
Ville Kuvaja

Identification of Error Correction Codes in
Signals Intelligence

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 7.5.2015

Thesis supervisor:

Prof. Patric Östergård

Thesis advisor:

D.Sc. (Tech.) Jussi Poikonen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80715668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university

school of electrical engineering

abstract of the

master’s thesis

Author: Ville Kuvaja

Title: Identification of Error Correction Codes in Signals Intelligence

Date: 7.5.2015 Language: English Number of pages: 8+62

Department of Communications and Networking

Professorship: Communications Engineering Code: S-72

Supervisor: Prof. Patric Östergård

Advisor: D.Sc. (Tech.) Jussi Poikonen

Error correction coding is an integral part of a digital communication system. In
signals intelligence the aim is to recover the transmitted messages and part of
this task is identifying the used error correction coding method.

The purpose of this study is to present a overview of different identification
methods of forward error correcting codes and test the performance of these codes
in a controlled setting.

The codes that are discussed in this work are block codes and convolutional codes
with a main focus on low density parity check (LDPC) codes and turbo codes.
Test cases for LDPC code identification are presented and remarks about the
performance and limits are made.

Keywords: error correction codes, identification, signals intelligence

aalto-yliopisto

sähkötekniikan korkeakoulu

diplomityön

tiivistelmä

Tekijä: Ville Kuvaja

Työn nimi: Virheenkorjauskoodien tunnistus signaalitiedustelussa

Päivämäärä: 7.5.2015 Kieli: Englanti Sivumäärä: 8+62

Tietoliikenne- ja -tietoverkkotekniikan laitos

Professuuri: Tietoliikennetekniikka Koodi: S-72

Valvoja: Prof. Patric Östergård

Ohjaaja: TkT Jussi Poikonen

Virheenkorjauskoodit ovat oleellinen osa digitaalista tietoliikennejärjestelmää.
Signaalitiedustelussa tavoite on selvittää lähetetty viesti ja osa tätä tehtävää on
käytetyn virheenkorjauskoodin selvittäminen.

Tämän työn tarkoituksena on esittää yleiskatsaus erilaisiin virheenkorjaukoodien
tunnistusmenetelmiin ja testata näiden menetelmien suorituskykyä kon-
troloiduissa olosuhteissa.

Virheenkorjauskoodit, joita käsitellään tässä työssä ovat lohkokoodit ja konvoluu-
tiokoodit ja pääpaino on low density parity check (LDPC) -koodeissa ja tur-
bokoodeissa. LDPC-koodin tunnistamismenetelmien testitulokset esitetään ja
menetelmien suorituskykyä ja rajoitteita tarkastellaan.

Avainsanat: virheenkorjauskoodit, tunnistus, signaalitiedustelu

iv

Preface

This thesis work was part of a MATINE project on error correction code identifica-
tion. The work started with general guidelines to direct the work. This thesis was
written in Department of Communication and Networking.

I would like thank Professor Patric Östergård for supervision as well as for cre-
ating a good research atmosphere. I would also like to thank my instructor Jussi
Poikonen for valuable comments and advice. Finally I would like to thank all the
students and staff whom I have been privileged to work with and all those who have
helped and supported me.

Otaniemi, 7.5.2015

Ville J. N. Kuvaja

Contents

Abstract . ii
Abstract (in Finnish) . iii
Preface . iv
Contents . v
Symbols and Abbreviations . vii

1 Introduction 1
1.1 Objectives . 1
1.2 Organization . 2

2 Background 3
2.1 Error Codes . 3

2.1.1 Block Codes . 4
2.1.2 Convolutional Codes . 9
2.1.3 Low-Density Parity-Check Codes 14
2.1.4 Turbo Codes . 16

2.2 Interleaving . 20
2.3 Transmission Channel . 21

3 Code Identification 23
3.1 Interleavers . 23
3.2 Block Codes . 30
3.3 Convolutional Codes . 32
3.4 Low-Density Parity-Check Codes . 36
3.5 Turbo Codes . 36

4 Simulations and Case Studies 46
4.1 Simulation Setup . 46

4.1.1 Identification of LDPC codes 46
4.2 Results . 48

v

vi

5 Conclusions 56
References . 58

vii

Symbols and Abbreviations

Symbols

C code
c code word
C⊥ dual code
D delay operator
dmin minimum distance
d synchronization
e error vector
G generator matrix
g impulse response, encoder polynomial
GF (q) Galois field of order q
H parity check matrix
I identity matrix
K constraint length
k information bits
M number of rows in a matrix
m degree of encoder polynomials
m information word
n encoded bits
P probability
p crossover probability
r code rate
w weight
X input alphabet
x input vector
Y output alphabet
y output vector
z syndrome
γ fractional rate loss
λ polynomial
Π interleaver
τ bit error probability

viii

Operators∑
sum

∗ convolution

Abbreviations
ARQ automatic repeat request
BSC binary symmetric channel
DVB Digital Video Broadcasting
ETSI European Telecommunications Standards Institute
FEC forward error correction
IEEE Institute of Electrical and Electronics Engineers
LDPC low density parity check
WiMAX Worldwide Interoperability for Microwave Access
WRAN Wireless Regional Area Network

Chapter 1

Introduction

Error correction coding is an integral part of a digital communication system. In-
crease in available computational power has made it possible to use more advanced
error correction codes in practical systems. Reliable transmission rates are already
close to the channel capacities, which give the theoretical upper bounds for trans-
mission of information in a given channel.

In signals intelligence the aim is to detect transmitted signals and recover the
messages encoded in these streams. Part of this task is to identify the used error
correction coding and decode the message without prior knowledge of the used code.
From a signals intelligence viewpoint, advanced error correction codes can also make
it more difficult to identify used codes and their parameters. To make the the
identification task even more complicated these codes can be concatenated and the
coded data is typically interleaved as well. A practical identification scenario will also
involve noisy communication channels and synchronization might be unavailable, in
other words, the starting location of a code word is not known.

1.1 Objectives

The aim of this thesis is to present an overview of different identification methods of
forward error correcting codes in a non-cooperative context and to implement a test
bed for testing these methods and principles in a controlled laboratory setting. The
main focus is on the methods that are designed for modern forward error codes such
as turbo codes and low density parity check (LDPC) codes. Code identification can
be closely related to identification of interleaver parameters so interleaving is also
covered in this work.

The problem of identification of forward error correcting codes without prior

1

knowledge of the used coding scheme can be a challenging task. In fact even with
knowledge about the used coding method the parameters used in a particular case
can be too hard to find. A brute force approach can prove to be insufficient for most
practical cases. Consequently there exists a need for more powerful techniques that
can be used with modern error correction codes.

Potential application for these identification methods can be in organizations
that are involved with signals intelligence. Research results might be used in signal
identification or in design of secure communication systems. Identification methods
can have applications outside of military or intelligence context as well. There could
be possible applications for communication systems with adjustable or changing
error correction codes according to changing channel conditions as in a software
radio system.

1.2 Organization

This thesis is organized as follows. In Chapter 2 error correction codes are introduced
with a theory of block codes and convolutional codes. The operating principle of
low density parity check codes and turbo codes are presented. Considerations on
interleaving and transmission channel are also included in Chapter 2. Chapter 3
is about code identification methods as they are treated in the literature. Special
emphasis is on LDPC and turbo codes. Identification of interleaver structure is
included in Chapter 3. In Chapter 4 simulations and test cases are presented. In
Chapter 5 conclusions of this work are presented together with recommendations
for future research.

Chapter 2

Background

In this chapter background information relevant to code identification is presented.
First, error correcting codes are described in Section 2.1. Two main classes of codes,
block codes and convolutional codes are considered with their respective features.
From these broad classes of codes we proceed to more specific codes. Low density
parity check codes are a form of block codes and Turbo codes are a form of convolu-
tional codes. These codes are modern codes that are used in today’s communication
systems. We examine properties of these codes. In Section 2.2 we explain the prin-
ciple and implementation of interleaving. Interleaving is considered because it is
an important subject in relation to error correction code identification as will be
discussed later. In the final Section 2.3 transmission channels and how they relate
to error correction codes and identification of error correction codes are considered.

2.1 Error Codes

In a digital communication system information is transferred as symbols. This en-
ables the use of error correction coding to increase the system’s immunity to noise.
Error correction codes work by inserting controlled redundancy into transmitted
messages. This redundancy is then used to detect and correct errors. In a digital
communication system error control coding can be regarded as an operation between
encryption and modulation as can be seen in the Figure 2.1. Error control coding
can work with different strategies to combat errors. When errors are detected, re-
transmission of the received word can be requested, a strategy referred as automatic
repeat request (ARQ), or the received word can be passed forward and tagged as
erroneous, a strategy called muting. In this work the main interest is in error codes
that try to correct the errors in the received word. These codes are called forward

3

4

error correction codes or FEC codes. There are trade-offs in these forward error
codes that have to be considered. More redundancy is needed to be able to correct
errors than to just detect them. On the other hand these codes can be used in situa-
tions where requesting a retransmission is impractical or impossible. For example in
broadcast systems there is typically no way to retransmit information to individual
users.

Input
signal

Output
signal

encoder

Channel

Demodulator

Source

Decryption

Encryption

Error control
decoding

coding

decoder
Source

Error control Modulator

Figure 2.1: Communication system

2.1.1 Block Codes

A block code C is a set of M code words.

C = {c0, c1, c2, ..., cM−1}.

Each code word is a vector of the form c = (c0, c1, ..., cn−1). Vector coordinates, the
ci:s, will take values from the Galois field GF (q). The code C is then called a q-ary
code. In this work we will be working with codes that have q = 2, that is, binary
codes.

Encoding of block codes is splitting the information stream into symbol blocks
of length k and mapping these blocks onto length n symbol code blocks or code
words, as depicted in Figure 2.2. When the symbols of the information stream can
take any value in GF (q), there will be M = qk possible information symbol blocks
of length k and all these possible k-tuples m = (m0,m1, ...,mk−1) will form a vector
space over GF (q).

5

G

k information bits n encoded bits

n− kk

information bits redundancy bits

Figure 2.2: Linear block encoder

The length of a code word is n and the collection of all possible n-tuples forms
a vector space over GF (q) that contains qn different vectors. As there are more
possible code words than there are possible information words, the code C is said
to contain redundancy. Redundancy can be expressed in logarithmic form as r =

n − logqM . When M = qk, this simplifies to r = n − k, that is difference between
the lengths of the code block and the information block. Redundancy of a code C

can be also expressed as a code rate. In logarithmic form code rate is expressed as
r =

logqM

n
. And when M = qk, this form simplifies to r = k

n
.

Decoding of a block code starts with determining if a received word is a valid
code word. If the decoder identifies the word to be invalid then it is assumed that
errors have caused the code word to become invalid and an error is detected. The
only way an erroneous code word can be undetected is if the errors in the received
code word have converted the code word into an another valid code word. These
type of errors are called undetectable errors. There are M − 1 undetectable error
patterns for a size M code C, that is, number of all the other valid code words. An
error pattern is the error vector that can be expressed as

e = (e0, e1, ..., en−1)

where a nonzero coordinate indicates an error in that position.
The weight of a code word is the number of nonzero coordinates in the code word.

The weight of the code word is expressed as w(c). The weight can be calculated
on error patterns as well, and again it is the number of nonzero coordinates of the
error vector. The weight of an error pattern is relevant with error correcting codes
as codes are designed to correct all error patterns of weight less than or equal to a
certain limit.

Hamming distance is the number of coordinates in which two vectors differ. For

6

example, a hamming distance d between code words v = (00001010) and w =

(11001010) is d(v,w) = 2. Minimum distance of a block code dmin is the minimum
Hamming distance between all pairs of code words in code C. In other words, the
code words differ from each other at least in dmin coordinates. Minimum distance
is an extensively used metric with block codes. A code with a minimum distance
dmin can detect all error patterns of weight dmin− 1 or less. This is because all code
words differ from each other at least in dmin coordinates and in order to change a
code word to an another code word, that is, to generate an undetectable error, code
word must be changed in at least dmin coordinate positions. Minimum distance is
also gives the number of errors a code C can correct. A code with minimum distance
dmin can correct all error patterns of weight b(dmin − 1)/2c or less.

A block code C that consists of n-tuples {(c0, c1, ..., cn−1)} with symbols from
GF (q) is a q-ary linear code if and only if C is a vector subspace of GF (q)n. The
dimension of a linear block code C is the dimension of its vector space k. A linear
code with length n and dimension k can be expressed as an (n, k) code. Linear
codes have a structure that makes them easy to implement and analyze. The sum
of linear code words is a code word and the product of a code word with a field
element is a code word. The all-zero word is also a code word. For a linear code,
minimum distance dmin is the weight of the code word that has the smallest weight
wmin, excluding the all-zero code word.

The theory of vector spaces can be used to analyze linear codes. A linear code
is a subspace of GF (q)n and any set of basis vectors of the subspace can be used to
form a generator matrix matrix G of the linear code. These basis vectors will be
the rows of the k by n matrix G. Any linear combination of the rows of matrix G

is a code word. The rows of matrix G are linearly independent and the number of
rows is the dimension of the code. The rank of the matrix G is k. There are qk code
words in C and these code words can be mapped with qk different k-tuples.

Encoding of a linear block code is usually presented with an expression

c = mG,

where c is the length n code word, m is the length k information word and matrix
G is the generator matrix with basis vectors as rows.

For example, a simple (3, 2) binary parity code with a generator matrix G that

7

will add a parity bit to each block of two information bits can be expressed as

G =

[
1 0 1

0 1 1

]
.

The data block m =
[
0 1

]
is encoded into a codeword as

mG =
[
0 1

] [1 0 1

0 1 1

]
=
[
0 1 1

]
.

From the example above it can be seen how the resulting code word is a linear
combination of basis vectors, that is the rows of the generator matrix G, according
to the data vector. The code C in this example is a subspace of GF (2)3 and it has
a dimension k = 2. The dimension is equal to the number of row vectors in the
generator matrix G.

Because the code C is a subspace it has an orthogonal component C⊥, that is
the set of all vectors orthogonal to set of vectors C. This orthogonal component is
also a subspace of GF (q)n and is thus also a code. This code C⊥ is called the dual
code of code C. The dual code C⊥ has dimension n−k. Any basis for the dual code
will therefore have n− k vectors. The generator matrix H of the dual code C⊥ will
be a matrix with any set of basis vectors as rows. Code word c will be a valid code
word of code C if it is orthogonal to every row vector of H. This can be expressed
as a parity check equation,

cH> = 0.

H is the parity check matrix of the code C. The parity check matrix is an (n− k)

by n matrix. For the received code word z = x + e, where the x is the valid code
word and e is the error pattern, the vector that the equation produces is called the
syndrome. The syndrome depends only on the error pattern as

zH> = (x + e)H> = xH> + eH> = 0 + eH>.

In syndrome decoding, the decoder searches from a pre-computed table the error
pattern matching the syndrome eH> and decodes the received word as x = z− e.

For the example above, the parity check matrix is the 1 by 3 matrix H =[
1 1 1

]
. It can be seen that for every valid code word c, the parity check equation

8

cH> will produce zero.

[
0 0 0

]1

1

1

 =
[
0
]
,
[
0 1 1

]1

1

1

 =
[
0
]
,
[
1 0 1

]1

1

1

 =
[
0
]
,
[
1 1 0

]1

1

1

 =
[
0
]
.

For a received word
[
1 0 0

]
with an error pattern

[
1 0 0

]
and a transmitted

code word
[
0 0 0

]
the equation produces

[
1 0 0

]1

1

1

 =
[
1
]
.

Here the syndrome only detects the error but can not correct it. This is because
the code’s minimum distance dmin is 2 and the code can detect dmin− 1 = 2− 1 = 1

errors and correct b(dmin − 1)/2c = b(2− 1)/2c = 0 errors.
From a linear code with parameters n, k and dmin, it is possible to create a new

code with the same parameters by taking two coordinates in a code word and chang-
ing the symbols in these coordinates with each other in every code word. This kind
of permutation results in code that is said to be equivalent with the original code.
For generator matrix this permutation operation means that we permute columns of
the generator matrix. Generator matrices of equivalent codes are called equivalent
generator matrices. A generator matrix can be converted to an equivalent generator
matrix by permuting the columns or performing elementary row operations. Ele-
mentary row operations that can be performed are permuting a row, multiplication
of a row by a non-zero constant and addition of a multiple of a row to another row.
With these operations it is possible to convert any generator matrix into an equiv-
alent form called the systematic form. The systematic form for a generator matrix
is

G =
[
I P

]
,

where I is the k by k identity matrix and P is a k by (n−k) matrix. This systematic
generator matrix will encode length k data word into a length n code word where
the first k symbols are the data word and the last (n − k) symbols are the check
symbols.

The above example’s generator matrix G is already in a systematic form. The
encoded code words are the data words with the parity check bit added as the last

9

bit.
The parity check matrix G for a generator matrix in a systematic form G =[

I P
]
can be written as

H =
[
−P> I

]
.

This follows from

GH> =
[
I P

] [−P

I

]
= −P + P = 0.

For the example’s systematic generator matrix

G =
[
I P

]
=

[
1 0 1

0 1 1

]

the parity check matrix is

H =
[
−P> I

]
=
[
1 1 1

]
where −P> = P> =

[
1 1

]
in modulo 2 arithmetic.

2.1.2 Convolutional Codes

In this subsection convolutional codes are presented. This includes the basic struc-
ture of the convolutional encoder, different ways to evaluate convolutional codes and
different ways to describe them. Further information about convolutional codes can
be found in [48], [38], [28] and [8].

In a block code the encoder outputs a code word of length n from each length
k data word whereas in a convolutional code the encoder outputs one coded stream
from the input datastream. The encoder in Figure 2.3 has one input and two outputs,
that is, it converts a single data stream into two coded streams. After the output
these two streams are then combined into a single stream for transmission. The
encoder is said to be a rate 1/2 encoder. The code rate for a convolutional encoder
is generally r = k/n as a fraction of inputs k and outputs n. This result is valid
asymptotically, but for shorter input streams the length of the memory of the encoder
and the time it takes to empty the registers after last information bit must be taken
into account. For a length L data message it is possible to use fractional rate loss to
describe the effect of register length on the encoder. Fractional rate loss is defined

10

as [48]:

γ =
r − reffective

r
=

(
k

n

)−1
((

k

n

)
−

(
L(

n
k

)
L+ nm

))
=

km

L+ km
,

where m is the shift register length.

DD

output y(2)

output y(1)

input x

Figure 2.3: Convolutional encoder

As an example, input of the convolutional encoder in Figure 2.3 is fed with a
binary data stream

x = (x0, x1, x2, ..).

This data stream goes into the shift registers and is read to outputs

y(1) = (y
(1)
0 , y

(1)
1 , y

(1)
2 , ..),

y(2) = (y
(2)
0 , y

(2)
1 , y

(2)
2 , ..)

of the encoder from the shift registers according to the connections in the encoder.
These outputs are then interlaced into a single output stream

y = (y
(1)
0 , y

(2)
0 , y

(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 , ..).

The shift registers in the encoder are assumed to be initialized to zero before the

11

encoding begins. For the encoder in Figure 2.3 output y(2) is

y
(2)
0 = x0 + 0

y
(2)
1 = x1 + 0

y
(2)
2 = x2 + x0

y
(2)
3 = x3 + x1

...

y
(2)
j = xj + xj−2

From these equations the linearity of the encoder can be seen, as the output
is a linear combination of the input. Linear structure of the code allows the use
of techniques from linear systems theory. It is shown that all linear convolutional
encoders have an equivalent minimal encoder without feed back loops in the encoder
[48].

The impulse respose of a convolutional encoder is obtained by feeding a single one
followed by a string zeros to the input. Impulse responses are frequently referred to
as generator sequences. Impulse responses are given with reference to the particular
input and output pair. For the encoder in Figure 2.3 the impulse responses are

g(1) = (111),

g(2) = (101).

These generator sequences have a length of 3 bits and this means that a single
input bit can affect 3 output bits. This fact can also be seen from Figure 2.3, where
there are two memory elements. The maximum number of bits a single input bit
can affect is called the constraint length of the convolutional code. This number can
be calculated as the longest input shift register plus one, K = m + 1, where m is
the length of the shift register with longest length or memory.

The equation for the i:th output y(i) of the encoder can be expressed with gen-
erator sequences as [48]

y
(i)
j =

m∑
l=0

xj−lg
(i)
l .

This equation is the discrete convolution of a pair of sequences. This equation is
the reason for the name convolutional code. This can also be expressed with input

12

sequence x, output sequence y(i) and impulse response g(i) as y(i) = x ∗ g(i). For
k-input encoders these equations have the following form.

y
(i)
j =

k−1∑
t=0

(
m∑
l=0

x
(t)
j−lg

(i)
t,l)

y(i) =
k−1∑
t=0

(x(t) ∗ g
(i)
t)

These equations can be expressed as a matrix multiplication operation. This pro-
vides a generator matrix that is similar to block codes. Because the input sequence
is not bounded in length the corresponding generator matrix is not bounded either.
This will result with a semi-infinite matrix. The generator matrix for a rate-1/2
code in a general form is created by interleaving the generator sequences g(1) and
g(2) as follows [48].

G =

g
(1)
0 g

(2)
0 g

(1)
1 g

(2)
1 g

(1)
2 g

(2)
2 . . . g

(1)
m g

(2)
m 0

g
(1)
0 g

(2)
0 g

(1)
1 g

(2)
1 g

(1)
2 g

(2)
2 . . . g

(1)
m g

(2)
m

g
(1)
0 g

(2)
0 g

(1)
1 g

(2)
1 g

(1)
2 g

(2)
2 . . . g

(1)
m g

(2)
m

g
(1)
0 g

(2)
0 g

(1)
1 g

(2)
1 g

(1)
2 g

(2)
2 . . . g

(1)
m g

(2)
m

g
(1)
0 g

(2)
0 g

(1)
1 g

(2)
1 g

(1)
2 g

(2)
2 . . . g

(1)
m g

(2)
m

0
.

. . .

This matrix is then used to encode the convolutional code word, or coded sequence

y = xG.

For the example’s encoder with generator sequences g(1) = (111) and g(2) = (101)

the encoding of a information sequence x = (1011) is performed as

y = xG =
[
1011

]

11 10 11 00 00 00

00 11 10 11 00 00

00 00 11 10 11 00

00 00 00 11 10 11

 =
[
11 10 00 01 01 11

]

.
Discrete convolution can be expressed in simpler form after the delay transform

and the use of a delay operator D. After delay transform it is possible to express

13

the input, the output and the generator sequence as [48]

x(i) = (x
(i)
0 , x

(i)
1 , x

(i)
2 , ...)↔ X(i)(D) = x

(i)
0 + x

(i)
1 D + x

(i)
2 D

2 + . . .

y(i) = (y
(i)
0 , y

(i)
1 , y

(i)
2 , ...)↔ Y(i)(D) = y

(i)
0 + y

(i)
1 D + y

(i)
2 D2 + . . .

g
(i)
j = (g

(i)
j0 , g

(i)
j1 , g

(i)
j2 , ...)↔ G

(i)
j (D) = g

(i)
j0 + g

(i)
j1D + g

(i)
j2D

2 + . . .

The exponent of the delay operator D indicates the number of time units the coeffi-
cient is delayed against the coefficient with the D0 term. Here in g(i)

j2 , j is the input
index, i is the output index and 2 denotes the second bit of the sequence.

Using the delay operator we can perform the encoding operation for a single
input and multiple output system as follows.

Y(i)(D) = X(D)G(i)(D)

For a multiple input and multiple output system the equation can be expressed as

Y(i)(D) =
k−1∑
j=0

X(j)(D)G
(i)
j (D).

The above equations can also be expressed as matrix operations. For a k input
and n output system the matrix equation of the encoding operation will be in the
following form.

Y(D) = X(D)G(D) =
[
X(0)(D) X(1)(D) . . . X(k−1)(D)

]

·

G

(0)
0 (D) G

(1)
0 (D) . . . G

(n−1)
0 (D)

G
(0)
1 (D) G

(1)
1 (D) . . . G

(n−1)
1 (D)

...
...

G
(0)
k−1(D) G

(1)
k−1(D) . . . G

(n−1)
k−1 (D)

Matrix representation of the previous encoding example with generator sequences

g(1) = (111)↔ G(1)(D) = 1 +D +D2,

g(2) = (101)↔ G(2)(D) = 1 +D2

14

and the information sequence

x = (1011)↔ X(D) = 1 +D2 +D3

will be in the following matrix form.

Y(D) =
[
1 +D2 +D3

] [
1 +D +D2 1 +D2

]
=
[
1 +D +D5 1 +D3 +D4 +D5

]

Where 1 + D + D5 ↔ (110001) and 1 + D3 + D4 + D5 ↔ (100111) so the output
string will be (11, 10, 00, 01, 01, 11).

2.1.3 Low-Density Parity-Check Codes

In this subsection low density parity parity check (LDPC) codes are introduced.
Their structure, description and construction are presented.

Low density parity check codes are linear block codes that are characterized by
a sparse parity check matrix [27]. These codes were first introduced by Gallager
in 1960. It has been shown that these codes have a comparable performance to
turbo codes. This performance has resulted in inclusion of LDPC codes in several
communication and broadcasting standards. [39]

LDPC codes are linear block codes that have very long codewords, from hundreds
to even tens of thousands in broadcasting applications. The parity check matrices
for these codes are very large and contain very few 1’s compared to the number of
0’s. Low density refers to this low density of 1’s in the parity check matrix. The
m × n parity check matrix of an LDPC code should satisfy that the number of 1’s
in a row, the row weight, will have wr � min{m,n} and the number of ones in
a column, the column weight, will have wc � min{m,n}. A regular low density
parity check matrix is a sparse matrix that has the same weight wc for every column
and the same weight wr for every row [32]. An irregular LDPC code is one with
nonconstant row and column weights for rows and columns.

As an example, a block code with a parity check matrix

H =

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

15

with size n × m, (n = 8,m = 4) is assumed to be a LDPC code. The dimensions
of H are obviously smaller than in a practical LDPC code, but the key principles
can still be illustrated. In the matrix the (n − k) rows represent the parity check
equations that must be fulfilled for every valid code word. That is every code word
c must satisfy

c1 + c3 + c4 + c7 = 0

c0 + c1 + c2 + c5 = 0

c2 + c5 + c6 + c7 = 0

c0 + c3 + c4 + c6 = 0

where additions are performed modulo 2.

check nodes

variable nodes

f1 f2 f3

c4c3c2c1c0 c7c6c5

f0

Figure 2.4: Tanner graph

LDPC codes are usually represented by a parity check matrix or a Tanner graph.
A Tanner graph [44] for the parity check matrix H can be seen in Figure 2.4. A
Tanner graph is a graphical representation of parity check equations of H. A graph
is a data structure that is a collection of nodes and edges that connect the nodes.
A degree of a node is the number of edges that are connected to the node [39]. A
bipartite graph is a graph that divides the nodes into two subsets so that each edge
connects two nodes from different subsets. A Tanner graph is a bipartite graph
that divides the set of nodes to variable nodes and check nodes. The variable nodes
represent the bits of the received word and the check nodes represent the parity
checks, or the parity check bits, of the codeword. Comparing the matrix H and the

16

Tanner graph, correspondence between the check nodes and the rows of the matrix
and between the variable nodes and the columns of the matrix can be observed.

A cycle in a graph is a path on the edges from a node back to the same node. A
Tanner graph of a LDPC code usually has cycles in it. For example in the Tanner
graph in Figure 2.4 there is a cycle c2 → f2 → c5 → f1 → c2. The length of
the shortest cycle is called the girth of the graph. The guaranteed error correction
capability of an LDPC code is higher for codes with larger girth [12].

2.1.4 Turbo Codes

In this subsection turbo codes are introduced. The turbo code encoder structure is
presented with a polynomial and a matrix description of the encoding process that
is extracted mostly from [8].

A turbo code is a linear block code that is constructed from a terminated system-
atically encoded convolutional code using two different words of the convolutional
code [8]. A turbo encoder encodes the data twice so that the two decoders for the
two convolutional code words can use the decoding information from each other [8].
The decoding proceeds iteratively. The outcome of an iteration is an a posteriori
probability that is used as an input for the next iteration [28]. For a large binary
turbo code, ten to twenty iterations are usually sufficient for the outcomes of the
iterations to converge between the decoders [8]. A turbo code can also use punc-
turing, a process where some of the output bits are removed after the encoding.
Puncturing a code will result in a higher code rate.

A turbo code encoder is shown in Figure 2.5. In this figure there are two parallel
convolutional encoders, G1 and G2 and the interleaver Π that precedes the second
encoder. From the figure it can also be seen that the code is systematic, as the un-
modified input stream is fed straight to the output. The two convolutional encoders
are usually identical.

A systematic rate 1/2 convolutional encoder in the turbo encoder can be pre-
sented with polynomial generator matrix

G(x) =
[
1 g(x)

]
.

Here the g(x) is the generator polynomial of the convolutional code. In a turbo code
there can be recursive convolutional encoders that have feedback structure. Such a
structure will be represented with rational functions of the form g1x

g2(x)
in the generator

matrix instead of polynomials. The g1(x) will represent the feedforward connections

17

Π

output
information

output
convolutional

input

G1

G2
permuted
convolutional
output

Figure 2.5: Turbo code encoder

and the g2(x) the feedback connections. A code word c of this convolutional code
with a data word a(x) will have the form

c(x) = a(x)G(x).

This code word can be written also as[
c0(x) c1(x)

]
=
[
a(x) a(x)g(x)

]
.

When the length of the data word is restricted, the data word will have a maximum
degree of k − 1 at most. The degree of g(x) is defined to be r. This finite length
convolutional code can then be described as a block code. A generator matrix for
the terminated convolutional code in the block code representation will be

G =
[
I
[
g(x)

]]
.

Here the I is the k by k identity matrix and
[
g(x)

]
is the matrix of coefficients of

g(x) with rows shifted cyclically. The code word will be a pair (a(x), a(x)g(x)) with
a block length of n = r + 2k.

18

The interleaver Π in the turbo encoder can be described with a permutation
matrix of size k by k according to the maximum degree of the data word polynomial.
A permutation matrix is an identity matrix where the rows have been permuted.

The turbo code can be presented with a generator matrix of the form

G =
[
I
[
g(x)

]
Π
[
g(x)

]]
.

The generator matrix G has k rows and 2r+ 3k columns. Therefore the turbo code
is a (2r + 3k, k) block code.

For example, in a small turbo code with (n, k) = (13, 3), the convolutional
generator polynomial g(x) = g2x

2 + g1x+ g0 and the permutation matrix

Π =

0 0 1

1 0 0

0 1 0

 ,
the generator matrix of the turbo code will be

G =

1 0 0 g2 g1 g0 0 0 0 0 g2 g1 g0

0 1 0 0 g2 g1 g0 0 g2 g1 g0 0 0

0 0 1 0 0 g2 g1 g0 0 g2 g1 g0 0

and the code word will be

c = aG

where the data word a is a vector of length k = 3. The code word c can be divided
into three parts, the systematic part, the convolutional code part and the permuted
convolutional code part. The code word can then be presented as a vector of three
polynomials as

c(x) = (a(x), g(x)a(x), g(x)a′(x)) = (c0(x), c1(x), c2(x)).

These three polynomials correspond to the three output streams.
With a generator sequence g = (101), the generator polynomial is x2 + 1 and

the systematic generator matrix will be

G(x) =
[
1 x2 + 1

]
.

The terminated code words will have the form (a(x), a(x)(x2 + 1)). The block code

19

representation of the generator matrix will have the following form

G =

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1

 .
The permutation matrix is chosen to be

Π =

0 0 1

1 0 0

0 1 0

 .
The rows indicate the permutation order, so that in the permuted part of the turbo
code generator matrix, first will come the third row of the non systematic part of
the generator matrix, then the first and the second. The (13, 3) turbo code thus
corresponds to the block code with a generator matrix

G =

1 0 0 1 0 1 0 0 0 0 1 0 1

0 1 0 0 1 0 1 0 1 0 1 0 0

0 0 1 0 0 1 0 1 0 1 0 1 0

 .
Encoding the data word

[
1 0 1

]
will then result in a code word

c = aG =
[
1 0 1

]1 0 0 1 0 1 0 0 0 0 1 0 1

0 1 0 0 1 0 1 0 1 0 1 0 0

0 0 1 0 0 1 0 1 0 1 0 1 0

=
[
1 0 1 1 0 0 0 1 0 1 1 1 1

]
.

From the code word it is possible to see the three parts or the three output streams.
The first three bits are the systematic data part, then comes the five bit convolutional
check part and finally the five bit permuted convolutional check part. The use of
two checks in parallel is referred to as parallel concatenation. Useful turbo codes
will have a much larger block length than in the above example [8].

20

2.2 Interleaving

Most error correcting codes have been designed to correct random errors that are
statistically independent. If errors occur in bursts then error correction capability
is wasted as some words can be heavily corrupted while others can be error free.
Interleaving the coded data is an effective method to combat burst errors so that
the channel appears as having independent errors and error correction codes de-
signed for independent errors can be used. An interleaver reorders the symbols from
several code words so that the symbols in a given word are separated from each
other. Transmitted data is then deinterleaved in the receiver by a deinterleaver and
arranged in the correct order for the decoder.

Interleavers can be divided into two main types according to their structure,
block or convolutional interleavers. Difference between the two types is related
to the implementation of the interleaver circuits and both types can be used in a
communication system in much the same way. A brief description of the operating
principle of a block interleaver is presented next.

A block interleaver arranges the coded data into a matrix. Input data to the
interleaver is read into rows of the matrix. Output from the interleaver is read
out column wise. The length of the column vector is the interleaver period that
defines the separation distance of bursty errors. In the receiver side a deinterleaver
stores the data in the same matrix format as in the transmitter side but the data is
read out row wise. A block interleaver with 3 rows and 3 columns is illustrated in
Figure 2.6, where the input string is 1, 2, 3, 4, 5, 6, 7, 8 and 9, and the output string is
1, 4, 7, 2, 5, 8, 3, 6 and 9. The length of the column vector is 3 in this interleaver and
so the separation distance is 3, which can be checked also from the output string,
where consecutive input bits are are separated by at least three bit positions.

The interleaving operation can be described in matrix form with a permutation
matrix. For a coded data vector c = [c0, c1, c2, ..., cn−1] the permutation matrix is an
n by n square matrix Π of zeros and ones. Π has a single one in every row and in
every column and the rest of the matrix entries are zeros. This permutation matrix
can be constructed from a identity matrix by permuting the rows or the columns.
The permutation matrix will permute the rows of a matrix when it multiplies it
from the left and the columns when it multiplies it from the right.

For example the interleaving of a code vector c =
[
1 1 0

]>
so that the output

of the interleaver will be the third code bit, then the first and the second is done

21

1 2 3

654

7 8 9

in
p
u
t

b
it

s

output bits

Figure 2.6: Block interleaver

with a permutation matrix Π by

Πc =

0 0 1

1 0 0

0 1 0

1

1

0

 =

0

1

1

 .
Here the permutation matrix operates on the rows, that is the entries in the column
vector c. The same operation could be performed by transposing Π and multiplying
a row vector from the right.

2.3 Transmission Channel

In this section the general communication channel model is presented. The specific
channel model that is used in this work is also described.

In digital communications a general transmission channel is described by the
possible inputs, the input alphabet X and the possible outputs, the output alphabet
Y and the conditional probabilities P[y|x] that relate the input x = (x1, x2, ..., xn)

and the output sequences y = (y1, y2, ..., yn) of length n. A channel is defined to be

22

a memoryless channel when

P[y|x] =
n∏
i=1

P[yi|xi] for all n.

The equation says that in a memoryless channel the output at time i depends only
on the input at time i. When the memoryless channel has a input alphabet and a
output alphabet that are the same with X = Y = {0, 1}, the channel is called the
binary symmetric channel (BSC) [39]. This binary symmetric channel is the channel
model that is used in this work.

input output

0

1

p− 1
0

1
p− 1

p

p

Figure 2.7: Binary symmetric channel

If channel noise causes statistically independent errors in the transmitted binary
sequence with average probability p then we have the following probabilities.

P[Y = 0|X = 1] = P[Y = 1|X = 0] = p

P[Y = 1|X = 1] = P[Y = 0|X = 0] = 1− p

The probability p is commonly referred to as the crossover probability, as it describes
the probability that the bit will cross its value from 0 to 1 or vice versa in the
graphical representation of a binary symmetric channel. The above probabilities
can be represented in a graphical form as in Figure 2.7.

Chapter 3

Code Identification

Identification of a code is a problem that requires solving different subproblems.
One needs to find out the interleaver parameters, synchronization and recognize the
code length. For a non-binary code one also needs to recognize the used alphabet,
synchronize the symbols and extract the symbols. After these steps comes the code
identification and noise extraction. Then it is necessary to recognize the mapping
between code words and non-encoded words. This list only includes those operations
that are closely related to code identification. A complete retrieval of the transmitted
message in a modern communication system would also require to solve additional
problems, for example, identification of the used modulation method and possibly
cryptanalysis. [46]

In this chapter different methods to obtain information about the used error cor-
rection code are presented. At first methods for identification of interleaver structure
are presented. Then principles of algorithms for block codes and convolutional codes
are illustrated. Identification methods as they are applied for LDPC codes and turbo
codes conclude this chapter.

3.1 Interleavers

In this section interleaver parameter recovery is presented. When the structure of
the interleaver is not known, there are different methods [9], [40], [41], [17] to find
out the interleaver parameters.

A simple method [40] proposed for estimating the interleaver period is:

ρa =
the number of vectors that occur

2na

23

24

where the number of different vectors of size na that are found in the intercepted
stream are counted and this number is divided by the number of all possible different
vectors of size na. The interleaver period that minimizes ρs will be the estimate for
the interleaver period. The idea of calculating different vectors from the stream is
used in conjunction with convolutional codes in [5].

Identification of the interleaver parameters can be closely related to identification
of the error correction codes. In fact, it will be shown next how the code rate of a
block code can be estimated with an algorithm that is primarily designed to detect
the interleaver parameters.

This method presented in [9] estimates the interleaver period, performs a blind
synchronization on the interleaver blocks and finally estimates the code rate of the
block code. Adaptation of the method to convolutional encoders is also possible [9].

The method proposed in [9] for solving interleaver structure with block codes is
based on linear algebra. At first the interleaver period ni is estimated. This period is
assumed to be a multiple of the length of the encoded block. The intercepted stream
is divided into analysis blocks of size na. These blocks are then used as columns
in a matrix Z. Examining the ratio ρ, as defined in (3.1), for different block sizes
na, one can note that ρ is equal to 1, except when na is a multiple of the correct
interleaver period ni.

ρ =
rank(Z)

na
, (3.1)

The rank of a matrix is the largest number of linearly independent columns
or rows in the matrix and this method is based on finding the size of the matrix
that is not of full rank. The rank is full when analysis block size is not a multiple of
interleaver period and columns of the matrix Z are linearly independent. Complexity
of calculating rank by Gaussian elimination is O(n3).

To illustrate the functioning of this algorithm, a simple example is presented, as
in [9]. Considering a simple parity code with a code word length n = 3, message
length k = 2 and a random interleaver with period ni = 12. A matrix Z is built
from the interleaved stream of 2400 symbols and then ρ versus increasing analysis
block sizes na is plotted. The plot can be seen in Figure 3.1.

Upper bound for ρ is derived as ρ = r + 1−r
bi

, where integer bi is the multiple of
the interleaver period and r is the code rate k

n
. Lower bound for ρ is the code rate,

as will be seen later.
Once the interleaver period ni has been estimated, the next step is to estimate

the synchronization d. Synchronization is the number of symbols that the start

25

ρ

na

Figure 3.1: Estimation of interleaver period (the dashed curves are lower and upper
bounds for ρ)[9]

of the intercepted stream is shifted from the start of the coded block. Interleaved
stream is first divided into analysis blocks of size na = ni and first d̂ symbols are
skipped. This time ρ versus d̂ is plotted. The plot for the example is shown in
Figure 3.2. It can be noted that minimum of ρ and thus the synchronization is
found at d̂ = d.

After the synchronization is found, the code rate is estimated. The first d symbols
are skipped from the interleaved stream and the values of ρ for increasing values na
are plotted. When na is a multiple of the interleaver period ni, the value of ρ is the
code rate. The plot is shown in Figure 3.3, where it can be seen that the code rate
is r = k

n
= 2

3
.

The method presented in [9] is developed for error-free transmission. If the
transmission channel introduces errors to the intercepted stream, the matrix Z will
be of full rank and the method will not be successful. A method for a scenario where
the intercepted stream is corrupted with errors is presented in [41]. This method is
based on the same concept as the earlier method, where the matrix rank was used
to find interleaver parameters.

At first an analysis matrixH(na, d) is built from the intercepted stream, where na
is the row length of the analysis matrix or the interleaver size, and d is the number
of skipped symbols from the beginning of the symbol stream or synchronization.

26

ρ

d̂

Figure 3.2: Estimation of synchronization (the dashed line shows the code rate) [9]

Matrix H is then converted into lower triangular matrix L(na, d). Now Bi is the
number of ones in the column i of L(na, d) from row na to the last row. For an
independent column i, Bi is binomially distributed with a mean mB. Next φ(k) is
defined as

φ(k) =
Bk

mB

.

For na 6= αS, α ∈ N, where S is the interleaver size, it can be shown that ∀k ∈
{1, . . . , na}, limM→∞ φ(k)

p→ 1, where M is the number of rows in the matrix and
p→ is the convergence in probability. Now if na = αS, it can be shown that for some
columns φ(k) will not converge to one. The maximum number of these columns
is reached at d = t0, that is when the synchronization is correct. The difference
between φ(k) for different columns is estimated to be significant enough to estimate
the interleaver parameters when the error probability of the channel is not too high
and there are not too many dependent columns.

Also here it is possible to gain information about the used error correction code
in addition to the information about the interleaver. Indeed, code rate can be
estimated by dividing the number of dependent columns with the interleaver size.
The estimate might not be perfect however, as the algorithm might have missed
some dependent columns. In order to improve the performance of the algorithm, it
is possible to make a so called new virtual realization of H(na, d) by permuting the

27

na

ρ

Figure 3.3: ρ versus na when analysis blocks are synchronized [9]

rows of the matrix. This way the estimate can be completed and made iteratively
more accurate. In Figure 3.4 it is shown how with more iterations it is possible
to increase the correct detection probability. This method gives more information
about the interleaver than the method in [9] as the found dependent columns in the
interleaved block belong to the same code word. In Figure 3.5 the proportion of
found vectors in the basis D̂S,d is plotted versus the bit error rate. Here the basis
D̂S,d is the set of vectors and a vector is a set of found dependent column positions.

Recovering the length and synchronization can also be based on searching for
words in the dual code as is proposed in [17]. A q-ary code C of length n is a vector
subspace embedded within the space of all n-tuples over GF (q). The dual space of
a linear code C is called the dual code of C and is denoted by C⊥. Words in the
dual code will be orthogonal to the words in the coded stream. So if one can find
such dual words h of the dual code C⊥ the product of h with words of the code C

will be zero. Searching for words in the dual code can be sufficient to decide if a
specific length and synchronization is correct.

In order to search for dual words, the intercepted stream is first split into words
of test length n. Then a matrix G is constructed so that each row will be one word.
Matrix G will be of sizeM×n, where n is the word length andM = b l−s

n
c, where l is

the length of the intercepted bitstream and s is the synchronization. If h is a word of

28

Figure 3.4: Correct detection probability of the interleaver size [41]

Figure 3.5: Proportion of vectors found in D̂S,d [41]

the dual of C the product G×h will depend on the binary symmetric channel cross-
over probability τ and follow binomial distribution centered at M

2
(1 − (1 − 2τ)w),

with a variance of ρ2 = M
4

(1− (1− 2τ)2w). This distribution is shown in Figure 3.6.
Distribution of the weight of product G× h′ when h′ is not a word in the dual of C

will follow the binomial distribution with mean M
2

and variance M
4
.

29

If the length of the code word is chosen incorrectly it is unlikely to find any
words so that the weight of the product G × h would follow binomial distribution
with center at M

2
(1 − (1 − 2τ)w). If the synchronization is incorrect, then shifted

dual words can be found if the support of the shifted dual word is in either of the
two intervals [0, d− 1] or [d, n− 1], where d is the used synchronization. Probability
of finding such words will be lower as the synchronization offset grows.

When searching for words in the dual, words with the lowest weight w are easier
to find [17]. For low weight words the distributions of weight of the product G×h, as
shown in Figure 3.6, are further away from one another and also the computing time
will be less for exhaustively going through words of weight w and their product with
G. Authors use two different algorithms, [13] and [10], in the search for words in
the dual of C. This method is studied further in [42], where theoretical probability
of detection is computed and optimal detection threshold is derived.

Figure 3.6: Distribution of weight of the Product G× h. [17]

3.2 Block Codes

The problem of detection and recognition of a binary linear block code is examined
and formalized in [46]. The problem is to find the nearest (n, k)-code in Hamming
distance from the received binary stream [46].

The following hypotheses are used in the examination. The observed binary
stream has been transmitted through a BSC channel with a bit error probability

30

τ < 1
2
. From this stream the erroneous consecutive code words of length n are

intercepted. All the code words are a priori equally likely to be transmitted.
Then from these assumptions is derived the probability that the code C was used

knowing that the stream X was received. From this maximum likelihood problem
is derived an associated decision problem that is proved to be NP-complete. After
this general theoretical result practical situations are considered.

An algorithm based on dual words is suggested for recognition. This algorithm
finds the length, the dimension and synchronization of a block code. The algorithm
will be efficient for codes of length up to 512 with no more than 1.5 errors on average
in one code word [46]. A table of limits on code length, dimension and bit error
probability is also given in [46].

At first the algorithm constructs a matrix X with N rows from the received
stream. This matrix hides the structure of a k-dimensional subspace of the orig-
inal code C. A sparse error matrix E is also added in X. By finding the parity
check equations from this received matrix it is possible to retrieve the original k-
dimensional subspace.

A parity check equation correspond to a dual word h of the dual code C⊥. When
a dual word h belongs to C⊥, the linear combination of columns X will be hX>.
This vector of length N will have a low weight. The expectation of weight will
depend on the bit error probability τ and the weight of the dual word h. If h

belongs to dual code C⊥, the expected weight will be

(1− (1− 2τ)w(h))N/2.

If h does not belong to C⊥, the expected weight will be N/2 with standard deviation√
N/2. This difference between expected weights provides a way to recognize the

dual words from the other words.
The algorithm will generate linear combinations of X that have a low weight.

This is equivalent to generating low weight vectors hX> in the code with generator
matrix X>. The algorithm has to perform two tasks. First it generates the dual
words and then it eliminates the dual word candidates that do not satisfy detection
criterion.

Detection criterion is a threshold for the probability P (X|H(h))/P (X) where
H(h) is the hypothesis that the dual code contains the word h. This is referred to
as a first-order algorithm.

Higher-order algorithms consider the hypothesis that several words are in the
dual code. For instance, second-order algorithm will consider the hypothesis H(h,h′).

31

In other words, the objective is to decide if a given two-dimensional subspace is a
in included in the C⊥. Higher order algorithm should provide a better detection of
words. This is because the 1’s in hX> and h′X> should be correlated.

The above algorithm is improved in [15]. Instead of performing statistical tests
on the dual word candidates, the algorithm will try to decode using these dual
words as parity checks. The principle of the used decoding is iterative decoding, as
introduced in [27]. The feedback from the decoding will then be used to decide if a
dual word candidate belongs to the dual code.

Both of the above algorithms, [46] and [15], consider primarily the case where the
code’s length and synchronization have already been recovered. In [17] it is shown
that the same principles that can be used to recover the syncronization and length
can also be used to reconstruct the code. Additionally in [17], two algorithms, [13]
and [10], are used for optimizing the search for dual words in different scenarios.
The problem of finding low weight words is also studied in a different context, for
example in [29] or [43]. Finding a linear binary code word of a given weight is proven
to be an NP-complete problem in [7].

These algorithms are designed to find the basis of the linear space defined by the
code. That is, in a successful run of a algorithm, the used code is found. However,
this does not mean finding the encoder. [15]

Different approach for block code identification than the one used in the algo-
rithms above, is exhibited in [9]. Instead of searching for dual words, this algorithm
is based on calculation of the rank of a matrix. This approach is further improved in
[41], where the algorithm is made more resistant to noise. Both of these algorithms
are detailed in the interleaver section of this chapter.

The decision problem whether a given sequence is coded by a linear block code
is studied in [11]. Methods for identification of the code and classifying them is
presented in [49], where also a detailed description of the implementation of the
system is provided. The problem of how many code words are needed for the recovery
of a code is examined in [19]. Generic approach for linear block code reconstruction
is studied in [4]. Overview of different identification methods of block codes is
presented in [16].

3.3 Convolutional Codes

Convolutional code reconstruction techniques for convolutional codes of any rate
have been established in [23] and improved later in [3] and [20]. Using the identifi-

32

cation method presented in [23] for rate 1/2 convolutional code is considered here
as an example. The highest degree of the encoder polynomial will be m and the
message polynomial will have a degree m + t, where t is the time index and the
constraint length is defined as K = m + 1. The identification method is based on
solving the homogeneous linear system

Cf = 0,

where C is the matrix constructed from the known coded sequence, given by a
(t−m) by 2K matrix

C =

c2,m c2,m−1 . . . c2,0 c1,m c1,m−1 . . . c1,0

c2,m+1 c2,m . . . c2,1 c1,m+1 c1,m . . . c1,1

c2,m+2 c2,m+1 . . . c2,2 c1,m+2 c1,m+1 . . . c1,2

...
...

...
...

...
...

...
...

c2,t−1 c2,t−2 . . . c2,t−m−1 c1,t−1 c1,t−2 . . . c1,t−m−1

and f is the length 2K coefficient vector of polynomials

f =
[
f1,0, f1,1, f1,2, . . . , f1,m, f2,0, f2,1, f2,2, . . . , f2,m

]>
that is to be recovered and 0 is the (t−m) null vector.

DD

output y(2)

output y(1)

input x

Figure 3.7: Convolutional encoder

For the encoder in Figure 3.7 with generator sequences g(1) = (111) and g(2) =

33

(101) and the received code message

c = xG =
[
1 0 1 1 0 1

]

1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1

=
[
11 10 00 01 01 00 10 11

]
=
[
c1,0 c2,0 c1,1 c2,1 c1,3 c2,3 c1,4 c2,4 c1,5 c2,5 c1,6 c2,6 c1,7 c2,7

]
,

that was generated with the unknown data message x and the unknown generator
matrix G, the equation will be

c2,2 c2,1 c2,0 c1,2 c1,1 c1,0

c2,3 c2,2 c2,1 c1,3 c1,2 c1,1

c2,4 c2,3 c2,2 c1,4 c1,3 c1,2

c2,5 c2,4 c2,3 c1,5 c1,4 c1,3

c2,6 c2,5 c2,4 c1,6 c1,5 c1,4

f1,0

f1,1

f1,2

f2,0

f2,1

f2,2

=

0

0

0

0

0

0

.

After inserting the values this will be

0 0 1 0 1 1

1 0 0 0 0 1

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

f1,0

f1,1

f1,2

f2,0

f2,1

f2,2

=

0

0

0

0

0

0

.

From this equation the null space can be obtained by Gaussian elimination and it

34

will be

f1,0

f1,1

f1,2

f2,0

f2,1

f2,2

=

−1

1

−1

1

0

1

=

1

1

1

1

0

1

,

which is the coefficient vector of the encoder that was wanted.
In a noiseless scenario the minimum number of intercepted bits in 1/n rate

encoding is Lmin = n(3K − 2). This relation is a consequence of the requirement
that the the rank of the interception matrix C must be lower than the number of
coefficients in the encoder polynomials f .

For noisy communications the reconstruction technique is essentially the same.
When noise is present, the minimum required number of bits Lmin is linked to the
probability of noise per bit and is simply derived from the probability of finding one
sequence of noiseless bits of length Lmin as was required in the noiseless case.

Parameters (n, k,m) are searched for exhaustively. This is possible when these
parameters are relatively small. Recovering the polynomials by solving the homoge-
neous linear system is done by Gaussian elimination, which is the most costly step.
Complexity for this method is given as O(K4).

The reconstruction technique introduced in [23] is analyzed and improved further
in [3]. This improved technique is then developed further by using algebraic descrip-
tion of convolutional codes in [20]. This enables the use of basic linear algebra and
gets rid of polynomial operations. According to the authors the complexity of the re-
construction remains the same but the implementation of the algorithm is simplified.
Algebraic description of convolutional codes is given in [38] and [25]. Identification
of rate 1/2 convolutional codes and optimization of the identification process with
Euclidean algorithm instead of Gaussian elimination is presented in [47]. Identifica-
tion of convolutional code parameters in a noisy channel is considered in [22], where
the identification process is done iteratively, based on the expectation maximation
(EM) algorithm. Identification of (n− 1)/n encoders in a noisy environment is pre-
sented in [34], where the concept of dual codes of convolutional codes, studied in [26]
and [36], is used in the iterative identification process. This method is developed
further in [35] to include the case of punctured (n−1)/n convolutional codes. Punc-
tured convolutional codes are also studied in [24], [30] and [31]. A different way of
detecting and reconstrucing convolutional code is suggested in [5], where the main

35

idea is based on counting collisions in the received sequence. A generic approach
for convolutional code reconstruction is given in [4] and a more complete overview
of identification of convolutional codes in [33].

3.4 Low-Density Parity-Check Codes

Identification of LDPC codes is essentially the same than identification of block
codes. However, the long length and the low weight of a LDPC code word will
require to select the used algorithms accordingly. The algorithms that are based
on finding dual words, [46], [15] and [17], seem to work better for LDPC codes.
This is due to the operation of these algorithms that generate dual words of small
weight, matching the structure of LDPC code words. Identification of LDPC codes
is described in more detail in the next chapter.

3.5 Turbo Codes

In this section different approaches to turbo code identification are presented. A
description of three algorithms is given. The first one is based on finding the kernel
of the polynomial matrix, the second one is based on finding dual words of the
convolutional encoder and the third one is an iterative method based on using a
decoder to recover the parameters of the turbo encoder. These three approaches
cover most of the presented algorithms in literature.

A method presented in [2] is based on solving the kernel of the interception
matrix and is founded on earlier work [23] on convolutional codes. The algorithm
for reconstruction of convolutional encoder is developed further and two techniques
for recovering the interleaver are proposed.

The asymptotic complexity of the whole process for a turbo encoder is O(n4)

with convolutional encoders (n, k,m), where n is the code word length, k is the
information word length and m is the degree of the encoder polynomials. The
number of bits needed for reconstruction is stated as nk2m. Complexity can be
improved if the convolutional encoders are (n, 1,m) encoders. In this case it is
possible to use the Berlekamp-Massey algorithm [6], [37]. The achieved complexity
will then be O(m logm2). [2]

The method presented in [2] proceeds as follows. From a turbo encoder, as
illustrated in Figure 3.8, parameters of the convolutional encoders C1 and C2 are
recovered first. Then C ′1 and C ′2 are obtained which are C1 · P1 and C2 · P2 where

36

P1 and P2 are permutations that are introduced by the reconstruction algorithm. If
the turbo encoder is systematic, it is possible to determine P1 and C1. A this point
x̃1 which is x1 with noise and x̃2

′ which is (P2 ·P)(x1) with noise are known. Finally
P ′ = P2 · P is computed and a turbo code encoder (C1, C

′
2, P

′) is constructed and
x̃1 corrected into x1 that was what was wanted in the first place. Next the whole
process is presented in a detailed way.

P

C1

input

C2

x1

y1

x2

y2

Figure 3.8: Turbo code encoder

Algebraic representation of convolutional encoders is used. Input message M is
divided to k sub-messages Mi and output is divided into n sub-messages Ci. Each
infinite sub-message is presented by formal series, mi(x) and ci(x), whose coefficients
are values of the bits of the message. More details about the representation can be
found in [38] and [25].

Following notation is used

∀i = 1, ..., k, mi(x) = Σj≥0m
j
ix
j,

∀i = 1, ..., n, ci(x) = Σj≥0c
j
ix
j,

∀i = 1, ..., n j = 1, ..., k, fi,j(x) = Σm
l=0f

l
i,jx

l.

Algebraic representation of a (n, k,m)-encoder gives n equations describing the

37

encoder,
m1(x)f1,1(x) + · · ·+ mk(x)f1,k(x) = c1(x), (E1)

...
...

...
m1(x)fn,1(x) + · · ·+ mk(x)fn,k(x) = cn(x). (En)

From these equations can be built (n−k) systems (Sj)j=1,...,n−k of k+1 equations.
Each (Sj) is equivalent to a (k, k + 1,m) sub-encoder. Next the reconstruction of
(S1) is presented. The technique for the other cases is the same.

(S1) =

m1(x)f1,1(x) + · · ·+ mk(x)f1,k(x) = c1(x)

...
...

m1(x)fk+1,1(x) + · · ·+ mk(x)fk+1,k(x) = ck+1(x)

Now P1(x), the (k + 1)-square matrix over the Laurent series field is defined by

P1(x) =

f1,1 · · · f1,k(x) c1(x)
...

...
...

fk+1,1(x) · · · fk+1,k(x) ck+1(x)

 .
When ∆i(x) is the minor of P1(x) associated with ci(x), then

k+1∑
i=1

ci(x)∆i(x) = 0,

which can be written in the following form

∀j ≥ km,
k+1∑
i=1

(
km∑
l=0

cli∆
km−l
i) = 0. (3.2)

By defining ∆ as the vector (∆0
1, . . . ,∆

km
1 , . . . ,∆0

k+1, . . . ,∆
km
k+1)> and G as the

(k + 1)(km+ 1)-square matrix

G =

ckm1 · · · c0

1 · · · ckmk+1 · · · c0
k+1

ckm+1
1 · · · c1

1 · · · ckm+1
k+1 · · · c1

k+1
...

...
...

...
c
k(m(k+2)+1)
1 · · · c

k(m(k+1)+1)
1 · · · c

k(m(k+2)+1)
k+1 · · · c

k(m(k+1)+1)
k+1

38

it is possible to write (3.2) as G.∆ = 0.

Then ∆ is computed by Gaussian elimination process. It can be noticed that
∆(k+j) is common to all Pj(x). Now ∆ can be determined uniquely by comparing
kernels for all Sj.

Next step in the reconstruction is to recover the coefficients of the encoder poly-
nomials. This is done in a similar way as above. For all j = 1, . . . , k Qj

1(x) is
defined by

Qj
1(x) =

f1,1(x) . . . f1,k(x) f1,j(x)

...
...

...
fk+1,1(x) . . . fk+1,k(x) fk+1,j(x)

 .
Here det(Qj

1(x)) = 0 and the equation can be developed as previously as

∀j = 1, . . . , k
k+1∑
i=1

∆i(x)fi,j(x) = 0.

Now defining the vector

fj =
[
f 0

1,j, . . . , f
m
1,j, . . . , f

0
k+1,j, . . . , f

m
k+1,j

]>
and the (k + 1)(m+ 1) square matrix

D =

∆m

1 . . . ∆0
1 . . . ∆m

k+1 . . . ∆0
k+1

∆m+1
1 . . . ∆1

1 . . . ∆m+1
k+1 . . . ∆1

k+1
...

...
...

...
∆

(k+1)(m+2)−1)
1 . . . ∆

(k+1)(m+1)−1
1 . . . ∆

(k+1)(m+2)−1
k+1 . . . ∆

(k+1)(m+1)−1
k+1

 ,

the equation can be written as

∀j = 1, . . . , k D.fj = 0.

It can be noticed that for all i = 1, . . . , k+ 1 and j > km, ∆j
i = 0. Then, for all j =

1, . . . , k+ 1, fj is in the kernel of D. Computation is done by Gaussian elimination.
Now it can be noticed that for all i, j = 1, . . . , k, fi,j(x) are common to all Qj

i (x). By
comparing the kernels for all (Si) together, a set {(f1,j(x), . . . , fn,j(x)) so that j =

39

1, . . . , k}, can be determined uniquely. The fi,j(x) are then determined with random
permutation of j. The permutation is introduced by the reconstruction process, but
it can be determined if the convolutional code is systematic.

The method presented here can also be used with noisy channels. When there
are errors in the intercepted stream it is proposed to detect a sequence of consecutive
bits without noise, in the same manner as with convolutional codes in [23]. Result
can be easily tested with a simple test. With a false result, only half of the equations
produce zero over all of the transmission.

When the turbo code encoder is systematic, it is possible to determine the in-
terleaver. After the structure of the convolutional encoders is known, the streams
x1 and x2 can be obtained. These streams are the input and the output of the
interleaver that is to be recovered.

In [2] two methods are proposed. The first one is based on a trie structure and
the second one is based on a vote algorithm. Both methods are presented next.

A trie is a tree structure that distinguishes words from their prefixes. Each leaf
is labeled with a word that is different from every other word. In the level L depth,
each node is labeled with words that have the same prefix. Trie with depth D means
that every word at level D is distinguished from other words. For example a trie for
binary words a,b,c and d, as in Table 3.1, would be constructed like in Figure 3.9.
Further information about tries can be found in [14].

Table 3.1: Binary words.

a b c d
1 1 0 1
1 0 1 0
1 0 0 1

Tries can be used to recover the interleaver structure in the following way. For
example, in Table 3.2 can be seen the sequence of words x1(0) =

[
0 1 1

]
, x1(1) =[

0 0 1
]
, x1(2) =

[
1 0 1

]
and so forth and the interleaved words x2(t) when an

interleaver

Π =

0 0 1

1 0 0

0 1 0

was used. The associated trie can be seen in Figure 3.10. By comparing the leaves
of both tries, the permutation can be determined to be x1

1(t) = x2
2(t), x2

1(t) = x3
2(t)

40

a b c d

c a b d

ab d

b d

0 1

10

10

Figure 3.9: Trie structure

Table 3.2: Words and interleaved words

t x1
1(t) x2

1(t) x3
1(t) x1

2(t) x2
2(t) x3

2(t)
0 0 1 1 1 0 1
1 0 0 1 1 0 0
2 1 0 1 1 1 0
...

...
...

...
...

...
...

and x3
1(t) = x1

2(t). This method is intended for a noiseless channel.
A second method is proposed for a noisy channel. it is based on a voting algo-

rithm. An event Eij is defined as "xi1 = xj2". If the tested bit permutation is not
correct, so that xi1 6= xj2, then P (Eij) = 1

2
, and if xi1 = xj2 then P (Eij) = (1 − τ)

where τ is the probability of a bit error. The vote Vij will be such that for every
event Eij there will be vote Vij = Vij + 1 or in the other case Vij = Vij − 1.

Each Vij is an independent random variable that will follow binomial proba-
bility distribution with parameter 1

2
or τ . After N observations the mean will be

either µ(Vij) = (1 − 2τ)N , if the permutation is correct, or µ(Vij) = 0 if it is not.
Experimental results from test cases with this algorithm are also presented in [2].

A different approach to the reconstruction of turbo codes is presented in [18],
where two different algorithms are introduced. These algorithms are able to recover
the permutation of a turbo code without puncturing in channels with high noise.
The first algorithm is based on the idea of dual words for turbo codes and the second
algorithm is an iterative method based on using a decoder for reconstruction.

41

x1
1 x

2
1 x

3
1

x1
1

x1
2 x

2
2 x

3
2

x2
1 x

3
1

x2
1 x3

1

x2
2 x1

2 x
3
2

x3
2 x1

2

0

0

1

1

0

0

1

1

Figure 3.10: Comparison of tries

The basic idea of reconstruction that is based on the dual words of the convolu-
tional code is similar to block code reconstruction. A convolutional code is defined
by the generator matrix of polynomials or rational fractions and the dual code is
the vector space spanned by the vectors orthogonal to the generator matrix. A
dual word is an element of this vector space. A dual word will also correspond to
a parity check equation, as in the case with linear block codes. An analysis of dual
codes of convolutional codes is developed in [26] and studied with a view on code
identification in [36].

The reconstruction of a turbo encoder, as shown in Figure 3.11, is achieved
after recovering the parameters P ′, Q′, P , Q and Π. The reconstruction begins
with isolating the outputs X, Y and Z. This is done by searching the parity check
equations that are valid for any multiple of n, where n = 3 in standard interleaving.
These found parity check equations will only involve bits from X and Y , so it is
possible to isolate Z. The P ′ and Q′ can be recovered with convolutional code
identification methods, or they can be solved by exhaustive search because of the
low degree of the polynomials in turbo codes.

The low degree of polynomials P and Q in a conventional turbo encoder limits
the number of possible encoders and consequently permits these polynomials to be
recovered in an exhaustive search. On the other hand, the size N of the permuta-
tion Π can be very large. Therefore the most difficult task can be recovering the
permutation.

For a turbo code with a systematic convolutional encoder with parameter P/Q,
the dual words will have a form (λP, λQ), where λ is any polynomial. For example,
turbo code with P/Q = 1+D2+D3/1+D+D2 will have a dual word (1+D2+D3, 1+

42

Y

X

Z

X

P/Q

P ′/Q′

Π

Figure 3.11: A systematic parallel turbo code

D + D2). In this example the dual word has λ = 1. As the dual word corresponds
to a parity check, for all binary code words the sum of these bit positions will be
zero modulo 2.

The actual search for dual words is made in the same manner as the search for
dual words in block codes. A matrix of M rows and 2N columns is constructed. M
is the number of intercepted code blocks and the 2N corresponds to N columns from
the information output X and N columns from the turbo coded output Z. Dual
words of very low weight are then searched from this matrix. Methods presented in
[17] can be used for optimization of the search.

Each parity check equation (λP, λQ) that is found will have a form λQ on the
turbo coded output Z and λP on the permuted information output XΠ. Only
information output X is available, so only weight w of the λP is known. Each
found parity check will therefore give a information pair (w, λQ). This pair can only
coincide with some encoders P/Q.

To find the correct encoder P/Q, all polynomials λ up to a degree are listed
and all multiples (λP, λQ) are calculated. From these multiples the pairs (w, λQ)

with low weight are stored. It is then possible to compare the found dual word with
the list of (w, λQ) pairs. Every found dual word will limit the number of possible
encoders P/Q until the resolution on the correct P/Q is reached. When P and Q

43

are of degree 3 or less, multiples of weight up to 6 can uniquely classify all pairs
(P,Q) [18].

Each pair (w, λQ) will also give out part of the permutation Π. There is a
possibility that some permutation position belongs to a dual word that is not found
in the search. Then parts of the permutation are left unknown. The probability of
this happening will increase with higher channel noise.

This method has a time complexity O(N d
w
2
e) and memory complexity O(N d

w
4
e).

These results are achieved when the search of dual words is optimized using the
search technique given in [13]. The same optimization technique is also presented
in the error correction code identification context in [17].

The second algorithm in [18] is based on the possibility to distinguish entropies
of coded message and random message. This algorithm takes noisy outputs X and Z
as a input and outputs the positions of permutation Π. The fraction P/Q is needed
for running this algorithm and the algorithm will go through all possible encoders
P/Q to find the correct one. The number of different possibilities for P and Q is
quite small as degree of polynomials P and Q is usually quite low for turbo codes
so exhaustive search will be possible.

The algorithm proceeds iteratively from the first permutation position to the
last. Previous steps are assumed successful and only the next needed position is
considered in reconstruction process. The BCJR decoding algorithm [1], which is
used for decoding turbo codes, is used to distinguish the most probable permutation
position Π(x).

Forward probabilities are used in the iteration step of the algorithm. Fi is the
forward probability on the state of the encoder when i first couples of noisy infor-
mation bits and redundancy bits have been used. F ′i is the random variable that
corresponds to the forward probability of BCJR algorithm after i−1 couples of noisy
information and redundancy bits and then a couple with a random bit and i-th noisy
redundancy bit. The objective is to distinguish the Fi from F ′i and entropy is used
for that task. Entropy of the distribution is H(Fi) = Σa − Fi(a) logFi(a), where
Fi(a) is the forward probability that the i-th state of the encoder is a. When the
channel is not too noisy, the two distributions, H(Fi) and H(F ′i), will be sufficiently
distinct from each other. Distributions of entropies for fraction P/Q = 1+D2

1+D+D2 is
plotted in Figure 3.12.

Iterative method for recovering the permutation is also used in [21]. The demon-
strated technique works with noisy code words for small interleaver block size and is
limited to rate 1/3 turbo codes with unpunctured rate 1/2 systematic convolutional

44

encoders. Iterative approach for recovering the turbo code interleaver is developed
further in [45], where more efficient use of the available information results in sig-
nificantly shorter execution time and fewer code words needed for reconstruction.

Figure 3.12: Distributions of entropies H(Fi) (plain line) and H(F ′i) (dashed line)
for gaussian channels with different standard deviations. [18]

Chapter 4

Simulations and Case Studies

The purpose of this chapter is to show what kind of simulations were made and
report the results of these simulations. This chapter also includes discussion on the
reason for implementing the chosen algorithms for the chosen codes.

4.1 Simulation Setup

Error correction codes that were chosen to the simulation were LDPC codes. These
codes were chosen because they are frequently used in modern telecommunications
applications.

For example, LDPC codes are currently used in ETSI standards DVB-S2X and
DVB-S2 for satellite communicution, DVB-T2 and DVB-T2-Lite for terrestrial tele-
vision broadcasting and DVB-C2 for cable transmission. LDPC codes are also used
in IEEE standards 802.3 (10 GBASE-T), 802.11 (Wifi), 802.15.3c (60 Ghz PHY),
802.16 (WiMAX) and 802.22 (WRAN), near earth and deep space communications,
and Chinese broadcasting standards. Furthermore, LDPC codes are also included
in proposals for future standards.

4.1.1 Identification of LDPC codes

This section presents the most important steps of simulation of identification of error
correcting codes. Identification algorithms can have various parameters, variables,
premises and presumptions. This section will explain how the simulation of LDPC
code identification was performed. The identification algorithm was implemented
according to the method proposed in [17].

Identification algorithm and simulations were done in the MATLAB environ-

45

46

ment. In these simulations pseudorandom Gallager-type LDPC parity check matri-
ces were created with selected parameters. These parameters are information word
length, code word length and column weight of the LDPC matrix. In these simula-
tions the code word’s length is two times the information word’s length, that is to
say that the LDPC code rate is 1/2.

Information words were randomly generated, and this random data is then en-
coded with the LDPC encoder. The code will be systematic, so the code words will
always have the information word with the parity check bits concatenated in the
end. The number of generated code words can vary and this will have an impact on
the result of the identification algorithm, as could be expected. The coded sequence
is sent through a binary symmetric channel with a cross over probability τ . The
channel condition will have an effect on the identification as well.

The identification algorithm will go through all parity checks of a given weight.
LDPC codes typically have low weight parity checks, so the amount of parity checks
generated can be manageable. These generated parity checks of a given weight will
then be checked against all the received code words to see which of them are dual
words of the received code words. Dual words will have a zero scalar product with
the code words. Without channel noise dual words will be the ones with zero scalar
product against all the received words. If there is channel noise, a threshold can be
used to decide which of the generated parity checks are dual words. This threshold
will be tested against the sum of the generated parity checks’ product with all the
received words.

The weight of the product of received words with generated parity checks, G×h,
will follow the binomial distribution centered on 1−(1−2τ)w

2
M , where τ is the bit

error probability, w is the word weight and M is the number of received words as
is explained in [17], when the correct word length and synchronization is found.
Otherwise the weight of the product G× h will be centered on M/2.

Received code words do not necessarily define the original code’s vector space
uniquely. This will have an effect on the number of dual words found. If there are
too few received code words, a large number of dual words to the received code
words will be found. The number of received code words to get stable results for
dual words is quite low, but is affected also by the channel crossover probability.

47

4.2 Results

This section describes the obtained results from the simulations. Different scenarios
are presented in order to describe the behaviour of the algorithm.

The average number of found dual words against different number of received
code words is plotted in Figure 4.1. The parity checks have a length of 40 bits
and weight of 4. The average is calculated from ten different computations with
different codes in each computation. The number of found dual words will stabilize
after about 20 received code words as can be seen in the Figure 4.2. In this figure
the found dual words are plotted against the number of received words from 14 to
40. The lower line at 20 marks the number of rows in the LDPC matrix of the code,
that is the number of parity checks of the LDPC code. The number of found dual
words rises exponentially when there is too few received code words available. If
less words are received, the number of found dual words will be high as there will
be less constraints on the dual words.

Figure 4.1: Dual words, word length=40, weight=4

The number of found dual words against the number of received code words
follows a similar pattern for longer code words as well. The average number of found
dual words with a length 80 and a weight 4 code words is depicted in Figure 4.3. The
stabilization of found dual words happens after about 21 received code words. The
number of found dual words after stabilization for a range of received code words
can be seen in Figure 4.4, where the lower line at 40 is the number of parity checks
in the original LDPC matrix. Similar graphs are plotted for code words of length
160 and weight 4 in Figure 4.5 and Figure 4.6. From these graphs it can be seen
that the stabilization happens a little bit later, at about 23 received words.

48

Figure 4.2: Dual words, wordlength=40, weight=4

Figure 4.3: Dual words, word length=80, weight=4

Channel noise will cause some bits of the received words to be erroneous. Dual
word for such an erroneous word will not necessarily be in the dual of the original
code. A product of a dual word with every received code word will produce zero in
an error free transmission, but when there is channel noise, the product of a dual
word with a received erroneous code word might not be zero.

The algorithm computes the product of a dual word candidate with every re-
ceived code word. These products are then added together. When there is no
channel noise, the sum will be zero. In the presence of channel noise, there will be
errors in the received code words and the sum might not be zero anymore. This
happens when the received code word has an odd number of errors in the positions
of the dual word’s support. Support of a word is the positions of ones in a binary

49

Figure 4.4: Dual words, word length=80, weight=4

Figure 4.5: Dual words, word length=160, weight=4

code word.
With channel noise the algorithm has to have a higher selection threshold for

the dual words than the zero sum. The threshold has to be selected so that the
algorithm misses as few dual words as possible. The threshold must also leave out
the words that are not in the dual but still have a small sum.

One proposed method for setting the threshold is to select the threshold more
than three standard deviations away from the center of distribution of both the sum
of products for a random word and the dual word [17]. The recommended separation

50

Figure 4.6: Dual words, word length=160, weight=4

of distributions is achieved when the number of received code words M is [17]

M >

(
3
√

1− (1− 2τ)2w + 1

(1− 2τ)w

)2

,

where τ is the error rate and w is the weight of the word. In this case it is advised
to select the threshold T in the middle of the interval as

T =
M

2

(
1− (1− 2τ)w

2

)
+ 3

√
M

4
(
√

1− (1− 2τ)2w − 1).

The selection of used threshold can have some effect on the performance of the
algorithm and different thresholds could be selected according to the situation.

Channel noise’s effect on the algorithm is illustrated in Figure 4.7. There are
300 received code words with a length of 40 and a weight of 4 and a bit error rate
τ = 0.001. The upper line is the number of found dual words and the lower line is
the number of parity checks that are also in the LDPC parity check matrix that was
used for the encoding. When the channel noise is higher, more received words are
needed for the number of parity checks to stabilize. This stabilization can be seen
in Figure 4.8 with τ = 0.01 and in Figure 4.9 with τ = 0.1.

In the presence of noise, more received code words are required for longer code
words for identification. This can be seen in Figure 4.10 where stabilization of
found dual words happens significantly later for longer code words. Without noise
the difference was only few words.

The algorithm will usually find more parity checks than there are in the original

51

Figure 4.7: Effect of channel noise, τ = 0.001

Figure 4.8: Effect of channel noise, τ = 0.01

LDPC matrix. Even with more received words some parity checks will remain. This
can be seen in Figure 4.11.

A LDPC matrix will have the same column sum over all columns. However, when
the algorithm finds parity checks that are not in the original matrix, the column sum
will be different for some columns. Using this information it is possible to remove
these extra parity checks.

An algorithm that was used for removing extra parity checks will be such that it
goes through all found parity checks and includes only those that have at least one
correct column sum in the support of the parity check. This method will leave out
those parity checks that have too high column sum for every position of ones in the
parity check vector. This operating principle is illustrated in Figure 4.12, where the

52

Figure 4.9: Effect of channel noise, τ = 0.1

Figure 4.10: Dual words, different word lengths, τ = 0.05

squares mark the ones in the parity checks and in the bottom is the column sums
that should add to two in this example. Here it can be seen that the extra parity
check can be spotted as the only one that has too high column sum in the whole
support.

In some cases there is still a possibility that the extra parity check has its support
positioned so, that it is impossible to distinguish the original parity check. This
situation is depicted in Figure 4.13. Here it happens that there are two parity
checks that have too high column sum for the whole support of the parity check.

In simulations it was found that the number of found extra parity check seems
to remain constant even when the code word length grows. In realistic LDPC codes
the word length is usually very high compared to the weight of the code word, so

53

Figure 4.11: Effect of number of received words, τ = 0

parity check 4

parity check 3

parity check 2

parity check 1

sum

extra parity check

2 3 2 3

Figure 4.12: Parity check can be removed.

there should be smaller chance of finding extra parity checks like in the situation in
Figure 4.13. Also the weight of the code word can be higher than two, so in this
way the probability of finding undistinguishable extra parity checks is also lowered.
In 20 runs of the algorithm with a code word length 40, the average number of dual
words that were found after removing all the uncertain ones, was 16.7 out of 20.
With a longer code word of 80 bits the average number of found parity checks that
were in the LDPC matrix was 38.1 out of 40. In this case 15% of the runs found all

54

parity check 4

parity check 3

parity check 2

parity check 1

sum

extra parity check

2 3 3 2

Figure 4.13: Parity check can not be removed.

parity checks.

Chapter 5

Conclusions

In this chapter a summary of the work is presented. Results that were presented in
the previous chapter are evaluated, limits of the work are pointed out and areas of
future research are discussed.

The objective of this thesis was to present an overview of different identification
methods of forward error correcting codes in a non-cooperative context and to imple-
ment a test bed for testing these methods and principles in a controlled laboratory
setting. The main focus was set on methods that are designed for modern forward
error correcting codes.

In the first chapter the objectives for this study were stated and the focus and
scope of the thesis were considered. Background and the need for this type of work
were discussed. Also some possible applications were mentioned.

In the second chapter operating principles of error correction codes were ex-
plained for block codes and convolutional codes. LDPC and turbo codes were given
as examples of those two types of currently used codes. Interleavers and a channel
model were also presented as they apply to this work.

In the third chapter the identification methods were studied. These methods are
presented as they are laid out in literature. Methods for block codes and convolu-
tional were examined. with an emphasis on LDPC and turbo codes. Identification
of interleaver structure is also presented as it is a important element of code iden-
tification especially with turbo codes. The block code identification methods that
seem to work better for LDPC codes were those that were based on finding dual
words. For turbo codes different identification methods include finding the dual
words, retrieving the matrix kernel or iterative methods.

In the fourth chapter simulation and test case results were presented. In different
exhibited scenarios the behaviour of LDPC code identification is explained. Param-

55

56

eters that are the most crucial in identification of LDPC code identification, code
word length, number of intercepted code words, channel condition, were examined.
For situations where too many parity checks are found, an algorithm was developed
to retrieve the original parity checks.

In this work it has become clear that error correction coding is not the optimal
way to achieve information security. The error correction code can be made more
difficult to identify but encryption methods will provide a higher information security
without making the encoding and decoding procedures too demanding.

The identification methods for other codes than presented here could be studied
further. The methods presented in his study are designed for situation where only
the type of code is know, for example turbo code. In a practical application there
might be more information available about the used code. This information could be
used to optimize the identification algorithm. Other relevant area for future research
could be the application of these methods in a software defined radio system.

References

[1] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes
for minimizing symbol error rate (correspondence). IEEE Transactions on In-
formation Theory, 20(2):284–287, March 1974.

[2] J. Barbier. Reconstruction of turbo-code encoders. In S. A. Zoltowski M. D.
Singh R. Miller S. P. Rao, R. M. Dianat, editor, Proceedings of the Society of
Photo-Optical Instrumentation Engineers (SPIE) Digital Wireless Communica-
tions VII and Space Communication Technologies, volume 5819, pages 463–473,
June 2005.

[3] J. Barbier. Analyse de canaux de communication dans un contexte non
coopératif. PhD thesis, École polytechnique, Palaiseau, Essonne, France,
November 2007.

[4] J. Barbier, G. Sicot, and S. Houcke. Algebraic Approach for the Reconstruction
of Linear and Convolutional Error Correcting Codes. International Journal of
Applied Mathematics and Computer Sciences, 2(3):113 – 118, 2006.

[5] M. Bellard and J.-P. Tillich. Detecting and reconstructing an unknown convo-
lutional code by counting collisions. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT 2014), pages 2967–2971, June 2014.

[6] E. Berlekamp. Nonbinary BCH Decoding (Abstract). IEEE Transactions on
Information Theory, 14(2):242, March 1968.

[7] E. Berlekamp, R. J. McEliece, and H. C. A. Van Tilborg. On the Inherent
Intractability of Certain Coding Problems. IEEE Transactions on Information
Theory, 24(3):384–386, May 1978.

[8] R. E. Blahut. Algebraic Codes for Data Transmission. Cambridge University
Press, Cambridge, UK, 2003.

57

58

[9] G. Burel and R. Gautier. Blind Estimation of Encoder and Interleaver Charac-
teristics in a Non Cooperative Context. In Proceedings of the Second IASTED
International Conference on Communications, Internet, and Information Tech-
nology, pages 275–280, 2003.

[10] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight
words in a linear code: application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. IEEE Transactions on Information Theory,
44(1):367–378, January 1998.

[11] C. Chabot. Recognition of a code in a noisy environment. In Proceedings of
the IEEE International Symposium on Information Theory (ISIT 2007), pages
2211–2215, June 2007.

[12] S. K. Chilappagari, D. V. Nguyen, B. Vasicž, and M. W. Marcellin. Girth of
the Tanner graph and error correction capability of LDPC codes. In Proceed-
ings of the 46th Annual Allerton Conference on Communication, Control, and
Computing, pages 1238–1245, September 2008.

[13] P. Chose, A. Joux, and M. Mitton. Fast Correlation Attacks: An Algorithmic
Point of View. In L. R. Knudsen, editor, Advances in Cryptology — EU-
ROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
209–221. Springer Berlin Heidelberg, 2002.

[14] J. Clément, P. Flajolet, and B. Vallée. Dynamical Sources in Information The-
ory: A General Analysis of Trie Structures. Algorithmica, 29:307–369, 1999.

[15] M. Cluzeau. Block code reconstruction using iterative decoding techniques.
In Proceedings of the IEEE International Symposium on Information Theory
(ISIT 2006), pages 2269–2273, July 2006.

[16] M. Cluzeau. Reconstruction d’un schéma de codage. PhD thesis, École Poly-
technique, Palaiseau, Essonne, France, October 2006.

[17] M. Cluzeau and M. Finiasz. Recovering a code’s length and synchronization
from a noisy intercepted bitstream. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT 2009), pages 2737–2741, June 2009.

[18] M. Cluzeau, M. Finiasz, and J.-P. Tillich. Methods for the Reconstruction of
Parallel Turbo Codes. In Proceedings of the IEEE International Symposium on
Information Theory (ISIT 2010), pages 2008–2012, June 2010.

59

[19] M. Cluzeau and J.-P. Tillich. On the code reverse engineering problem. In
Proceedings of the IEEE International Symposium on Information Theory (ISIT
2008), pages 634–638, July 2008.

[20] M. Côte and N. Sendrier. Reconstruction of convolutional codes from noisy ob-
servation. In Proceedings of the IEEE International Symposium on Information
Theory (ISIT 2009), pages 546–550, June 2009.

[21] M. Côte and N. Sendrier. Reconstruction of a turbo-code interleaver from
noisy observation. In Proceedings of the IEEE International Symposium on
Information Theory (ISIT 2010), pages 2003–2007, June 2010.

[22] J. Dingel and J. Hagenauer. Parameter Estimation of a Convolutional Encoder
from Noisy Observations. In Proceedings of the IEEE International Symposium
on Information Theory (ISIT 2007), pages 1776–1780, June 2007.

[23] E. Filiol. Reconstruction of Convolutional Encoders over GF(q). In Proceedings
of the 6th IMA International Conference on Cryptography and Coding, pages
101–109, London, UK, 1997. Springer-Verlag.

[24] E. Filiol. Techniques de reconstruction en cryptologie et théorie des codes. PhD
thesis, École Polytechnique, Palaiseau, Essonne, France, March 2001.

[25] G. D. Forney Jr. Convolutional Codes I: Algebraic Structure. IEEE Transac-
tions on Information Theory, 16(6):720–738, November 1970.

[26] G. D. Forney Jr. Structural Analysis of Convolutional Codes via Dual Codes.
IEEE Transactions on Information Theory, 19(4):512–518, July 1973.

[27] R. G. Gallager. Low-Density Parity-Check Codes. IRE Transactions on Infor-
mation Theory, 8(1):21–28, January 1962.

[28] R. Johannesson and K. S. Zigangirov. Fundamentals of Convolutional Coding.
Wiley-IEEE Press, Piscataway, New Jersey, USA, 1999.

[29] J. Leon. A Probabilistic Algorithm for Computing Minimum Weights of
Large Error-Correcting Codes. IEEE Transactions on Information Theory,
34(5):1354–1359, September 1988.

[30] P. Lu, S. Li, X. Luo, and Y. Zou. Blind Recognition of Punctured Convolutional
Codes. In Proceedings of the International Symposium on Information Theory
(ISIT 2004), page 457, June 2004.

60

[31] P. Lu, S. Li, Y. Zou, and X. Luo. Blind Recognition of Punctured Convolutional
Codes. Science in China Series F: Information Sciences, 48(4):484–498, 2005.

[32] D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cam-
bridge University Press, New York, New York, USA, 2002.

[33] M. Marazin. Reconnaissance en aveugle de codeur à base de code convolutif
: Contribution à la mise en oeuvre d’un récepteur intelligent. PhD thesis,
Université de Bretagne Occidentale, Brest, France, December 2009.

[34] M. Marazin, R. Gautier, and G. Burel. Dual code method for blind identification
of convolutional encoder for cognitive radio receiver design. In 2009 IEEE
GLOBECOM Workshops, pages 1–6, November 2009.

[35] M. Marazin, R. Gautier, and G. Burel. Algebraic method for blind recovery
of punctured convolutional encoders from an erroneous bitstream. IET Signal
Processing, 6(2):122–131, April 2012.

[36] M. Marazin, R. Gautier, and G. Burel. Some interesting dual-code properties
of convolutional encoder for standards self-recognition. IET Communications,
6(8):931–935, May 2012.

[37] J. L. Massey. Shift-Register Synthesis and BCH Decoding. IEEE Transactions
on Information Theory, 15(1):122–127, January 1969.

[38] R. J. McEliece. The algebraic theory of convolutional codes. Handbook of
Coding Theory, 1:1065–1138, 1998.

[39] J. G. Proakis. Digital Communications 5th Edition. McGraw Hill, New York,
New York, USA, 2008.

[40] H. Ryu, J. Lee, H. Hong, and D. Yoon. Estimation of interleaver period for
unknown signals. In 2nd IEEE International Conference on Network Infrastruc-
ture and Digital Content (IC-NIDC 2010), pages 678–680, September 2010.

[41] G. Sicot and S. Houcke. Blind detection of interleaver parameters. In Proceed-
ings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’05), volume 3, pages 829–832, March 2005.

[42] G. Sicot, S. Houcke, and J. Barbier. Blind detection of interleaver parameters.
Signal Processing, 89(4):450 – 462, 2009.

61

[43] J. Stern. A Method for Finding Codewords of Small Weight. In Proceedings
of the 3rd International Colloquium on Coding Theory and Applications, pages
106–113, London, UK, 1989. Springer-Verlag.

[44] R. M. Tanner. A Recursive Approach to Low Complexity Codes. IEEE Trans-
actions on Information Theory, 27(5):533–547, September 1981.

[45] J.-P. Tillich, A. Tixier, and N. Sendrier. Recovering the interleaver of an un-
known Turbo-Code. In Proceedings of the IEEE International Symposium on
Information Theory (ISIT 2014), pages 2784–2788, June 2014.

[46] A. Valembois. Detection and recognition of a binary linear code. Discrete
Applied Mathematics, 111(1–2):199–218, 2001.

[47] F. Wang, Z. Huang, and Y. Zhou. A Method for Blind Recognition of Con-
volution Code Based on Euclidean Algorithm. In International Conference on
Wireless Communications, Networking and Mobile Computing (WiCom 2007),
pages 1414–1417, September 2007.

[48] S. B. Wicker. Error Control Systems for Digital Communication and Storage.
Prentice-Hall, Inc., Upper Saddle River, New Jersey, USA, 1995.

[49] J. Ziegler. Automatic Recognition and Classification of Forward Error Correct-
ing Codes. Master’s thesis, George Mason University, Fairfax, Virginia, USA,
2000.

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Symbols and Abbreviations
	Introduction
	Objectives
	Organization

	Background
	Error Codes
	Block Codes
	Convolutional Codes
	Low-Density Parity-Check Codes
	Turbo Codes

	Interleaving
	Transmission Channel

	Code Identification
	Interleavers
	Block Codes
	Convolutional Codes
	Low-Density Parity-Check Codes
	Turbo Codes

	Simulations and Case Studies
	Simulation Setup
	Identification of LDPC codes

	Results

	Conclusions
	References

