internet infrastructures, including
CDNs. Moreover, HTTP streaming actually lessens the burden of the servers and
the CDNs and scales better than traditional RTP/RTSP streaming, due to the fact

4http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html

http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
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[13]

Figure 3: A general architecture of CDN

that HTTP streaming is stateless and do not require the extra server resources that
is demanded by RTP/RTSP streaming.

2.2.3 Cache in CDNs and HTTP streaming

Taking HTTP steaming for example, in the actual CDN operation, a client, say
an HTTP streaming supportive web browser, first sends a DNS (Domain Name
System) request to get the actual IP address of the server that can serve the re-
quested content. “The CDN server handling DNS requests for this domain name
looks at this request” [14] and returns the client the IP address of an edge server
that is geographically close to the client. During this process, the CDN redirector
responds the client with the IP of an edge server instead of the IP of the origin server.
Afterwards, all subsequent communication starts between the chosen edge server and
the client.

According to Zakas [14], the edge servers “are proxy caches that work in a manner
similar to the browser caches”. On receiving a request, the edge server first checks
if the requested content is available. This is done by searching for a match for the
requested “URL including query string” [14]. If the content is found to be in the
cache of the edge server and the cached content has not expired, the content in the
edge server is directly served to the client. In contrast, when a content is requested
for the first time or the cache entry of this content has gone stale (expired), the
edge server has to send a request to the origin server to fetch the latest version
of this content. Based on the HTTP cache control header, the edge server then
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decides if the content shall be stored in its cache. This process is illustrated in figure 4.

Based on this understanding of CDNs, the impact of a CDN on HTTP stream-
ing can be simulated by putting up HTTP servers and proxy caches to build a network
of a comparable structure with that of a CDN. By setting up the servers and proxies
as well as introducing in network impairments, the behavior of an HTTP streaming
system can be evaluated. Although the real CDN components can be more complex,
fundamental impacts of caching and network impairments can be found out in a
relatively simple testbed.

[14]

Figure 4: cache reaction on requests

Static content vs Dynamic content
In a CDN, not everything is stored in the cache of the edge servers. Edge servers
(proxy cache servers) typically employ certain cache configurations to decide what
types of content are allowed to be cached and how they shall be cached. It is fairly
clear that caching dynamically generated contents in CDN can be a challenge and
might not really benefit newly coming clients, since dynamic content is generated by
the original server in real time and is dependent on the client and the server side
source code. Static content in contrast, can be easily cached. Unlike dynamically
generated contents, static contents such as images, audio and video, HTML files,
JavaScript, Cascading Style Sheets (CSS), are not frequently changed. It is these
contents that are independent of which client is requesting. As long as the content
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is not altered at the server side, all clients would receive the same content. Since
CDNs is used for web content caching and distribution, caching in the CDN edge
servers “follow the cache rules set in the various HTTP headers” [15]. Based on the
HTTP cach control headers and the caching configurations, the CDN edge servers
performs the cache operation on static content and cachable dynamic content.

Cache chain
In an HTTP based CDN , the edge servers are essentially proxy servers that re-
side between the origin server and the clients. A CDN is structured, meaning it
may employs a hierarchical topology or other topologies, as we mentioned in sec-
tion 2.2.2. It is common that in a CDN there are a chain of proxy servers between
the origin server and the client . When a piece of static content in the origin server
is requested for the first time, the proxy servers along this chain as well as the
browser cache decides whether or not to cache this requested content based on the
cache control header found in the HTTP request message. The information within
the cache control header is called cache response directives, and these directives
applies to every cache, including the proxy and the browser, along the cache chain [15].

HTTP control header
The HTTP specification defines how the requested content can be cached and how
the cached content shall be revalidated properly. More details about HTTP cache
control headers is found in section 2.1.3.

Cache Policies
When HTTP streaming is operating in a Content Distribution Network, HTTP
requests are first directed to the proxy cache, if the content is unavailable the request
is sent to the original content server. When new or prior uncached content passes
through the proxy cache, it needs to decide to cache the content based on the presence
of the cache control headers in the HTTP request, and furthermore by the configured
caching policy.

These configured caching policies decide what content can be cached and how it
shall be cached. For example, one configuration option, known as refresh pattern,
specifies whether or not and how long a certain type of files can stay in the cache.
Other configurations include access control, storage space set up and so on.

Among the most important configuration options is the Cache Replacement Policy
(CRP), which decides which content is purged to make space for newly items. The
Least-Recently Used (LRU) is a very common CRP, and keeps recently requested
items. Conversely, Least Frequently Used with Dynamic Aging (LFUDA) keeps the
most popular items irrespective of their size, thus it is likely that larger items may
prevent slightly less popular smaller items from being cached [16].
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2.3 HTTP streaming

Having introduced the HTTP protocol and the HTTP supporting CDNs, we now
move on to discuss HTTP streaming itself.

2.3.1 General discussion

Video streaming in its simplest form can be realized by storing audio or video data
file in a web server. By simply requesting the video or audio files through HTTP
download, an HTTP client can pass the received file to a media player to play the
stream. This type of streaming is generally referred to as HTTP streaming.
The benefits of HTTP streaming are obvious. Firstly, streaming based on HTTP
can avoid issues arising from firewalls and NATs. Secondly, the widely deployed web
servers and Content Distribution Networks (CDNs) can serve as the infrastructure
for HTTP streaming, greatly saving the cost of system deployment [2]. In this
sense HTTP streaming holds the advantage of great availability and scalability. One
problem with HTTP streaming is that HTTP uses Transmission Control Protocol
(TCP),which is traditionally considered not suitable for video streaming. However
according to the view of Saamer Akhshabi [17], TCP itself has proven to be streaming
friendly given that the video player client can perform effective rate adaptation to
tackle the throughput variations caused by the congestion control of TCP. Kim
and Ammar [18] also confirmed that “short-term transmission rate variation in
HTTP/TCP can be smoothed out through buffering at the receiver side” [19]. Given
these advantages, HTTP streaming has seen its rapid growth in streaming services
on the Internet over the recent years.

2.3.2 HTTP streaming general architecture

HTTP streaming solutions in general, regardless of their exact implementations, share
a similar architecture. Taking Apple’s HTTP Live Streaming for example, it consists
of “the server component, the distribution component and the client software” [3].
This system architecture is illustrated in figure 5.

As put by Andrew Fecheyr [3],“ The server component is responsible for taking
input streams of media and encoding them digitally, encapsulating them in a format
suitable for delivery and preparing the encapsulated media for distribution”; “The
distribution component consists of standard web servers. They are responsible for
accepting client requests and delivering prepared media and associated resources
to the client. For large scale distribution, edge networks or other content delivery
networks can also be used”; “The client software is responsible for determining the
appropriate media to request, downloading those resources, and then reassembling
them so that the media can be presented to the user in a continuous stream”.

Apple’s HTTP Live Streaming employs the HTTP Adaptive Streaming (HAS)
system design. According to Andrew Fecheyr [3], the server component encodes
the audio and video input into MPEG-2 Transport Stream. The encoded stream
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[3]

Figure 5: HTTP Live Streaming architecture

is then segmented into a series of short media files by a segmenter. At the same
time an index file is also generated, which contains the information,such as URLs
and encoding methods and encoding rates, of these media files. After the URL of
the index file is published, the client software can download the index file and then
request the corresponding media files of the wanted video stream.

2.3.3 Live streaming vs On-demand streaming

Multimedia streaming can be put into two categories, namely, on-demand streaming
and live streaming [3]. HTTP streaming, with no exception, falls into these two
categories.

In HTTP streaming, on-demand streaming is usually straightforward. The en-
tire media source is previously encoded and segmented into media files and stored in
the server (the distribution component), before this resource being published online.
On receiving the requests from a client, these media files are then served from the
server.

Live streaming, in contrast, requires the on-time encoding and delivery of the
live feed from, say, a video camera. “The Live stream media is captured, compressed
and transmitted on the fly” [3], which means a big amount of computing power is
required in the live streaming server. In the case of HAS or Apple’s HTTP Live
Streaming, the index file needs also be updated in real time so that the client who
receives the live streaming can update the index file as every time it downloads
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the current available media files (media segments). With the updated information
provided by the newly acquired index file, the client is then able to request the newly
generated media files from the server.

[3]

Figure 6: HTTP onDemand Streaming

[3]

Figure 7: HTTP live Streaming

Quoted from [3], figure 6 and figure 7 illustrate the difference between live streaming
and on-demand streaming. Figure 6 shows the process of on-demand video streaming.
The blue step line on the left represents the ideal constant rate transmission of the
media files. In reality, due to network Jitter the transmitted packets would arrive
at the client in an uneven fashion. To ensure the smooth playback of the video at
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[3]

Figure 8: Index file of a live session, updated for every new segment

the client, a playback buffer is typically employed to delay the actual playback for a
short period of time.

For the same reason, live streaming uses the same playback buffer just as on-demand
streaming does. In addition, live streaming also uses a compression buffer at its
distribution component. Since the dynamic encoding rate of the live stream varies
with the video motion intensity, the server component that performs the capturing
and encoding of the live feed can only generate the encoded media files at an uneven
rate. This means with the transmission rate between the server component and the
distribution component being constant, the distribution server receives the newly
generated media files and the updated index file at an uneven rate. The compression
buffer is used to buffer up the received data, creating a margin of delay so that the
streaming process will not be interrupted at the distribution server.

Another difference between on-demand streaming and live streaming is the index file.
As demonstrated by figure 8, the index file for live streaming must be updated as the
live feed is encoded into new media files . As put by Fecheyr [3] “the updated index
file includes the new media files and older files are typically removed. Whenever a
new segment is ready, the index file is updated to include the newest segment and
to remove the oldest one”. In this sense, the index file provides a sliding window
play-list, containing the latest available media files. In on-demand streaming, the
index file is, however,only generated once and never updated. Upon its generation it
contains information of all media files of the complete stream.

2.3.4 HTTP streaming evolution

Although different HTTP streaming solutions share the similar architecture, the
HTTP streaming technology has been evolving over time. Popular solutions of HTTP
streaming over the years are summarized as follow:

– Progressive download
The early form of HTTP streaming performs video streaming by a method called
progressive download, where the client simply establishes a TCP connection
with the server and downloads the multimedia data progressively with best
effort, until all the data is received [1]. In this streaming system, all clients
requesting the same video content have to download the non-distinctive video
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stream that is of the same encoding, which means neither the network condition
during the downloading nor the client platform and the decoding capability is
taken into consideration. In a nutshell, there is no rate adaptation in progressive
download. Apart from the lack of bit rate adaptation, progressive download
might also cause unnecessary network traffic, since the downloading process
might greatly exceeds the playback process due to the lack of flow control.
When a user decides to stop watching the content and end the streaming, data
that has been fetched in advance would be wasted [2]. Being able to serve
on-demand streaming, progressive download, however, is not suitable for live
streaming and mobile usage. Questioned by all these drawbacks, progressive
download is no longer a popular HTTP streaming solution.

– HTTP Adaptive Streaming (HAS)
Acknowledged as a new paradigm of HTTP streaming, Adaptive Streaming
Over HTTP (HAS) has drawn the spotlight in the recent years. The basic idea
of HAS involves encoding the media stream into different versions with each
one processing a different resolution and bit rate. Each version of the encoded
media stream is also divided into small chunks (segments), forming a unique
set of media segments called a representation. As the streaming proceeds, the
client can dynamically switch to a certain representation and download the
needed chunk so that the bit rate of the chunk to be downloaded can match
the real time network bandwidth. By providing different versions of the same
video content, the HTTP server can serve the clients differently based on the
connection qualities of these clients. It is worth mentioning that the server
simply keeps all versions of the media stream (representations) as well as the
corresponding manifest file (index file) in its storage. It is the client who would
choose the wanted encoding rate of a chunk, based on its current network
condition and the information given by the manifest.
This paradigm has been used in the design of several HTTP streaming services,
including Adobe Flash Video [20], Netflix5, Microsoft smooth streaming [21] and
Apple’s HTTP Live Streaming [3]. Their implementations and performances
in detail have been discussed by Saamer Akhshabi [1].
Despite the popularity of HAS, there are however, some problems with these
existing implementations. For example, with proprietary solutions mentioned
above, a user is typically required to install certain client side platform and
applications so that the service can be delivered. This not only creates inconve-
niences for the users, but also complicates the distribution of new application
upgrades. Apart from Adobe Flash Video6, none of these solutions are open
source and thus can not provide enough value for the developer community.

– MPEG-DASH
Despite the fact that multiple streaming services, as mentioned above, are using
the HAS technology, they are all standalone and proprietary solutions and

5http://www.netflix.com
6http://www.adobe.com/devnet/video/articles/osmf_overview.html

http://www.netflix.com
http://www.adobe.com/devnet/video/articles/osmf_overview.html
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lack interoperability. Due to the promising future of HAS, the Moving Picture
Experts Group (MPEG) has drawn up a standard called Dynamic Adaptive
Streaming over HTTP, also known as MPEG-DASH, in the hope of building a
foundation for the interoperability among different HAS solutions. With the
primary specifications defined in ISO/IEC 23009-1, the MPEG-DASH standard
was published in April 2012. [4]

Based on the MPEG-DASH standard, multiple implementations of DASH have been
proposed. One particular implementation known as DASH-JS7 has enabled HTML5
compatible Web browsers to acquire DASH functionalities without having to install
any third party plug-ins. Providing the basic client functionalities that comply with
the MPEG-DASH standard, DASH-JS serves as a reusable library that can be easily
extended for desktop and mobile usages alike. Both the on-demand streaming client
and the live streaming client can be implemented by extending the original DASH-JS.
DASH-JS has enabled our research team to do a in depth study on DASH, allowing
us to conduct various tests and performance analyses. Based on DASH-JS, a new
adaptation algorithm has also been implemented by our team, aiming to tackle
the challenges posed by proxy caches in DASH streaming. More details of these
challenges and our solution together with the implementations are discussed in latter
chapters.

2.4 Summary of background study

The HTTP protocol defines the basic request and response behavior of HTTP stream-
ing. Important features of HTTP services such as persistent connection, pipelining
and cache control are introduced in this chapter. These features, which can greatly
influence the performance of HTTP streaming, shall be taken into consideration
when an HTTP streaming system is designed. Due to the fact that HTTP streaming
typically utilizes the widely deployed CDNs that support HTTP traffic, the com-
prehension of CDNs is also valuable for designing an effective HTTP streaming system.

From our study we learn that under the control of the HTTP cache-control di-
rectives, caching services are provided by the edge servers of the CDNs. It is clear
that exsiting CDNs together with the widely deployed HTTP web servers, provide
the infrastructures for HTTP streaming. Since the popular HTTP streaming solu-
tions, such as Dynamic Adaptive Streaming over HTTP (DASH), do not require any
non-standard HTTP content delivery, the existing infrastructures can serve HTTP
streaming effectively.

With the understanding of the HTTP protocol and its features as well as the cache
mechanism of CDNs, the popular HTTP streaming technologies are discussed. Among
these technologies, MPEG-DASH has been acknowledged as the most promising one,
which will be discussed at length in chapter 3.

7http://www-itec.uni-klu.ac.at/dash/?page_id=746

http://www-itec.uni-klu.ac.at/dash/?page_id=746
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3 Dynamic Adaptive Streaming over HTTP
In this chapter, DASH, as the HTTP streaming technology we study, is discussed at
length. First the mechanism of a DASH system is illustrated and explained. Then
the MPEG DASH standard is described. In the end of the section, different solutions
of the DASH client implementation are presented and discussed.

3.1 DASH system structure
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Figure 9: DASH system structure

As shown in figure 9 [4], a typical Dash system includes an HTTP server that
provides the video content and a DASH client that can both perform HTTP commu-
nications and play the DASH multimedia content. During the streaming process, the
DASH client accesses the DASH content by sending HTTP requests and downloading
from the HTTP server. Progressively requesting and receiving the DASH content,
the DASH client builds up the internal buffer of the Media Player and starts to play
the content when enough data is available. As put by Stockhammer [2], during the
streaming process, it is the client who takes full control of the operations, including
“ the on-time request and smooth playout of the sequence of segments, potentially
adjusting bitrates or other attributes” [2].

At the server side an original video stream is encoded into multiple representa-
tions. Each representation is an independent stream containing the same video
content as the original but possessing a different resolution or average bit rate. Each
of the representations is then packed into media segments of roughly the same length
in seconds. And all representations are packed into the same number of segments
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so that segments within different representations are roughly aligned in playback
time. “Each media segment is assigned a unique URL (possibly with byte range), an
index, and explicit or implicit start time and duration. Each media segment contains
at least one stream access point, which is a random access or witch-to point in the
media stream where decoding can start using only data from that point forward. ”
[4] This means when playing the video stream each period of the video is available
in multiple segments within different representations, allowing the client to switch
among different resolutions and bit rates as the streaming proceeds.

When multiple representations are generated from the original video stream, a
corresponding Media Presentation Description (MPD) file, which is typically in
XML format, is also generated to facilitate a dash client to “establish an adaptive
dynamic streaming over HTTP” [22].The MPD file contains vital information of all
representations, including the corresponding decoding methods, resolutions and bit
rates, etc. It also contains the URL of each segment of a representation.

When a dash client such as a dash enabled browser has downloaded the MPD
file of a video stream, it parses the MPD and then fetches video segments progres-
sively. Each time before the client requests a segment, it goes through its rate
adaptation algorithm to choose a representation that suits the user preference and
the current network conditions best. When the representation is chosen for this
segment, the client requests the segment based on the URL (possibly with byte range)
provided by the MPD. By changing the adaptation algorithm, the rate adaptation
behavior of the dash client can be altered.

Figure 9 also illustrate the details of the streaming process of DASH. First a
DASH client issues the download of the MPD file of the video stream, through the
HTTP client module. The MPD is then parsed and the parsed information is fed into
the adaptation control module. Based on the adaptation algorithm, the adaptation
control module takes the collected data from the statistic observer and then makes a
decision on representation selection for the segment to be downloaded. The decision
is then passed to the HTTP client and the HTTP client starts to request the selected
segment. On receiving the segment, the HTTP client feeds the segment to the
media player. At the same time, the statistic observer collects information such as
estimated bandwidth and player buffer level, from the HTTP client and the media
player respectively. The collected data is again fed to the adaptation control module,
so that the DASH client can start another round of rate adaptation (representation
selection) and segment download.

During the process, the DASH client can also specify the various header direc-
tives of the HTTP requests, under the HTTP/1.1 specifications. In doing so, the
DASH client can affect, say, the caching behavior of the CDN servers, and in turn
influencing the cache hit ratio of incoming requests from other clients who request
the same content.
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3.2 MPEG DASH standard

The MPEG-DASH specification defines none of the MPD delivery method, the media-
encoding formats and the client side implementation [23]. Instead, only the MPD
and the segment formats are defined. By standardizing the data representation and
the MPD, DASH aims to provide an HTTP streaming enabler without constraining
the client design.

3.2.1 MPD format

[4]

Figure 10: The structure of MPD

As stated by Sodagar [4], “Dynamic HTTP streaming requires various bitrate
alternatives of the multimedia content to be available at the server. In addition,
the multimedia content may consist of several media components (e.g. audio, video,
text), each of which may have different characteristics. In MPEG-DASH, these
characteristics are described by MPD which is an XML document ”. By generating
the MPD in the XML (Extensible Markup Language) format, a hierarchical data
structure can be conveniently constructed, which in turn benefits the parsing process
at the client side.

Figure 10 shows the hierarchical structure of the MPD, defined by MPEG-DASH.
An MPD file contains one or more periods, which forms the top level of the data
hierarchy. Each period contains an interval of the multimedia content, with a starting
time and playback duration. Within a period, there can be one or more adaptation
sets, with each adaptation set containing a media component of the DASH content.

According to Sodagar [4], a possible composition of the adaptation sets could be
that one adaptation set contains the video component of the multimedia content,



23

while another adaptation set contains the audio component of the multimedia content.

Each adaptation set typically contains multiple representations, with each representa-
tion being “an encoded alternative of the same media component,varying from other
representations by bitrate, resolution, number of channels or other characteristics.” [4].

Each representation consists of multiple segments, which contains the actual multi-
media payload. These segments are divided chunks of the original media stream in
temporal sequence. Each segment is also assigned a relative URL. Together with the
base URL provided in the MPD, the DASH client can construct the absolute URLs
of all segments. By constructing HTTP GET messages based on the absolute URLs,
these segments can be downloaded through HTTP.

With the MPD format well defined in the DASH specification, the parsing of the
MPD file is left to the client side functionality. A sample MPD file is presented in
the appendix A.2

3.2.2 Segment format

According to Sodagar [4], in DASH, “the multimedia content can be accessed as a
collection of segments ”. As we discussed earlier, these segments are the encoded and
divided pieces of the original multimedia stream.

The first segment shall serve as an initialization segment , from which the DASH
client can extract the required information to initiate the media decoder. “The
media stream then is divided to one or multiple consecutive media segments. Each
media segment is assigned a unique URL (possibly with byte range), an index, and
explicit or implicit start time and duration. Each media segment contains at least
one Stream Access Point (SAP), which is a random access or “switch-to” point in the
media stream where decoding can start using only data from that point forward. To
enable downloading segments in multiple parts, the specification defines a method of
signaling subsegments using a segment index box. This box describes subsegments
and stream access points in the segment by signaling their durations and byte offsets.
The DASH client can use the indexing information to request subsegments using
partial HTTP GETS.” [4].

3.2.3 Live vs on demand

DASH supports both live and on-demand content streaming. In the case of on demand
content, the MPD file shall provide the start time and duration of each segment.
In the case of live, the MPD shall contain the segment availability information in
the form of the available start time and available end time. Other information such
as the approximate media start time, the fixed or variable duration of segments
shall also be provided by the MPD to support live streaming. In short, for both live
and on-demond streaming, the MPD file shall provide necessary information in its
hierarchical structure to support the streaming process. Details and examples of
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the possible implementations for Dash live streaming and on-demand streaming are
presented by Stockhammer [2].

3.2.4 Copyright protection

Liu [24] addressed the necessity for digital rights protection when copyrighted content
is distributed over the Internet. A Digital Rights Management (DRM) system is
usually used for such protection. A consumer who uses the DRM service typically
pays for a digital license, which is a digital data file. Based on the decryption key
and other information provided by the digital license, the consumer is able to access
the encrypted content from a content distributor who uses this DRM system.

Since DASH streams digital content over the Internet, it is important for the system
to support popular DRM schemes. According to Sodagar [4], MPEG-DASH allows
an adaptive set to “ use a content protection descriptor to describe the supported
DRM scheme.”
“In conjunction with the MPEG-DASH standardization, MPEG is also developing a
common encryption standard, ISO/IEC 23001-7, which defines signaling of a common
encryption scheme of media content.” [4] Based on the signaling messages and the
content protection descriptor in the MPD, a DASH client can work with a supported
DRM system and receive the encrypted stream from the server.

3.2.5 Special features

MPEG-DASH has also defined a collection of various special features to enrich the
functionalities of DASH. These features include advertisement insertion, compact
manifest, fragmented manifest, segment with variable durations, multiple base URLs
and so on. Details can be found in [4].

3.3 DASH client solutions

As mentioned earlier, MPEG DASH defines only the MPD and segment formats
of the DASH content and leaves the intelligence of DASH to the client side. After
the media stream is encoded and packed into MPEG DASH standard segments, the
web server merely keeps the segments and the MPD file in its storage, serving these
segments through HTTP when receiving requests. The intelligent rate adaptation of
the DASH system resides really in the DASH client. In this sense, how the DASH
client is designed and implemented is vital to the effectiveness of a DASH system.

As shown in figure 9, a DASH client is composed of three basic functionality modules.
The first is an HTTP client which enables HTTP communication. The second is
an adaptation control module that performs rate adaptation. The third one is the
media player that renders and plays the downloaded DASH content. To implement
a DASH client, there can be multiple solutions.

The first solution is to build a standalone DASH client which possesses all three
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functionalities. For example the latest VLC media player8, which supports DASH,
falls into this category. This solution is straightforward but costly. Besides, accessing
a video URL through a media player is not a conventional user behavior, since people
are more comfortable to browse the Internet with a web browser and find interesting
videos to watch as they search around.

The second solution is a browser plug-in. This solution benefits from the browser
functionality and spares the trouble of building internal HTTP functionalities. Pars-
ing the XML based MPD file and the HTTP messages can also be left to the browser.
However this solution can give rise to compatibility issues since plug-ins are usually
browser dependent. Invariably, a plug-in needs be upgraded as the browser upgrades,
which causes troubles for both developers and users.

The third solution is a JavaScript based DASH client. This solution is better than
the previous two in several ways. Firstly, JavaScript is interpreted by the browser
and operates at run time. This completely saves users the trouble of installing the
client program. Secondly, due to the fact that the Javascript source code is kept in
the web server, a JavaScript based client can be easily maintained and upgraded
by developers, saving great software-distribution troubles. Last but not the least, a
JavaScript based client needs only to focus on adaptation functionalities, thanks to
the HTML 5 specification, which has pushed browsers to support multimedia content
rendering. The major enablers of the JavaScript based DASH client is HTML 5 and
its Media Source Extensions (MSE). More details can be found in section 1.1, in
the History part.

3.4 Summary of MPEG-DASH

With the MPEG-DASH standard defining the format of MPD files and DASH
segments, different implementations of DASH clients are able to share the same
multimedia stream resources that comply with the MPEG-DASH standard. Likewise,
with the standardized MPD and segment formats, different DASH servers, are also
able to serve DASH clients of different implementations.

In this section, the general system architecture of DASH is presented and explained
first. The DASH streaming process is then explained based on the understanding of
the DASH architecture. After that, various aspects of the MPEG-DASH standard
itself are discussed in detail. Lastly, several DASH client solutions are presented and
compared, in order to demonstrate how the client side of a DASH system can be
freely implemented. Based on the JavaScript library DASH-JS [7], our DASH client
implementation employs the third solution presented in section 3.3. Our particular
DASH implementation is presented in latter chapters.

8http://www.videolan.org/index.html

http://www.videolan.org/index.html
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4 Challenges of DASH and our contribution
As DASH is still a relatively new technology, a big amount of study work has been
conducted over the recent years, in order to solve some challenging problems facing
DASH. In this chapter, these challenges are addressed and the important studies
made on HTTP streaming and DASH are summarized as well. To study and tackle
some of the major challenges, we build our DASH client solution based on DASH-
JS [7]. In the latter part of this section, the contribution of our research is summarized
briefly and a modeling and short recap of DASH-JS is also presented.

4.1 Challenges and related studies

4.1.1 Segment size

As HTTP streaming and DASH specifically, requires the media content to be seg-
mented, determining the size of the media segment has been one of the challenging
tasks.

Different segment sizes shall be chosen for different uses. For example, in live
streaming small segments, such as 1 second segments, are favored since users are
expecting very short lag between the received media and the real live event. In this
situation, the use of 10s segments means a lag of at least 10 seconds since the segment
must be encoded and generated before the user client is able to download it. In
contrast, if the content being streamed is say, a Hollywood movie , then big segment
size is preferred since no user would enjoy the quality of the picture being constantly
switched. Bigger segment invariably means bigger receive buffer in the client, reducing
the possibility of buffer underflow and playback interruption while the user is watching.

Segment size can also affect the adaptation behavior of DASH. For example, Liu
et al. [25] addressed the problem of the rate adaptation effectiveness depending on
the segment duration. As he claimed, a typical rate adaptation method evaluates
the network capacity every time a segment is fetched, and it performs rate adaption
based on the evaluated network capacity. Thus segment with long duration may
result in a slow adaptation since the time required to fetch such a segment would be
relatively long. Likewise, when the segment duration is short, the rate adaptation can
be more agile. However, according to his claims, due to the fact that TCP congestion
control causes the instantaneous rate of data transmission to vary over time and form
a sawtooth shape, network capacity evaluation based on short time observation can
be inaccurate. In this sense, too short a segment size can cause inaccurate estimation
of the network capacity, resulting in a non-optimum rate adaptation. “In order to
provide accurate and fast rate adaptation ” [25] for HTTP adaptive streaming, Liu
et al. [25] proposed a segment-duration-based rate adaptation method.
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4.1.2 Rate adaptation algorithms

Due to the request-response nature of HTTP streaming and DASH, the DASH clients,
instead of the servers, have to perform rate adaption during the streaming process.
Designing the client side adaptation algorithm proves to be another challenge for
HTTP streaming and DASH .

There are plenty of researches made on the rate adaptation algorithms. For in-
stance, Akhshabi [17] made a study that evaluates and compares the rate adaptation
algorithms of several commercially used video streaming services, which adopt the
HTTP Adaptive Streaming (HAS) technology. Microsoft Smooth streaming, Netflix
and the open source Adobe OSMF were evaluated in the study. Apart from basic
performance tests, a competition scenario was also devised in this study to show the
behavior of adaptive streaming under more realistic situations. The study concluded
that the HAS technology was at an early stage and more advanced adaptation
algorithms were in demand.

In 2012, Akhshabi [26] published another study that specifically focused on the
issues of HAS players under competition situations. Several factors, including
the on-off period of HTTP downloading, that could affect the adaptation stability
and bandwidth-sharing fairness of competing clients were examined and analyzed.
Akhshabi concluded that a HAS client could fail to accurately estimate the available
bandwidth when its HTTP download is in the OFF periods, during which there is
neither new HTTP request issued nor data transfer. To be more specific, a competing
client that downloads data presently (HTTP on-period) can seize the bandwidth pos-
sessed by another client that is currently at its OFF-period, causing the OFF-period
client to over estimate its current available bandwidth. Providing the evidence of
such an instability issue in rate adaptation under competition scenarios, Akhshabi
however has not devise a solution yet.

The study on rate adaptation was also conducted by Liu [27], who proposed a
receiver-driven rate adaptation method for HAS. In this adaptation method, a
smoothed HTTP throughput measurement was suggested against the the use of
instantaneous TCP transmission rate as the base for rate adaptation, to help evaluate
the end-to-end network bandwidth capacity more accurately.

Compared with Liu [27], Li’s Probe and Adapt [28,29] algorithm proposed measuring
media transfer capacity of the network by probing the limit of TCP transmission,
meaning incrementally switching to higher media bit rate as long as the TCP through-
put continues to climb. When TCP throughput drops, the algorithm backs off to
choose lower media bit rates, avoiding TCP congestion. Instead of sending probe
packets to the network, this algorithm merely “ probes ” the TCP transmission
limit at the client side, effectively avoiding any network capacity waste and TCP
congestion without creating any extra network traffic.
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Jiang et al. [30] summarized the challenges of designing an adaptation algorithm for
HAS. The study shows that in order to balance among the goals of clients-competition
fairness, adaptation efficiency and bit rate switching stability, three deciding factors
must be taken into consideration, which include chunk download scheduling, bit-rate
selection and bandwidth estimation. By identifying the challenges posed by the
characteristics of TCP as well as different usage scenarios, an optimized algorithm
called Festive was designed, with the three deciding factors taken into account.

4.1.3 DASH specific issues

Studies specifically on MPEG-DASH have also been made recently, in the attempt
to identify the important factors of DASH system design.

For instance, Stockhammer [2] made a study on the standards and design prin-
ciples of DASH. General discussions were made to explain the origin and goals of
DASH. The study also presented the DASH specifications defined by MPEG and
3GPP . Then it illustrated the components design and system structure of DASH.
Deployment details and service examples were also demonstrated in this study.

4.1.4 Challenges of CDN Caches

In HTTP streaming and DASH, the client side rate adaptation algorithm defines the
congestion control. A typical DASH client has to work with two control loops: 1)
the underlying TCP congestion control that delivers the requested media segment, 2)
requesting the appropriate media representation of a specific segment length, as to
not cause the receiver buffer to underflow. The DASH client also needs to pre-buffer
enough media content to overcome short-term connectivity issues (e.g., in wireless
environments). Meanwhile the DASH client needs to also provide consistent media
quality, i.e., not fluctuate between different media representations too often, because
switching media quality too often or by too much affects the user experience [31].
More importantly, for a DASH congestion control algorithm to be safe to deploy, it
should be able to work with the existing network infrastructure (e.g., caches, CDNs,
etc). Currently, content delivery networks (CDNs) are extensively used for delivering
media content for both video on demand and live streaming services. CDNs store
content at various locations globally, and direct client requests to the appropriate
server in an attempt to minimize delay in acquiring the media content, and also
to avoid overloading the media servers (by load balancing). However, due to the
availability of multiple representations of the same video, the CDNs may behave like
caches, i.e., add and remove content based on various eviction policies. Consequently,
the cache may contain multiple representation of the same content, but more impor-
tantly these representations may be incomplete. This creates a new challenge for the
DASH congestion control, because the DASH client receives media data either from
a nearby cache or from a cache further away, hence the client observes varying RTT
estimates. Typically, losses and variation in RTT causes the underlying TCP to
become unstable and reduce the sending rate, finally, causing the DASH congestion
control algorithm to inadvertently switch representations at short time scales [22],
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which would affect the user-experience.

The vital challenge posed by CDNs proxy caches on DASH is addressed by Liu
et al. [19]. As Liu put, “Due to the fact that proxy-driven proxy cache management
and the client-driven streaming solution of DASH are two independent processes,
some difficulties and challenges arise in media data management at the proxy cache
and rate adaptation at the DASH client”. Liu, in his research, mentioned how a
incompletely cached DASH content can affect the performance of a DASH client.
According to him, “a DASH client may dynamically request different segments from
different representations” of the media clip. As a result “segments from multiple
representations may be cached by a caching proxy, and the cached segments for
each cached representation are likely to form an incomplete representation”. “A
consequence of caching incomplete representation is variation in Segment Fetch Time
(SFT) observed by the client”. The variation in SFT, which is caused by discontinuous
cache hits, can be interpreted by the client as congestion or throughput changes,
which in turn causes the client rate adaptation algorithm to switch the representation
level (media quality) frequently. Put in another way, due to the incomplete cached
representations at the proxy caches, the client can inaccurate estimate the network
throughput and performs premature representation switching frequently, resulting in
media quality fluctuation and poor watching experience. “Furthermore, requesting a
high-bitrate encoded segment upon observing a short Segment Fetch Time that is
due to the fetching of cached segments may result in buffer draining”.

In response to these issues, Liu proposed a DASH implementation where the DASH
client co-operates with the proxy caches to optimize pre-fetching media content.
However, there is explicit signaling between the caches and client, which are meant
as a proposal to extend the DASH protocol. The algorithm is relatively complex
and requires the caches to be DASH-aware. This means that the widely deployed
commercial proxies have to implement the extension protocols and then redeployed.

Muller et al. [32] also studied the effects of proxy caches upon the rate adaption
of DASH clients. Under the test scenario in this study, two clients request the
same DASH content from a common proxy cache, which is connected to the HTTP
server. Both clients have their dedicated connections to the proxy and compete for
the bottleneck link from the proxy to the server. An adaptation method involving
exponential back-off and network probe was proposed, in order to solve the problem
of frequent quality switching. Unlike our proposal, this adaptation method uses
probe detection to avoid premature bit rate switching caused by a cache hit whilst
our proposal uses a buffer monitor approach to achieve the same goal.

Similarly, Lee et al. [33] also tried to solve the bit rate oscillations caused by proxy
caches. This proposal, instead of focusing on the client side algorithm, introduced
“an approach to create a video-aware cache server” in the attempt to “shape the
traffic from the cache” .
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Miller et al. [34] proposed an algorithm that is similar to ours, i.e., it is also based
on measuring buffer level and average throughput. However, it varies the segment
sizes depending on the use-case. It uses short segments for serving live content,
and in this case the adaptation is very agile and switches often. Meanwhile uses
long segment sizes for streaming stored content. Conversely, our proposed algorithm
provides consistent media quality even when using small segment sizes.

Apart from the studies on CDN challenges, innovative studies on the develop-
ing Content Centric Network (CCN) are also made, in the hope of improving the
network-wide performance of DASH. For example, Liuet al. [35] did an analysis on
CCN caching and find out DASH can effectively benefit in a CCN. However, CCN
is currently not widely available and stays at an experimental stage. Moreover, for
DASH to utilize CCN the DASH standard has to be extended, since in CCN the
content objects are addressed using different schemes than the one used by traditional
HTTP objects.

4.2 Our Contribution

The main contribution of this thesis work is a DASH congestion control algorithm
that is performant in content delivery networks (CDNs), i.e., in the presence of
multiple levels of caches. Aiming to solve the same challenge addressed by Liu [19],
our proposed algorithm, however, does not require any specific interaction with the
caches, for example to indicate their presence or to exchange a map of cached content.
Compared with the proposal of Liu [19], our proposal is cache-friendly and does not
require any extension to the DASH protocol. Through our test we observe a much
smoother playout of media, with consistent media quality.

Rainer et al. [7] proposed a web integration of MPEG-DASH using JavaScript
and Media Source Extension9. This solution is open source and is named as DASH-
JS [7]. Based on this work, we implement our adaptation algorithm, Gearbox. This
algorithm introduced a new mechanism that bind the adaptation behavior with the
receive buffer level of a DASH client. Moreover, this proposed solution provides a
model that can be easily configured in order to suit different preferences and user
scenarios. Details of the algorithm will be presented and explained in chapter 5.

4.3 DASH-JS and Modeling

Congestion control of a DASH client involves two decisions. One is to decide when
to issue the video segment download, the other is to decide the representation level
of the segment to download. DASH-JS [7] defines the default congestion control, on
which our implementation builds. For convenience purpose we rephrase below the
original implementation of DASH-JS and its system model. Formulas in this section
are extracted from [7] and the DASH-JS source code [36].

9http://w3c.github.io/media-source/

http://w3c.github.io/media-source/
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For a certain DASH content, we denote the set of representations enlisted in its MPD
as R. Within the MPD file each representation in R is given an identity number and
we denote by Ri the representation with the id of i.We denote the average bit rate of
Ri ∈ R by Bi, which is a datum presented in the MPD. Each of the representations
consists of m segments and we denote the segment to fetch by a DASH client by Sn,
where 0 < n ≤ m.

To decide the representation level of a segment,DASH-JS takes these following
operations: First, the network throughput must be measured and evaluated. Every
time the DASH-JS client issues an HTTP request, the system time is recorded,
denoted by Tstart. On receiving the response, the system time is recorded again and
denoted by Tend. Denoting the length in Byte of the response by K, the receiving
rate of the last response is then measured as Bl = K

(Tend−Tstart) . DASH-JS estimate
the current network throughput Bc by calculating an weighted average of Bl and Bc,
with the initial value of Bc set to zero. With the weights set to W1 and W2, we have

Bc = W1Bc +W2Bl

W1 +W2
(1)

Bc is updated every time a response is received by the client. By adjusting the
weights, the throughput estimation can be numbed or sharpened. Secondly, each time
before sending a segment request, the DASH-JS client goes through its adaptation
algorithm to decide the representation for the next segment. That is, to decide Ri

for Sn. To do this, DASH-JS checks each Ri ∈ R and compares its corresponding Bi

with Bc. Ri is then selected based on the comparison results. On deciding Ri for
Sn, DASH-Js send the HTTP request based on the URL of Sn under representation Ri.

To decide when to issue the video segment download, DASH-JS takes these fol-
lowing operations: On starting DASH-JS client downloads the video segments (I)
consecutively and in chronological order (II)in serial, meaning no subsequent request
will be sent before the last response is received. The fetched segments are stored
in a receive buffer, originally referred to as overlay buffer in paper [7], whose size
in seconds is denoted as η. We denote the current level of this receive buffer as
ηc. As long as ηc reaches a low water mark, denoted as ηlow, DASH-Js triggers
the video playback. Then the buffer is drained periodically as the video plays. At
the meantime, the DASH-Js client continues to fill up the buffer by downloading
subsequent segments. Once the buffer is full, DASH-JS pauses the download. When
the buffer is drained to reach a high water mark denoted as ηhigh, the download will
be triggered again.

In the original DASH-JS, both ηlow and ηhigh are set to be the same which gives
0 < ηlow = ηhigh < η. The representation selection, which is decided by the adapta-
tion algorithm, is solely based on the comparison of Bi and Bc.

There is a bug in the original implementation.After the receive buffer is filled to
reach ηlow, DASH-JS drains it by one segment at a time to feed the internal Source-
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Buffer [37] of media source extension (MSE) [38]. A hidden bug in this feeding loop
can possibly cause a jamming playback, which results in failures in our test of the
original algorithm. This will be emphasized where needed in the evaluation part of
our paper.

4.4 Summary of Challenges and our Contribution

With various chanllenging problems of DASH studied and solved by researchers, one
vital problem still remaining is how the rate adaptation of DASH can effectively
make use of the existing CDNs without being affected by the incomplete cached
representations. Constructing a new signaling mechanism between the DASH client
and CDN caches, as proposed by Liu [19], can effectively solve the problem but
it is very costly in terms of deployment. Aiming to solve this incomplete-cached-
representations problem addressed by Liu [19], our proposal ensures that a DASH
client can provide satisfactory performance and user experience without having to
exchange extra signaling messages with CDN caches. In this way, the intelligence
of a DASH system is solely located at the client side and DASH can be smoothly
deployed without having to alter the conventional communication protocols used by
the existing network infrastructures.



33

5 Implementation
In this chapter details of the proposed algorithm are presented. Its design philosophies
and working mechanisms are explained. The modeling of the Gearbox operation is
also presented to explain and facilitate the parameter configuration of the algorithm.

5.1 Gearbox Algorithm

5.1.1 Design philosophies

We made two major changes on the original DASH-JS to improve the performance.
One change concerns the receive buffer watermarks, which are set to trigger playback
and buffer refilling. The other concerns the adaptation algorithm, which decides the
representation selection (rate adaptation) behavior.

We lower ηlow to make sure the playback starts quicker. We raise ηhigh to make down-
loading more active so that a higher buffer level can be maintained, leaving the DASH
client bigger margin to act upon possible network fluctuations. The original DASH-JS
set the buffer size η to be 30 s and the sole water mark is set to be 20 s. In our
implementation, we set η to 40 s and we set ηlow and ηhigh to 10 s and 35 s respectively.

To imporve the performance of the original DASH-JS, we put our main focus on alter-
ing the adaptation algorithm. Since the original algorithm performs rate adaptation
solely based on the observed network bandwidth, it can result in poor performance
under multiple scenarios, including the scenario of incompletely cached DASH content
in a proxy cache [22] and scenarios where network bandwidth fluctuates badly. The
rate adaptation challenges posed by these scenarios are detailed in section 4.1.4.
Performance problems of the original algorithm under these two scenarios mainly
involves premature decisions of representation switching and high possibility of buffer
underflow. Both these problems, namely frequent representation switching and high
buffer underflow counts, can affect user experience badly.

To solve the these problems, we have introduced a new mechanism to the adaptation
algorithm so that buffer level is taken into consideration when performing repre-
sentation switching. The aim is to optimize the user experience in the mentioned
scenarios. There are three major goals to achieve: i) reducing representation switch-
ing frequency. This prevents users from experiencing frequent fluctuation in video
quality. Moreover, less representation switching means a proxy cache is more likely
to cache a relatively complete representation, which may in turn benefit cache hit
ratio of subsequent DASH clients who request the same video ii) avoiding buffer
underflows and the resulting pauses of the video playback. iii) When buffer level is at
reasonable level, maximizing the video bit rate so that users could enjoy higher quality.

Equation 1 shows that the bandwidth estimation takes history bandwidth into
consideration and calculates a weighted average. Consequently, the bandwidth
estimation behavior can be adjusted through changing the weights of Bl and Bc.
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Adjusting the weights can affect the rate adaptation but we keep the original set up
to make a good balance between adaptation agility and video quality stability.

Another thing worth addressing is that the characteristics of TCP transmission
is not particularly taken into consideration in this algorithm design. This is based
on the understanding, as put in [30], that TCP and DASH client congestion control
operate at different protocol levels and at significantly different time scales.

5.1.2 The mechanism of Gearbox in brief

We name our adaptation Algorithm as Gearbox. As shown in figure 11, Gear-
box divides the receive buffer into multiple sections, with each section overlapped
with the adjacent ones. Each section is called a Gear and denoted as g. The col-
lection of all Gears is denoted as G. Each Gear g ∈ G has a lower and upper
boundary denoted as βlg and βug respectively, where each boundary represents a

Gear Gear boundaries Bitrate Threshold Threshold of
Position (BufferLevel in %) Bg BufferLevel Change

g=1 [βl1, βu1] = [0 , 25] Bc × ρ−2 ∆1 = 0× τ
g=2 [βl2, βu2]=[15 , 40] Bc × ρ−1 ∆2 = 1× τ
g=3 [βl3, βu3]=[30 , 75] Bc × ρ0 ∆3 = (Cn− 1)× τ
g=4 [βl4, βu4]=[55, 100] Bc × ρ1 ∆4 = (Cn+ 1)× τ

Table 1: Default Gearbox configuration with four Gears(Cn=3 for all Gear)

Receive Buffer_(100%)

Gear 1 

Gear 2

Gear 3 

Gear 4

ηlow

10 %

10 %

ηhigh

0  – 25%

15% - 40%

30% - 75%

55% - 100%

20% 

|∆η|<∆3∆η>∆1

|∆η|<∆2

∆η>-∆4

Figure 11: Diagram of Gearbox with the default four Gears
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buffer level in percentage. For g = 1, the Gear boundaries are denoted as βl1 and
βu1 respectively. When the buffer level reaches the upper or lower boundary of a
certain Gear, the value of g is incremented or decremented by 1, which we refer
to as a shift up or shift down. Gearbox can be configured to have an arbitrary
number of Gears but by default we configure Gearbox to have four Gears in total.

Specifically in our default setting, βl1 and βu1 are set to be 0% and 25%, respectively;
βl2 and βu2 are set to be 15% and 40%. Assuming the buffer is being filled from
empty and the value of g is initially set to 1. When buffer level goes up to 25 percent,
a shift up is performed and the value of g is then set to 2. If the buffer shrinks to
less than 15 percent, a shift down is triggered and g is reset to 1.

Under each Gear, we employ a unique representation switching policy (RSP). Under a
low Gear, we perform a representation selection that prioritizes buffer filling speed in
order to avoid buffer underflows. Under a high Gear, the representation switching pol-
icy is set to be aggressive in order to maximize bandwidth usage and the video quality.

A gear specific RSP includes a 2-tuple set {Bg,∆g} where Bg is the threshold
for the video bit rate and ∆g the threshold for the buffer changing rate. Bg equals
to Bc , the current TCP receive rate , multiplied by a coefficient; ∆g is a multiple of
the Dash segment length. Both Bg and ∆g are configurable parameters.

To decide the coefficient required to calculate Bg Gearbox takes into data from
the downloaded MPD file. By extracting each Bi of Ri ∈ R, Gearbox calculates the
bit rate ratios of all adjacent representations and average them to get the ratio ρ.
Gearbox then takes ρ to initializes Bg for all gears. Specifically, Bg is calculated by
multiplying Bc and a power of ρ. For example. At Gear 1 where g = 1, Bg = Bc×ρ−2.
At Gear 2, Bg = Bc × ρ−1;

∆g is configured based on our modeling of Gearbox, which is presented in section 5.1.5.

Gearbox triggers a representation switch under two conditions. One is a gear
shift and the other is the dramatic change in buffer level. Right after shifting to
a new gear, representation switch is performed and a new representation is chosen
based on Bg of the new gear position. When the buffer is within a Gear boundaries
and no gear shift happens, a buffer level changing rate that exceeds ∆g also triggers
the representation switch, which is the same as the representation switch operation
taken after a gear change.

The Gearbox mechanism is analogous to the gear change of a car. The buffer
level resembles the car speed and the gear boundaries resembles the lower and upper
speed limits of a certain gear. Bc resembles the driving power while the chosen Bi

resembles the overall resistance. At low gear, limited by Bg the chosen Bi is small
and this gives the video downloading bigger acceleration, meaning the buffer level
would go up quickly. At high gear, the big value of Bg unleashes the maximum
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resistance Bi. As a result, the buffer level builds up much slower or even shrinks. In
a car, adjacent gears have overlapped speed ranges which serve as a margin for the
driver to gear up or gear down. The bigger the margin, the lesser the driver needs
to switch between the two gears. In the case of Gearbox algorithm, we also have
each Gear’s buffer range overlapped with adjacent ones. If there were no overlapped
margin, a buffer level that constantly swings across a Gear boundary would force
Gearbox to switch representation constantly.

5.1.3 Gearbox Operation

The algorithm detail is shown in algorithm 1a. It is also illustrated in flowchart 12.One
thing worth reiterating is that algorithm 1a only demonstrates Gearbox with four
Gears, more Gears can be easily implemented by extending the code. The details of
the Gearbox operation are explained in the following text:

Each time before requesting a segment, Dash would go through Gearbox to de-
cide the representation for that segment. First Gearbox checks the buffer level and
decides if a gear shift shall be performed. If a gear boundary is reached, the gear is
then shifted, which in turn triggers the representation switching. To switch to new
representation, Gearbox compares every Bi of Ri ∈ R with Bg of the current Gear
and chose Ri for Sn. If no gear change is performed, gearbox periodically monitors
the buffer level and triggers the representation switching if the buffer level is changing
too quickly.

Details of how the representation switching is triggered by a buffer-level-change
are described as follow: DASH-JS downloads segments consecutively and in serial,
which means there is no pipelining in the download A.1. During the download
process, the change of buffer level is periodically checked when the Gear position
remains unchanged for a succession of downloads. We define a macro CYCLE as
the reevaluation cycle of the buffer level. A variable named as COUNTER, would
increments every time Gearbox runs. During the successive downloads, if COUNTER
reaches CYCLE before a gear change is performed, the latest buffer level is compared
against the buffer level of the last time when COUNTER=0. COUNTER is reset to
0 either after its value reaches CYCLE or when a gear-shift is performed.

We denote the latest buffer level, in seconds, as ηn and the buffer level of last
COUNTER=0 occurrence as η0. Thus ∆ = (ηn − η0) can reflect the changing rate
of buffer level . The threshold of buffer level change within a reevaluation cycle
is denoted as ∆g. ∆g is set up for each g ∈ G. If there is no Gear change in
CYCLE consecutive downloads, Gearbox would compares ∆ with ∆g to see if the
buffer is shrinking or filling up at a dramatic speed. If positive, Gearbox calls for
representation switch to select the proper representation based on Bg .

In algorithm 1a, we name the video segment duration, which is in seconds, as
τ . Specifically, we set CYCLE to 3. And we set the ∆g values where ∆1 = 0,
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Main-algorithm 1a SelectRepresentation
1: Input : β, ηn, {Ri|Ri ∈ R}, Bc, Ri(t) Output : Ri(t)+1
2: function SelectRepresentation
3: . set the default Representation to be the same as the previous choice
4: Ri(t)+1 := Ri(t);
5: . apply gear specific actions
6: if g = 1 then
7: if GearchangeF lag = True then
8: Evaluates Representation();
9: GearchangeF lag := False; COUNTER : = CYCLE;
10: else if COUNTER=CYCLE then
11: if (ηn − η0) < ∆1 then . Check buffer change level
12: Ri(t) + 1 := Ri(low); . evaluate Representation if needed
13: end if
14: end if
15: if β >= βu1 then . Check buffer and change Gear
16: g := 2; GearchangeF lag := True;
17: end if
18: else if g = 2 then
19: if GearchangeF lag = True then
20: Evaluates Representation();
21: GearchangeF lag := False; COUNTER : = CYCLE;
22: else if COUNTER=CYCLE then
23: if (ηn − η0) < −∆2 then
24: Evaluates Representation();
25: end if
26: end if
27: if β >= βu2 then
28: g := 3; GearchangeF lag := True;
29: end if
30: if β <= βl2 then
31: g := 1; GearchangeF lag := True;
32: end if
33: else if g = 3 then
34: if GearchangeF lag = True then
35: Evaluates Representation();
36: GearchangeF lag := False; COUNTER : = CYCLE;
37: else if COUNTER=CYCLE then
38: if (ηn − η0) < −∆3 ∨ (ηn − η0) > ∆3 then
39: Evaluates Representation();
40: end if
41: end if
42: if β >= βu3 then
43: g := 4; GearchangeF lag := True;
44: end if
45: if β <= βl3 then
46: g := 2; GearchangeF lag := True;
47: end if
48: else if g = 4 then
49: if GearchangeF lag = True then
50: Evaluates Representation();
51: GearchangeF lag := False; COUNTER : = CYCLE;
52: else if COUNTER=CYCLE then
53: if (ηn − η0) < −∆4 then
54: Evaluates Representation();
55: end if
56: end if
57: if β <= βl4 then
58: g := 3; GearchangeF lag := True;
59: end if
60: end if
61: . reset counter and bufferlevel recorder
62: if COUNTER=CYCLE then
63: COUNTER:=0;
64: η0 := ηn;
65: end if
66: . increment COUNTER each time Gearbox runs
67: COUNTER+=1;
68: end function
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Sub-algorithm 1b Evaluates Representation
1: function Evaluates Representation
2: Ri(t) + 1 := Ri(low);
3: while Ri IN R do
4: if Bi < Bg then . Bg is gear specific
5: Ri(t) + 1 := Ri;
6: end if
7: end while
8: end function
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∆2 = 1 × τ , ∆3 = (Cn − 1) × τ , ∆4 = (Cn + 1) × τ . The CYCLE macro and
∆g together with other adjustable parameters are configured to achieve a desirable
behavior of Gearbox. These parameters are shown in Table 1. How these parameters
are configured is a preference issue and the modeling and analysis of the Gearbox
configuration is shown in section 5.1.5 and 6.4

The Gearbox Algorithm instance is initialized when DASH-JS is loaded. The
variables initialized are shown below: g := 1; η0 := 0; GearChangeFlag : = True;
COUNTER : = CYCLE;

To operate, the algorithm takes in several parameters: i) the current buffer level,
in percentage, denoted as β; ii) the current buffer level in seconds ηn; iii) the cur-
rent estimated network bandwidth Bc ; iv)the average representations bit rate ratio ρ.

Assuming the algorithm is invoked at time t, right after the last segment Sn(t)is
received. The Ri Gearbox will chose for the next segment to fetch Sn(t)+1 + 1 is
the algorithm output and is denoted by Ri(t)+1; the latest downloaded segment’s
Ri is denoted by Ri(t). we denote the Ri with lowest bitrate Bi by Ri(low). And for
all Ri ∈ R and Ri+1 ∈ R, we have Bi < Bi+1 . Given these settings and variables
naming, the algorithm itself is presented as in algorithm 1a and is illustrated in
flowchart 12.

5.1.4 Gearbox behavior under each gear

Under Gear 1, we start the segment download by choosing the representation whose
bit rate is two levels lower than the one that most closely match the available band-
width. This ensures the buffer level be filled up quickly and the playback start quickly.
When under Gear 1, if the buffer level decreases, that is (ηn − η0) < ∆1(∆1 = 0),
Gearbox would directly choose the lowest representation, which helps reduce the
possibility of buffer under run. Aiming to avoid buffer starvation, the Gear 1 policy
does not necessarily choose the worst video quality since the initial representation
switching would not blindly choose the lowest representation.

Under Gear 2, the policy is specified based on the same principle as under Gear 1,
only more tolerant. By raising the bitrate threshold and the threshold of buffer-level-
change-rate, under Gear 2, the adaptation would allow the buffer to fill up slower.
Slow shirking of the buffer level is also tolerated.

Under Gear 3, bit rate of the chosen representation is close to the estimated band-
width. The buffer level changing is monitored to avoid both drastic shrinking and
filling rate. If no dramatic buffer level changing is happening under Gear 3, the
chosen representation would stay the same for subsequent segments downloads. The
range of Gear 3 covers 45 percent of the buffer length, making it the major Gear
position.
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When the network bandwidth is stable and sufficient, DASH-JS would fill the buffer
to reach Gear 4. Under Gear 4, the RSP is prioritized to choosing higher video
quality. By setting Bg = Bc × ρ1, the bit rate of the chosen representation would be
only one level higher than the representations that matches the estimated Bandwidth
Bc. This ensures the buffer level will not shrink too quickly. In our case, Gearbox
is configured to handle 1s and 2s segments. With the buffer size set to 40 s, the
20 percent overlapped buffer margin between Gear 3 and Gear 4 would give us 8 s
of buffer. In our test, this margin gives at least over 10 s of playback, meaning
even though the representation bit rate is higher than the available bandwidth,
the playback can sustain for over 10 seconds before Gearbox performs a gear down
operation and switch to a representation with lower bit rate.

The benefit of our design is that the buffer level changing threshold and the reevalu-
ation cycle (in seconds) is actually the function of segment size. It is obvious that
the buffer size is supposed to be proportional to the segment size to make sure an
adaptation algorithm would have enough time to respond to bandwidth fluctuation.
In light of this, for bigger segment size, such as 4 s and 10 s, we recommend to
reconfigure the buffer size η, to make sense of the Gearbox’s margin setting. Another
thing worth mentioning is that when buffer level is found changing too quickly, either
shrinking or filling up, Gearbox do not simply chose a lower or higher representation,
instead it reevaluate the representation level by comparing Bi with Bc under the
Gear-bound RSPs. This is based on the understanding that network throughput is
memoryless. We prefer to reevaluate the representation based on current bandwidth
estimation. Besides, since the bandwidth estimation mechanism of DASH-JS reflects
historical network condition (referring to equation 1), reevaluation based on Bc does
not disregard the average value of bandwidth completely.

5.1.5 Gearbox Modeling

There are two important parameters in Gearbox configuration and they are the
reference bitrate ratio ρ, which decides the video bitrate threshold for each gear,
and the buffer-level-change threshold ∆g respectively. (Check Table 1 for the specifics)

Here we provide the Gearbox modeling that help optimize the two parameters.
Gearbox aims to maintain the buffer level at reasonable level. We denote by η
the buffer level in seconds. Given that the Dash client is downloading segments
continuously and the request time is negligible, when the chosen representation bit
rate is Bi Mbit/s and the current bandwidth (TCP throughput) is Bc Mbit/s it is
obvious that the buffer is drained of Bi Mbit/s and filled up of Bc Mbit/s. During
time ∆t, the amount of data filled in the buffer is (Bc −Bi) ∗∆t, which is also equal
to Bi ∗∆η. Then the buffer level changing rate can be expressed as

∆η
∆t = (Bc −Bi)

Bi

(2)

Since Bi is chosen based on the threshold Bg, which is gear specific, the value of
Bi is no bigger than Bg. According to table 1, at Gear 2 (g = 2), for instance,
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where Bg = Bc ∗ ρ−1, Bi is then no larger than Bc/ρ. Assuming Bi ≈ Bc/ρ exists in
the available representations, then at gear 2 the chosen Bi ≈ Bc/ρ and we have ∆η

∆t
= (Bc−Bi)

Bi
≈ ρ− 1.Under this condition, the buffer level is being filled up by ρ− 1

seconds per second. Similarly, we make an optimistic assumption that, at each gear,
there exists a representation whose bit rate approximates the gear specific Bg. Then
we can conclude the following equations:

∆η
∆t ≈ ρ2 − 1; (g = 1)

≈ ρ− 1; (g = 2)
≈ 0; (g = 3)

≈ 1− ρ
ρ

; (g = 4)

(3)

In our Gearbox configuration, since ρ is determined by calculating the average
ratio of adjacent representations, the buffer changing rate would depend on the
representations available in the MPD file. Under our test Dash content, the average
ratio ρ is 1.23. At this, ∆η

∆t ≈ 0.5 at gear 1, ∆η
∆t ≈ 0.23 at gear 2 and ∆η

∆t ≈ −0.18 at
gear 4. Based on the prospective value of ∆η

∆t we can calculate how long the playback
duration can be provided by a gear margin. For instance, gear 3 and gear 4 have
an overlap margin of 20%. As the buffer size is 40 seconds in our configuration, the
margin provides 8 seconds of data. At gear 4,under the most optimistic condition,
the buffer shrinks at a rate of 0.19 second per second, then the 8 seconds margin can
sustain 44(= 8/0.18) seconds of video playback. In other words, the margin ensures
that no gear shift and representation switching would happen during 44 seconds of
playback, under optimum conditions. Conversely, we can decide how the margin is
configured based on the prospective dη/dt under each gear. The margin can be config-
ured to be absolute value or a percentage, making it adaptable to different preferences.

The logic of calculating ρ based on the MPD is that the dynamically calculated ρ
can ensure that a Gear-shift-up or shift-down would only switch up or switch down
the representation level by 1. Gear 3 is configured to cover 45% percent of the buffer
so that the bit rate of the chosen representation can be closest to the actual observed
TCP bandwidth most of the time during playback. We refer to the bit rate of the
representation chosen by Gear 3 as the “matching-bit-rate”. When the buffer level
is out of the Gear 3 range, Gearbox would then allow to choose representations
with lower or higher bit rates, relative to the “matching-bit-rate” and the observed
bandwidth.

One thing worth mentioning is that calculating ρ based on MPD could sometimes
cause unwanted effects, such as the rapid buffer level shrinking at gear 4, if the bit
rate differences among available representations were too big. To deal with such
extreme cases, one possible solution could be to set a default value for ρ. By collecting
a big number of MPD files and doing statistic analyses, the typical bit rate ratio
between adjacent representations can be found. Then the algorithm can use this
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Figure 13: buffer level changes over time

typical bit rate ratio as the default value of ρ. By setting a threshold value for ρ
, the algorithm can use the default value of ρ instead of the calculated one, if the
calculated value of ρ based on a specific MPD breaches the threshold.

Another configurable parameter is ∆g, the threshold for the buffer change
every CYCLE. Since the receive buffer is drained or filled by 1 segment each time,
the possible value of buffer level change can only be discrete, which is the multiple
of segment duration τ . Figure 13 illustrates this process. Assuming at time t = t0,
Dash issues the request for the next segment and the buffer level in seconds is η0. At
time t = t1, the segment response is received and the buffer level is then η1. During
time [t0, t1] the dash client would drain the buffer by j ∗ τ where j ∈ Z+, and the
received segment fills the buffer by τ . We denote the buffer level of t = t1 by η1 then
we have η1 − η0 = (1− j)τ ; (j ∈ Z+). Assuming from t = t0 till t = tn, Cn segments
(the value of CYCLE) have been requested and received and j segments is drained
from the buffer, then we have

ηn − η0 = (Cn− j)τ ; (j ∈ Z+) (4)

The threshold ∆g for ηn − η0 can be set based on equation 4, to decide the tolerance
of buffer level change at each re-evaluation cycle, represented by the macro CYCLE.

Due to the fact that Dash-js issues segment requests one by one, in a non-preemptive
fashion, the buffer level is only monitored after a segment download is finished. Gear-
box is set to monitor the buffer level after every Cn downloads, thus the monitored
buffer level change can reflect dη/dt over the time period of [t0, tn]. When both
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sides of equation 4 are divied by (tn − t0), we get (ηn−η0)
(tn−t0) = ∆η

∆t = (Cn−j)τ
(tn−t0) . During

(tn − t0), j segments have been drained from the buffer, and the playback time of
these j segments is j ∗ τ . Then roughly we have (tn − t0) ≈ j ∗ τ , assuming the
playback has not been interrupted. Then we conclude that

∆η
∆t ≈

(Cn− j)
j

; (j ∈ Z+) (5)

Combining equation 2 and 5 we have

∆η
∆t ≈

(Cn− j)
j

≈ (Bc −Bi)
Bi

; (j ∈ Z+) (6)

Given Cn is set to 3 (refer to table 1), based on equation 6 and equation 3, a
desirable value of j can be chosen for each Gear so that the Gear-related threshold
∆g can then be decided. This threshold would determine the tolerance of buffer
change rate under each gear. A rate that exceeds it would trigger a reevaluation of
the representation level.

5.2 Summary of Gearbox implementation

This chapter presented the design principles and the details of the Gearbox rate
adaptation algorithm. For the simplicity of reading, no actual Javascript code is
presented and explained. Instead, this chapter provides the algorithm logic, the
flowchart and some illustrative graphs to help readers understand why and how
Gearbox is designed. For more technical details and the source code, please check
the attached information in the Appendix section A.5.

Gearbox is an innovative rate adaptation algorithm that aims to improve the perfor-
mance of the DASH client in CDN networks, where edge servers commonly caches
HTTP objects. Gearbox provides a simple mechanism that bind the rate adaptation
behavior with the fill-level of the client receiving buffer. By binding different represen-
tation switching policies (RSPs) to different ranges of the receiving buffer, Gearbox
is able to perform rate adaptation with carefully designed priorities. When the buffer
fill-level is low, Gearbox can prioritize to avoid buffer underflow. Whereas when
the buffer fill-level is high, Gearbox prioritizes to fully utilize the network capacity
and to increase the video quality. Apart from this design of intelligently choose rate
adaptation priorities, Gearbox also implements our idea of re-evaluation cycle, which
can help effectively avoid the premature decisions of representation switching upon
short term network throughput fluctuations.

Gearbox is also configurable and flexible. It can be configured to use different
numbers of Gears to suit different adaptation preferences. Optimization tests on
the Gearbox configuration are conducted in chapter 6, to demonstrate how Gearbox
would behave under different configurations. More importantly, the performances of
Gearbox under different network environments and cache conditions are also tested
in chapter 6.
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6 Performance Evaluation
In this chapter, the proposed algorithm is tested against the baseline rate adaptation
algorithm of the original DASH-JS. These tests aim to reveal how DASH-JS per-
forms under different network conditions and user scenarios. Based on the results,
we attempt to shed some light on how the adaptation algorithm of a DASH client
shall be designed in order to avoid unwanted behaviors under more realistic network
environments, such as a network involving CDN caches.

Apart from the multiple tests that help evaluate the performance of both algo-
rithms, an optimization test of the Gearbox algorithm is also conducted. Results of
the optimization test not only show the effectiveness of our parameter configuration
of Gearbox but also demonstrate how Gearbox can be freely configured to better
serve different users and needs, such as mobile users and the need of live streaming.

6.1 Evaluation method

Both the Gearbox algorithm and the original DASH-JS algorithm will be evaluated
based on multiple tests. These performance tests include basic tests without caching
and more complex tests with proxy caches enabled. By testing both algorithms
under multiple settings, we try to find out how the different network impairments
and user scenarios can affect the performance of DASH. We also try to identify how
an adaptation algorithm can better suit a DASH streaming network where proxy
caches are involved.

The testing DASH content [8] is available in different segment-duration versions,
with each version including multiple representations that contain video segments of
the same duration in seconds. Among the available segment durations, which include
1 second, 2 seconds, 4 seconds, 6 seconds and 10 seconds, we specifically choose the
segment duration of 1 second for our tests, since the shortest segment duration means
the biggest number of segments, which would naturally create the worst condition of
incomplete cached representation [22]. The shortest segment duration also means the
client rate adaptation would operate most frequently, which can help better expose
the potential problems of the tested algorithms. Tests of other segment durations
may be conducted in future works.

6.2 Testbed Setup

The test bed includes a server machine and two cascaded proxy machines, together
with several endpoint machines that run the clients. The server runs Apache 2.24 and
serves the DASH content dataset [8] as well as the DASH-JS files (javascripts). Both
cascaded proxy machines run squid310 and are configured to be forward proxies. The
client machines use Google-chrome 35.0.1916.153 as the DASH client. Dummynet [39]
is used to create the variation in link capacity, latency, and packet loss. The topology

10http://www.squid-cache.org/

http://www.squid-cache.org/
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Figure 14: Poisson Arrival Patterns applied to client instances in our tests.

of the test bed is found in figure 27

The video stream “Of Forest and Men” is used in all tests [8]. The movie clip
is of 7 minutes and 33 s in duration and the chosen segment duration is 1 s [25].
The tested video resolution is 1280×720. 9 different representations are available
for this resolution and the average bit rate of the 9 representations are 900Kbps,
1100Kbps, 1400Kbps, 1700Kbps, 2000Kbps, 2500Kbps, 3000Kbps, 4000Kbps, and
5000Kbps respectively. In our test, only the relatively high resolution of 1280×720
is used and the rate adaptation only choose from the 9 different represents under
the same 1280×720 resolution. By doing this we eliminate the very low bit rate
representations under low resolutions, in order to create more challenging conditions
for the adaptation algorithm. The poor selection of low bit rate representations would
increase the possibility of buffer underflow occurrences, providing more interesting
results for later analyses. In our tests, the media clients either all start at the same
time or request media modeled by a Poisson arrival pattern. The Poisson arrival
patterns used in our tests are shown in figure 14.

All emulation results are collected through our added functions in DASH-JS. In
all tests, we record the real time bandwidth estimated by the client and the chosen
representation for each segment. We also record the real time buffer level of the
DASH-JS “Overlay Buffer” [36], since Media Source Extension does not provide an
API for accessing the real-time-level of its internal media player buffer. The real time
Gear positions are also recorded when Gearbox is the active algorithm. When proxy
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Figure 15: Testbed Setup for Microbenchmarks

caches are enabled, we also collect cache hit information from the HTTP response
headers, through our DASH-JS functionalities.

6.3 Microbenchmark

In this section, we test the basic behavior and performance of DASH-JS under a
varying bandwidth. By conducting this Microbenchmark we aims to find out how
DASH reacts on the network impairments such as delay and packet loss. In DASH
the HTTP requests are not pipelined, as a result there can hardly be any queuing
problems. Thus no test on different queue sizes is conducted. Dummynet is employed
to create the variations of the link bandwidth. The queue size is set to Dummynet’s
default, which is 50 slots. Both the original algorithm and Gearbox are put into test.
As Figure 15 shows, a client is directly connected to the server and the proxy caches
mentioned in section 6.2 and figure 27 are bypassed in the Microbenchmark tests.
The HTTP cache control header is set to “no-cache” and this disables caching in the
client browser. We configures DASH-JS at the server before each emulation round,
to activate different adaptation algorithms, namely the baseline algorithm in the
original DASH-JS and Gearbox in our modified version. After the client browser has
acquired DASH-JS, the browser based DASH client is initialized and the emulation
begins.

As Figure 16 shows, in all following Microbenchmark tests the link bandwidth
is set to vary over time and the timing of bandwidth change follows a Poisson arrival
pattern. This timing of bandwidth change intends to create a phantom competition
situation where other “virtual clients” arriving in a Poisson pattern compete for band-
width. However, the link bandwidth settings are random and does not necessarily
mimic any realistic scenarios. The average interval of the Poisson pattern is 20 s
(λ = 20s), and the bandwidth value varies from 800Kbps to 4800Kbps. Delay and
packet loss rate are set to be constant values per test. By creating a dramatically
fluctuating link bandwidth, we intend to put certain degree of pressure on the tested
adaptation algorithms.
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Figure 16: The link bandwidth applies to all microbenchmark tests. A python script
is used to automate the link setting. The timing of bandwidth switching follows the
Poisson arrival pattern shown in figure 14 and the average interval is 20 seconds.

6.3.1 Sample run

Figure 17 shows the sample download-time plots of both Gearbox and Baseline,
under the link bandwidth shown in figure 16, with 100ms delay. The packet loss rate
is set to zero during this sample test run.

In figure 17, we can see that under the same link condition, Gearbox performs
representation switching less frequently. There is no buffer underflow occurrence
and the buffer level is maintained at around the 60 percent level. In contrast, the
Baseline algorithm performs representation switching more often and is very sensitive
to network fluctuation. The buffer encounters underflow several times, resulting in
certain playback pauses. Consulting the download time line, we find that Gearbox
took approximately 7 minutes, which is slightly shorter than the video length, to
download all video content. The Baseline algorithm, however, took about 20 s longer
to finish the download.

Under the same varying link bandwidth (figure 16), we then introduce different
delay values and multiple packet loss rates to further test the performance of both
algorithms.
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Link delay Gearbox Underflow Baseline Underflow
(plr=0) SwitchCount Count[Duration] SwitchCount Count[Duration]
10ms 15 0 [0s] 75 4 [19.3s]
50ms 19 0 [0s] 88 3 [16.7s]
100ms 14 0 [0s] 92 3 [16.1s]
150ms 8 0 [0s] 100 1 [3.20s]
250ms 2 0 [0s] 189 4 [24.4s]

Table 2: Performances of both algorithms under different delays

6.3.2 Delay test

We first introduce delay of 10ms, 50ms, 100ms, 150ms, and 250ms respectively in
each test round, with packet loss rate set to zero. Results of delay tests are summed
up in table 2, figure 18 and figure 19.

In table 2 we find that switching count of Gearbox decreases as delay increases. The
baseline algorithm, on the contrary, switching representation more frequently as
delay increases. Gearbox performs well in that it prevents buffer underflow under
all delay settings, whereas the baseline algorithm causes buffer underflow under all
settings. We can also observe that the representation switching frequency of Gearbox
is significantly lower than the baseline algorithm.

Figure 18 shows the buffer level CDF under different delay. For both algorithms,
bigger delay causes lower average buffer level. However, Gearbox is able to main-
tain the buffer level in the range of 40 percent to 70 percent during most time
of the playback duration. In the case of Baseline, the buffer level is mostly un-
der 20 percent, meaning it is not utilizing the Overlay Buffer well enough, making
the client vulnerable to possible network congestion and the resulting buffer underflow.

Figure 19 shows the distribution of the video bit rates, which corresponds to dif-
ferent representations, under different delays. Take the plots for 150ms delay for
example. The CDF lines show the baseline algorithm choose more representations
while downloading. In contrast, Gearbox choose less representations and is more
consistent. We can also see that Gearbox offers higher overall video bit rate.By
avoiding choosing representations with lower bit rates, Gearbox is able to narrow
the video bit rate range, providing better user experience. Overall, the figure shows
that for both algorithms, longer delays result in lower average video bit rates. Under
the longest delay of 250ms, the average video bit rate of Gearbox goes below that of
baseline, effectively preventing buffer underflow. From the results we can conclude
that by assigning different adaptation policies to different buffer ranges, the Gearbox
algorithm provides a way to prioritize its adaptation goals. In bad network condi-
tions, when the receive buffer is hard to fill up, Gearbox prioritizes to ensure smooth
playback of the stream. In good network conditions, when the receive buffer fills up
quickly, Gearbox prioritizes to provide better video quality.
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Figure 17: MicroBenchmark: Under the same link condition, the behaviors of Baseline
and Gearbox are compared. The link delay is 100ms in this sample test run
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PLR Gearbox Underflow Baseline Underflow
(delay=50ms) SwitchCount Count[Duration] SwitchCount Count[Duration]
0 19 0[0s] 88 3[16.7s]
0.01 13 0[0s] 182 2[9.40s]
0.02 4 0[0s] 137 0[0.00s]
0.05 0 13[101s] 14 14[95.8s]

Table 3: Performancec of both algorithms under different packet loss rates.

6.3.3 Packet loss rate test

We now introduce packet loss rate (plr) of 0.01, 0.02 and 0.05 all under link delay of
50ms. Results of the plr tests are summed up in table 3, plots 20 and 21.

Table 3 shows Gearbox performs better than baseline under different packet loss rate
settings. Gearbox switches representation less frequently and prevents buffer under-
flow. When plr reaches 5 percent, the TCP congestion control and retransmission
greatly reduce the throughput. Figure 21, which corresponds with table 3, shows that
under the condition of 5 percent packet loss, Gearbox chooses the lowest bit rate at all
time, in the attempt of avoiding buffer underflow. In comparison, baseline algorithm
still switches representation 14 times and resulting in one more buffer underflow count.

Table 3 also reveals that the baseline algorithm, which selects an representation solely
based on the observed bit rate, does not necessarily benefit from better network
conditions. This is deduced from the fact that under plr of 0.02, the actual underflow
count is 0 but surprisingly, better network conditions with lower plr of 0.01 and 0
result in higher underflow counts.

Figure 20 shows that bigger plr values cause lower buffer levels for both algorithms.
Again, Gearbox is able to maintain a reasonable buffer level whereas the baseline
algorithm is unable. Under plr of 5 percent, however, both algorithms perform badly
since the TCP throughput is greatly reduced due to retransmission.

6.3.4 Summary of network impairments impact

From the former tests we can learn that network impairments like delay and packet
loss can decrease the overall bit rate of the streamed video, which is natural since delay
and packet loss can both reduce network throughput. We also learn that the Baseline
algorithm, which does not consider buffer level when performing rate adaptation, can
react poorly on these network impairments, leading to buffer underflows and video bit
rate fluctuations that are possibly avoidable. In contrast, Gearbox takes buffer level
into consideration and uses its Gear-related RSPs (representation switching policy)
to perform rate adaptation, effectively avoiding buffer underflows and unnecessary
video bit rate fluctuations.
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Figure 20: MicroBenchmark: impact of Packet Loss Rate on both algorithms
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Figure 21: MicroBenchmark: impact of Packet Loss Rate to both algorithms
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6.4 GearBox Optimization Tests

In this section, we reconfigure Gearbox with different settings and then test each
configuration, in order to show how Gearbox can be configured freely and how the
various configurations can affect the performance of Gearbox.

6.4.1 Gear Allocation

We first test the performance of Gearbox when it is configured to have different
number of gears (buffer sections). When Gearbox is configured to have more than 4
gears, Bg is set to Bc ∗ ρ2 at gear 5 and Bc ∗ ρ3 at gear 6. ∆g under newly added
gears are also configured accordingly. In this test, we eliminate the margins among
gears and evenly allocate the buffer range to each gear. Under this test, Gearbox
with different gears are named accordingly in the figures. For instance, Gearbox with
only 2 gears configured is denoted by G2, 3 gears by G3, etc. The performance of the
original Gearbox under the same test link settings is also represented. The original
Gearbox is denoted by G4m and it is configured according to table 1 with gear margins.

Figure 22 shows more gears would cause the average buffer level to decrease. Less
gears, however, raise the average buffer level. This is due to the fact that gearbox
only start to choose high bit rate representations at high gears. When there are only
two gears, for example, Gearbox only employs conservative policies. Another fact
is when gearbox is configured to have more gears, the range coverage of each gear
shrinks since the gear coverage is configured to be a percentage of the receive buffer.
Concerning the average buffer level, figure 22 shows 4 gears (buffer sections) is a
balanced choice.

Figure 23 shows G4m performs well. It also shows with margins to avoid fre-
quent gear shift, the representation choice is more evenly distributed. The figure also
shows G4m provides higher quality when packet loss is zero. with packet loss, G4m
also provides acceptable performance.

Figure 24 shows 6 gears would cause too many switches while 2 gears can com-
promise adaptation agility. We can also observe that G4m creates less pikes than
G4 since the margins among buffer sections prevent frequent gear change and the
resulting representation switch.

6.4.2 BufferScaling

The original Gearbox is configured as such that the gear margins are set to be a
percentage of the buffersize. Under the original configuration, we reset the receive
buffer size to different values, aiming to reveal how buffer scaling can affect the
performance of Gearbox.

As shown in figure 25: When the receive buffer is too large, gearbox struggles
to fill the buffer to reach higher gears, since the buffer level is designed to stabilize
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at Gear 3 where the chosen representation most closely match the link bandwidth.
Figure 25 (b) shows too big a buffer size can cause the overall video quality to drop
due to the fact that gearbox is prioritized to choose relatively low representations
before the buffer is filled to a safe level (in percentage). As shown in figure 26, bigger
buffer also causes the download time to be greatly reduced, which is a sign of network
bandwidth not fully utilized. As a solution to these problems, when the receive buffer
is configured to be large, we can reduce the buffer range of lower gears to acquire
better video quality and longer download time.

Figure 26 shows the download time of different buffer size settings. When the
buffer is set to 10 seconds long, the coverage of each gear is then reduced to a
mere 2.5 seconds. This results in more gear changes, leading to more unnecessary
representation switches. Furthermore the buffer is too short to hold enough segments,
which results in an insufficient safety margin for dealing with network fluctuations.
Under this setting, the download time is about 7 minutes and 30 seconds, which is
no shorter than the duration of the tested video. In contrast, when the buffer size
is set to 40 seconds long, the download time is shortened. When buffersize is 120
seconds, Gearbox takes much less time to finish all segments download, which is an
indication of relatively poor bandwidth utilization.

6.4.3 Summary for Gearbox optimization

From the Gear allocation tests we can see that the behavior of Gearbox under different
configurations is well predictable. Too many Gears would cause more representation
switching, affecting the consistency of the video quality. Less Gears, however, would
cause insufficient utilization of the available bandwidth. Even though, under all
settings, Gearbox proves to perform much better than Baseline.

The results of the buffer scaling test demonstrate how buffer length can affect
the rate adaptation. However, Gearbox can always be configured accordingly to fit
certain length of the receive buffer. Such configuration may involve adjusting the
buffer-covering-range of certain Gears.

With the help of these test results, we learn how Gearbox behaves under differ-
ent configurations. It is easy to acquire the desired adaptation characteristics by
reconfiguring Gearbox, to fit certain usage scenarios. For example, in a mobile or
wireless connection environment, it is beneficial to configure Gearbox to have bigger
buffer since the network connection can be lossy and unstable. In live streaming,
however, Gearbox can be configured to have smaller buffer size to acquire a more
agile rate adaptation, ensuring the smoothness of the live-streaming process.
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Figure 22: GearAllocationTest_Gearboxprototype_bufferlevel
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Figure 24: realtime representation switching, under the link delay of 10ms.
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Figure 26: realtime representation switching under different buffer size. Gearbox is
configured to G4m and the link delay is 10ms, the packet loss rate is zero
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6.5 Tests with proxy caches

Under this section, we connect the server and end points through two cascaded
proxies to evaluate the algorithm under a more realistic network involving proxy
caches. Through the following tests, we aim to find out how proxy caches could
affect DASH and how our DASH client adapt to the proxy caches, which are usually
found in CDNs.

6.5.1 Common settings

The topology of the test bed setting in this section is shown in figure 27; The common
settings of all following tests are also listed below:

– The DASH-JS source code is configured to construct the cache control directive
of the HTTP requests to be “public”, so that caches along the chain are allowed
to cache the requested content.

– At the two client end points, Google-chrome is used as the DASH client. Since
Google-chrome has an internal cache which could not be turned off, we installed
a third party application “Cache killer” 11 to facilitate our tests. Cache killer
dumps any data cached by Google Chrome and makes sure no browser cache
would affect our tests on the proxy caches. In this way, the browser cannot
cache any content any more and multiple browser tabs (HTTP client instances)
could only receive content from proxy caches rather than from the browser’s
internal cache.

– As shown in figure 27, link 1 is set to be a static link, with both upstream link
and downstream link set to bandwidth of 20Mbit/s and delay of 75ms. Thus
the RTT is 150ms. link2 is also set to be a static link with both upstream link
and downstream link set to bandwidth of 20Mbit/s and delay of 50ms. Thus
the RTT is 100ms; The two client end points are connected to the level 1 proxy
cache. As shown in figure 27, for both link3 and link4 we set the download
link to 54Mbit/s and the one way delay is 10ms. These link settings create
a bottleneck between the origin server and the edge servers, mimicking the
situation of the CDN network, where the bottlenecks (latency and available
bandwidth) reside in the far end of the network and end point clients must rely
on the cached content from the closest edge server.

– Proxy cache level 1 is set to peer with proxy cache level 2 and cache level 1
cannot directly request content from the server. Both proxies are squid3 cache
proxies and we do not enable cache digest changing in our experiment. All
requests received by P1 will be directed to P2.

– We limit the disk cache space on both P1 and P2 to 400MB, and the memory
cache size is set to be 256 MB on both machines. In all we have a total of

11https://chrome.google.com/webstore/detail/cache-killer/
jpfbieopdmepaolggioebjmedmclkbap?hl=en

https://chrome.google.com/webstore/detail/cache-killer/jpfbieopdmepaolggioebjmedmclkbap?hl=en
https://chrome.google.com/webstore/detail/cache-killer/jpfbieopdmepaolggioebjmedmclkbap?hl=en
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Figure 27: Testbed setup for evaluating performance of DASH congestion control in
the presence of cascaded caches.

656MB cache capacity available on each machine. Limiting the cache size is
necessary since we need to learn how obsolete content can be purged when
cache storage is full. In our case, the video stream we test on, in highest bit
rate, is about 250MB and with our competing videos requested from both End
point 2 and proxy cache level 1, we can make sure that highest cache ratio
of our target content cannot be 100 percent. Maximum cache object size is
configured to 1024KB so that all Dash segments can be cached. (Our Dataset
show that with 1s segment size, the largest segment is less than 700KB)

– The memory cache replacement policy is left as default, which is LRU. We how-
ever set disk cache replacement policy to heap LFUDA and LRU respectively,in
each test round, to make comparisons on LFUDA and LRU.

– Before each round of test, we clear the proxy caches so that each test starts
with empty cache.

– Figure 27 shows the topology of our test bed. This setting applies to all
following tests.

To evaluate the tests we record the data collected from each client instance. The
data includes the estimated bandwidth, the chosen representation bit rates, the
buffer level of DASH-JS receive buffer, the Gear level when Gearbox is the active
adaptation algorithm, the cache hit ratios at both P1 and P2.

6.5.2 Test Senario1: Even arrival with no cross traffic

This test scenario aims to reveal how the hit ratios of the proxy caches change when
clients evenly arrive in time. In this scenario we use only End Point 1 to request
content from the server, via the cascaded proxies. No cross traffic is applied to
any machines. We use a shell script to open up browser tabs that all request the
same content “Of forest and men” [8]. The resolution is still 1280 × 720 and the
available representation sets are the same as our micro benchmark tests. Through
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Client No. Switching Underflow Underflow HitRatio HitRatio
Count Count time P1 P2

1 5 3 18.5s 0% 0
2 22 1 10.8s 67% 0
3 21 1 1.4s 79% 0
4 17 0 0s 79% 0
5 16 0 0s 88% 0
6 22 0 0s 87% 0
7 20 1 2.2s 80% 0
8 23 0 0s 84% 0
9 22 1 2.5s 86% 0
10 18 0 0s 65% 0

Table 4: Statistics_EvenArrival_Gearbox

script-automation, we open up one browser client instance every 30 s. 10 instances
are opened up in total. Since all client instances are initiated by the same browser in
the same client machine, they must compete the shared link, which has a bandwidth
limit of 54Mbit/s, with a one way delay of 10ms. DASH-JS is configured to activate
the Gearbox algorithm.

In table 4 we find that when there is no competing traffic, clients that arrive later
would generally get higher cache hit ratio. We can observe that the last client expe-
riences lower hit ratio than previous clients. This is because all other 9 clients has
finished there downloading roughly 30 s ago (clients are launched at a 30 s interval).
With least competition, the last client is then free to use all available bandwidth and
would surely increase the video bit rate by requesting higher level representations,
which are not fully cached by the proxies. We can also see that clients in the middle
have similar hit ratios since their observed network condition is similar throughout
the entire downloading process.

After the 10 clients have finished, we launch another two individual
clients, requesting the same content.

These two clients are launched one by one, meaning the 12th client is not launched
until the 11th has finished its streaming. The 11th client uses the Gearbox algorithm
as the previous 10 clients did while the 12th client uses the baseline algorithm. These
two clients uses a reconfigured link 3, which provide 3.5Mbps of bandwidth and 10ms
one way delay. This link configuration ensures that the available bandwidth matches
the middle value of the available media bit rates, enabling the tested algorithms to
perform meaningful rate adaptation. In table 5 we find that the 12th client, which
runs the baseline algorithm, get 1 percent of cache hit in cache level 2, instead of 0 hit.
One explanation is that the baseline algorithm performs much more representation
switches than Gearbox does, resulting in an increased possibility of cache hit in the
far end cache.
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Client No. Switching Underflow Underflow HitRatio HitRatio
Count Count time P1 P2

11 10 0 1.2s 27% 0
12 168 3 14.8s 20% 1%

Table 5: Statistics_SingleClients_WithNoCompetition

The real time download plots and CDF plots are shown in figure 28 and figure 29:
Figure 28 shows that the baseline algorithm reacts poorly to cache hits. When a
cache hit occurs, the client sees a dramatically increased bandwidth (Receive rate).
With no buffer level taken into consideration, the baseline algorithm blindly chooses
to request a high bit rate segment. If this segment to be fetched happens not be in
the proxy caches, then the client buffer level would simply drop due to the fact that
link throughput do not really surpass the bandwidth of the requested segment. In
light of this, the more discrete the cache hit, the more likely the Baseline algorithm
would create a buffer starvation. Plot (b) of figure 29 shows the bandwidth range of
the chosen representations in baseline is narrower, which could imply a stable video
rate. However plot 28 (b) and plot 29 (a) reveals that the constant representation
switching by the baseline client causes many buffer underflows.

The buffer underflows in the baseline instance happen partly because the bit rate of a
representation is not really the bit rate of a segment. To maintain the desired buffer
level, the same representation must be chosen for a number of successive segments.
Only in this way can the overall bit rate of the stream, within a period of time, stay
at a wanted level, resulting in a relatively stable receive buffer level. In this sense,the
adaptation algorithm of the baseline client is not designed effectively to maintain
the representation level when necessary, in order to avoid buffer level fluctuations
and the resulting buffer starvation.

Even though Gearbox also see some representation switches, most of these cho-
sen representation levels are able to be held steady for at least 20 seconds, thanks to
the design of the gear margins. Overall, gearbox performs well in that it does not
easily get interrupted by occasional cache hits. The adaptation behavior of Gearbox
is closely related to the fill level of its receive buffer, which can well reflect the real
network throughput. In figure 28 and figure 29 we can clearly see that Gearbox
adapts to the proxy caches well. It provides bigger safe margin, higher overall video
quality and less representation switching and video quality fluctuations. Last but not
the least, the adaptation behavior of Gearbox can benefit the proxy cache and latterly
arrived clients, since it does not perform representation switching prematurely.
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(a) throughput_3500Kbps_Gearbox
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(b) throughput_3500Kbps_Baseline

Figure 28: Test Senario 1: after 10 Gearbox clients’ even arrival,two more single
clients are opened one at a time, under the same link condition. They are named
as the 11th and the 12th client, which is a gearbox client and a baseline client
respectively. under comparable hit ratio, the figure shows the different behavior of
the two algorithm.
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Figure 29: Test Senario 1: after 10 Gearbox clients’ even arrival,two more single
clients are opened one at a time, under the same link condition. They are named
as the 11th and the 12th client, which is a gearbox client and a baseline client
respectively. under comparable hit ratio, the figure shows the different behavior of
the two algorithm.
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6.5.3 Test Senario2: Poisson arrival with cross traffic

To test the performance of both algorithms under a more realistic network condition,
we set up Test Scenario 2. Under this scenario, we introduce noise traffic from C2
and P2 and C1 would serve as our test client machine (please consult figure 27). All
simulation results are collected at C1.
At P2, we use a linux shell script to open up browser instances that comes at a
Poisson arrival pattern. The average inter arrival time is set to be 40 s 14. Each
instance opens up a distinct URL to request content ranging from a dynamic web
page to a Youtube video. All these requests from the browser in P2 are redirected
through the squid3 proxy server resides in P2, to create a competition at Proxy
Cache Level2. Link 0 is not limited by Dummynet pipe and squid3 on P2 is allowed
to directly access the Internet.
At C2 and C1, we open up browser instances that also comes at Poisson arrival
pattern. The average inter arrival time is set to be 30 s. At C2, the requested content
includes web pages from the Internet as well as several video streams that served by
our server S1. Instead of requesting the video clip “Of forest and Men”, C2 instances
create competitions at S1 by requesting different content, which includes “Big buck
bunny” [8].
At C1, we open up 10 clients that arrives at Poisson arrival with 30 s average interval.
The inter arrival time of the 10 clients are shown as follow: 4s, 17s, 28s, 70s, 6s, 48s,
4s, 80s, 24s. The pattern is plotted in figure 14. All 10 clients request the video clip
“Of forest and men” under the resolution of 1280×720. The available representations
are the same as the ones in previous tests. All common settings in section 6.5.1 also
apply to Test Scenario 2.

(A) First we perform the test with the cache replacement policy for the
squid3 proxies configured to heap LFUDA 12. Again, caches along the chain
are cleaned before each test round. We test the performance of the baseline algorithm
in the first round and Gearbox the second round.

Client No. Switching Underflow Underflow HitRatio HitRatio
Count Count time P1 P2

1 146 16 189.9s 0% 0%
2 307 22 366.8s 13% 0%
3 316 22 398.6s 17% 0.9%
4 279 21 389.7s 47% 0.2%
5 258 18 310.5s 45% 0.1%
6 249 17 300.8s 46% 0%
7 190 16 258.8s 61% 0.9%
8 179 6 64.4s 50% 1.1%

Table 6: Baseline_LFUDA_Poissonarrival

12http://www.squid-cache.org/Doc/config/cache_replacement_policy/

http://www.squid-cache.org/Doc/config/cache_replacement_policy/
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Client No. Switching Underflow Underflow HitRatio HitRatio
Count Count time P1 P2

1 9 3 21.2s 13% 0
2 24 2 18.8s 65% 0
3 31 2 4.7s 59% 0
4 34 0 0s 75% 0
5 23 0 0s 88% 0
6 30 1 9.8s 87% 0
7 28 0 0s 89% 0
8 22 0 0s 80% 0
9 35 1 0.8s 60% 0
10 29 1 15.7s 66% 0.4%

Table 7: Gearbox_LFUDA_Poissonarrival

Because of the original bug of DASH-JS [37], two baseline clients get stuck during
playback and fails to finish the video playback. In table 6 we can see that latterly
opened clients see an increased cache hit ratio at P1. Since the clients are all compet-
ing for the 54Mbit/s Link 3, severe buffer underflow happens for all clients. Table 6
also shows that the baseline algorithm does not benefit from cache hits in that the
underflow time does not necessarily shortens when cache hit ratio rises up. The last
coming client does see a much shorter underflow time, since all other clients have
finished their download before the last client finishes, leaving all available bandwidth
to the last client.
Table 7 shows the test result for Gearbox. One thing worth mentioning is that
the second client is initiated 4s later than the first one. Since the starting time
of the first two clients are very close and both encounter buffer underflow over 2
times, their actual downloading and playback time exceeds the duration of the the
video. From our raw data we find the download of both clients finished at Unix
time 1411336184 second since the Unix Epoch. This explains why the first client
actually get some cache hit. These cache hits are contributed by the client 2 whose
download occasionally get ahead of client 1. This situation can happen since client 2
benefit from the cached segments that were previously requested by client 1. The
downloading process of client 2 was accelerated to the point that it surpasses the
downloading process of client 1.

Overall we find that latterly initiated clients generally see higher cache hit ratios.
The cache hit ratio tops at 89 percent, which is 28 percent higher than the highest hit
ratio of the baseline test round. We can also see clearly that Gearbox does generally
benefit from cache hits, since higher cache hit ratios seem to shorten the buffer
underflow times.Gearbox client 6 is an exception and this is possibly due to the fact
that it is initiated in the middle and experiences the worst congestion.

Figure 30 shows the CDF of the playback bit rates. Only client 1, 3, 5, 8 of
the Gearbox and Baseline tests are included in the CDF. These two plots shows
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that under fierce competition when bandwidth is limited, Gearbox choose lower bit
rate segments to download, in order to avoid playback pauses (buffer starvations).
In table 6 and table 7 we can see clearly that buffer underflow counts of Gearbox
clients are significantly lower than that of the baseline clients.
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Figure 30: Test Scenario 2, Case A. (a): Representation rate CDF of baseline clients
following Poisson-arrival, under proxy cache policy of LFUDA. (b): Gearbox clients
at the same arrival pattern under LFUDA
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We also find in table 6 and table 7 that client 7 of the baseline test and client
9 of the Gearbox test have the same cache hit ratio of about 0.60. Since these two
clients are also both the second-to-last-arriving client in their own test round, they
serve as good samples for comparison. We refer to them as B7 and G9 respectively.
We draw the download-time-plots and CDFs of B7 and G9 in figure 31, to make
analysis:

In figure 31, plot (a) shows the real time buffer level of B7 and G9. Under the same
cache hit ratio of 60 percent, plot (a) shows that under a more realistic network con-
dition with limited bandwidth and fierce TCP traffic competition, baseline algorithm
performs terrible. The video downloading time of B7 stretches to almost 12 minutes,
which is over 4 minutes longer than the video duration. G9, however, performs well
under comparable condition.

(B)Then we run the test with the cache replacement policy set to the
default LRU, in order to reveal the performance of DASH under a differ-
ent caching policy. The test round under LRU starts with an emptied cache chain.
Except for the change in cache replacement policy, other settings are exactly the
same as test (A).

Comparing table 8 with table 7, we clearly see that LRU contributes lower hit
ratio, resulting in more buffer underflow occurrences. Compared with the LRU policy,
heap LFUDA tries to purge small files out of the cache. Consequently LFUDA makes
more space for caching bigger files, such as the DASH video segments. From this
finding we can conclude that LFUDA better suits video content caching in DASH,
compared with LRU.

Again, 5 clients running the baseline algorithm encountered stuck-playback and
failed the test due to the bug of the original DASH-JS [37]. In table 9 we can see
that the first two clients, which arrive at an time interval of 4 seconds, experience the
same problem as in previous tests, which is that the first client can get more cache
hits. However the extra cache hits do not benefit the baseline client at all, judging
from the fact that the downloading time of the first client is significantly longer than
the second one. This shows that an incompletely cached representation have a fatal
impact on the baseline algorithm, which performs representation selections solely
based on the estimated bandwidth. Discontinuous cache hits cause the estimated
bandwidth to fluctuate frequently and dramatically, causing the Baseline algorithm
to make premature representation switches, which in turn lead to buffer underflow
occurrences and streached download time.

Figure 32 shows the download-time-plots of client 1 and client 2 of the baseline test.
Instead of offsetting the time lines to align the starting time of the two clients, we
use the original recorded files to generate the plots using Unix-time. In this way
we are able to observe how the first-arriving client ended up finishing the download
almost two minutes later, after the second-arriving client had finished its download.
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In short, figure 32 clearly reveals how a DASH client could suffer from cache hits,
when its rate adaptation algorithm is designed without the awareness of the proxy
caches and CDNs.
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Figure 31: Test Scenario 2, Case A: the 7th Baseline client and the 9th gearbox
client have comparable hit ratio of 60 percent. (a) shows how the two algorithm
behave under a very stressful network condition, where multiple clients compete for
the same link and content. (b) shows how Gearbox choose lower bit rate to ensure
the continuity of the video playback
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Client No. Switching Underflow Underflow HitRatio HitRatio
Count Count time P1 P2

1 22 7 75.9s 45% 0
2 12 7 69.3s 31% 0
3 30 5 45.3s 59% 0
4 35 4 19.3s 71% 0
5 36 3 24.4s 76% 0
6 32 2 13.6s 79% 0
7 34 2 15.8s 72% 0
8 30 1 7.8s 80% 0
9 39 1 5.8s 81% 0
10 38 0 0s 60% 0

Table 8: Gearbox_LRU_Poissonarrival

Client No. Switching Underflow Underflow HitRatio HitRatio
Count Count time P1 P2

1 299 21 340.6s 15% 0
2 122 16 217.6s 0.2% 0
3 311 22 92.7s 23% 0
4 291 18 310.3s 17% 0
5 176 7 414.4s 57% 0

Table 9: Baseline_LRU_Poissonarrival
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Figure 32: We draw this figure to show how cache hit can worsen the experience of a
baseline client. The first coming client can actually have more cache hit than the
latter client. Cache hits caused the first client to make many premature representation
switches, leading to buffer underflows. As a result, the first client takes two more
minutes than the second client, to finish downloading
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6.6 Summary of cache tests

By analyzing these test results we can draw the following conclusions on the adapta-
tion algorithm of DASH:

– It is a bad design for a rate adaptation algorithm to make representation-
switching-decisions solely based on the observed bandwidth. Such an adapta-
tion algorithm could suffer from bandwidth fluctuations and cache hits from
CDN edge servers, causing frequent video-quality-changes and unpleasant user
experience. Although the agility of the rate adaptation can be adjusted through
changing the bandwidth-evaluation-method, to achieve fewer representation-
switches and stabler video quality, there is still no guarantee that the DASH
client can be spared of buffer starvation and the resulting playback interrup-
tions. A mechanism, such as buffer monitoring, shall be introduced in the rate
adaptation algorithm, to improve the performance of DASH in CDNs.

– When the rate adaptation algorithm of a DASH client is not properly designed,
the incomplete-cached-representations, instead of benefitting the client, could
degrade the client performance and worsen the user experience by causing
worse video quality fluctuations and more playback interruptions.

– A carefully designed DASH adaptation algorithm not only benefits the user
experience but increases the cache hit rate as well, since an adaptation algorithm
that maintains stabler video bit rate can naturally create a more complete
cached-representation in the CDN edge servers (proxy caches).

– The proposed Gearbox algorithm provides an adaptation algorithm model
where the behavior of the adaptation can be easily configured to fit differ-
ent requirements. Taking the real-time buffer level into consideration when
performing rate adaptation seems to be a simple and effective solution for
improving the performance of DASH in complex network conditions.

– As far as the cache-replacement-policies of the squid server13 is concerned, heap
LFUDA provides higher cache-hit-ratio than the more often used LRU in the
case of DASH streaming. This is because video segments in DASH streaming
are typically big in size and LFUDA inclines to cache big and popular objects
rather than the smaller ones.

– DASH segments can be easily cached by proxy servers due to the fact that
these segments are no different than normal HTTP objects. The cache hit rate
usually climbs up as more clients arrive and request the same content via the
proxy cache. Judging from the overall cache hit rates, we can confidently say
that CDN edge servers can efficiently cache the DASH content, without having
to meet any special system requirement.

13http://www.squid-cache.org/Doc/config/cache_replacement_policy/

http://www.squid-cache.org/Doc/config/cache_replacement_policy/
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7 Conclusion
In this thesis, we have introduced the HTTP streaming technologies and have con-
ducted a in-depth research on Dynamic Adaptive Streaming over HTTP. Various
aspects of HTTP Streaming have been studied, including the basics and the special
features of HTTP, the supporting CDN infrastructure, and the general architecture
of typical HTTP streaming systems. Live streaming and on-demand streaming, as
the two different HTTP streaming services, are also compared. With the comprehen-
sion of these mentioned subjects, we have also introduced the history of the HTTP
streaming technologies, offering a big picture of how HTTP streaming has been
evolving over time. With the new paradigm of HTTP Adaptive Streaming widely
accepted and adopted, we have concluded that the new MPEG-DASH standard will
reshape the mainstream HTTP streaming technology in the future. Serving as a
standard that unifies the format of the DASH content segments and that of the MPD
manifest file, MPEG-DASH is able to bridge different HTTP streaming servers and
clients together, solving the compatibility issues often seen in the proprietary HTTP
streaming solutions.

From our research findings we have concluded that, currently, DASH is still faced with
challenges posed by CDN caches. Although there have been proposals to investigate
and address these challenges, those proposals mostly involve the introduction of new
protocols and new infrastructures, such as CCN, or the alternation and extension of
existing protocols. More often than not, the proposed solutions would also require the
cooperation of the CDN caches with the streaming clients, which inevitably generates
extra signaling between the clients and the caches. To meet the need of improving
the performance of DASH in a CDN network, we proposed our solution that solely
optimizes the DASH client-side rate-adaptation mechanisms, in order to achieve the
same goal of solving the cache challenges without making any change to the existing
CDN servers and DASH standards. By simply binding the rate adaptation behavior
with the receiving buffer level, we have been able to implement our effective Gearbox
rate adaptation algorithm. Performance tests conducted in this thesis have shown
that our algorithm design can effectively improve the performance of the original
DASH-JS client, making it much more cache friendly.

7.1 Future work

For practical reasons, it is challenging for our research team to do exhaustive tests on
our Gearbox algorithm. There remains a number of interesting emulation tests we
would like to run and these tests and experiments may be included in our future work.

Specifically, the future work may involve testing the performance of our algorithm
against other algorithm proposals. It would also be interesting to test our Gearbox
algorithm with different DASH contents and different segment durations, so that the
robustness of the algorithm design can be further checked. More user scenarios could
also be devised, to expose possible flaws of the Gearbox algorithm design.
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7.2 Criticism

DASH is an effective technology for streaming multimedia content over HTTP. It
holds certain advantages over the traditional RTSP/RTP streaming. However, in
building our DASH testbed and using the DASH datasets, we find that DASH could
create a big waste on storage space. DASH requires the original video stream to be
encoded into multiple streams with different bit rates. To fit different usage situations,
these streams might be further divided into segments of different lengths. Each of
the segmented version of the stream would form a unique copy of the original stream.
Thus DASH would have an original video stream remade into many different versions
(representations) with each version holding a unique bit rate and segment size. Each
version of these segmented streams would have to take its own storage space. Taking
the DASH dataset “Of Forest And Men” [8] for example, a mere 7 minutes footage,
with multiple representations presented, can take up over 7 GB of storage space at
the server side. All these segments from the multiple representations can flood the
CDN network and create huge amount of fragments in the proxy caches. If the DASH
client were not designed properly, these cached segments in the CDN network would
easily grow into very discrete, useless, and fragmented garbage, taking huge amount
of network storage and causing performance degradation. In my opinion, there could
be a room for improving the storage efficiency of DASH content. However, storage
nowadays is very cheap. In this sense, efforts made to reduce the storage requirement
of DASH could be more costly than the purchase of more storage space.
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A Appendix

A.1 Pipelining in DASH-JS

In DASH-JS pipelining is not used in refilling. Requests are not pipelined because
DASH uses the last round of request-response to collect data and perform bandwidth
estimation, so that the next request can be constructed accordingly based on the
representation switching algorithm of the DASH engine. This can be confirmed
both by the source code and the wireshark capture. However, if the byte-range of a
segment is provided by the MPD, pipelining would be used to fetch the same segment
through multiple HTTP partial GETs.

A.2 MPD file example
A sample MPD is shown in listing 3. This MPD does not match the latest version
of the MPEG-DASH specification but can effectively illustrate how the XML based
MPD file is constructed. Listing 3 does not show the MPD file in full but instead
presents the vital structure of the MPD file.

Listing 3: Media Presentation Description
<?xml version=" 1.0 " encoding="UTF−8"?>
<MPD xmlns :x s i=" ht tp : //www.w3 . org /2001/XMLSchema−i n s tance "

xmlns="urn:mpeg:DASH:schema:MPD:2011"
xs i : s chemaLocat ion="urn:mpeg:DASH:schema:MPD:2011"
p r o f i l e s=" u r n :mp e g : d a s h : p r o f i l e : i s o f f −main:2011"
type=" s t a t i c "
mediaPresentat ionDurat ion="PT0H9M56.46S"
minBufferTime="PT4.0 S">
<BaseURL>ht tp : //www−i t e c . uni−klu . ac . at / f tp / data s e t s /mmsys12/BigBuckBunny/bunny_4s/</BaseURL>
<Period s t a r t="PT0S">

<AdaptationSet b i t s t reamSwitch ing=" true ">
<Representat ion id="0" codecs="avc1" mimeType="video /mp4" width="320" he ight="240" startWithSAP="1"

bandwidth="45226">
<SegmentBase>

<I n i t i a l i z a t i o n sourceURL="bunny_4s_50kbit/bunny_50kbit_dash .mp4"/>
</SegmentBase>
<SegmentList durat ion="4">

<SegmentURL media="bunny_4s_50kbit/bunny_4s1 . m4s"/>
<SegmentURL media="bunny_4s_50kbit/bunny_4s2 . m4s"/>
. . .

<SegmentURL media="bunny_4s_50kbit/bunny_4s150 . m4s"/>
</SegmentList>

</Representat ion>
<Representat ion id="1" codecs="avc1" mimeType=" video /mp4" width="320" he ight="240" startWithSAP="1"

bandwidth="88783">
<SegmentBase>

<I n i t i a l i z a t i o n sourceURL="bunny_4s_100kbit/bunny_100kbit_dash .mp4"/>
</SegmentBase>
<SegmentList durat ion="4">

<SegmentURL media="bunny_4s_100kbit/bunny_4s1 . m4s"/>
<SegmentURL media="bunny_4s_100kbit/bunny_4s2 . m4s"/>
. . .

<SegmentURL media="bunny_4s_100kbit/bunny_4s150 . m4s"/>
</SegmentList>

</Representat ion>
. . .

<Representat ion id="10" codecs="avc1" mimeType="video /mp4" width="1280" he ight="720" startWithSAP="1"
bandwidth="782553">

<SegmentBase>
<I n i t i a l i z a t i o n sourceURL="bunny_4s_900kbit/bunny_900kbit_dash .mp4"/>

</SegmentBase>
<SegmentList durat ion="4">

<SegmentURL media="bunny_4s_900kbit/bunny_4s1 . m4s"/>
<SegmentURL media="bunny_4s_900kbit/bunny_4s2 . m4s"/>
. . .

<SegmentURL media="bunny_4s_900kbit/bunny_4s150 . m4s"/>
</SegmentList>

</Representat ion>
</AdaptationSet>

</Period>
</MPD>
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A.3 Apache configuration file
Configurations of the Apache server is done by modifying the directives in the
configuration file - httpd.conf. We configure the apache server to listen to multiple
ports and the directives are shown in listing 4

Listing 4: Apache Server Configuration

# open up mul t ip l e HTTP l i s t e n i n g port s
L i s t en 80
L i s t en 3333
L i s t en 3131
L i s t en 4444
L i s t en 4141
L i s t en 5555
L i s t en 5151
L i s t en 7777
L i s t en 7171
L i s t en 8888

A.4 Squid configuration file
Squid is a widely used HTTP/1.1 proxy server that provides rich services including
access control and HTTP object caching.The version we use in the thesis research is
Squid 3.1.19. Squid provides a configuration file, squid.conf, for the user to manually
configure its functionalities. Some of the configuration directives are explained in
listing 5. A sample configuration used in this thesis research is shown in listing 6.
More detail of the Squid directives can be found at 14. These configuration directives
can be found in squid.conf and the entries shown in listing 6 is printed by typing in
the command “squid3 -k parse” under Linux shell. There are many other directives
in squid.conf, which are default directives that will not be printed out by the “squid3
-k parse” command.

Listing 5: Directives for Squid.conf

# con f i gu r e the cache_replacement_policy and dec ide the purge behavior
cache_replacement_policy heap LFUDA # e . g . s e t to LFUDA

# Conf igure the d i sk cache ;
# 2048MB disk space , f i r s t l e v e l 16 f o l d e r s , second l e v e l 256 f o l d e r s
cache_dir u f s /var / spoo l / squid3 2048 16 256

# Set the maximum s i z e o f a s i n g l e HTTP ob j e c t a l lowed to cache
maximum_object_size 1 GB

# Memory hot−content caching
cache_mem 128 MB #128MB of memory a l l o c a t ed
maximum_object_size_in_memory 512 KB # maximum ob j e c t s i z e s to r ed in memory cache

# thr e sho ld s f o r cache swap ;
# Old ob j e c t s s h a l l be purged from cache when high watermark reached
# Cache swap stops when low watermark reached
cache_swap_low 90 # thre sho ld f o r deac t i v ing cache swap
cache_swap_high 95 # thre sho ld f o r a c t i v i n g cache swap

#Refresh_pattern d e f i n e s how a c e r t a i n type o f f i l e s h a l l be cached and purged
#Any f i l e that have an extens ion o f . m4s can stay in the cache f o r at l e a s t 1440 minutes
#and at most 2016(=20%∗10080) minutes
re f r e sh_patte rn − i \ . m4s$ 1440 20% 4320

14http://www.squid-cache.org/Doc/config/
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Listing 6: Sample squid.conf
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing Conf igurat ion F i l e : / e tc / squid3 / squid . conf ( depth 0)
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l manager proto cache_object
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l l o c a l h o s t s r c 127 . 0 . 0 . 1 /32 : : 1
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l to_loca lhos t dst 1 27 . 0 . 0 . 0 / 8 0 . 0 . 0 . 0 / 3 2 : : 1
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l lanVM sr c 192 .168 .227 .0/24
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l lanBr idge s r c 192 .168 .137 .0/24
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l dashcontent urlpath_regex \ . m4s$
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l m4sreply rep_mime_type video / i s o . segment
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l SSL_ports port 443
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l Safe_ports port 80 # http
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l Safe_ports port 21 # f tp
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l Safe_ports port 443 # https
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l Safe_ports port 70 # gopher
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l Safe_ports port 210 # wais
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l Safe_ports port 1025−65535 # unr eg i s t e r ed port s
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l Safe_ports port 280 # http−mgmt
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l Safe_ports port 488 # gss−http
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l Safe_ports port 591 # f i l emake r
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l Safe_ports port 777 # mu l t i l i n g http
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : a c l CONNECT method CONNECT
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_access a l low manager l o c a l h o s t
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_access deny manager
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_access deny ! Safe_ports
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_access deny CONNECT ! SSL_ports
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_access a l low l o c a l h o s t
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_access a l low lanVM
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_access a l low lanBridge
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_access a l low dashcontent
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_access deny a l l
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_reply_access a l low m4sreply
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_reply_access a l low a l l
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : http_port 3128
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : cache_mem 256 MB
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : maximum_object_size_in_memory 1024 KB
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : cache_replacement_policy heap LFUDA
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : cache_dir u f s /var / spoo l / squid3 400 16 256
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : minimum_object_size 0 KB
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : maximum_object_size 1 GB
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : cache_swap_low 90
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : cache_swap_high 95
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : access_log /var / log / squid3 / acc e s s . l og squid
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : coredump_dir /var / spoo l / squid3
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : cache a l low dashcontent
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : cache a l low m4sreply
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : cache a l low a l l
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : r e f r e sh_patte rn ^ f tp : 1440 20% 10080
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : r e f r e sh_patte rn ^gopher : 1440 0% 1440
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : r e f r e sh_patte rn − i (/ cgi−bin / | \ ? ) 0 0% 0
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : r e f r e sh_patte rn ( Release | Packages ( . gz )∗ ) $ 0 20% 2880
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : r e f r e sh_patte rn . 0 20% 4320
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : r e f r e sh_patte rn − i \ . m4s$ 1440 20% 4320
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : r e f r e sh_patte rn − i i s o \ . segment 1440 20% 4320
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : quick_abort_min −1 KB
2015/04/04 1 8 : 5 0 : 3 0 | Proces s ing : vis ib le_hostname UbuntuProxyL1_158

A.5 DASH-JS source code

Our implementation of the DASH client is based on the original DASH-JS [36],
and can be found in our online repository on GitHub. The repository can be
replicated by typing in the following command under unix shell: git clone https:
//github.com/yunfengHe/DASH-JS.git. Detailed explanations of the source code
lines are written in the source code files, in the form of code commentary. To adjust
the Overlay Buffer (the receive buffer) or to swap different Gearbox versions, check
the source file “dash.js” and do modifications. To modify the Gearbox algorithm,
check the source file “adaptationlogic.js”. Other functionalities such as network
monitoring and data collection can also be found and modified in the corresponding
source files.

https://github.com/yunfengHe/DASH-JS.git
https://github.com/yunfengHe/DASH-JS.git
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