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Abstract

On-line fault detection and diagnosis of rotating machinery requires a number of
transducers which can be significantly expensive for industrial processes. The sensitivity of
various transducers and their appropriate positioning are dependent on different types of
fault conditions. It is critical to formulate a method to systematically determine the
effectiveness of transducer locations for monitoring the condition of a machine. In this
paper, Number of Independent Sources analysis is used as an effective tool for reducing the
number of vibration sources within the system which is then followed by Principal
Component Analysis to identify the incoherent transducers to be employed for fault

detection. This experiment is conducted on a machine fault simulator for unbalanced rotor,



misaligned shaft and cracked shaft. The validation of the proposed selection process is
illustrated using spectral analysis for each defect.

Keywords: Singular Value Decomposition, NIS Analysis, PCA, Unbalance, Misalignment,
Cracked Shaft

1. Introduction

Rotary machines incorporating a number of components such as shafts, bearings, rotors,
electric motors, belt drives etc., are widely used in many commercial applications and in
industries. Defects occurring at each of these components, which include unbalanced rotor,
misaligned shafts, cracked rotor etc., can cause the machines to operate at lower efficiencies
and unwanted effects such as excessive vibration, noise, or breakdown of the machine
itself.

These problems have already been extensively explored ("; the authors developed a model
based residual generation technique to identify misalignment and unbalance of a
rotor-bearing system. In another work ?, the transient response of a rotor system used to
distinguish a crack from coupling misalignment.

In an unknown system, it becomes crucial to identify and predict the fault before it causes

severe damage. On-line condition monitoring is an important tool to estimate the health of



machine components by analyzing the pertinent information acquired from various sensors,
which are usually unavailable without disassembling the machines. Generally, vibration
signals extracted contain adequate information about the machine health status which helps
to get reliable features for the machine’s condition monitoring ).

Characteristic features are obtained from machine parameters at the data processing stage
that can be used for fault detection by using methods such as statistical moment
computation and spectral analysis Y.However, it is time consuming and expensive to install
sensors at multiple locations in an unknown system which makes it crucial to reduce the
number of permanent transducers to be installed by identifying it’s most effective locations.
Therefore, there is a need to introduce a method that identifies the transducers which
capture significant information about the machine.

A technique @, referred to as Number of Incoherent Sources (NIS) analysis, has been
employed for determining the number of incoherent noise generating processes within a
system. NIS analysis is accomplished by utilizing Singular Value Decomposition (SVD)
which has been used as a powerful tool in diverse fields that includes SVD-based signal
processing for selection of the number of effective component signals ©. SVD also

performs well towards determining the best locations for installation of Power System



Stabilizers ?, and as a possible application of Generalized SVD in machine condition
monitoring ®.

Principal Feature Analysis reduces the number of features and hence the number of sensors
required ®. Previous incoherent source identification investigation methods include the use
of ordinary coherence, partial coherence ! and the virtual coherence function V.
Previously, a method was developed using Principal Component Analysis (PCA) to
determine the number of incoherent processes in a system which was subsequently
combined with the virtual coherence technique to identify incoherent noise sources. PCA
technique is based on the properties of SVD 2. As one of the most extensively used
multivariate statistical methods, PCA has been effectively used in dominant source
identification' Moreover, utilization of PCA has also been to reduce the dimensionality of
input features by devising a systematic feature selection scheme that is applied as a tool for
process condition monitoring and health diagnosis !*. In another study ¥, PCA was used
to extract the low-dimensional Principal Component Representations from the statistical

features of the measured signals to monitor machine conditions.



This paper applies NIS analysis and principal component analysis to the data obtained from
multiple transducers. The most effective transducers for different fault conditions in a
Machinery Fault Simulator have been identified.

Several techniques have been used for early fault detection and health monitoring of
rotating machines. Dynamic stress analysis of a broken pump-turbine runner of a
high-pressure machine was carried out to reveal fatigue damage . A synchro and a fast
rotating magnetic field (RMF) based technique has been developed for the measurement of
machine vibrations for machine condition monitoring"'®, which is further used to measure
the Instantaneous Angular Speed for low-speed machines 7. Further advancements include
shaped transducers that have been used to reduce the sensitivity of sensor output in
structural health monitoring which entails that the response can be made sensitive to
particular regions of interest !®. In addition, a monitoring system has been proposed to
warn the operator of impending problems in the machining process and allows to alter and
shutting down of the machining process to preserve the machine components !?. As a
result, the spectral analysis techniques can record the condition of machinery rotation even
under the condition of misoperation. In the present work, the results were verified by

performing spectral analysis on the vibration data acquired by the data analyzer.



In the following sections, theoretical back ground on NIS, SVD and PCA is provided. This
is followed by the details of the experimental study and measurements, in the results and
discussion section the technique for finding out the optimum transducers for various cases
of machine fault is provided followed by a validation using spectral analysis of the
measured vibration signal using the optimally selected transducers to find the actual fault in
the system.

2. Theoretical background

2.1 NIS and singular value decomposition

The Number of Incoherent Sources (NIS) analysis © is a stable method determining the
number of incoherent processes operating in a system. The number of these processes is the
number of input transducers which are required to control the system. This technique is
based on the singular value decomposition (SVD) of spectral density matrices of the signals
measured by multiple source transducers located within the system.

SVD is an important technique for analysis of multivariate data which was first applied
practically in 1958 ©@®, SVD has been used extensively in the past and remains a valuable

tool for obtaining characterization of the structure of data 2.



An [A] matrix which is composed of the auto-spectra and cross-spectra of the input
transducers, for each spectral line, is decomposed into two unitary matrices and a diagonal
matrix using the singular value decomposition (SVD). The equation for SVD of [A] is as
follows:

[A] = [UI[W][VY] (1)
where [U] is a unitary matrix whose columns are the eigenvectors of [A][A"], [V] is a
unitary matrix whose columns are the eigenvectors of [A"][A], and [W] is a diagonal
matrix whose elements are the singular values of [A]. The singular values are the square
roots of the non-zero eigenvalues of [A"][A] and [A][A"]. They are placed in descending
order along the diagonal of the matrix [W].
Determination of NIS is accomplished by forming the [A] matrix at each spectral line.
Experimental data from an array of » transducers is assembled into the [A] matrix at each

frequency as

S 11 S 12 Sln
S 21 S22 SZn
[A] = Snl Sn2 Snn (2)



where §,, is the auto-spectrum for the first reference transducer, S, is the cross-spectrum
between the first and the second transducer, etc. If more transducers are used than the
number of actual sources, the spectral information of some channels will be linearly related
to the information of others and the [A] matrix will be rank deficient by the number of
dependent channels. Thus, the rank of the [A] matrix is the number of sources sensed by the
array of reference transducers.

The rank of each [A] matrix will be the number of singular values greater than the lower
threshold level for the SVD of experimental data, and thus, the number of incoherent
sources. Once the number of input transducers is known, the best set of transducers must be
identified using PCA.

2.2 Principal component analysis (PCA)

PCA, introduced in 1979 is a standard technique used in the context of multivariate analysis
to extract constrained information from data by reducing its dimensionality ®*. However it
retains most of the variation present in the data set. This is achieved by transforming to a
new set of variables, the principle components (PCs), which are uncorrelated, and which
are ordered so that the first few retain most of the variation present in all of the original

variables 429,



There are various ways of approaching and implementing PCA. The method which is used

here is variance maximization which follows the following four steps:

1.

Compute the covariance of a matrix that consists of a number of data vectors i.e., A =

T .
[a,,a,35,...... a,|" as shown below:

S=12" AxAT

i=1

" 3)

The variances of each vector are found on the diagonal, while the covariance of two
vectors from A is found at the corresponding location in S.
Diagonalize the covariance matrix, S by finding its eigenvectors and eigenvalues:

S*y =%y Z is a scalar quantity 4)

where v is the eigenvector of S and is arranged in descending order, 4 is the
corresponding eigenvalue.

The eigenvalues are selected in decreasing order to select the vectors that contribute
the most first. Therefore, the principal components of 4 are the eigenvectors of 4’s
covariance matrix, S and the corresponding eigenvalue is the variance of A along the

associated vector in the basis 2.



3. Each principal component has a corresponding eigenvalue that indicates the extent to
which it contributes to the final reconstruction of the data ®®. Most of the information
is contained in the eigenvectors which correspond to the front few biggest eigenvalues.
It is expected that the first few principal components will provide the majority of the
original data , and that there will at some point be a sharp fall in the eigenvalues,
indicating that the threshold has been reached.

2.3 Study on different types of faults

Vibration monitoring is one of the primary techniques for fault detection of rotating
machines which generates vibration primarily due to the presence of the following sources:
Shaft Misalignment in rotating machinery can generate reaction forces and moments in the
coupling which leads to excessive vibrations causing machine faults . It is a condition
caused by improper assembly which results in eccentricity between the shafts of the driving
and driven machines. Spectral analysis of shaft misalignment represents a series of
harmonics of the shaft running speed.

Rotor unbalance is a condition in which the center of mass of a rotating disk is not

coincident with the center of rotation. It exists in a rotor when vibratory force or motion is

10



imparted to its bearings as a result of centrifugal forces. Unbalance in a rotor system is
inescapable and it cannot be exterminated fully .

Cracked Shaft is a very common phenomenon which produces symptoms similar to
coupling misalignment . Unexplainable changes in the amplitude and phase of
synchronous (1X) rotational speed is the most important manifestation of a shaft crack
728 The asymmetry of the shaft is also indicated by the occurrence of a 2X rotational
speed component.

3. Experiment and details

3.1 Experimental setup

For our study, the proposed methodologies are executed on a Machinery fault simulator
(MFS) as shown in Figure 1(a) and mounted transducers and corresponding locations are
shown in Figure 1(b). Vibrations of the drive end (DE) bearing and non drive end bearing
(NDE) were measured in three directions with B&K 4321 tri-axial accelerometers. One

accelerometer B&K 4370 was mounted on the base plate of the MFS.
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Yokogawas Recorder

Figure 1(a). Machinery Fault Simulator setup

T2 [y, Radial) T6 (y, Radial)
I—> T1 (x, Axial) I—i T3 (x, Axial)
T3 (z, radial) T7 (2, Radial)
Shaft
Motor
Dirive end bearing MMom drive emd bearing
Bearing 1 Bearing 2

T4 (Base Transducer)

Figure 1(b). Schematic representation of mounted transducers and corresponding locations

Seven channels of data from the respective transducers were acquired and recorded

simultaneously using Yokogawa DL850 Data Recorder at 20 KSamples/s sampling
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frequency and 10,000 digital samples were acquired for spectral analysis using a B&K
PULSE analyzer .

3.2 Measurements

Experiment was designed to study the effectiveness of transducer for multiple faults on the
MES. All seven channels of signal data were measured for the rotational speed of 600, 900,
1200, 1500, and 1800 RPM. Results are analyzed for all the rotational speed since the
conclusions are the same. So, results are reported only for 1200 and 1800 RPM.

Specifications of the MFS used for the experiments are given in Table 1(a).

Table 1(a). Specifications of the MFS used for experiment

ction motor electrical frequency 60 Hz
ince between drive end and non drive end bearings 36.2 cm
ince between drive end and non drive bolts of motor 7.62 cm
t diameter 1.58 cm
t loader 5 kg

The seven channel signal data were obtained for the perfect (aligned) shaft condition of

MES followed at five fault conditions as shown in Table 1(b).

Table 1(b). Different conditions of faults in MFS

SI. No. Different conditions in MFS

Aligned (Normal)

Misalignment

Unbalance

Unbalance and Misalignment

Cracked shaft (bolt fully tightened)
Cracked shaft (bolt partially tightened)
Normal shaft with shaft loader

~N NN W=
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8 Normal shaft with shaft loader and unbalance

Angular misalignment was introduced using shims (thickness 0.062 cm) on the non drive
end bearing side of the base plate. Unbalance was created by fixing masses onto the rotor
disk (each mass weighs 6.13gm). For performing the experiment on crack shaft, the perfect
shaft was replaced by a flange-simulated cracked shaft. Figure 2 shows the flanged
simulated cracked shaft which consists of two separable shafts joined at the mating flanges
and Figure 3 shows the view of the cracked shaft joined by the four bolts and disjoined

conditions.

Flangos pr;ane“"'

Shaft loader

nent

rell
sal meas’

Boll for tighlening

amd looscning

Figure 2. Cracked shaft with the two flanges for varying the amount of crack
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For inducing crack in a shaft four bolts are loosened or tightened. Large black disk next to
flanges provides load on the shaft due to its heavy weight. For experimental simulation, two
bolts were loosened for introducing crack and this condition is known as bolts partially
tightened which was more serious than bolts fully tightened where four bolts were

tightened.

(a) (b)

Figure 3. View of the cracked shaft (a) Joined by the four bolts (b) Disjointed

4. Results and discussion

4.1 Determination of the number of incoherent sources (NIS)

Using the spectral information obtained from the data analyzer, the [A] matrix was formed
at each frequency for the 7 transducers. The Number of Independent Source (NIS) analysis

was performed on the [A] matrix. The singular values from the [A] matrix are shown in
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Figure 4. The values are plotted on a semi-logarithmic scale over the 0 to 500 Hz frequency

range.

The threshold value is estimated as the value below which the singular values remain
constant with frequency. In Figure 4, the second singular value remains near -18 dB over
the entire frequency range. Thus, an insignificant amount of information is contained from
the remaining six transducer. The singular values which are larger than the threshold value
are the number of independent sources. In this case, one singular value is significantly
greater above -18 dB. Thus, only one transducer senses the majority of the vibration in the
MFS, which is the minimum number of input transducers required for effective data
collection. The main purpose of NIS analysis is determining the total independent sources
present in the system (in this case: one). Now, one independent source can be present at any
location within the system. This is where PCA is utilized, which identifies the incoherent

source(s) and its location within the system

Figure 4. Singular values of the 7 transducer signals mounted on MFS at normal condition

4.2 Incoherent source identification using principal component analysis (PCA)
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The data were obtained from the seven transducers for normal (aligned), misaligned,
unbalanced, unbalanced-misaligned, cracked shaft with bolt partially tightened and cracked
shaft with bolt fully tightened condition of the MFS. Principal component analysis (PCA)
was performed on the data followed by eigenvalue -analysis of the resultant correlation
matrix. The recorded vibration data is obtained at the motor speed of 1200 and 1800 RPM.

Similar results were incurred from analysis of data at 1800 RPM.

PCA in normal (aligned) condition

PCA is performed on the recorded vibration data for an aligned system and the eigenvalue

analysis is executed on the correlation matrix which renders the following results:

Here proportion can be calculated by the equation given below

Eigenvalue for the component of interest

Proportion = - - -
Total eigenvalues of the correlation matrix (5)

In principal component analysis, the total eigenvalues of the correlation matrix is equal to
the total number of variables being analyzed. Cumulative percent indicates the percent of
variance accounted for by the present component, as well as all preceding components.
They usually retain enough components so that the cumulative percent of variance

accounted for is equal to some minimal value.
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The last few principal components usually accounts for the least proportion of total
variance. Therefore, only the eigenvalues of principle components greater than 1 are
retained. In this case, the first four are retained which explains 68 % of the total variance
accounted for as shown by the cumulative proportion of each principle component in Table
2(a). It is also important that the redundant components i.e., PCs containing variables which

appear in a previous PC as a significant contribution are removed.

Table 2(a). Eigenvalue analysis of the vibration data from the seven transducers from

the normal system at 1200 RPM

Eigenvalue 140 120 1.1 1.02 0.82 0.77 0.63
Proportion 020 0.17 0.6 0.15 0.11 0.11 0.09
Cumulative 020 037 053 068 08 091 1.00

Table 2(b). Correlation Matrix of vibration data with PCs from a normal system at 1200 RPM

Transducers PC1 PC2 PC3 PC4
T1 (Axial, DE Brg.) -0.4 -0.505 -0.163 0.253
T2 (Radial, DE Brg.) 0.102  -0.207 -0.426 -0.703
T3 (Radial, DE Brg.) -0.137  -0.172 0.694 0.096
T4 (Vertical, Base) 0.037  -0.133 0.552 -0.613
T5 (Axial, NDE Brg.) -0.364 -0.614 -0.07 -0.064

T6 (Radial, NDE Brg.) -0.614 0.302 -0.006 -0.134
T7 (Radial, NDE Brg.) -0.548 0.433 -0.043 -0.189

18



Table 2(b) gives the weights of each original variable in the PCs for the first 4 components
that are retained. Using this table each Principal Component can be interpreted. Variables
that have very low magnitude in a specific column have minimal contribution to that
particular PC. Thus, the most significant variables in each component i.e., those represented
by high loadings have been taken into consideration for retaining the component.

After evaluating the correlation matrix it is obtained that in the first PC, most significant
variables are sixth and seventh. Thus, the first principal component is a measure of the sixth
and seventh transducer, and to some extent, first transducer and so on. The sixth and
seventh transducers show a remarkable decrease as it is negatively related to its component.
The second transducer (radial transducer) shows the highest correlation as it is positively
related to the PC with the highest value. Similarly, the second principal component marks a
decrease in fifth and first transducer. The third principal component is a measure of the
severity in correlation of transducer three and four. The fourth PC is redundant as its fourth

variable, which is significant, is also a major contributor to the previous component.
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The principal component which covers the most variance is that which is the most
important since it contains maximum information about the data ». From analysis of PCs
from one to four, it is concluded that the first principal component which shows the highest
eigenvalue proportion depicts that the most prominent correlation is observed in the second
transducer. Thus, that second transducer (radial transducer) at bearing location 1 (drive end)
is the most effective. Also, the analysis shows that the fourth transducer (base transducer) is
the most suitable to be used alongside the second transducer. The main purpose of
providing two sensors in the results is to show that the second sensor is able to extract more
information than the remaining five transducers. The results clearly indicate that the only
one transducer is most effective. To validate the efficiency of principal component analysis,
white Gaussian noise (taking signal-to-noise ratio per sample as 10 dB) is added to the
signal data and the eigenvalue analysis of the resultant signal was performed. The
observations also suggest that the second transducer showed highest correlation confirming

the analysis with the signal described earlier.

PCA in angular misalignment condition

Table 3(a). Eigenvalue analysis of the vibration data from the seven transducers from

a misaligned system at 1200 RPM

20



Eigenvalue 13 1.1 1.0 1.0 08 08 0.7

Proportion 0.1 0.1 01 0.1 0.1 0.1 0.1
9 6 5 5 2 2 0

Cumulativ 0.1 03 05 06 07 08 1.0

e 9 5 1 5 7 9 0

Table 3(b). Correlation Matrix of vibration data with PCs from a misaligned system at 1200 RPM

Transducers PC1 PC2 PC3 PC4

T1 (Axial, DE Brg.) 0.055 0.119 0.518 0.711
T2 (Radial, DE Brg.)  -0.158 -0.74 0.127  0.028
T3 (Radial, DE Brg.)  -0.056 0.532 0.383 -0.451
T4 (Vertical, Base) 0.126 0.163 -0.737 0.162
T5 (Axial, NDE Brg.)  -0.503 -0211 0.141  -0.459
T6 (Radial, NDE Brg.) -0.588 0.9  -0.074 0.188
T7 (Radial, NDE Brg.) -0.595 -0.008 -0.009 0.137

From Table 3(a) and 3(b) it is concurred that the first principal component, which shows
the highest Eigenvalue proportion, depicts the first transducer (axial) to be the most
effective for misaligned condition. Also, the third transducer (radial transducer) is the most

suitable to be used alongside the first transducer

PCA in unbalance condition
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Observing the first principal component in Table 4(a) and 4(b), the sixth transducer i.e.,

radial transducer is the concluded as the most effective transducer for unbalanced rotor.

Table 4(a). Eigenvalue analysis of the vibration data from the seven transducers from

an unbalanced system at 1200 RPM

Eigenvalue 133 121 1.18 1.01 0.83 0.81 0.61
Proportion 0.19 0.17 0.16 0.14 0.12 0.12 0.08
Cumulative 0.19 036 053 0.67 080 091 1.00

Table 4(b). Correlation Matrix of vibration data with PCs from an

unbalanced system at 1200 RPM

Transducers PC1 PC2 PC3 PC4

T1 (Axial, DE Brg.) 0.005 0.679 0.036 0.117
T2 (Radial, DE Brg.) 0.071 -0.02 -0.504 -0.661
T3 (Radial, DE Brg.) -0.012 0.025 0.697 0.02
T4 (Vertical, Base) -0.002 -0.241 0.486 -0.645
T5 (Axial, NDE Brg.)  0.143  0.65 0.061 -0.313
T6 (Radial, NDE Brg.) 0.715 0.082 0.118 -0.046
T7 (Radial, NDE Brg.) 0.681 -0.225 -0.071 0.18

PCA in unbalance and misalignment condition
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After performing the eigenvalue analysis on the data obtained from an unbalanced and

misaligned system the first three principal components, which have eigenvalues greater

than 1, are retained. As ascertained in the first principal component in Table 5(a) and 5(b),

the second transducer i.e., radial transducer is the most effective transducer for combined

misaligned and unbalanced defects. Also, the first (axial transducer) is the most suitable to

be used alongside the second transducer.

Table 5(a). Eigenvalue analysis of the vibration data from the seven transducers from

an unbalanced and misaligned system at 1200 RPM

Eigenvalue 127 1.17 1.08 094 092 0.81 0.79
Proportion 0.183 0.16 0.15 0.14 0.13 0.12 0.11
Cumulative 0.18 035 050 0.64 0.77 0.88 1.00
Table 5(b). Correlation Matrix of vibration data with PCs from an
unbalanced and misaligned system at 1200 rpm
Transducers PC1 PC2 PC3 PC4
T1 (Axial, DE Brg.) -0.258  -0.571 -0.115  -0.135

T2 (Radial, DE Brg.)  0.056 0244  -0.692 -0.52
T3 (Radial, DE Brg.)) ~ -0.276 -0299 0473  -0.583
T4 (Vertical, Base) 0313 035  -039  0.526
T5 (Axial, NDE Brg.)  -0.621 -0.024 -0244 -0.154
T6 (Radial, NDE Brg.) -0456 0321 0267 0261
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T7 (Radial, NDE Brg.) -0.404  0.547 0.031 -0.05

PCA in cracked shaft (bolt partially tightened) condition

As depicted in Table 6(a) and 6(b), the first principal component is a measure of the
increase in first and decrease in seventh transducer which shows that the first transducer

1.e., axial transducer is the most effective transducer for cracked shatft.

Table 6(a). Eigenvalue analysis of the vibration data from the seven transducers
from a cracked shaft (bolt partially tight) at 1200 RPM

Eigenvalue 128 1.14 1.09 1.01 092 0.86 0.68
Proportion 0.18 0.16 0.15 0.14 0.13 0.12 0.09
Cumulative 0.18 035 0504 064 0.77 090 1.00

Table 6(b). Correlation Matrix of vibration data with PCs from a cracked shaft

(bolt partially tight) at 1200 RPM

Transducers PC1 PC2 PC3 PC4
T1 (Axial, DE Brg.) 0.663 -0.034 0.137 -0.268
T2 (Radial, DE Brg.) -0.199 -0.439 0412 -0.182
T3 (Radial, DE Brg.) 0.192 0336 -0.195 0.716
T4 (Vertical, Base) 0.153 0299 -0.55 -0.576

TS5 (Axial, NDE Brg.) 0.35 -0.419 -0.335 0.083
T6 (Radial, NDE Brg.) 0.209 -0.627 -0.279 0.207
T7 (Radial, NDE Brg.) -0.543 -0.188 -0.531 -0.037
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PCA in cracked shaft (bolt fully tightened) condition

After performing the eigenvalue analysis on the data obtained from a cracked shaft (bolt
fully tight) system, the first three principal components which have eigenvalues greater than
1 were retained. As observed in the first principal component in Table 7(a) and 7(b), the

fifth transducer i.e., axial transducer is the most effective transducer for cracked shaft.

Table 7(a). Eigenvalue analysis of the vibration data from the seven transducers
from a cracked shaft (bolt fully tight) at 1200 RPM

Eigenvalue 136 125 1.03 095 091 0.79 0.68
Proportion 0.19 0.18 0.14 0.13 0.13 0.11 0.09
Cumulative 0.19 037 052 065 0.78 0903 1.00

Table 7(b). Correlation Matrix of vibration data with PCs
from a cracked shaft (bolt fully tight) at 1200 RPM

Transducers PC1 PC2 PC3 PC4

T1 (Axial, DE Brg.) 0425 -0387 -0362 0.133
T2 (Radial, DE Brg.)  0.169 0.505 -0.242 -0.519
T3 (Radial, DE Brg) 0258 -0.265 0.747  0.032
T4 (Vertical, Base) 0369 -0.511 -0.358 0.175
T5 (Axial, NDE Brg.) 0442 0.07  -0.346 0.228
T6 (Radial, NDE Brg.) 0.18 0442 006  0.753
T7 (Radial, NDE Brg.) -0.6 0253 -0.02  0.249
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PCA in normal shaft with shaft loader condition

Table 8(a). Eigenvalue analysis of the vibration data from the seven transducers
from a normal shaft with loader at 1200 RPM

Eigenvalue 121 1.10 1.05 1-00 097 0.85 0.79
Proportion 0.17 0.15 0.15 0.14 0.13 0.12 0.11
Cumulative 0.17 033 048 062 0.76 0.88 1.00

Table 8(b). Correlation Matrix of vibration data with PCs
from a normal shaft with loader at 1200 RPM

Transducers PC1 PC2 PC3 PC4

T1 (Axial, DE Brg.) -0.651 0.168 -0.098 0.063
T2 (Radial, DE Brg.) -0.185 0.134 0.625 0.627
T3 (Radial, DE Brg.) -0.491 0.424 0.004 -0.426
T4 (Vertical, Base) 0.211 0.722 -0.111 -0.125
T5 (Axial, NDE Brg.)  -0.135 -0.015 0.468 -0.426
T6 (Radial, NDE Brg.) -0.120 0.350 -0.455 0.473
T7 (Radial, NDE Brg.) 0.534 -0.360 -0.401 -0.011

From Table 8(a) and 8(b), it can be observed that the T1 (Axial, DE Brg.) transducer is the
most effective transducer for PCA in normal shaft with loader condition. In this analysis,

axial transducer is effective than the radial transducer because of the heavy load of loader.

PCA in normal shaft with shaft loader and unbalance conditions
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For this analysis also, from Table 9(a) and 9(b), the T1 (Axial, DE Brg.) is the most

effective transducer compared with others. The effect of the unbalance does not create any

difference in the system due to the heavy load of the loader.

Table 9(a). Eigenvalue analysis of the vibration data from the seven transducers
from a normal shaft with loader and unbalance at 1200 RPM

Eigenvalue 122 1.10 1.07 1.01 093 0.89 0.74
Proportion 0.17 0.15 0.15 0.14 0.13 0.12 0.10
Cumulative 0.19 0.37 0.52 0.65 0.78 0903 1.00
Table 9(b). Correlation Matrix of vibration data with PCs
from a normal shaft with loader and unbalance at 1200 RPM
Transducers PC1 PC2 PC3 PC4

Tl (Axial, DE Brg)  0.624 0.182 -0.256 0.154
T2 (Radial, DE Brg.)  -0.145 -0.069 -0.763 -0.094
T3 (Radial, DE Brg) 0224 0390 -0.361 0.450
T4 (Vertical, Base) 0219 0668 -0.064 -0.005
TS (Axial, NDE Brg)  -0474 -0.309 -0.403 0.175
T6 (Radial, NDE Brg.) 0.011 0308 -0.219 -0.826
T7 (Radial, NDE Brg.) 0.516 -0.416 -0.086 -0.228

4.3 Experimental validation by vibration measurements
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Measured vibration spectra for normal (aligned) condition

Spectral analysis was performed on data obtained from the effective transducers for each

MFS-simulated fault condition (as shown in Table 10) to validate that they demonstrate the

fault conditions efficiently.

Table 10. Summary of effective transducers for all fault conditions simulated in MFS

Condition of faults MFS Effective transducer obtained
Normal (Aligned) T2 (Radial, DE Brg.)
Misalignment T1 (Axial, DE Brg.)
Unbalance T6 (Radial, NDE Brg.)

Unbalance and misalignment
Cracked shaft (bolt loose)
Cracked shaft (bolt tight)
Normal shaft with shaft loader

Normal shaft with shaft loader and unbalance

T2 (Radial, DE Brg.)
T1 (Axial, DE Brg.)
T5 (Axial, NDE Brg.)
T1 (Axial, DE Brg.)
T1 (Axial, DE Brg.)

Amplitude
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Figure 5(a). Normal condition of MFS for T2 (radial)
at 1200 RPM
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Figure 5(b). Normal condition of MFS for T2 (radial)
at 1800 RPM
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The 3X components are observed (which is because of the residual unbalance) in Figure
5(a) and 5(b), however the amplitude of vibration is very low which verifies that the T2
transducer exhibits that the MFS has no significant fault.

Measured vibration spectra for angular misalignment condition

Investigating axial forces as shown in Figure 6(a) and 6(b) for T1 transducer, it is found
that after introducing angular misalignment, 3X and 5X harmonics are excited and the 1X

1s unaffected.
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Figure 6(a). Misaligned condition of MFS for T1(axial) Figure 6(b). Misaligned condition of MFS for T1
at 1200 RPM (axial) at1800 RPM

This irregular pattern might be due to the existence of axial vibrations for angular
misalignment in the rotor which confirms our selection of T1 as the effective transducer.
The verification is further strengthened by the appearance of slightly excited sidebands

around 3X and 5X harmonics which depicts the presence of misalignment.

29



Measured vibration spectra for unbalance condition

The FFT spectrum for radial vibrations (from T6 transducer) shows a predominant 1X peak
for motor speeds of 1200 RPM and 1800 RPM as shown in Figure 7(a) and 7(b)
respectively. The presence of harmonics at 3X and 5X further affirms the fault in the rotor
i.e., rotor imbalance which generates lateral force and vibrations. Thus, the selected T6
transducer shows the disturbances more clearly than the other transducers. It is also seen

that the amplitude varies proportionately to the square of the speed.
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Figure 7(a). Unbalanced condition of MFS for T6 Figure 7(b). Unbalanced condition of MFS for T6
(radial) at 1200 RPM (radial ) at 1800 RPM

o
o
=
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Amplitude

Measured vibration spectra for unbalance and misalignment condition
No definite characteristic is observed by the spectral analysis performed on unbalanced and

misaligned condition in MFS as shown in Figure 8(a) and 8(b).
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Figure 8(a). Unbalanced-Misaligned condition Figure 8(b). Unbalanced-Misaligned condition of
of MFS for T2 (axial) at 1200 RPM MEFS for T2 (axial) at 1800 RPM

However, high 1X peaks in frequency-domain of both 20 Hz and 30 Hz depicts that a fault
is present which confirms the selection of T2 transducer as it demonstrates the fault
evidently. The excitation of 2X, 3X, 4X vibration harmonics for both the frequencies

further exemplifies the presence of a fault.
Measured vibration spectra for cracked shaft (bolt partially tightened)

Figure 9(a) and 9(b) show that the 1X and 2X frequency response for cracked shaft
increased compared with the perfect shaft. The occurrence of a 2X vibration are consistent

for both speeds.
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Figure 9(a). Cracked shaft (with bolt partially tightened) Figure 9(b). Cracked shaft (with bolt partially tightened)

for T1(axial transducer) at 1200 RPM for T1(axial transducer) at 1800 RPM
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This confirms the cracked shaft characteristics which show misalignment properties with

high axial vibration as depicted very strongly in the T1 transducer.

Measured vibration spectra for cracked shaft (bolt fully tightened)

Cracked shaft (bolt fully tightened) simulates the condition of normal (aligned) shaft but the
vibration spectra shows different peaks due to the use of loader in a cracked shaft which
provides load on the shaft due to its weight. The spectral analyses of data obtained from T5
(axial) transducer depict peaks which cannot easily be deciphered. In Figure 10(a) and
10(b), the 2X peaks are not well-defined. This confirms the effectiveness of TS transducer
as it successfully exhibits the features of flange simulated-cracked shaft whose bolt is fully

tightened.
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Figure 10(a). Flange simulated-cracked shaft
(bolt fully tightened) for T5(axial) at 1200 RPM
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Figure 10(b). Flange simulated-cracked shaft
(bolt fully tightened) for T5(axial) at 1800 RPM

Measured vibration spectra for normal shaft with shaft loader

Here the axial transducer T1 is more effective than the other transducers because of the

heavy load of the loader. Figure 11(a) and 11(b) shows the presence of harmonics at 3X and

5X further affirms the fault in the rotor i.e., rotor imbalance which generates lateral force

and vibrations.

[u] ZIEI A‘D EIEI BIEI 160 1éD Mllu 1éU 1éEl 200
Frequency (Hz)

Figure 11(a). Normal shaft with loader for

T1(axial) at 1200 RPM
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Figure 11(b). Normal shaft with loader for T1(axial)
at 1800 RPM
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Measured vibration spectra for normal shaft with shaft loader and unbalance

The observations from the measured vibration spectra for normal shaft with loader and
unbalance condition at 1200 and 1800 RPM show the previously observed phenomenon
which is the axial transducers T1 is the most effective one. This implies that there is no
effect of unbalance mass on measured spectra for this case. Figure 12(a) and 12(b) shows

the presence of harmonics at 3X and 5X further which confirms the fault in the rotor.
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Figure 12(a). Normal shaft with loader and Figure 12(b). Normal shaft with loader and
unbalance for T1(axial) at 1200 RPM unbalance for T1(axial) at 1800 RPM

4.4 Comparison with spectral analysis

Experiment on a normal shaft with a shaft loader and unbalance mass rotating at 1185
RPM on the MFS was done to validate the proposed method with traditional spectral

analysis. The vibration peaks amplitude at 19.75 Hz for all the seven transducers are shown
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in the Table 11. It is noticed that the maximum amplitude is for transducer 1 (axial, DE)
which is the same as determined by our proposed method. Thus the proposed method has
been able to identify the transducer which needs to be used to monitor the condition of the

machine.

Table 11. Spectral analysis comparison for normal shaft with loader and unbalance condition

Transducers Vibration peak amplitude at 19.75 Hz
(m/s?)
T1 (Axial, DE Brg.) 0.35
T2 (Radial, DE Brg.) 0.13
T3 (Radial, DE Brg.) 0.18
T4 (Vertical, Base) 0.12
TS5 (Axial, NDE Brg.) 0.30
T6 (Radial, NDE Brg.) 0.24
T7 (Radial, NDE Brg.) 0.33

5. Conclusions

For online health monitoring of machinery a systematic approach for selection of the most
sensitive transducer locations has been carried out in this paper. Due to restrained data
handling capacity, Singular Value Decomposition has emerged as an important data
reduction technique. This technique is applied in Number of Independent Sources analysis

which significantly reduces the number of transducers, for data collection and analysis,
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from seven to one. This is then merged with Principal Component Analysis to identify the
transducer locations. This hypothesis has been tested on vibration data acquired from
unbalance, misalignment and cracked rotor conditions on a machinery fault simulator. The
performance of this approach was validated by conducting spectral analysis on the acquired
data for each fault condition. The vibration spectrum of the selected transducer interprets
the severity of the fault from the signal features more clearly than the remaining
transducers. The proposed methodology can be applied to any unknown system by a
condition monitoring engineer for minimizing the number of transducers and identify the

locations to mount them.
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