
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Timo Saarinen

Container-based video processing

Master’s Thesis
Helsinki, May 6, 2015

Supervisor: Professor Eljas Soisalon-Soininen, Aalto University
Instructor: Lasse Pajunen M.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80715654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Timo Saarinen

Title:
Container-based video processing

Date: May 6, 2015 Pages: vii + 53

Major: Software Technology Code: T-106

Supervisor: Professor Eljas Soisalon-Soininen

Instructor: Lasse Pajunen M.Sc. (Tech.)

In recent years, the development and proliferation of mobile devices and the
increasing speed of data communication have accelerated the rapid growth of
video creation and consumption. Social media, for instance, has embraced video
as its essential part.

However, different devices and platforms with various screen resolutions, video
format capabilities and data communication speeds have created new challenges
for video transcoding systems. Especially, system scalability is an important
aspect to ensure a proper user experience for end-users by maintaining a high rate
of overall transcoding speed despite usage peaks and fluctuating system load.

One way to build a scalable, rapidly deployable video transcoding service is to
wrap transcoding instances into lightweight, portable containers, virtualized at
the operating system level. Since containers share the kernel of the host operating
system, new instances can be quickly launched when necessary.

First, this thesis discusses Linux container technology, its main derivatives and
related tools. Furthermore, this thesis describes various utilities that facilitate the
orchestration of Linux containers but also typical video processing and internet
video technologies are introduced.

In order to investigate the advantages of using containers, we implemented a video
transcoding service that uses application containers virtualized in CoreOS oper-
ating systems. The transcoding service is run on Amazon EC2 (Elastic Compute
Cloud) instances. In addition to evaluating the service in terms of functionality,
the thesis also discusses the strengths and weaknesses of the development process
and use of container technologies within the scope of this project.

Keywords: Operating-system-level virtualization, Docker container,
video processing, distributed system, container orchestration,
cloud

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Timo Saarinen

Työn nimi:
Kontteihin perustuva videoprosessointi

Päiväys: 6. toukokuuta 2015 Sivumäärä: vii + 53

Pääaine: Ohjelmistotekniikka Koodi: T-106

Valvoja: Professori Eljas Soisalon-Soininen

Ohjaaja: Diplomi-insinööri Lasse Pajunen

Viime vuosina mobiililaitteiden kehittyminen ja nopea leviäminen sekä nopeu-
tuvat tietoliikenneyhteydet ovat kiihdyttäneet videoiden luonnin ja kulutuksen
ripeää kasvua. Videosta on tullut olennainen osa sosiaalista mediaa.

Erilaiset laitteet ja alustat vaihtelevilla näyttöresoluutioilla, videoformaattituil-
la sekä tietoliikenneyhteyksien nopeuksilla ovat kuitenkin luoneet uusia haastei-
ta videoiden prosessointiin. Erityisesti skaalautuvuus on olennainen aspekti yri-
tettäessä varmistaa loppukäyttäjille asianmukainen käyttökokemus ylläpitämällä
korkeaa prosessointinopeutta huolimatta käyttöpiikeistä ja vaihtelevasta systee-
min kuormituksesta.

Eräs tapa rakentaa skaalautuva, ripeästi käyttöönotettava videoiden prosessoin-
tipalvelu on paketoida prosessointi-instanssit kevytrakenteisiin, helposti liiku-
teltaviin kontteihin, jotka virtualisoidaan käyttöjärjestelmätasolla. Koska kon-
tit käyttävät samaa käyttöjärjestelmän ydintä, uusia instansseja voidaan luoda
tarpeen vaatiessa hyvin nopeasti.

Tässä työssä esitellään Linux-kontteja ja joitakin sen johdannaisia sekä aiheeseen
liittyviä työkaluja. Lisäksi erilaisia konttien orkestrointia helpottavia apuohjel-
mia käydään läpi, kuten myös videoprosessoinnin peruskäsitteitä ja Internetissä
käytettyjä videoteknologioita.

Tutkiaksemme konttien käytöstä saatavia hyötyjä toteutettiin videoiden proses-
sointipalvelu, joka käyttää CoreOS-käyttöjärjestelmän päälle virtualisoituja so-
velluskontteja. Se rakennetaan Amazonin EC2-instanssien päälle. Palvelua ei ar-
vioida ainoastaan toiminnallisuuden kannalta, vaan myös kehittämisvaiheen sekä
konttien käytön hyviä ja huonoja puolia käsitellään.

Asiasanat: Käyttöjärjestelmätason virtualisointi, Docker-kontti, video-
prosessointi, hajautettu järjestelmä, konttien orkestrointi, pil-
vi

Kieli: Englanti

iii

Acknowledgements

I would like to thank my supervisor, Professor Eljas Soisalon-Soininen, for
the valuable comments and instructions. His warm and encouraging way of
giving advice has kept me motivated throughout this project.

I would also like to thank my instructor, M.Sc. Lasse Pajunen, for intro-
ducing me this interesting topic and sharing his knowledge by giving useful
tips. He really knows what he talks about.

In addition, I would like to thank my employer, Dream Broker Ltd, for
providing a good environment with friendly atmosphere. The company, as
well as this project, has helped me to develop as a professional.

Finally, I would like to thank my lovely wife Annika for her support. It
is wonderful to start every day with you.

Helsinki, May 6, 2015

Timo Saarinen

iv

Abbreviations and Acronyms

AuFS Advanced Multi-Layered Unification Filesystem
CAP Consistency, Availability, Partition-tolerance
DASH Dynamic Adaptive Streaming over HTTP
DNS Domain Name System
EC2 Elastic Compute Cloud
HAS HTTP-based Adaptive streaming
HDS HTTP Dynamic Streaming
HLS HTTP Live Streaming
HSS HTTP Smooth Streaming
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IP Internet Protocol
LXC LinuX Container
NAT Network Address Translation
OS Operating System
PID Process Identifier
RTMP Real-Time Messaging Protocol
RTSP Real-Time Streaming Protocol
SCP Secure Copy
SSH Secure Shell
URL Uniform Resource Locator
VM Virtual Machine
VMM Virtual Machine Monitor
VOD Video-On-Demand
XML Extensible Markup Language

v

Contents

Abbreviations and Acronyms v

1 Introduction 1

2 Video streaming and processing 4
2.1 Internet video technologies . 4

2.1.1 Stateful real-time streaming 5
2.1.2 Progressive download 5
2.1.3 Adaptive streaming . 6

2.2 Fundamentals of video transcoding 6
2.2.1 Video encoding . 7
2.2.2 Objectives of transcoding 8

2.3 Open source video processing tools 9
2.3.1 Mediainfo . 9
2.3.2 FFmpeg . 10
2.3.3 MEncoder . 11

2.4 Conclusion . 11

3 Linux containers 13
3.1 Operating-system-level virtualization 13

3.1.1 Control Groups . 14
3.1.2 Kernel namespaces . 15
3.1.3 Linux container implementations 16

3.2 Comparison to hypervisor-based virtualization 16
3.2.1 Fundamentals of hypervisor-based virtualization 17
3.2.2 Main differences . 17
3.2.3 Performance . 18
3.2.4 Operational capabilities 19

3.3 Docker . 19
3.4 Conclusion . 20

vi

4 Container-based distributed
systems 22
4.1 Distributed systems . 22

4.1.1 CAP theorem . 23
4.1.2 Consensus problem . 23

4.2 Micro-services architecture . 24
4.3 Container orchestration . 26

4.3.1 CoreOS . 26
4.3.2 Kubernetes . 27

4.4 Conclusion . 28

5 Project implementation 30
5.1 Target and environment . 30

5.1.1 Motivation . 31
5.1.2 Environment and requirements 31

5.2 Architecture and components 32
5.2.1 Web front-end server 32
5.2.2 Database . 35
5.2.3 Storage server . 35
5.2.4 Transcoder . 35

5.3 Creating Docker images . 36
5.4 Running containers in a cluster 37

5.4.1 Setting up a cluster . 37
5.4.2 Wrapping container creation to services 38
5.4.3 Handling persistent data 40
5.4.4 Service discovery . 40
5.4.5 Deployment . 41

6 Evaluation 43
6.1 Functionality . 43
6.2 Architecture . 43
6.3 Performance . 43
6.4 Scalability . 44
6.5 Development flow . 45
6.6 Testability . 46
6.7 Reliability . 46

7 Conclusion 47

vii

Chapter 1

Introduction

As Internet has expanded around the world, becoming an essential tool for
countless people, the requirements for web services have grown significantly.
In many cases, it is no longer enough to have a single server for providing
the required capabilities. Scaling up is often too expensive to provide enough
computation power. Moreover, since complexity of web services has grown,
there is a need for better hardware independence, availability, isolation and
security.

To fulfill these needs, virtualization technologies started to improve sig-
nificantly around year 2000 [47]. In 1998, VMware invented a technology to
virtualize the x86 platform. Since then, this hypervisor-based virtualization
has steadily grown its popularity, bringing forth software solutions also other
than VMware, such as Xen and KVM. Virtual machines can be considered
one of the foundations of cloud computing, which, in turn, has also become
a significant part of web services’ infrastructures.

However, as past studies have shown [38, 47], starting new virtual ma-
chines is relatively slow, and applications running in them suffer from over-
head and impaired performance caused by the hypervisor layer between ap-
plication and hardware. This has caused increased interest in finding a more
lightweight solution.

In 2006, Paul Menage and Rogit Seth started to implement a feature to
Linux kernel that would limit and isolate the resource usage of a collection
of processes. In the following year, it was merged in Linux kernel with name
Cgroups. This new feature, along with kernel namespaces, formed a basis
for an operating system-level virtualization method called LXC that allows
running multiple isolated Linux systems on a single host. These virtualized
systems are called Linux containers, and since all of them use the same kernel
in the host operating system, they can be started much faster than virtual
machines. Figure 1.1 shows the main difference between hypervisor-based

1

CHAPTER 1. INTRODUCTION 2

and container-based virtualization: whereas the first one provides abstraction
for full guest operating systems, the latter provides abstraction for the guest
processes. Although there have been Linux container implementations also
before, LXC was the first one to be merged into the Linux kernel, making
containers a step simpler to be brought to use.

Figure 1.1: Comparison of container-based and hypervisor-based virtuali-
zation [47].

Container-based virtualization is a plausible alternative for virtual ma-
chines to fulfill the two crucial requirements when co-locating different work-
loads: isolation and resource control. However, only recently has it been
adopted and standardized in mainstream operating systems.

Within the last couple of years, Docker, a virtualization engine based on
Linux Containers (LXC) technology, has caused increased attention to Linux
containers. Docker allows user to wrap single applications to containers that
can be deployed on any system with Docker installed. Docker has made it
relatively easy to embrace and gain benefits from LXC technology [15].

In many web services, it is important to keep the quality of the service in
a good level despite variance in system load. By dividing service to multiple
small, self-containing micro-services, and isolating them in a way that they
affect each other minimally, the functionality and responsiveness of critical
components can be kept better. This type of architecture, called micro-
services architecture, also allows more efficient usage of available hardware
capabilities. Furthermore, micro-services are easier to distribute across ma-
chines since they are not so tightly coupled. This is an important aspect
because scaling out is typically cheaper than scaling up.

CHAPTER 1. INTRODUCTION 3

However, multiple micro-services on the same machine running without
proper isolation may cause the host environment and other micro-services
to affect too much their functioning and performance. On the other hand,
virtual machines for each micro-service may be too heavyweight a solution.

By wrapping services to application containers, they get isolated and are
minimally affected by changes in the host environment or other services. In
addition, they can be copied and started relatively fast. To manage con-
tainers in a clustered environment, a range of tools have been developed,
including CoreOS and Kubernetes. Quite recently, Amazon added a new
service for running containers easier on Elastic Compute Cloud (EC2) in-
stances.

In this work, a video transcoding service is implemented. It receives video
files, transcodes them with different quality settings and outputs new video
files. The system will consist of several micro-services that are wrapped to
Docker containers. Not only the result itself but also the development phase
will be evaluated and interesting findings shared.

This document is divided in the following chapters: Chapter 2: Video
Processing introduces the main internet video technologies, key concepts of
video transcoding and some open source video processing tools. Chapter 3:
Linux Containers discusses the technologies used in Linux containers, differ-
ences of container-based and hypervisor-based virtualization and introduces
some application container engines. Chapter 4: Container orchestration de-
scribes the characteristics of distributed systems, micro-services architecture
and management of application containers in a cluster environment. Chap-
ter 5: Implementation describes the requirements and the implementation
phase of the video transcoding service explained briefly in the previous para-
graph. Chapter 6: Evaluation focuses on the evaluation of the implemented
transcoding service and gives some insights about the strengths and weak-
nesses of using container technologies.

Chapter 2

Video streaming and processing

The mobile Internet and use of Internet Protocol (IP) based videos are grow-
ing rapidly. According to Cisco’s researches [1, 2], the mobile data traffic in
2014 was nearly 30 times the size of the entire global Internet in 2000. Fur-
thermore, mobile video traffic exceeded half of the total mobile data traffic
for the first time in 2012. The online video is not growing only in the mobile
Internet. In 2013, IP video traffic was 66 percent of all consumer Internet
traffic, and according to Cisco’s forecast, the percentage will grow to 79 in
2018. Moreover, it is quite common today to watch IP-based videos on TV.

As there are web browsers and devices with different resolutions, play-
back capabilities and data communication speeds, a smooth user experience
in watching online videos is not taken for granted. However, various tech-
nologies have been developed over time to improve user experience and cost-
efficiency. These will be discussed in section 2.1.

Video transcoding is one of the core concepts when processing video.
When converting a video from a format into another, or its bit rate has to
be reduced to adapt better to a channel bandwidth, transcoding is needed.
The principle and the reason for transcoding are discussed in more detail in
section 2.2.

Handling a large amount of video content requires video processing tools—
especially tools that provide a programmable interface or tools that can be
integrated relatively easily to be a part of other programs. Section 2.3 intro-
duces some open source tools that provide a command line interface.

2.1 Internet video technologies

Video has become quite common on web pages. As a research suggests [35],
the user experience of watching video plays an important role. For example,

4

CHAPTER 2. VIDEO STREAMING AND PROCESSING 5

if the video start-up time is long, if there is plenty of buffering or if the video
player does not adapt properly to the network connection bit rate, the user
may stop watching and move on.

As Internet has evolved, different video streaming technologies have been
developed, both for live streaming and video on demand (VOD). Basically
they can be divided to three classes: stateful real-time streaming, progres-
sive download and adaptive streaming. These are discussed in the following
subsections.

2.1.1 Stateful real-time streaming

Traditionally, real-time video streaming has been implemented using stateful
proprietary stream protocols, such as Real-Time Streaming Protocol (RTSP)
and Real-Time Messaging Protocol (RTMP) [25, 49]. Stateful real-time
streaming refers to real-time streaming in which the server keeps track of
the state of its clients until they disconnect. During the session, the client
communicates with the server by issuing various commands, such as PLAY,
PAUSE and TEARDOWN in RTSP.

There are some properties that complicate the usage of these protocols
[25, 49]. Firstly, they need a specialized streaming server. These servers may
be costly to set up and maintain. Secondly, since these protocols are primar-
ily based on User Datagram Protocol (UDP) and they do not use Hypertext
Transfer Protocol (HTTP), there may be issues with firewalls, Network Ad-
dress Translation (NAT) and mobile devices. Thirdly, maintaining sessions
of numerous clients can be costly.

However, adaptive streaming technology provides an alternative to state-
ful protocols, allowing live streaming via HTTP. The technology is discussed
in subsection 2.1.3.

2.1.2 Progressive download

Progressive download is a technology in which the video can be started to
play after transferring some amount of the video data to a local buffer [50].
While playing, more video data is being downloaded to the buffer in the
background. Thus, the media player does not have to download the video
file completely to play parts of it. The video file is served by a standard
HTTP server, thus additional issues with NAT are not caused. Progressive
download does not support live streaming.

Progressive download has some advantages over downloading the video as
a whole [40]. Firstly, it is cost-efficient to some extend. If an end-user wants
to watch only a few seconds from the beginning and then stops watching,

CHAPTER 2. VIDEO STREAMING AND PROCESSING 6

the media player does not necessarily use network bandwidth to fetch the
whole video file. Furthermore, if the media player and the HTTP server
are capable of handling special offset parameters (such as byte range HTTP
requests), the end-user can skip to a certain point of the video, and the media
player starts buffering from that point onwards, saving bandwidth. Secondly,
progressive download provides end-user a faster user experience. Watching
can be started almost right away because only a small buffer of video data
has to be fetched.

However, as a disadvantage, progressive download is not bitrate adaptive
[40]. Thus, fluctuations in network connection speed will not cause the player
to switch to another video profile. In addition, progressive download does
not support live streaming.

2.1.3 Adaptive streaming

HTTP-based Adaptive streaming (HAS), originally proposed by Move Net-
works company in 2006, is a technology to provide a high-quality user experi-
ence with uninterrupted video streaming under changing network conditions
and heterogenous devices [41, 43, 49]. In a typical HAS method, the raw
video is encoded into different bitrates and profiles (quality levels). Every
video profile is then split in short segments that are 2-10 seconds long. When
a user starts playing a video, a manifest file is downloaded. It contains in-
formation about different profiles available, and URLs to the corresponding
video segments (see Figure 2.1). The client then chooses a profile that suits
best for the connection, and changes it on-the-fly if needed.

As progressive download, adaptive streaming avoids additional NAT is-
sues by serving the segment files from a standard HTTP server. Another
advantage of adaptive streaming is that it can be used for both live stream-
ing and VOD.

Since 2006, several HAS solutions have been widely used. They in-
clude Microsoft’s HTTP Smooth Streaming (HSS), Adobe’s HTTP Dynamic
Streaming (HDS), Apple’s HTTP Live Streaming (HLS) and, as an open
source approach, Dynamic Adaptive Streaming over HTTP (DASH). Numer-
ous media content providers, such as Microsoft, Apple, Netflix have adopted
the technology [34, 42].

2.2 Fundamentals of video transcoding

The operation in which a video is converted from one format into another is
called video transcoding [48]. A format, in turn, is defined by many charac-

CHAPTER 2. VIDEO STREAMING AND PROCESSING 7

Figure 2.1: Example of video segment indexing used in adaptive streaming.

teristics of the video, such as bit rate, frame rate, spatial resolution, coding
syntax and content.

The principle of a transcoder is to take in an encoded (compressed) video,
decode (uncompress) it into raw format, and then encode it into another for-
mat. To speed up this computationally expensive process, transcoder may
reuse the decoded video information in the encoding process. This informa-
tion may include motion vectors and quantization parameters. Encoding and
decoding, being crucial parts of the transcoding process, are discussed in the
following subsection. In addition, reasons and objectives for transcoding are
also discussed.

2.2.1 Video encoding

Video encoding, or compression, is the process of converting digital video
data into a format that is suitable for transmission or storage [36]. Typically
the size of the video is reduced in the process. Thus, a raw/uncompressed
digital video often requires a much larger bit rate than an encoded one.

CHAPTER 2. VIDEO STREAMING AND PROCESSING 8

To decode/uncompress an encoded video, a complementary part is needed.
It is called decoder. A codec is a pair consisting of an encoder and a decoder.

There are various ways to achieve data compression. First, videos typi-
cally contain statistical redundancy. Statistical redundancy means that the
data contains repetitive information in a form or another. Those redundant
parts can be expressed with less number of bits. With this method, the com-
pression can be kept lossless. In lossless compression, the video is compressed
in a way that it can be decoded back to the exact original data. However,
lossless compression reduces the size only moderately. Second, by removing
subjective redundancy, a higher ratio of compression can be achieved. Sub-
jective redundancy means that there are elements in the video that can be lost
in the compression without significantly affecting the viewer’s perception of
visual quality. This is called lossy compression, in which some data essential
for the ability to decode video back to the original data is lost. Most video
encoding methods achieve compression by exploiting temporal and spatial
redundancy. Temporal redundancy refers to the fact that there is typically a
high correlation between frames of video that are temporally near each other.
Spatial redundancy, in turn, refers to the high correlation between pixels that
are near each other.

Currently, one of the most commonly used video compression format is
H.264 [36]. The standard itself being hundreds of pages long, it gives better
performance than any of the preceding ones. H.264 is a lossy format.

2.2.2 Objectives of transcoding

There are various reasons for converting a video into another format [45, 48],
and some of them are explained here.

First, there is bit rate reduction. Bit rate is the number of bits that
are processed per unit of time. To smoothly stream a video, its bit rate
at maximum should be as high as is the bandwidth. For example, the bit
rate of a video stream may have to be lowered to adapt the stream to a
channel bandwidth. This is one of the earliest and most important applica-
tions of transcoding. The idea of bit rate reduction is to reduce the bit rate
while keeping the highest quality possible and maintaining low computation
complexity.

Second, transcoding is used to improve error-resilience. Given the exis-
tence of transmission errors on channels that corrupt video quality, there is
the need to make the bit stream more resilient to those errors. Variety of
strategies exist to add error-resilience [46]. The bit stream structure can be
affected at different levels: it can be added redundancy, or data segments
can be localized to reduce error propagation, for example.

CHAPTER 2. VIDEO STREAMING AND PROCESSING 9

Finally, transcoding can also be used to insert new information into the
video stream. It can be company logos and watermarks, for example.

2.3 Open source video processing tools

Audio and video content forms an important and expanding part of the
digital collections world-wide [21]. The handling of the content requires ad-
ditional tools—when dealing with large amounts of audio and video content,
a robust and comprehensive tool that provides a programmable interface is
indispensable.

There are various open source tools that are capable of numerous video
processing operations. In this section, some the tools will be discussed: Me-
diainfo, a tool to display information about audio and video files, FFmpeg,
a toolset for video and audio converting and editing, and MEncoder, an
alternative for FFmpeg.

2.3.1 Mediainfo

Mediainfo is a relatively simple program that allows displaying information
about audio and video files [9]. The information reveals many things, such as
video and audio streams and their formats, codecs and durations. Mediainfo
allows the information to be output in several formats, such as text, Exten-
sible Markup Language (XML) and Hypertext Markup Language (HTML).
The program can be used a complementary utility for programmatic video
processing, for example. Listing 2.1 shows a portion of a sample Mediainfo
output.

Listing 2.1: A portion of a sample Mediainfo output
General
Complete name : /home/tiksa/video.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom
File size : 140 KiB
Duration : 7s 381ms
Overall bit rate : 156 Kbps
Writing application : Lavf56.15.102

Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Baseline@L1.3

CHAPTER 2. VIDEO STREAMING AND PROCESSING 10

Format settings, CABAC : No
Format settings, ReFrames : 1 frame
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 7s 367ms
Bit rate : 54.9 Kbps
Width : 320 pixels
Height : 240 pixels
...

2.3.2 FFmpeg

FFmpeg project was originally started by Fabrice Bellard in 2000 [6]. Today,
FFmpeg has numerous contributors and it consists of various libraries and
programs, including libavcodec, libavformat and ffmpeg [16]. Library, for
example, libavcodec contains encoders and decoders for different audio and
video codecs. Library libavformat, in turn, contains muxers and demuxers for
different multimedia formats. ffmpeg is a command line tool for conversing
and manipulating multimedia files.

The usage of ffmpeg is that it is given an arbitrary number of files (or
pipes, network streams or grabbing devices, for example) as input, and then
it outputs an arbitrary number of files with desired conversion [16]. Each
input file is demuxed to encoded data packets, and then decoded to raw
frames. If there are multiple input streams, ffmpeg tries to synchronize them
according to their timestamps. After decoding input streams, various filters
can be applied. They include overlay images or videos, fading, padding,
concatenation and trimming, for example. In addition to filters, streams can
be modified also in many other ways, such as changing bit rate or aspect
ratio. After processing raw frames, ffmpeg encodes them, and then uses a
muxer to wrap the output streams to a video format. Figure 2.2 shows the
phases in ffmpeg processing, simplified. ffmpeg provides a typical command
line interface to process videos. As examples, see the following commands.

ffmpeg -i in.mp4 -r 24 out.avi

ffmpeg -i in.mp4 -i overlay.mp4 -filter_complex
’[1]setpts=PTS-STARTPTS,scale=100x100[scaled];
[0:v][scaled]overlay=x=10:y=10’ out.mp4

The first command takes an MP4-formatted file as an input and outputs
an AVI-formatted file with frame rate of 24. The second one takes two video
files as input, scales the overlay video and adjusts its time stamp, and outputs
the first input file overlaid by the second one.

CHAPTER 2. VIDEO STREAMING AND PROCESSING 11

Figure 2.2: Phases in processing videos with ffmpeg, simplified.

2.3.3 MEncoder

MEncoder is command line tool for encoding and transcoding audio and
video files [5, 8]. Its key concepts are quite same than ffmpeg’s. Actually
MEncoder uses some parts of ffmpeg, such as libavcodec. MEncoder and
ffmpeg could be considered as alternatives to each other.

As an example command, the following one takes an MP4-formatted file
as an input and outputs an AVI formatted file using mp3lame as audio codec
and H.264 as video codec.

mencoder in.mp4 -o out.avi -oac mp3lame -ovc x264

MEncoder is included in the same distribution with MPlayer, a media
player. They are built in a way that MEncoder can process any video format
that MPlayer understands. In addition, MEncoder and MPlayer can be used
interactively to simulate filters in real-time. Various key bindings to can be
defined to modify filters on the fly. For example, the following configuration
binds arrow keys to actions that change x and y parameters by -5 or 5 of
rectangle filter.

RIGHT change_rectangle 2 5
LEFT change_rectangle 2 -5
UP change_rectangle 3 -5
DOWN change_rectangle 3 5

The actual command to start simulation can be the following:

mplayer -vf rectangle -input conf=crop in.mp4

Now the MPlayer starts and the crop filter can be adjusted to the desired
place with arrow keys. The corresponding parameters can be seen in the
standard output. Then they can be used in the actual MEncoder command.
Many, but not all, filters are supported by this feature. Filters that are
computationally expensive cannot be simulated in real-time.

2.4 Conclusion

In this chapter, many things related to video processing and streaming in
the internet were discussed. It was noticed that the trend is towards HTTP-

CHAPTER 2. VIDEO STREAMING AND PROCESSING 12

based, adaptive streaming technologies from complicated streaming server
solutions. Numerous large organizations, including Netflix, have introduced
adaptive streaming technologies in their services. Morever, because videos
are watched in various environments with different devices, networks and
bandwidths, it is important to serve them in correct format and with appro-
priate bit rate. This is where transcoding is a crucial concept. Balancing
between things such as video quality, compression complexity and bit rate is
necessary. Finally, some useful open-source tools were introduced that pro-
vide an environment to process videos without having in-depth knowledge
about video processing.

Chapter 3

Linux containers

Various virtualization technologies have existed for many decades. Around
the turn of the millennium, hypervisor-based virtualization, in which the
whole machine is virtualized, started to grow its popularity. Despite the
performance penalty caused by the virtualization layer, it has been a use-
ful technology for software engineers. Another virtualization technology,
operating-system-level virtualization, started to gain attention some years
ago. Being a more lightweight solution by virtualizing only the operating
system, and after getting supported by the mainline Linux kernel, it became
an alternative to the hypervisor-based virtualization in some cases. Docker,
being a derivative of the operating-system-level virtualization technologies,
provides an engine for running lightweight, isolated application containers
that open up new opportunities software engineering.

In this chapter, the history and main properties of both virtualization
technologies are discussed. Furthermore, they are compared from different
perspectives. Finally, Docker and its key concepts are introduced.

3.1 Operating-system-level virtualization

Traditionally, an operating system (OS) allows one user space instance. How-
ever, operating-system-level virtualization is a technique that makes it possi-
ble for the kernel to allow multiple isolated user space instances [39, 47]. The
isolated instances are called containers. In addition to isolation, operating-
system-level virtualization methods often provide resource management fea-
tures.

Various implementations for OS-level virtualization exist, the first ones
being developed around 2000. The implementations include Virtuozzo (2001),
Linux-VServer (2001), OpenVZ (2005) and LXC (2008). They use different

13

CHAPTER 3. LINUX CONTAINERS 14

mechanisms for virtualizing, and they have mainly required a patch to kernel.
However, in 2007, Cgroups functionality was merged into kernel, which has
made it possible to implement OS-level virtualization mechanisms without
patching kernel.

3.1.1 Control Groups

Control Groups (Cgroups) is a mechanism in Linux kernel to aggregate or
partition sets of tasks into hierarchical groups with specialized behaviour [33].
Basically, with Cgroups one can limit CPU, memory and disk and network
I/O throughput of groups of processes and measure their usage of resources
(See Figure 3.1).

Figure 3.1: Resources shared with Cgroups

The development of Cgroups was started in 2006, mainly by Google en-
gineers Rohit Seth and Paul Menage in 2006. It was merged into kernel in
the following year, adding a good foundation for building container imple-
mentations [23]. A few years ago, however, some Linux developers felt that
Cgroups is flawed in many ways and it should be rewrited [24]. In 2014, a
revised version of Cgroups was merged into Linux kernel. About the same
time, Linux kernel was merged a feature called namespaces. It provides a
way to isolate containers so that their processes cannot see or affect other
containers. Namespaces will be discussed in the following chapter.

Cgroups form a good basis for resource control when creating containers.
As mentioned, Cgroups do not only enable limiting resources for containers

CHAPTER 3. LINUX CONTAINERS 15

but also allow measuring usage of resources of each container. This feature
can be used for billing purposes, for example.

3.1.2 Kernel namespaces

Kernel namespaces is a technique [31, 37] to wrap system resources in a way
that they appear to the processes of certain namespace as their own, isolated
instances. Currently, namescapes have support for six types of resources:
process IDs, users, networks, filesystem mount points, IPC (Interprocess
Communication), and UTS (UNIX Time-sharing System).

Although namespaces were not developed to strictly support only con-
tainers, it was one of the overall goals, and that is why they bring essential
benefits when creating containers [47]. While Cgroups provides a basis for
resource control of containers, namespaces can be used to isolate them. Thus,
containers are separate instances that do not know about each other. In the
context of containers, certain namespaces bring significant benefits, as shown
in the following paragraphs.

PID namespaces give a unique ID number space for each container, mean-
ing that different containers can use same IDs. This allows containers to be
migrated between hosts while keeping the same process ID.

Network namespaces allow each container to have its own virtual ne-
towork device. This is useful because it is possible to have multiple con-
tainerized web servers on the same host, all of them bound to port 80 in
their network namespaces.

Mount namespaces isolate a set of filesystem mount points. In other
words, containers with different mount namespaces can have a different view
of the filesystem hierarchy. The mount() and umount() system calls no
longer operate automatically on global mount points but only on the points
associated with the mount namespace of the calling process.

User namespaces allow unique user and group ID number inside con-
tainers. Thus, the user and group ID of a process can be different inside
and outside a container. Processes can be set to have root privileges inside
a container, but no privileges outside.

UTS namespaces allow each container to have its own hostname and NIS
(Network Information System) domain name.

IPC namespaces isolate System V IPC objects and POSIX message queues.
Thus, each container has its own set of POSIX message queue filesystem and
System V IPC identifiers.

CHAPTER 3. LINUX CONTAINERS 16

3.1.3 Linux container implementations

Various OS-level virtualization systems have been developed over the years,
and in this subsection three of them will be discussed: Linux-VServer, OpenVZ
and LXC.

Linux-VServer was released in 2001, being one of the oldest implementa-
tions [39, 47]. To guarantee isolation, Linux-VServer built its own capabilities
which could be installed through a kernel patch. In addition, it uses chroot
mechanism to jail a file system inside a container. Because Linux-VServer
isolates processes through a global PID space, processes with the same PID
cannot be re-instatiated. As a drawback, the system is not able implement
live migration, checkpointing and resuming. Another drawback in Linux-
VServer is that network subsystems are not virtualized, which results in the
lack of autonomous networking management.

OpenVZ was released in 2005 [47]. Unlike Linux-VServer, it uses ker-
nel namespaces (see subsection 3.1.2) to provide resource isolation between
containers. This enables it to implement live migration, checkpoint and re-
suming. Network namespaces allow OpenVZ containers to have their own
network stacks. For resource control, OpenVZ has its own components, which
requires an OpenVZ-patched kernel.

LXC (Linux Container) was released in 2008 [47]. As OpenVZ, LXC uses
kernel namespaces to provide resource isolation between containers. The re-
source control is only allowed via Cgroups, which is not the case with Linux-
VServer and OpenVZ. Unlike other container-based virtualization systems,
LXC has an advantage of having its mainline implementation in the official
kernel source code. This is possible because LXC is built on kernel names-
paces and Cgroups, which, in turn, are parts of the official kernel.

3.2 Comparison to hypervisor-based virtuali-

zation

Hypervisor-based virtualization1 is a technique to provide a virtual machine
environment by simulating the underlying hardware. It provides hardware
independence, availability, isolation and security [47].

The first hypervisor-based virtualization was demonstrated in 1967 with
IBM’s CP-40 system. However, the modern generation of virtual machines
started to evolve around year 2000. In 1998, VMware, a company provid-
ing cloud and virtualization software and services, invented a technology to

1Often called also full virtualization.

CHAPTER 3. LINUX CONTAINERS 17

virtualize the x86 platform.
Over the years, machine virtualization has steadily grown its popularity,

bringing forth also other virtualization solutions, such as Xen and KVM.
Virtual machines can be considered one of the foundations of cloud com-
puting, which, in turn, has also become a significant part of web services’
infrastructures [47].

3.2.1 Fundamentals of hypervisor-based virtualization

Hypervisor-based virtualization [14] is based on a component called Virtual
Machine Monitor2 (VMM). Virtual machine monitor is software which par-
titions physical servers in multiple complete virtual machines (VM). Virtual
machine, in the context of hypervisor-based virtualization, is an emulation
of a computer system containing the capability required for running an OS.
VMM, in turn, is responsible for managing system resources such as CPU,
RAM and disk and allocating them to different VMs.3

There are two types of VMMs [14, 47]. The first type, being the more
common one, is used in the autonomous architecture: VMM is installed
directly above the hardware. Therefore, there is not an actual host OS
between hardware and VMs. The second type of VMM is used in the hosted
architecture, where the VMM runs as an application on the host OS and
manages VMs on it. The first type is naturally more efficient since the VMM
has direct access to hardware.

VMs use a technique known as binary translation to run software [14]. As
software contains privileged and non-privileged instructions, the VMM has
to ensure that VMs do not run critical instructions that would change the
state of the host machine. Non-privileged instructions can be run with na-
tive performance, but privileged instructions must be translated to different
instructions that can be run safely. This naturally reduces performance.

3.2.2 Main differences

Hypervisor-based virtualization and OS-level virtualization differ from each
other in many ways. The main difference is that in hypervisor-based virtuali-
zation, a machine capable of running an OS is virtualized, and in OS-level
virtualization, an OS is virtualized. From guest OS user’s perspective they
may seem similar at first glance. Figure 3.2 gives an overview of the struc-
tures of some different virtualization techniques.

2Often called also as hypervisor.
3There is also a technique called paravirtualization that modifies the kernel of VMs for

better performance in the virtual environment.

CHAPTER 3. LINUX CONTAINERS 18

Figure 3.2: Comparison of virtualization techniques

However, the fact that the kernel of the host OS is shared between con-
tainers causes a constraint: containers must be the same type of OS as the
host OS is. For example, an Ubuntu Linux can run only containers using
Linux, such as Ubuntu, Gentoo, or Arch, but not Windows.

In OS-level virtualization, the virtualizing layer is quite light-weight. In
LXC, for example, it basically consists of kernel features known as Cgroups
and namespaces (see subsections 3.1.1 and 3.1.2). These features do not
critically reduce the performance of running software since there is no need
for techniques such as binary translation. In other words, the virtualization
capability is a part of the OS, thus no VMM is needed.

3.2.3 Performance

According to the results of a performance research [47] comparing container-
based and hypervisor-based virtualizations, the hypervisor-based one (Xen,
hosted architecture) was suffering of an overhead of 4.3% in a CPU-intensive
process. Moreover, the overhead in memory performance was approximately
31%, while container-based and native systems presented similar perfor-
mance. As the study suggests, the overhead is caused by the virtualization
layer that performs memory access translation. The disk throughput was
also measured to be significantly poorer on Xen compared to LXC, of which
throughput was near-native. The performance of the write and read speeds
of Xen were approximately 65% and 50%, respectively. Finally, the network
performance of Xen was also clearly worse. While LXC had quite small dif-

CHAPTER 3. LINUX CONTAINERS 19

ference compared to native systems, Xen’s average bandwidth was even 41%
smaller than native.

Another study [37] comparing performance of Xen and LXC in processing
HTTP requests and SQL SELECT queries also suggests that Xen has a
significant performance overhead.

A study [15] comparing KVM (a hypervisor-based, hosted architecture
virtualization) and Docker (a derivative of LXC, see chapter 3.3) performance
states that “In general, Docker equals or exceeds KVM performance in every
case we tested”. However, according to the same study, both KVM and
Docker have only negligible overhead for CPU and memory performance, and
that both forms of virtualization should be used carefully for I/O-intensive
workloads.

3.2.4 Operational capabilities

Due to the fact that Linux containers share the kernel of the host OS, isolated
kernel updates are not possible. However, live migration between physical
servers is possible in both hypervisor-based and container-based virtuali-
zation [27].

According to some studies [27, 38], many operations, such as creating or
booting a Linux container and cloning a disk image takes significantly shorter
time compared to similar ones of a hypervisor-based VM.

3.3 Docker

Docker is an LXC-based tool for creating application containers [4, 37]. It
provides a command line toolset to wrap single applications to containers
that can be run on any system having Docker installed. By utilizing LXC
technology, Docker isolates the application with its environment and depen-
dencies as if it was run in its own OS. These dockerized applications can then
be run simultaneously on the same host OS. The goal of Docker is to make
building, shipping and running of applications relatively simple.

Each Docker container is based on a Docker image. Docker image, in
turn, is a stack of read-only filesystem layers. Docker relies on Advanced
Multi-Layered Unification Filesystem (AuFS) to enable creation of hierar-
chical filesystems. AuFS is a filesystem consisting of multiple overlaid layers
of filesystems. Every layer has a reference to its parent layer. Thus, Docker
has to store only the differences of layers, which helps keeping the size of
images relatively small. Read-only layers allows an image to be used as a
basis for multiple containers.

CHAPTER 3. LINUX CONTAINERS 20

Figure 3.3: Layered filesystem of Docker container

When an image is used to create a container, an extra read-write layer is
created on top of read-only layers. If a process inside the container creates
a file, it is created to the read-write container. Moreover, if a file located in
one of the lower layers has to be modified, it is copied to the read-write layer
and changes go into the copy. As in example visualized in Figure 3.3, a plain
Ubuntu can be used as a base image. Then, other images can be built on
that image, resulting in a Docker image consisting of a web application and
Apache installed on Ubuntu, for example.

A Docker image is typically described in a Dockerfile. Dockerfile is a file
that contains steps how to create a specific Docker image; which base image
to use, what dependencies to download, what commands to run.4 Docker
images can be created by oneself, but there is also a web site called Docker
Hub5 which provides thousands of public images for different purposes.

3.4 Conclusion

In this chapter, both hypervisor-based and operating-system-level virtuali-
zation were discussed. Although the latter one has been existed since around
2000, it has become a more plausible technology after being supported by the

4Another way to create a Docker image is to start a Docker container, do modifications
inside it (install software, for example), and commit it with docker commit.

5https://hub.docker.com

CHAPTER 3. LINUX CONTAINERS 21

mainline Linux kernel. It was noticed that although the virtualization tech-
nologies may seem quite similar from user’s point of view, they are based on
different technologies. Furthermore, despite operating-system-level virtuali-
zation being more lightweight and having better performance, it has also
some limits. In addition, Docker was introduced. Docker is an example of
software that enables relatively powerful things by utilizing Linux container
technologies.

Chapter 4

Container-based distributed
systems

In the previous chapter, a container was viewed mainly as a single unit.
However, they are typically used when building complex systems, which can
consist of a few or more than a thousand of containers. That is why it is
important to view a container also as a small component in a bigger system.

When there is a system consisting of multiple containers communicating
with each other, a distributed system is formed. This means that the sys-
tem has to deal with the challenges and difficulties distinctive to distributed
systems. Fortunately, there are tools and operating systems developed that
aim to reduce the impediments in building a clustered, container-based sys-
tem.

Although a distributed system comes with its challenges, it also comes
often with some benefits. Application containers bring a new opportunity
for building a modular, scalable distributed system out of small, easily man-
ageable components. This is called micro-services architecture.

In this chapter, distributed systems and some of their typical properties
are discussed. After that, micro-services architecture is discussed and com-
pared with its opposite, monolithic architecture. Finally, container orchestra-
tion—the need for it along with some tools—are discussed.

4.1 Distributed systems

According to a definition [28], a distributed system “consists of a collection
of distinct processes which are spatially separated, and which communicate
with one another by exchanging messages”. Distributed systems are typically
more complicated than centralized ones. Although they provide various ben-

22

CHAPTER 4. CONTAINER-BASED DISTRIBUTED SYSTEMS 23

efits, such as better scalability, computing speed and avoidance of single
point of failure, building a robust distributed system requires understanding
of challenges related to it. The network in which the components of the
distributed system are connected may suffer from high latencies, jitter and
overload. In addition, some components may fail or crash for various reasons.
This often brings difficulties with system availability and consistency of data
between components. In the following subsections, some typical properties
causing challenges in building distributed systems are discussed.

4.1.1 CAP theorem

In 2000, professor Eric Brewer introduced CAP theorem, an idea of the trade-
off between three properties in a shared-data system [13]: consistency, avail-
ability and partition-tolerance. It states that at most, only two of the prop-
erties can be chosen for a system. Consistency means that there must exist
a total order between data operations. Thus, any read operation must re-
turn the value of the latest write operation. Availability requires that “every
request by a non-failing node in the system must result in a response” [18].
That is, the service must eventually terminate, regardless of the algorithm
being used. Partition-tolerance means that the system continues to operate
despite the network being allowed to lose arbitrarily many messages sent
from a node to another.

As Brewer points out in his article written in 2012 [10, 12], CAP theo-
rem is often misunderstood. Firstly, the “2 of 3” formulation is misleading
because the choice between consistency and availability can occur multiple
times within the same system. This can happen at very fine granularity -
the choice can be different in quite similar operations. Moreover, because of
optimizations and variety of systems, the CAP properties are more contin-
uous than binary. Secondly, if the service cannot be reached at all, there is
no choice between consistency an availability. However, there is an exception
to this called offline mode [26] when part of the service runs on the client.
Using the persistent on-client storage in HTML5 forms an example of this.

CAP theorem yields some insights into how a distributed system should
be designed in fault-prone networks [19]. Software architects have to choose
a strongly consistent system with best-effort availability, weakly consistent
system with high availability or something between them.

4.1.2 Consensus problem

The consensus problem refers to the situation in which information has to be
shared among a group of processes, preferably in a fault-tolerant manner [11].

CHAPTER 4. CONTAINER-BASED DISTRIBUTED SYSTEMS 24

That is, the correct (fault-free) processes should be able to consistently agree
on correct results despite actions, possibly malicious ones, made by the faulty
processes. The importance of the consensus problem stems from it being
at the core of protocols related to synchronization, reliable communication,
resource allocation and task scheduling, among others.

There are two kinds of process faults: crashes and Byzantine failures [17].
In a crash, the process stops all its activity. In a Byzantine failure, in turn, no
assumptions are made about the behaviour of the process. It can do things
that it is not supposed to do: send messages at wrong times, act dead for
some time, or make conflicting claims about other processes.

Various protocols have been developed to provide ways to handle the
consensus problem. A t-crash resilient protocol that can tolerate up to t
crashed processes, and a t-Byzantine resilient protocol that can tolerate up
to t processes exhibiting Byzantine failures.

One of the best-known consensus algorithm is the Paxos algorithm [29].
There are numerous variations of the algorithm with different resilience ca-
pabilities. The main principle of Paxos is that processes are given different
roles, and they communicate with each other until the majority of the pro-
cesses agree upon the value of piece of data.

4.2 Micro-services architecture

A traditional approach to choosing a software architecture is so-called mono-
lithic architecture [32]. In monolithic architecture the software is deployed
as a united component. This approach, however, has some potential prob-
lems. Firstly, as the code base grows large, productivity slows down. The
quality of code will decline, and the original modularity will erode. Secondly,
continuous development will get difficult - to create frequent updates to the
software the whole system has to be deployed. Thirdly, although monolithic
software can be copied and run simultaneously on multiple instances, it can-
not be scaled in multiple dimensions. Scaling only a certain component of
the software independently is quite impossible. For relatively simple systems
using monolithic architecture can result in a optimal, manageable solution.
However, there is also an alternative architecture called micro-services archi-
tecture.

In micro-services architecture, the software is divided into multiple, sep-
arate components that can be deployed independently from each other (see
comparison of the architectures in Figure 4.1) [32, 44]. The services then
communicate with some lightweight mechanism such as HTTP. Although
micro-services architecture typically causes some overhead, it has many ad-

CHAPTER 4. CONTAINER-BASED DISTRIBUTED SYSTEMS 25

vantages. Firstly, small, decoupled components are easy to handle and de-
velop. They can be written in a programming language that is best suitable
for each one. Secondly, the system can be updated relatively easily because
small services can be quickly services. Thirdly, scaling in multiple dimension
is possible. For example, if a system consists of multiple services such as web
applications, database, and worker instances, and the bottleneck is worker
performance, new worker instances can be deployed. All the services do not
have to be scaled by the same factor.

Figure 4.1: Monolithic and micro-services architectures

In general, however, micro-services architecture increases the complexity
of the system [32]. First of all, the system becomes a distributed system.
As mentioned, there must be a communication mechanism between services.
In addition, testing becomes more difficult. Moreover, there must be a good
coordination between the development teams to manage services in a way
that they are compatible with each other.

Application containers bring a new opportunity for building micro-services.
Services can be wrapped into containers with relatively small overhead, and,
being virtually independent from each other, they can be managed as sepa-
rate components. By creating container images from services, new instances
can be created and shut down in seconds [15]. Cluster-level container man-
agement tools developed in recent years, such as fleet and Kubernetes, help
in controlling micro-services to work together.

CHAPTER 4. CONTAINER-BASED DISTRIBUTED SYSTEMS 26

4.3 Container orchestration

Virtualization technology offers various useful mechanisms for isolation, re-
source management, live migration and checkpointing [20, 47]. However, if
there is a large number of virtualized units, managing them in a controlled
manner and using the provided mechanisms in the right way may become
a real challenge. This raises a need for an autonomic, self-managing sys-
tem that could drive the mechanisms without relying on human operators.
That is, there would be a policy at cluster level to handle the behaviour
of individual units and thus orchestrate the whole system. In a clustered
environment, application containers are relatively small components and the
ability to orchestrate them coherently is important.

At the moment, there are various operating systems designed for running
application containers. In addition, several systems have been developed
to orchestrate containers at cluster level. The operating systems include
CoreOS1, Ubuntu Core2, Project Atomic3 and RancherOS4. The orchestrat-
ing systems include Kubernetes5, Shipyard6 and Mesosphere7. Fleet, pack-
aged in CoreOS, is also a type of orchestration tool, albeit a lower-level one.
CoreOS and Kubernetes are introduced in the following subsections.

4.3.1 CoreOS

CoreOS is a minimal Linux distribution, designed for running services in
Docker containers [3]. In addition to being minimal and being for designed
for Docker, it has some features that make it exceptional from mainstream
Linux distributions. First, CoreOS does not ship a package manager. Any
software to be used should run in a Docker container which, in turn, has
its own ways to handle dependencies. Second, CoreOS is designed to be
clustered—it ships with various tools, such as fleet and etcd to easen running
application containers in across multiple machines.

In a complex, highly dynamic clustered environment, it is essential to be
notified when something changes: for example, new services are attached
to the cluster, or locations or IP addresses of services change. To han-
dle service discovery, CoreOS utilizes etcd, a distributed key-value store.

1https://coreos.com/
2http://developer.ubuntu.com/en/snappy/
3http://www.projectatomic.io/
4http://rancher.com/rancher-os/
5http://kubernetes.io/
6http://shipyard-project.com/
7http://mesosphere.com/

CHAPTER 4. CONTAINER-BASED DISTRIBUTED SYSTEMS 27

etcd uses a consensus algorithm called Raft (see subsection 4.1.2) which
is meant to be more understandable than Paxos while keeping the same
level of fault-tolerance and performance [22]. According to [3], etcd tolerates
machine failure, including the master, and handles master elections during
network partitions. Container applications can read and write data into
etcd. For example, connection details of a database service can be stored
into etcd and watched by other services to reconfigure themselves if some-
thing changes. To make individual machines aware of being a member of
a cluster, they are connected via so-called discovery token. It is created
at http://discovery.etcd.io/new, and given as a paramater when
starting the etcd service in a machine. The token points to a URL8 which
discloses information about the cluster nodes.

Since one of the principles of CoreOS is to reduce impediments arisen in
a clustered environment, it tries to aggregate individual machines into a pool
of resources. fleet is a program that aims to eliminate the need of dealing
with individual containers or machines when submitting new services [3, 7].
fleet functions as a cluster manager that decides where services should run,
handles machine failures and helps in efficient resource utilization. It also
simplifies the process of updating CoreOS across the cluster. fleet can be
considered as a distributed init system that ties systemd9 and etcd together.

Figure 4.2 visualizes etcd and fleet in use: etcd forms a communication
channel between containers and fleet manages the allocation of resources for
application containers at the cluster level.

4.3.2 Kubernetes

Kubernetes is a container orchestration system released by Google [30]. It
aims to provide an environment to schedule, deploy and manage groups of
containers in a clustered environment.

Network is an important aspect since service discovery, communication
and synchronization are done through it. To architect the network of their
systems, Kubernetes provides some abstractions, of whom two will be intro-
duced.

A pod is a group of coupled containers on the same machine, sharing the
same resources. The containers are placed inside the same network names-
pace, and thus they can communicate with each other via localhost. More-
over, pods can be given an own routable IP address. However, since pods

8Example token: https://discovery.etcd.io/7ab76cebba7d0bc39fd4cdd46a6d0b37
9systemd is an init system used in a wide range of Linux distributions. Init (short for

initialization) system is the first process a Unix computer starts, being the ancestor of all
other processes.

CHAPTER 4. CONTAINER-BASED DISTRIBUTED SYSTEMS 28

Figure 4.2: etcd and fleet in a CoreOS-based application container cluster
[3].

are considered ephemeral, it is not recommended to address a pod by its IP
address. Machine maintenance, for example, can replace the instances with
new ones.

A service, in turn, is a group of pods with a stable addressing. All requests
to the given IP address are load-balanced to active pods in the service. Pods
can come and go, and the service corrects the routes. Services handle routing
using both iptables and a service proxy. The service proxy keeps a list of
all its pods capable of responding to requests targeted to the service. Most
services only talk to other services, and typically they are not exposed to the
outside world.

Service discovery in a Kubernetes cluster can be done in two ways. First,
by exposing environment variables (regarding IP addresses and such) in the
pods. Second, by having an internal DNS service in the cluster and letting
each service to have a DNS address.

4.4 Conclusion

In this chapter, many things related to distributed systems, micro-services
and container orchestration were discussed. As noticed, distributed systems
have their advantages but also disadvantages. They might improve things
such as isolation, modularity and scalability, but at the same time they chal-
lenge developers with consensus problem, latencies and complexity. More-
over, CAP theorem forces developers to make trade-offs between consistency
availability.

Furthermore, the micro-services architecture has received attention. It is

CHAPTER 4. CONTAINER-BASED DISTRIBUTED SYSTEMS 29

justified to state that lightweight application containers bring new opportu-
nities for building micro-services.

Finally, some technologies facilitating container orchestration—managing
numerous containers in a controlled manner—was discussed.

Chapter 5

Project implementation

This chapter discusses the implementation of the transcoding service proto-
type, described in the previous chapter. After going through the target and
environment of the project, the architecture and the main responsibilities
of its components are introduced. The components themselves, their inter-
nal design and patterns, are not discussed in depth because they are not so
relevant from the perspective of this paper. A significant portion of imple-
mentation time was spent on programming those services though. However,
what is more relevant is how the individual components are transformed into
Docker images, how they are run inside containers, communicating with each
other in a cluster.

Second, it is shown how a Dockerfile is written for one of the components.
A practical example about creating a Docker image is given.

Third, it is discussed how containers are started from the Docker images
and run in a cluster. The process of setting up a cluster capable of running
Docker containers is gone through, as well as creating services eligible for
fleet and handling persistent data across containers. Finally, the discovery
between each components of the transcoding service—and interaction them—
is discussed.

5.1 Target and environment

The target of this project is to develop a video transcoding service prototype
that is capable of receiving video files and output different quality versions
of the original video. It must use Docker container technologies and comply
with the micro-services architecture.

30

CHAPTER 5. PROJECT IMPLEMENTATION 31

5.1.1 Motivation

Video transcoding is computationally heavy. When building a transcoding
service, the load for the system may vary quite a lot. This, in turn, may affect
the overall quality of the service: transcoding may become very slow, or the
whole service ceases to respond, for example. One option to try to avoid these
problems is to make the service comply with the micro-service architecture.
By separating functionalities to micro-services and making them to not share
the same computational resources, the load on a micro-service does not affect
another. In addition, the service can be scaled in many dimensions. If video
transcoding capability needs to be increased, new transcoding micro-services
can be added without affecting the service providing a user interface, for
example. By having lightweight, self-contained micro-services, the available
hardware capability can be shared more efficiently. Furthermore, micro-
services are ofter easier to move from place to place since they are not so
tightly coupled with their host machines. Because scaling out is typically
cheaper than scaling up, this is an important aspect.

However, if there are multiple micro-services on the same machine running
without proper isolation, the host environment and other micro-services may
affect too much their functioning and performance. On the other hand,
having an own virtual machine for every micro-service may be too heavy.

To try to solve these problems, the transcoding service will be built with
container technologies, using a microservices-architecture. After the imple-
mentation, the result itself but also the development phase will be evaluated,
and interesting findings shared. The goal is to gives some valuable insights
about the strengths and weaknesses of using container technologies when
developing a small distributed system.

5.1.2 Environment and requirements

The transcoding service has two types of requirements: functional require-
ments that are visible to user, and internal requirements regarding architec-
tural and technological choices.

The functional requirements for the service are that it must provide a
website with an user interface allowing end-users to upload MP4 videos.
These videos must be transcoded into multiple videos with different qualities,
and the end-user must be able to watch them after the transcoding process.

The internal requirements are that the service must comply with the
micro-services architecture, containing at least a few unique services. Ser-
vices must be distributed among multiple nodes. Moreover, at least one of
the services must have multiple instances running at the same time (video

CHAPTER 5. PROJECT IMPLEMENTATION 32

transcoding processes).
In addition, the service instances must be run as Docker containers. The

Docker containers must be run on a cluster of virtual machines, in a cloud.

5.2 Architecture and components

The video transcoding service follows micro-services architecture. It con-
sists of four types of components: Web front-end server, Database, Storage
server and Transcoder. The system has only one instance representing each
component, except from Transcoder with one to several instances.

The main flow of the system is as follows (Figure 5.1 also demonstrates
the flow):

1. User requests an HTML page from Web front-end server containing a
video file uploading form.

2. User uploads a video.

3. Web front-end server sends the video to Storage server and inspects
the local copy with mediainfo, generates transcoding jobs and inserts
them to the Database.

4. Transcoder instances poll Web front-end server for unprocessed jobs.
Web front-end server queries Database, and returns if there are.

5. After getting a job, a Transcoder instance fetches the original video
file from Storage server, transcodes it to the quality given in the job
object, and sends the output file to Storage server.

6. The Transcoder instance notifies Web front-end server for a processed
job. Web front-end server updates the job status into the database.

7. The HTML page lists all jobs, their statuses and links to videos with
different quality versions.

8. User watches video files with desired quality.

5.2.1 Web front-end server

Web front-end server functions as the core of the system. Its responsibilities
include

CHAPTER 5. PROJECT IMPLEMENTATION 33

Figure 5.1: System architecture

• providing an user interface,

• communicating with the database,

• inspecting uploaded video files,

• providing an interface for Transcoder instances to process jobs and

• intermediating between user and Storage server.

The user interface is a stripped-down one containing only a video upload-
ing form and a list of jobs. No additional styling is added. Figure 5.2 shows
the appearance of the user interface.

The video file inspection is started by executing mediainfo with the video
file as its parameter. The width, height and aspect ratio of the video are
obtained from the mediainfo output. Depending on the characteristics of the
video, several lower quality videos will be transcoced. For each of them, a
job describing the quality is generated.

The output videos are capped to the following resolutions1: QVGA (320x240),
VGA (640x480) and SVGA (800x600).

The Transcoder instances are given the following HTTP interface:

1http://en.wikipedia.org/wiki/List of common resolutions

CHAPTER 5. PROJECT IMPLEMENTATION 34

Figure 5.2: Appearance of the Web front-end user interface

Method Path Description

GET /choose-job Returns an unprocessed job and
marks it as processing

POST /job-processed/<job-id> Marks the job with id <job-id>
processed

To prevent multiple Transcoder instances from getting the same job when
requesting for a job at the same time, the query that returns an unprocessed
job and the query marks it as processing are put inside a transaction.

When a user uploads a video file, Web front-end server sends it to Storage
server. As the transcoded video files are also kept in Storage server, user has
to be given a way to download them to watch them. Storage server, however,
is not exposed directly to the user. Thus, Web front-end server provides path
/files/* for requesting files from Storage server. All GET requests to the
path are proxied to the Storage server.

Web front-end server is written in Node.js2 enhanced with Express3 web
application framework at server side. To add dynamic content (list of jobs)
to the HTML page at the client side, Embedded JavaScript4 (EJS) is used.
Video files are inspected with Mediainfo (see subsection 2.3.1).

2https://nodejs.org
3http://expressjs.com
4http://www.embeddedjs.com/

CHAPTER 5. PROJECT IMPLEMENTATION 35

5.2.2 Database

Database component is responsible for storing information about the transcod-
ing jobs. The transcoding service uses a relational database management
system called MySQL, which contains a database called transcoder, with one
table in it: job. A job instance has the following properties:

• id: unique identifier

• title: original name of the video file

• file id: public identifier connecting all jobs related to specific file upload

• created: creation time stamp of the job

• aspect ratio: a decimal representing the aspect ratio of the video

• quality: desired transcoding quality of this job (QVGA, VGA, SVGA)

• status: processing status (unprocessed, processing, or processed)

5.2.3 Storage server

Storage server component functions as a static web server that receives and
serves video files. It listens for HTTP POST requests to receive files and
GET requests to serve files. The files are stored at /files/ folder (more about
handling persistent data with containers in subsection 5.4.3).

As Web front-end server, Storage server is written in Node.js and Express
framework.

5.2.4 Transcoder

Transcoder instances poll Web front-end server for unprocessed jobs by send-
ing a HTTP GET request with intervals of 500 ms. If they get a job as a
response, an ffmpeg command to transcode is formed and executed. The
ffmpeg command is given different parameters depending on the given qual-
ity requirement. For example, to output a QVGA quality video, a command
similar to the following one would be executed:

ffmpeg -i http://<storageserver hostname>/oR9aS21d.mp4 -vsync 1
-vcodec libx264 -profile:v baseline -crf 20 -preset veryfast
-r 25 -s 320x240 ./transcoded/oR9aS21d-qvga.mp4

The following table explains the parameters in the command.

CHAPTER 5. PROJECT IMPLEMENTATION 36

Parameter Explanation

-i <url> Give input file as a remote stream from Storage
server

-vsync 1 Duplicate and drop frames to achieve exactly the
requested constant frame rate.

-vcodec libx264 Use libx264 to encode as H.264
-profile:v baseline H.264 profile (“main” for VGA quality, “high” for

SVGA quality)
-crf 20 Constant rate factor to target certain video quality
-preset veryfast Very fast encoding speed but less compression
-r 25 Frame rate of the output video
-s 320x240 Resolution of the output video

As Web front-end server and Storage server, Transcoder is written in
Node.js.

5.3 Creating Docker images

To run the components of the transcoding service as Docker containers, there
must be Docker images which the containers can be created from. As dis-
cussed in subsection 3.3, a typical way to create Docker images is to write a
Dockerfile.

Each of the four components has a Dockerfile. The following listing is
from the Dockerfile of Web front-end server.

FROM node:0.10

WORKDIR /src
COPY . .

RUN apt-get update
RUN apt-get install -y mysql-client mediainfo
RUN npm install

EXPOSE 3000
CMD ["node", "app.js"]

The first line tells Docker to use an image named node:0.10 as a base
image (which will be automatically downloaded from Docker Hub, if not
already). WORKDIR points the working directory inside image during the
building phase. The line starting with COPY tells Docker to copy all files
from the directory where Dockerfile is located to the working directory inside

CHAPTER 5. PROJECT IMPLEMENTATION 37

the image. After that, some commands are run to install dependencies. In
fact, every RUN instruction creates a new layer on top of the current image.
The EXPOSE instruction tells containers created from the image to expose
port 3000 to the host machine. The last instruction tells the command to be
run after a container has started.

To build Dockerfiles and push them to the Docker hub, a Bash script
was created. It calls two commands for each component (in this case, Web
front-end server):

1. docker build -t tiksa/thesis-webapp thesis-webapp/ to
build a Docker image and tag it with name tiksa/thesis-webapp

2. docker push tiksa/thesis-webapp to send the image to Docker
hub

5.4 Running containers in a cluster

5.4.1 Setting up a cluster

The cluster used for the transcoding service, being a small one, consists of
three micro EC2 machines running in Amazon AWS cloud. They are named
coreos-1, coreos-2 and coreos-3. The first one is intended to run Web front-
end server, Database and Storage server. coreos-2 and coreos-3 will run only
Transcoder containers. Figure 5.3 visualizes the cluster setup.

To make individual CoreOS machines to be aware of being in a cluster
and communicate with each other via etcd, they have to be connected via
an etcd discovery token. This is accomplished during start-up of the CoreOS
instances. They are given a snippet of information in the AWS Management
Console about services to be started and their parameters. The following
snippet was used for all the instances:

#cloud-config

coreos:
etcd:

discovery: https://discovery.etcd.io/504
d625362b0477a06da6c12444e84e0

addr: $private_ipv4:4001
peer-addr: $private_ipv4:7001

units:
- name: etcd.service

command: start
- name: fleet.service

command: start

CHAPTER 5. PROJECT IMPLEMENTATION 38

Figure 5.3: Containers distributed in a CoreOS cluster.

Basically, it tells the instance to start services etcd and fleet, and to use
a specific discovery token for etcd. It also tells etcd to advertise certain IP
addresses and ports for client-to-server and server-to-server communication.

5.4.2 Wrapping container creation to services

Now that there is a CoreOS cluster running and Docker images are built,
the next step is to start the actual containers. It is possible to connect to
each CoreOS instance via SSH, pull the needed Docker images and start con-
tainers manually. However, this approach is quite error-prone and laborious.
Instead, it is recommended to use fleet to launch services at cluster-level,
not on separate machines. To make the components eligible for being run
as a fleet service, a descriptive service file has to be written. The following
snippet describes Web front-end server as a service:

[Unit]
Description=Thesis webapp
Requires=docker.service

[Service]
EnvironmentFile=/etc/environment
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill webapp
ExecStartPre=-/usr/bin/docker rm webapp
ExecStartPre=/usr/bin/docker pull tiksa/thesis-webapp

CHAPTER 5. PROJECT IMPLEMENTATION 39

ExecStart=/usr/bin/docker run --rm=true --name=webapp -p 80:3000
-e COREOS_PRIVATE_IPV4=${COREOS_PRIVATE_IPV4} -e COREOS_PORT

=80 --link mysql:mysql --link storageserver:storageserver
tiksa/thesis-webapp

ExecStop=/usr/bin/docker stop webapp

[X-Fleet]
MachineID=63f57bcb9c014d94aebdb4f6e8d55c20

What is interesting in this description are the docker commands and
the X-Fleet section. By executing docker kill and docker rm, it is
ensured that the previous container is stopped and removed. The docker
pull command fetches the newest Docker image, if not already fetched.
Only the layers up from the modified one have to be fetched. The docker
run command starts the an actual container. It has various parameters that
are explained in the following table.

Parameter Explanation

–rm=true Remove the container when it stops.
–name=webapp Set name of the container.
-p 80:3000 Forward port 80 of the host to port 3000 of the

container.
-e KEY=VALUE Pass environment variable to the container.

CoreOS private IP address and port are needed
to advertise the container between cluster nodes
via etcd.

–link mysql:mysql Link other container (mysql) to the starting
container with alias mysql. This adds environ-
ment variables that contain information about
the linked container, such as IP address and ex-
posed port.

–link storage-
server:storageserver

See the previous one.

In the X-Fleet section, different constraints regarding the decision about
in which node the container is going to be started, can be listed. Because all
components except Transcoder are desired to be run on the same machine
(coreos-1), they are given its machine ID. This forces fleet to always start
those containers on that machine. On the contrary, Transcoder containers
are instructed to run on any container except the one that is running Web
front-end server container. In the service file, it is formulated as a statement
Conflicts=thesis-webapp.service. In practice, this results in a

CHAPTER 5. PROJECT IMPLEMENTATION 40

policy where the Transcoder containers are distributed evenly on machines
coreos-2 and coreos-3.

5.4.3 Handling persistent data

Normally, when containers are removed, all their data is deleted. However,
both Database and Storage server are intended to persist their data storages
despite deletion of the containers running the components. This is achieved
by using volumes. In docker run command, a -v parameter is given which
makes the container mount a specific directory in the file system of the host
machine into a directory in the container.

In case of Database, the following parameter will be set:

-v /home/core/thesis-mysql:/var/lib/mysql

Thus, all the data will be stored at /home/core/thesis-
mysql. If the container is stopped and removed, and a new container with
an updated Database image is started, it will continue using the same data.

Similarly, Storage server containers are started with parameter:

-v /var/thesis-storageserver/files/:/files/

5.4.4 Service discovery

Now that containers can be started in the cluster, they have to make commu-
nicate with each other. The transcoding service has the following relations
between the containers of its components:

Service Services to be discovered

Database None
Storage server None
Web front-end server Database (same host), Storage server (same

host)
Transcoder Web front-end server (other host), Storage

server (other host)

As a relatively simple solution, containers that run on the same host can
use --link parameter in the docker run command to obtain address in-
formation about each other. For example, Web front-end server uses parame-
ter --link mysql:mysql to link the Database container, and in the appli-
cation code, an environment variable called MYSQL PORT 3306 TCP ADDR
is used to form a database connection.

CHAPTER 5. PROJECT IMPLEMENTATION 41

For containers that run on different hosts, etcd is used to relay address
information. Moreover, a Node.js module called node-etcd is used to interact
easily with the etcd daemon. Both Web front-end server and Storage server
advertise their IP address and port every five seconds, with a time-to-live
(TTL) value of ten seconds, whereas Transcoder containers, in turn, watch
for those values and use them to communicate with those components.

Figure 5.4 gives an overview of the relevant ports that are exposed inter-
nally and externally, and forwardings related to them.

Figure 5.4: Exposed ports and port forwardings

5.4.5 Deployment

To automate the process of making the cluster to replace one or all of its
currently running services (related to the transcoding service) with updated
ones, a Bash script was made for each component. The script builds a new

CHAPTER 5. PROJECT IMPLEMENTATION 42

Docker image with the latest application code in it and relaunches the service
by pulling that image from the Docker Hub. In addition, a Bash script that
runs all these scripts in a row was made to make it possible to launch all the
services with one command.

Chapter 6

Evaluation

In this chapter, the implemented prototype will be evaluated. The focus will
be more on the development and deployment process, scalability, maintain-
ability, and other operational characteristics—the functionality of the actual
service visible to the end-user will be evaluated quite superficially.

6.1 Functionality

The transcoding service implemented in this project meets the requirements
set for it. The service provides an online user interface that allows end-users
to upload MP4 videos (also other formats are allowed, there is no guarantee
of success though). The videos are transcoded to multiple output videos with
different qualities, depending on the quality of the input video. The service
also provides links for watching the output videos.

6.2 Architecture

The architectural requirements for the service were met. It consists of four
types of micro-services which are distributed among three nodes. In addition,
one of the micro-services, Transcoder service, has multiple instances running.
All the micro-service instances are run as Docker containers on a cluster of
virtual machines, in a cloud.

6.3 Performance

The video processing performance depends largely on the underlying hard-
ware capacity. However, some measurements were done. A 52 seconds long

43

CHAPTER 6. EVALUATION 44

video with size of 13.9 megabytes and overall bit rate of 2.24 Mbps was up-
loaded four times to the service. Each of them generated three transcoding
jobs (QVGA, VGA and SVGA qualities), thus 12 jobs in total. Then, a
varying number of Transcoder instances were started at once (divided evenly
to two CoreOS hosts), and the total time elapsed for the transcoding was
measured. With each configuration, the total processing time was measured
three times. The following table shows average processing times.

Number of Transcoder
instances

Average processing time
(s)

2x1 144
2x3 154
2x6 150

Because the Transcoder instances poll for available jobs with intervals of
500 ms, they might have been idling a few seconds in total during the test
despite available jobs. Anyway, although the the number of samples was
quite small, seems that one Transcoder instance for each CoreOS node has
the best total performance.

However, the optimal number of Transcoder instances for a CoreOS node
does not depend only on things such as number of computing cores. In addi-
tion, there is a clear trade-off: with a high number of Transcoder instances,
a high number of jobs are being processed in parallel but the processing time
for each video is much longer, and vice versa. This could be also considered
as a matter of user experience: is it preferred that end-users get their videos
quickly to start being processed, which takes longer, or is it acceptable to let
them wait for some time and then get the video processed fast?

6.4 Scalability

The scalability of the transcoding services is evaluated mainly in an opera-
tional sense.

Because the micro-services in the transcoding service were wrapped into
containers, they were quite easy to start on different host. This, in turn,
makes it easier to scale out. For example, after having a Transcoding in-
stance functioning on a specific host, it was quite a small step to make it
distributable to any available host. However, sometimes there were some
quirks in fleet. For example, sometimes when issuing a destroy command for
all Transcoding instances, some of them did not seem to obey. In addition,
it was important to have the same CoreOS versions on each node to ensure
that etcd, for example, functions as expected.

CHAPTER 6. EVALUATION 45

Furthermore, the hardware capabilities of the available hosts were able to
be shared more efficiently—small, self-contained, decoupled containers can be
distributed with less effort than large, tightly coupled services. For example,
coreos-1 host was running three separate services. Despite this, they were
isolated from each other because they were run as containers. Although their
dependencies were changed many times, only the modified service had to be
restarted. There was no need to change the host environment in any way,
for example by installing dependencies there.

6.5 Development flow

In the beginning, each service, excluding Database, was developed locally as
an independent application to some extent. As they became more and more
dependent of each other, they were made to communicate each other locally.
After having somewhat working components implemented, the CoreOS clus-
ter was set up. After this, the services were created Docker images. The
deployment flow, as explained in chapter 5, was, however, too slow for iter-
ative, yet active development phase. The time from changing code to see it
live took even minutes.

At this point, the flow for development was changed. The goal was to
have an effective flow but also a somewhat realistic development environment.
To address this problem, each service was created a separate, development-
purpose fleet service file. The main difference was that the created containers
would mount a directory from the CoreOS host and use it as the source
directory. Furthermore, after changing code, the source files would be sent
to the remote source directory on the CoreOS host via SCP. This enabled
quite efficient development flow. In most cases, the iteration time were several
seconds.

However, when new Node.js modules were to be downloaded, they had
to be installed manually on CoreOS, or sent via SCP from the development
machine, which might take even minutes. To address this problem, and to
see code changes live even faster, it would be probably worth setting up a
local CoreOS cluster. Vagrant1, for example, would perhaps have been quite
a suitable tool for this. This would enable having a common source directory
for containers and local development tools, or at least the file transfer time
would be dramatically shorter.

1https://www.vagrantup.com/

CHAPTER 6. EVALUATION 46

6.6 Testability

Because the transcoding service is run with Docker container which, in turn,
are built from Docker images, it is relatively easy to setup a similar cluster
and test the service there. There is no need to spend time to make the
operating system, numerous dependencies and software versions identical—
Docker specifically aims to take care about that.

In this respect, testability is good. In general, however, distributed
systems are sometimes quite difficult to test reliably. Because no thorough
testing was not carried out, it is challenging to evaluate testability in its
entirety.

6.7 Reliability

According to ISO 9126 standard, reliability means maturity, fault tolerance,
and recoveribility. Since the transcoding system has not been thoroughly
tested, it has had only few users and it is prototypal by nature, it cannot
be considered mature. Fault tolerance and recoverability is more or less
mediocre; if a Transcoder instance fails to complete a transcoding job, the
instance itself does not crash but continues by taking the next available job.
The other parts of the transcoding service also have somewhat same level of
fault tolerance. If a current task fails, then it fails, but the container instance
itself is able to continue.

Chapter 7

Conclusion

As Internet and its derivatives, such as social media, have expanded dramat-
ically, the requirements for web services have grown significantly. Many of
them have to serve massive numbers of users simultaneously. This often com-
plicates the software and infrastructure. To manage a complex distributed
system and numerous components, containers may be a solution worth con-
sidering.

In this work, different topics from video processing to container orches-
tration were discussed. Different video streaming technologies, key con-
cepts of video transcoding and some related open source software were gone
through. Then, operating-system-level virtualization and hypervisor-based
virtualization were introduced and compared. In addition, Docker, one of
the popular applications of container technologies, was introduced. Because
containers often communicate with other containers, they form a distributed
system. Some charasteristics of distributed systems and micro-service archi-
tecture were discussed, as well as container orchestration.

In addition, a prototypal video transcoding service was implemented. Al-
though the components of the service might have been interesting to be dis-
cussed as independent components, the focus was in the system as a whole;
how the components communicate with each other and work together so
that a coherent system is formed. Although the user interface visible to the
end-users is stripped-down, the interior of the system is relatively complex.

In respect of project requirements, the implemented transcoding service
was successful. However, there are plenty of things that could be improved.
First, to prevent Transcoder instances from idling because of polling, they
could be set to listen for available jobs at some port and Web front-end server
could send them job descriptions. There could be a load balancer container
that divides jobs for idling Transcoder instances. Second, the service could
always be built more reliable in terms of service discovery. If a container fails

47

CHAPTER 7. CONCLUSION 48

fatally or disappears for other reasons, the other containers do not handle it
always correctly. Database and Storage server, for example, are linked to Web
front-end server with Docker’s --link parameter, which is not very flexible
compared to a proper etcd-based discovery. Finally, failure recoverability
could be improved. Currently, if a transcoding job fails, it stays in status
processing, and it is not retried or given to another Transcoder instances.

Although numerous topics related to video processing, application and
Linux containers, and distributed systems were discussed, this paper just
scratched the surface. As future work, it would be interesting to study more
the technologies developed for container orchestration. The container tech-
nology itself is relatively young, and so are many container orchestration
technologies. A small project consisting of several containers is somewhat
straightforward to be made manageable. However, how about a system that
contains hundreds of containers that come and go? Are the existing orches-
trating tools reliable enough to make the system robust?

It will be exciting to see how the field of container technology develops in
the future. Many of the related technologies are not very mature, and there
are not any proper alternative for Docker at the moment. Fortunately, it
seems that there are some challengers being developed. Moreover, the future
will show how cloud providers will react to containers and operating-system-
level virtualization in general. Amazon AWS, for instance, has taken a step
by releasing a service for running containers in cloud.

Bibliography

[1] Cisco Visual Networking Index: Forecast and Methodology, 2013-2018,
2014. http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/ip-ngn-ip-next-generation-network/

white_paper_c11-481360.pdf. Accessed 21. Feb 2015.

[2] Cisco Visual Networking Index: Global Mobile Data Traf-
fic Forecast Update, 2014-2019, 2015. http://www.cisco.

com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white_paper_c11-520862.pdf.
Accessed 21. Feb 2015.

[3] CoreOS Documentation, 2015. https://coreos.com/docs/. Ac-
cessed 4. Mar 2015.

[4] Docker documentation, 2015. https://docs.docker.com. Accessed
2. Feb 2015.

[5] Documentation page for MPlayer, 2015. https://www.mplayerhq.

hu/DOCS/HTML/en/index.html. Accessed 16. Apr 2015.

[6] FFmpeg, 2015. Wikipedia page about FFmpeg. http://en.

wikipedia.org/wiki/FFmpeg. Accessed 28. Feb 2015.

[7] Fleet - a distributed init system. Github page., 2015. https://github.
com/coreos/fleet. Accessed 4. Mar 2015.

[8] Manual page of MPlayer, 2015. http://www.mplayerhq.hu/DOCS/

man/en/mplayer.1.html. Accessed 16. Apr 2015.

[9] Mediainfo manual page, 2015. http://manpages.ubuntu.com/

manpages/precise/man1/mediainfo.1.html. Accessed 28. Feb
2015.

[10] Abadi, D. J. Consistency tradeoffs in modern distributed database
system design. Computer-IEEE Computer Magazine 45, 2 (2012), 37.

49

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
https://coreos.com/docs/
https://docs.docker.com
https://www.mplayerhq.hu/DOCS/HTML/en/index.html
https://www.mplayerhq.hu/DOCS/HTML/en/index.html
http://en.wikipedia.org/wiki/FFmpeg
http://en.wikipedia.org/wiki/FFmpeg
https://github.com/coreos/fleet
https://github.com/coreos/fleet
http://www.mplayerhq.hu/DOCS/man/en/mplayer.1.html
http://www.mplayerhq.hu/DOCS/man/en/mplayer.1.html
http://manpages.ubuntu.com/manpages/precise/man1/mediainfo.1.html
http://manpages.ubuntu.com/manpages/precise/man1/mediainfo.1.html

BIBLIOGRAPHY 50

[11] Barborak, M., Dahbura, A., and Malek, M. The consensus
problem in fault-tolerant computing. aCM Computing Surveys (CSur)
25, 2 (1993), 171–220.

[12] Brewer, E. Pushing the cap: Strategies for consistency and availabil-
ity. Computer 45, 2 (2012), 23–29.

[13] Brewer, E. A. Towards robust distributed systems. In PODC (2000),
vol. 7.

[14] Deka, G. C., and Das, P. K. An overview on the virtualization
technology. Handbook of Research on Cloud Infrastructures for Big Data
Analytics (2014), 289.

[15] Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. An up-
dated performance comparison of virtual machines and linux containers.
technology 28 (2014), 32.

[16] FFmpeg project. FFmpeg documentation, 2015. https://www.

ffmpeg.org/documentation.html. Accessed 21. Jan 2015.

[17] Fischer, M. J. The consensus problem in unreliable distributed
systems (a brief survey). In Foundations of Computation Theory (1983),
Springer, pp. 127–140.

[18] Gilbert, S., and Lynch, N. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. ACM SIGACT
News 33, 2 (2002), 51–59.

[19] Gilbert, S., and Lynch, N. A. Perspectives on the cap theorem.
Institute of Electrical and Electronics Engineers.

[20] Grit, L., Irwin, D., Yumerefendi, A., and Chase, J. Virtual ma-
chine hosting for networked clusters: Building the foundations for auto-
nomic orchestration. In Proceedings of the 2nd International Workshop
on Virtualization Technology in Distributed Computing (2006), IEEE
Computer Society, p. 7.

[21] Hock, K. S., and Lingxia, L. Automated processing of massive
audio/video content using ffmpeg. Code4Lib Journal, 23 (2014).

[22] Howard, H. Arc: analysis of raft consensus. Technical Report UCAM-
CL-TR-857 (2014).

https://www.ffmpeg.org/documentation.html
https://www.ffmpeg.org/documentation.html

BIBLIOGRAPHY 51

[23] Jonathan Corbet. Cgroups, 2007. http://lwn.net/Articles/

236038/. Accessed 22. Jan 2015.

[24] Jonathan Corbet. Fixing control groups, 2012. http://lwn.net/

Articles/484251/. Accessed 22. Jan 2015.

[25] Kim, D., Baek, J., and Fisher, P. S. Adaptive video streaming over
http. In Proceedings of the 2014 ACM Southeast Regional Conference
(2014), ACM, p. 26.

[26] Kistler, J. J., and Satyanarayanan, M. Disconnected opera-
tion in the coda file system. ACM Transactions on Computer Systems
(TOCS) 10, 1 (1992), 3–25.

[27] Kumar, A. S. Virtualizing Intelligent River R: A Comparative Study
of Alternative Virtualization Technologies. PhD thesis, Clemson Uni-
versity, 2013.

[28] Lamport, L. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21, 7 (1978), 558–565.

[29] Lamport, L. Paxos made simple. ACM Sigact News 32, 4 (2001),
18–25.

[30] Marmol, V., Jnagal, R., and Hockin, T. Networking in containers
and container clusters.

[31] Michael Kerrisk. Namespaces in operation, part 1: namespaces
overview, 2013. http://lwn.net/Articles/531114/. Accessed 23.
Jan 2015.

[32] Namiot, D., and Sneps-Sneppe, M. On micro-services architecture.
International Journal of Open Information Technologies 2, 9 (2014),
24–27.

[33] Paul Menage, Paul Jackson, Christoph Lameter. Cgroups,
2014. https://www.kernel.org/doc/Documentation/cgroups/

cgroups.txt. Accessed 22. Jan 2015.

[34] Pires, K., and Simon, G. Dash in twitch: Adaptive bitrate streaming
in live game streaming platforms. In Proceedings of the 2014 Workshop
on Design, Quality and Deployment of Adaptive Video Streaming (2014),
ACM, pp. 13–18.

http://lwn.net/Articles/236038/
http://lwn.net/Articles/236038/
http://lwn.net/Articles/484251/
http://lwn.net/Articles/484251/
http://lwn.net/Articles/531114/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

BIBLIOGRAPHY 52

[35] Qiu, F., and Cui, Y. An analysis of user behavior in online video
streaming. In Proceedings of the international workshop on Very-large-
scale multimedia corpus, mining and retrieval (2010), ACM, pp. 49–54.

[36] Richardson, I. E. The H. 264 advanced video compression standard.
John Wiley & Sons, 2011.

[37] Scheepers, M. J. Virtualization and containerization of application
infrastructure: A comparison.

[38] Seo, K.-T., Hwang, H.-S., Moon, I.-Y., Kwon, O.-Y., and Kim,
B.-J. Performance comparison analysis of linux container and virtual
machine for building cloud.

[39] Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., and Pe-
terson, L. Container-based operating system virtualization: a scal-
able, high-performance alternative to hypervisors. In ACM SIGOPS
Operating Systems Review (2007), vol. 41, ACM, pp. 275–287.

[40] Stockhammer, T. Dynamic adaptive streaming over http–: stan-
dards and design principles. In Proceedings of the second annual ACM
conference on Multimedia systems (2011), ACM, pp. 133–144.

[41] Thang, T. C., Le, H. T., Pham, A. T., and Ro, Y. M. An eval-
uation of bitrate adaptation methods for http live streaming. Selected
Areas in Communications, IEEE Journal on 32, 4 (2014), 693–705.

[42] Tian, G., and Liu, Y. Towards agile and smooth video adaptation
in dynamic http streaming. In Proceedings of the 8th international con-
ference on Emerging networking experiments and technologies (2012),
ACM, pp. 109–120.

[43] Timmerer, C., Griwodz, C., Begen, A. C., Stockhammer, T.,
and Girod, B. Guest editorial adaptive media streaming. IEEE Jour-
nal on Selected Areas in Communications 32, 4 (2014), 681–683.

[44] Van Garderen, P. Archivematica: Using micro-services and open-
source software to deliver a comprehensive digital curation solution. In
Proceedings of the 7th International Conference on Preservation of Dig-
ital Objects, Vienna, Austria (2010), Citeseer, pp. 145–149.

[45] Vetro, A., Christopoulos, C., and Sun, H. Video transcoding
architectures and techniques: an overview. Signal Processing Magazine,
IEEE 20, 2 (2003), 18–29.

BIBLIOGRAPHY 53

[46] Vetro, A., Xin, J., and Sun, H. Error resilience video transcoding
for wireless communications. Wireless Communications, IEEE 12, 4
(2005), 14–21.

[47] Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C.,
Lange, T., and De Rose, C. A. Performance evaluation of container-
based virtualization for high performance computing environments. In
Parallel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on (2013), IEEE, pp. 233–240.

[48] Xin, J., Lin, C.-W., and Sun, M.-T. Digital video transcoding.
Proceedings of the IEEE 93, 1 (2005), 84–97.

[49] Yang, H., Chen, X., Yang, Z., Zhu, X., and Chen, Y. Opportu-
nities and challenges of http adaptive streaming. International Journal
of Future Generation Communication & Networking 7, 6 (2014).

[50] Yetgin, Z., and Seckin, G. Progressive download for multimedia
broadcast multicast service. IEEE MultiMedia, 2 (2009), 76–85.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Video streaming and processing
	2.1 Internet video technologies
	2.1.1 Stateful real-time streaming
	2.1.2 Progressive download
	2.1.3 Adaptive streaming

	2.2 Fundamentals of video transcoding
	2.2.1 Video encoding
	2.2.2 Objectives of transcoding

	2.3 Open source video processing tools
	2.3.1 Mediainfo
	2.3.2 FFmpeg
	2.3.3 MEncoder

	2.4 Conclusion

	3 Linux containers
	3.1 Operating-system-level virtualization
	3.1.1 Control Groups
	3.1.2 Kernel namespaces
	3.1.3 Linux container implementations

	3.2 Comparison to hypervisor-based virtualization
	3.2.1 Fundamentals of hypervisor-based virtualization
	3.2.2 Main differences
	3.2.3 Performance
	3.2.4 Operational capabilities

	3.3 Docker
	3.4 Conclusion

	4 Container-based distributed systems
	4.1 Distributed systems
	4.1.1 CAP theorem
	4.1.2 Consensus problem

	4.2 Micro-services architecture
	4.3 Container orchestration
	4.3.1 CoreOS
	4.3.2 Kubernetes

	4.4 Conclusion

	5 Project implementation
	5.1 Target and environment
	5.1.1 Motivation
	5.1.2 Environment and requirements

	5.2 Architecture and components
	5.2.1 Web front-end server
	5.2.2 Database
	5.2.3 Storage server
	5.2.4 Transcoder

	5.3 Creating Docker images
	5.4 Running containers in a cluster
	5.4.1 Setting up a cluster
	5.4.2 Wrapping container creation to services
	5.4.3 Handling persistent data
	5.4.4 Service discovery
	5.4.5 Deployment

	6 Evaluation
	6.1 Functionality
	6.2 Architecture
	6.3 Performance
	6.4 Scalability
	6.5 Development flow
	6.6 Testability
	6.7 Reliability

	7 Conclusion

