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The presence of small amounts of sodium has been shown to improve the electronic performance

of Cu(In,Ga)Se2 (CIGS) solar cells, but the origins of this effect have not yet been fully resolved.

In this work, we have addressed the questions involving the role of sodium in CuInSe2 (CIS) using

density-functional-theory-based calculations. We find no direct way how the creation of Na-related

point defects in bulk CIS would enhance p-type conductivity. Instead, we demonstrate that Na

reduces copper mass transport due to the capture of copper vacancies by NaCu defects. This

finding provides an explanation for experimental measurements where the presence of Na has

been observed to decrease copper diffusion. The suggested mechanism can also impede

VCu-related cluster formation and lead to measurable effects on defect distribution within the

material. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819105]

I. INTRODUCTION

The incorporation of sodium to a typical concentration

of 0.1 at. % has been shown to enhance the conversion effi-

ciencies of CuInSe2 (CIS)-based CuInxGa1–xSe2 (CIGS) solar

cells (see Refs. 1 and 2, and references therein). Na-doped

films demonstrate, for instance, higher p-type conductivity,

better morphology, and modified defect distribution com-

pared to their undoped counterparts. However, the beneficial

effect of Na starts to wear off with large amounts of Na and

even degrades device performance.2,3 The impact of sodium

was initially realized after it was found to diffuse into the

CIGS films from soda-lime substrates during processing.

Nowadays, an optimal amount of sodium is incorporated

into the films intentionally, either through diffusion from the

substrate or from extrinsic sources, yet the mechanisms of

how Na affects CIS are still not properly understood.

Na has been mostly studied in polycrystalline CIGS

films, where it has been observed to accumulate at grain

boundaries: recorded Na concentrations are significantly

higher in grain-boundary regions than inside grains.4,5 Yet

no unequivocal proof exists to show that Na effects would

arise solely from interactions at the grain boundary6,7–even a

dilute Na concentration in the bulk may potentially modify

the overall electronic properties of the material. Improved p-

type conductivity has indeed also been reported in single-

crystal epitaxial CIGS films.8

Several attempts have been made to explain the

improvement of electronic properties triggered by the pres-

ence of Na starting from bulk effects.3,8–10 While it cannot

be known a priori which lattice sites Na atoms would occupy

when incorporated into the CIS lattice, they can be assumed

to either replace lattice atoms and/or remain in the form of

interstitials. In the simplest case, these structural changes

would directly alter the electronic properties in a way that

promotes the net p-type conductivity. For instance, it has

been suggested that Na would reduce the concentration of

donor-type InCu antisites by forming electrically passive NaCu

defects instead, thereby decreasing charge compensation.3,9

Another possibility is that Na could create acceptor-type NaIn

defects, which would directly enhance p-type conductivity.10

Going one step further, an indirect mechanism could operate

to passivate donors: Na could enhance point defect mobility,

promoting the formation of charge-neutral defect complexes.8

Additionally, it has been suggested that Na would act together

with other impurities such as oxygen.4

The detrimental effects encountered at exceeding con-

centrations of Na remain less explored than the beneficial

effects at lower concentrations. Still, several speculations on

the working mechanism have been presented. For instance,

after replacing all InCu antisites, Na would start to fill

acceptor-type copper vacancies, reducing carrier concentra-

tions.3 Moreover, when available in stoichiometric quanti-

ties, Na would lead to the formation of competing phases,

transforming the material properties altogether.3 At this

point, carrier concentrations would be overly increased.2

Device performance may also be degraded by the creation of

additional recombination centers.4

As the variety of scenarios presented above show, the

effect of Na in CIS has raised vivid discussion, yet no con-

sensus on the topic has been reached. It should be noted that

the different suggestions do not necessarily cancel each other

out—Na probably influences the material in multiple ways

instead of only one.1 Research efforts should be maintained

as some working mechanisms might not yet have been iden-

tified, while prior suggestions require additional validation.

In particular, a clear understanding of how Na behaves in

bulk CIS should be established before proceeding with the

more complicated grain-boundary region.

In this work, the effect of sodium in CIS has been stud-

ied with thorough density-functional-theory-based calcula-

tions. Compared to previously reported computational

0021-8979/2013/114(8)/083503/5/$30.00 VC 2013 AIP Publishing LLC114, 083503-1
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studies on this topic,3,11–13 the scope of our work extends

beyond defect energetics to diffusion kinetics and complex

formation. Our results do not support any direct way how

Na-related defects could affect the conductivity in bulk CIS,

but instead we discover a novel mechanism how Na changes

diffusion kinetics by trapping copper vacancies.

II. COMPUTATIONAL METHOD

The calculations in this work have been carried out in

the framework of density-functional theory (DFT) as imple-

mented in the VASP code.14,15 Exchange-correlation has

been described with the semilocal GGA-type (generalized-

gradient approximation) PBE (Perdew-Burke-Ernzerhof16)

and the range-separated hybrid HSE06 (Heyd-Scuseria-

Ernzerhof17) functionals. The parameter a controlling the

amount of Hartree-Fock exchange in the HSE06 functional

has been set to 0.25 as derived from perturbation theory18

and the range-separation parameter x has been kept at 0.20

1/Å. The projector-augmented-wave (PAW) method19,20 has

been employed with a cutoff energy of 400 eV for the plane-

wave basis set.

For defect calculations, supercells have been constructed

by adding and/or removing ni atoms of type i from the bulk

supercell. The system has then been allowed to relax until

the forces on each atom drop below 0.01 eV/Å. The forma-

tion energy of each defect has been calculated as

Eq
f ¼ Eq

defect � Ebulk6
X

i

nili þ qðEVBM þ leÞ; (1)

where Ebulk is the total energy of the bulk supercell, Eq
defect is

the total energy of the supercell containing the defect in

charge state q, li is the chemical potential of the atom of

type i, and le is the Fermi level position defined relative to

the energy at the valence-band maximum, EVBM. The chemi-

cal potentials for Cu, In, and Se have been restricted to vary-

ing between the chemical potential of the elemental solid

and limits imposed by competing compounds of CIS, such as

CuIn5Se8 and Cu3Se2 (for further details, see our previous

work21). The upper limit for the chemical potential for so-

dium has been taken as that of metallic bcc sodium and the

lower limit comes from competing phases, Na2Se and

NaInSe2, following Ref. 3. Errors arising from the finite size

of the supercell have been taken into account with finite-size

scaling as described in our previous work.21

In order to evaluate the stability of Na-related defect

complexes, their binding energies have been computed as

follows:

Eb ¼ E1
tot þ E2

tot � Ebulk � Ecomplex
tot ; (2)

where Ebulk is the energy of the bulk system, E1
tot and E2

tot are

total energies of the system containing the isolated constitu-

ents of the complex, and Ecomplex
tot is the total energy corre-

sponding to the system containing the defect complex. For

all considered complexes, the values for Eb do not practically

depend on the exchange-correlation functional used, but are

very sensitive to the supercell size.22 In this work, the

binding energies have therefore been computed in a 512-

atom supercell employing PBE-GGA.

The migrations barriers have been calculated with the

climbing-image nudged-elastic-band method (CINEB)23 as

in our previous work, employing HSE06 in a 64-atom

supercell.24

III. RESULTS

A. Defect energetics

The incorporation of Na into bulk CIS gives rise to Na-

related point defects, which can be substitutional or intersti-

tial. The order of preference between possible point defects

can be evaluated based on their formation energies. It should

be noted that, in this case, the formation energies cannot be

used as an absolute measure of defect quantities since the

actual Na concentration in CIS films is not determined by

thermal concentration but rather by external conditions such

as growth.

The point defect formation energies are illustrated in

Figure 1. It can be seen that, apart from NaSe, all Na-related

defects are stable in only one charge state. The stable charge

state corresponds to the slope of the linear function as

expressed by Eq. (1). The lack of defect-induced states is

reflected in their Kohn-Sham band structures depicted in

Figure 2. The defect level induced by NaSe is hybridized

with the conduction-band minimum (CBM) in the charge

state 1þ and shifts down with the addition of two electrons.

Figure 1 shows that Na prefers to go to vacant copper

sites. Among the considered point defects, NaCu has the low-

est formation energy practically irrespective of chemical

conditions. Substituting copper with a single sodium atom

does not change the valency of the site as both are monova-

lent cations. In terms of electronic properties, NaCu is

FIG. 1. Formation energies of sodium-related point defects and

ðNa� NaÞCu dumbbell in CIS as a function of Fermi energy. At the Cu-rich

limit, the corresponding chemical potentials for In and Se are DlIn ¼ 0 eV

and DlSe ¼ �1:21 eV. At the Cu-poor limit, the chemical potentials are

DlCu ¼ �0:79 eV, DlIn ¼ �1:63 eV, and DlSe ¼ 0 eV. The chemical

potential for sodium is that of metallic bcc sodium. The dotted lines give

error estimates for the formation energies at each Fermi level position. The

dashed line marks the band gap obtained with HSE06.

083503-2 Oikkonen et al. J. Appl. Phys. 114, 083503 (2013)
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charge-neutral and electrically passive and therefore cannot

bring about any changes to the doping behavior of CIS.

The favorableness of NaCu has been established also in

previous studies,3,11 but the possibility of it forming part of a

defect complex has not been considered until now. For

instance, two Na atoms could occupy the same copper site in

a dumbbell configuration. Our results show that, provided a

supply of Na atoms, the dumbbell configuration would

actually be very preferable in terms of formation energy

especially under copper-poor conditions. ðNa� NaÞCu

dumbbells can be oriented in the [110] or [001] directions in

the lattice, of which the energetically preferred orientation is

[110]–we found that the [001] configuration actually is a

saddle-point configuration, which relaxes into [110] with the

slightest nudge in its direction. Besides the formation energy,

the stability of the complex should be evaluated separately

before judging its existence as discussed in Sec. III B. In

principle, dumbbells may also exist as a mix of two atomic

types, but no combinations such as Na-Cu dumbbells were

found to be stable in this study.

Na substituting the other lattice cation, indium, involves a

transfer of two electrons and costs more in energy than with

copper. Due to its charge state of 2–, the formation energy of

NaIn decreases fairly rapidly with increasing Fermi level posi-

tion, and can attain the magnitude of NaCu under Cu-poor and

In-poor conditions in n-type material. However, under these

conditions, defect formation is strongly limited by Fermi level

pinning arising from excess copper vacancies,21 so the practi-

cal concentrations of NaIn will probably remain quite negligi-

ble. Our results disagree with the previous studies where NaIn

was competing with the formation of NaCu,3,11 presumably

because of their inadequate finite-size corrections.

Even more improbable is the formation of NaSe—it is

the least favorable Na-related point defect, and thus, unlikely

to be formed at all. NaSe stands out as the only Na defect

introducing a charge transition level within the CIS band

gap. Moreover, it also exhibits negative-U behavior, main-

taining both 1þ and 1– charge states. Yet its very high for-

mation energy compared to other Na defects indicates that

the role of NaSe can be neglected when considering the fac-

tors affecting the electronic structure of CIS.

Na can enter the CIS samples as an interstitial Naþi .

Interstitial atoms may access various types of sites in the

chalcopyrite lattice: octahedral, tetrahedral, and trigonal. Out

of these options, Nai is equally likely to occupy tetrahedral

and trigonal sites, while octahedral sites are energetically

less favorable. However, due to the much lower formation

energy of NaCu compared to Nai, it is probable that Nai is

transferred to a vacant copper site under copper-poor condi-

tions. In the absence of vacant sites, it is not clear a priori
whether Nai would remain as an interstitial or form NaCu. In

this case, the energy of the interstitial should be compared

with the sum of formation energies of the outcome: antisite

plus interstitial, which is created when the substitutional

atom is kicked out of its site. It turns out that the formation

energy of Nai equals within error bars the sum of NaCu and

Cui, signifying that both configurations are feasible.

Overall, Na seems to accumulate in the copper sublattice

in CIS whenever there are vacant copper lattice sites avail-

able. Under copper-rich conditions, Nai may either stay as an

interstitial or replace a lattice copper atom. From the elec-

tronic structure point of view, Na-related defects behave

very similarly as what we have observed previously about

intrinsic defects in CIS:25 cationic defects induce no deep

levels in the gap as opposed to selenium-related defects, in

this case NaSe, which may act as electron traps and be detri-

mental to device operation.

B. Defect migration and interactions

After entering the CIS film, Na atoms may spread via

diffusion. Diffusion typically requires assistance from point

defects, and in the case of Na, two possible mechanisms can

be imagined: Nai-mediated and VCu-mediated. Out of these

two options, interstitial-mediated diffusion is feasible,

whereas Na diffusion in the copper sublattice is hindered by

complex formation as will be discussed below. The migra-

tion barrier for Nai is only 0.51 eV, signifying that it is

mobile already at relatively low temperatures. The corre-

sponding diffusion path is presented in Figure 3.

Diffusion also shapes the defect distribution in the mate-

rial by subjecting defects to mutual interactions, which can

result in complex formation. Looking at the binding energies

of Na-related defect complexes listed in Table I, they do not,

however, demonstrate particular stability. NaCu and VCu stay

basically indifferent to each other with a vanishing binding

energy, and the addition of a second copper vacancy or

bringing two substitutional impurities together even leads to

repulsion. In contrast, two ðNa� NaÞCu dumbbells are

slightly attracted to each other (Eb of 0.15 eV), which sug-

gests that Na atoms could cluster together–in polycrystalline

material, this could occur at grain boundaries, resulting in

extended defects consisting of several ðNa� NaÞCu

dumbbells.

FIG. 2. Kohn-Sham band structures for

bulk CIS, Na0
Cu, Na2�

In ; NaþSe; Na�Se;
Naþi , and ðNa� NaÞþCu. The occupied

levels are drawn in dark blue and the

unoccupied levels in light blue. The

dashed lines illustrate the defect-

induced levels compared to the bulk

band structure for NaþSe and Na�Se.

083503-3 Oikkonen et al. J. Appl. Phys. 114, 083503 (2013)
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Of course, binding energies in the first-nearest-neighbor

(1NN) configuration cannot be used as the sole indicator of

the stability of defect complexes: interaction strengths

change at different separation distances between the defects,

affecting the kinetic formation of a complex. However, we

found that the binding energy already at the 1NN configura-

tion is practically zero for most considered defect pairs and

remains negligible when the two defects are pulled apart.

Therefore, the presence of another defect does not alter

much the potential energy surface experienced by the other

one. This behavior is very different from what has been

shown for the most common intrinsic-type defect complexes

in CIS, for which the nearest-neighbor configuration is ener-

getically clearly preferred over longer separation distances.22

Cluster formation may also be kinetically aided or hin-

dered by the barriers of migration in the vicinity of defects.

Such an effect is indeed observed in the case of NaCu and

VCu. The migration barrier for VCu in bulk material amounts

to 1.09 eV.24 However, exchanging places between VCu and

NaCu requires remarkably less energy, only 0.35 eV.

Therefore, if a copper vacancy diffuses in the vicinity of

NaCu, it can be expected to get captured: it is energetically

much less costly for the vacancy to jump back and forth with

NaCu than to jump away in the opposite direction, making

the complex dynamically stable. We found no indication that

the two defects would start diffusing together in a way that

promotes long-range diffusion.

Nai encountering a NaCu defect can give rise to

NaCu�Nai or ðNa� NaÞCu dumbbell. Both of these com-

plexes are weakly stable, having very similar binding ener-

gies according to Table I, and it is not obvious which of

them would prevail in CIS. Computing the activation barrier

between these two configurations reveals that they are sepa-

rated only by 0.12 eV as shown in Figure 3. Therefore, al-

ready at room temperature, these complexes may switch

from one into another rather easily and both can be expected

to be encountered in the material.

IV. DISCUSSION

In light of our results, we can evaluate the feasibility of

previous suggestions for the improved electronic properties

in CIS attributed to Na. According to this work, Na mostly

clusters on the copper sublattice and/or stays as an intersti-

tial, neither of which creates deep states in the band gap. It

has been suggested earlier3,9 that Na could populate copper

sites not only when they are vacant but also by replacing

donor-type InCu antisites which are considered one of the

main point defects in CIS. However, we have previously

found InCu to be very stable24–in the unlikely event that Na

would be able to invade a copper site and kick out In, In

would find its way back to the copper lattice due to favorable

kinetics. Thus, Na should not affect the overall concentration

of InCu antisites in the material.

Another suggestion was that Na would create acceptor-

type NaIn defects in the lattice. Following our formation

energy calculations, however, NaIn is not among the energet-

ically preferred Na defects in CIS. Its concentration will

therefore remain negligible.

It seems more likely, then, that Na influences the dopant

concentrations in a more indirect way, such as by modifying

point defect mobility, as was speculated in Ref. 8. However,

contrary to the suggestion made in Ref. 8 that the defect mo-

bility would be increased, we find exactly the opposite

effect: by capturing copper vacancies, NaCu defects hinder

the migration of copper in the material. This finding provides

an explanation for experimental measurements in CIGS

FIG. 3. Diffusion paths of Na-related defects in CIS. The red stars and open circles represent values calculated with HSE06 and PBE-GGA, respectively.

The dotted lines are guides to the eye.

TABLE I. Binding energies (Eb) of Na-related defect complexes. The

charge states of the isolated defects are 1– for VCu, 0 for NaCu, and 1þ for

Nai.

Complex Charge state Eb (eV)

NaCu � VCu 1� 0.00

NaCu � 2VCu 2� �0.05

2NaCu 0 �0.03

NaCu�Nai 1þ 0.12

ðNa� NaÞCu 1þ 0.12

2ðNa�NaÞCu 2þ 0.15

083503-4 Oikkonen et al. J. Appl. Phys. 114, 083503 (2013)
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samples,26 where the presence of Na was observed to

decrease copper diffusion at low substrate temperatures.26

Moreover, it agrees with the observation that the sodium

effect is stronger the more copper-poor is the material, that

is, the more copper vacancies are present.4

VCu capture also affects cluster formation in CIS. The

formation of NaCu � VCu decreases the amount of available

copper vacancies, which in turn disrupts the formation of

otherwise common defect complexes such as InCu � 2VCu

and VSe � VCu, all involving VCu. Previously, the suppression

of InCu � 2VCu has also been suggested3but based on differ-

ent grounds: the inhibition of both InCu and VCu due to Na.

From the experimental side, the presence of Na has been

shown to affect the microstructural features in CIS, and evi-

dence for the suppression of ordered-vacancy compounds

has been presented in Ref. 27.

V. CONCLUSIONS

In this work, the effect of sodium on bulk CIS has been

investigated with first-principles calculations. The calculations

show that Na prefers to accumulate in the copper sublattice ei-

ther as NaCu or ðNa� NaÞCu. We find no direct way how the

creation of Na-related point defects would enhance p-type

conductivity in bulk CIS. Instead, we bring forth a mechanism

by which Na affects point defect mobility: NaCu defects can

capture copper vacancies, thereby not only hindering the dif-

fusion of copper but also most probably influencing defect

cluster formation and defect distribution in CIS. This finding

provides an explanation for the experimental observation of

Na reducing copper diffusion at low substrate temperatures.
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