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Abstract. Low temperature boron and phosphorous diffusion gettering (BDG and PDG) of iron in 

Czochralski-grown silicon were experimentally studied. Differences and similarities between the 

gettering techniques were clarified by using intentionally iron contaminated wafers emphasizing 

especially the effect of oxygen. Experiments showed that the surprisingly high gettering effects of 

BDG could be explained by B-Si precipitates. Oxygen precipitation was seen to decrease minority 

carrier diffusion length after long gettering at low temperatures in both BDG and PDG. In the case 

of BDG oxygen precipitation affected more as a higher thermal budget was needed to obtain similar 

sheet resistance to that of PDG. According to experiments the efficiency of BDG can not be 

concluded from the sheet resistance, whereas the efficiency of PDG can. This has practical 

influences in a process control environment. 

Introduction 

One of the very detrimental contaminants in silicon, unavoidable in a semiconductor processing 

environment, is iron. Plenty of research on iron gettering in silicon has already been done, and it is 

widely acknowledged that both boron diffusion gettering (BDG) and phosphorus diffusion gettering 

(PDG) are effective techniques to remove pernicious iron contamination. By conveniently adding a 

low temperature anneal after the formation of the junction or the back surface field in photovoltaic 

devices by phosphorus or boron diffusion, the gettering efficiency of iron can be even further 

increased [1,2,3,4]. 

The mechanisms behind BDG, including segregation of iron to the gettering layer and iron 

precipitation to the surface of the wafer, are believed to be largely understood due to thorough 

investigations [5]. In the case of PDG of iron, despite the enormous experimental and theoretical 

studies on iron in silicon, the gettering mechanisms have been ambiguous [5]. However, recently 

modeling of PDG based on experimental segregation coefficient has given promising results [6]. In 

this paper we study experimentally both BDG and PDG using intentionally iron contaminated 

silicon wafers in order to clarify differences and similarities between the gettering techniques. 

Emphasis is especially on the effect of oxygen in low temperature boron and phosphorus diffusion 

getterings of iron in Czochralski-grown silicon. 

Experimental 

Silicon wafers used in the experiments were boron doped p-type, <100>-oriented Czochralski-

grown wafers with a diameter of 100 mm. The wafers were divided into two groups according to 

their initial oxygen concentration; wafers with high initial oxygen level (14 – 16 ppma) and wafers 

with low initial oxygen level (7 – 9 ppma MCz). The thicknesses of the wafers with high initial 

oxygen level and low initial oxygen level were 525 μm and 400 μm respectively and their 

resistivities were 4 – 40 Ωcm and 2.7 – 3.0 Ωcm respectively. 



 

As a first process step intentional iron contamination was introduced on all the wafers. This was 

done by immersing the wafers in an iron spiked NH4OH:H2O2:H2O solution and subsequently 

diffusing iron at 850˚C for 55 min and finally removing the surface contamination by etching the 

wafers in a H2O:HF:H2O2 (24:1:1) solution and by RCA cleaning. As a result of the contamination, 

an iron level of 2 × 1013 cm-3 was achieved. After contamination the wafers were dry oxidized to a 

thickness of 27 nm (measured by ellipsometer) for surface passivation. Prior to boron and 

phosphorous diffusion gettering treatments the oxide was removed from the front side of the wafers 

by etching in BHF. Boron and phosphorus spin-on-dopants were applied on selected wafers and 

different BDG and PDG treatments consisting of high temperature diffusion and low temperature 

tail were done. Boron and phosphorus in-diffusion times and temperatures were chosen so that the 

sheet resistances were comparable: about 40 Ω/□ in BDG, about 45 Ω/□ and 30 Ω/□ in 30 or 60 

minutes PDG, respectively. The BDG and PDG treatments used in the experiments are presented in 

Table 1 and Table 2. After the diffusion gettering treatments the remaining spin-on-dopants were 

etched away in BHF and the wafers were RCA 1 cleaned. Finally the minority carrier diffusion 

lengths and the remaining interstitial iron concentrations were measured by surface photovoltage 

(SPV) method [7] to determine the efficiency of gettering after diffusion gettering anneals. 

 
Table 1. The BDG treatments used in the 

experiments. 
 

Table 2. The PDG treatments used in the 

experiments. 

Oxygen 

level [ppma] 
Gettering profile 

Tail temperature 

[˚C] 
 

Oxygen 

level [ppma] 
Gettering profile 

Tail temperature 

[˚C] 

14 – 16 
60 min at 930˚C 

+ 2 h at 800˚C 
800˚C  14 – 16 

30 min at 870˚C 

+ 2 h at 800˚C 
800˚C 

14 – 16 
60 min at 930˚C 

+ 3.5 h at 750˚C 
750˚C  14 – 16 

30 min at 870˚C 

+ 3.5 h at 750˚C 
750˚C 

14 – 16 
60 min at 930˚C 

+ 5.5 h at 700˚C 
700˚C  14 – 16 

30 min at 870˚C 

+ 5.5 h at 700˚C 
700˚C 

14 – 16 
60 min at 930˚C 

+ 8 h at 650˚C 
650˚C  14 – 16 

30 min at 870˚C 

+ 8 h at 650˚C 
650˚C 

7 – 9 
60 min at 930˚C 

+ 2 h at 800˚C 
800˚C  7 – 9 

60 min at 870˚C 

+ 2 h at 800˚C 
800˚C 

7 – 9 
60 min at 930˚C 

+ 3.5 h at 750˚C 
750˚C  7 – 9 

60 min at 870˚C 

+ 3.5 h at 750˚C 
750˚C 

7 – 9 
60 min at 930˚C 

+ 5.5 h at 700˚C 
700˚C  7 – 9 

60 min at 870˚C 

+ 5.5 h at 700˚C 
700˚C 

7 – 9 
60 min at 930˚C 

+ 8 h at 650˚C 
650˚C  7 – 9 

60 min at 870˚C 

+ 8 h at 650˚C 
650˚C 

7 – 9 
60 min at 930˚C 

+ 15 h at 650˚C 
600˚C     

Results and discussion 

Effect of oxygen in low temperature boron diffusion gettering. The Arrhenius plots of gettering 

results and activation energies, obtained from the results of SPV measurements from centre (radius 

< 20 mm) and from edge (radius > 30 mm) of low oxygen level boron diffusion gettered wafers 

with different low temperature anneals, are presented in Fig. 1. The gettering efficiencies of iron in 

the wafers are much higher than predicted by segregation coefficients calculated using electrically 

active boron concentration [8] with ideal in-diffusion profile and 0.25 μm junction depth [9] for 

boron. The electrical model presented in [8] can not alone explain the results as there is a rather 

large difference in the gettering efficiencies between the wafer centre and edge although the 

measured sheet resistances do not show such a large change. The results are not in agreement with 

the BDG model presented by the authors [10] either, in which electrical segregation coefficient and 

surface precipitation is combined, which seems to work in the case of relatively high sheet 

resistance, as then the gettering should show step like response as in [11]. The activation energies of 

gettering are about 2.5 eV and 2.2 eV (Fig. 1) at the edge and centre of wafers, respectively. These 



 

values fit quite well to the activation energies of 2.1 eV [12] and 2.27 eV [13] obtained for iron 

gettering by B-Si precipitates. Thus we propose that the surprisingly high gettering effect of BDG is 

due to B-Si precipitates and the difference between wafer edge and centre is due to the difference in 

the amount of precipitated boron. 

Similar differences between the gettering efficiencies at the wafer centre and edges were also 

noticed in the wafers with high initial oxygen concentrations. We speculated that a possible 

explanation for the difference could be that the segregation gettering induced by the boron diffusion 

layer is insufficient to prevent internal gettering, i.e., iron precipitation to oxide precipitates in the 

bulk of the wafer during cooling down of wafers. Thus the difference could arise from the 

difference in cooling rate and density of oxide precipitates between wafer centre and edge. 

However, a more probable reason could be the difference in the amount of precipitated boron as 

suggested by the results obtained from low oxygen samples. 

 

 
 

Fig. 1. The Arrhenius plots of gettering results and activation energies obtained from the results of SPV 

measurements from centre (radius < 20 mm) and from edge (radius > 30 mm) of low oxygen level boron diffusion 

gettered wafers with different low temperature anneals. 

 

The final iron concentrations at the centre of BDG wafers with low and high initial oxygen 

concentrations are compared in Fig. 2. From Fig. 2 it can be seen, that the gettering efficiency in 

wafers with high oxygen concentration is noticeably lower. The differences in wafer thicknesses 

between the series explain at least part of the lower gettering efficiency. However, the annealing 

times were chosen so, that based on simulation of PDG [6], the gettering time is long enough at low 

temperature for a 525 μm wafer to reach a steady state iron concentration. Thus, if the iron diffusion 

in the boron layer (B-Si precipitate layer) is much slower than the in phosphorus layer, the time 

might be insufficiently short, but this is at least partly compensated by the slightly higher 

segregation coefficient in the case of PDG. At the moment we are unable to separate the effect of 

wafer thickness from the possible effect of oxygen to the formation of B-Si precipitates and to iron 

gettering. 
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Fig. 2. Iron concentrations in the bulk obtained from 

the SPV measurements of boron diffusion gettered 

wafers with different low temperature anneals. 

Fig. 3. Minority carrier diffusion lengths obtained from the 

SPV measurements of boron diffusion gettered wafers with 

different low temperature anneals. 

 

Minority carrier diffusion lengths obtained from the SPV measurements of boron diffusion 

gettered wafers with different low temperature anneals are presented in Fig. 3. As can be seen, there 

is a tremendous difference in the minority carrier diffusion lengths of boron diffusion gettered 

wafers with low and high initial oxygen levels; the diffusion lengths in the low oxygen level wafers 

are 2 to 4 times longer. The explanation for this is the higher gettering efficiency obtained in the 

case of low oxygen wafers at 800 oC. The trend of the minority carrier diffusion lengths as a 

function of anneal temperature is also different between the wafer series. In wafers with low oxygen 

content, the diffusion lengths get longer when the anneal temperature drops and the gettering 

efficiency increases, but in wafers with high oxygen content, the diffusion lengths start to decrease 

in anneal temperatures lower than 750˚C. This difference in the trends of the diffusion lengths at 

low temperatures between wafers with high and low initial oxygen concentrations can be explained 

by oxygen precipitation which naturally is stronger in high oxygen level wafers. As the anneal 

temperature is lowered, more and more oxygen precipitates are formed. These oxygen precipitates 

act as effective recombination centers and thus the minority carrier diffusion length decreases in 

spite of the more efficient gettering of iron. 

 

Effect of oxygen in low temperature phosphorus diffusion gettering. Minority carrier 

diffusion lengths obtained from the SPV measurements of phosphorus diffusion gettered wafers 

with different low temperature anneals are presented in Fig. 4. As can be noticed, in the wafers with 

high initial oxygen levels, the diffusion lengths seem to decrease at low temperatures, whereas in 

the wafers with low initial oxygen levels, the diffusion lengths do not seem to decrease but instead 

continue increasing at low temperatures due to more efficient gettering of iron. As in the case of 

BDG, this difference in the trends of the diffusion lengths at low temperatures between wafers with 

high and low initial oxygen concentrations can be explained by oxygen precipitation. 

The gettering efficiency of iron is independent of the initial oxygen level in PDG wafers. The 

difference in the iron concentrations between the wafer series can be quantitatively explained by 

differences in phosphorus diffusion time and wafer thickness with model taken from [6]. The 

activation energy of gettering is in both cases about 2.6 eV, which agrees with the value of 2.4 eV 

obtained by Nadahara et al. [14]. The difference in gettering efficiency between wafer centre and 

edge is small. This means that the measured sheet resistances, which varied only slightly between 

centre and edge, can be used as a figure of merit of gettering efficiency which has great practical 

influence. 
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Fig. 4. Minority carrier diffusion lengths obtained from 

the SPV measurements of phosphorus diffusion 

gettered wafers with different low temperature anneals. 

 

Fig. 5. Iron concentrations in the bulk obtained from the 

SPV measurements of low oxygen boron and phosphorus 

diffusion gettered wafers with different low temperature 

anneals. 

 

BDG vs. PDG. The activation energies of BDG and PDG for iron gettering are quite close to 

each other and PDG is clearly more efficient (Fig. 5). However, we could speculate that in both 

cases the gettering is actually related to the formation of an electrically inactive layer; in the case of 

boron the gettering component is B-Si precipitates and in the case of phosphorus the clusters and P-

Si precipitates are responsible for the gettering effect. The difference is that the formation of a 

gettering layer is faster in the case of PDG than in BDG, which can be attributed to the slower 

diffusion of boron. Oxygen precipitation in the bulk has a much stronger effect in the case of BDG 

due to the higher thermal budget needed to obtain a sheet resistance similar to that of PDG. 

Conclusions 

Oxygen precipitation decreases minority carrier diffusion length after long gettering at low 

temperatures in both BDG and PDG. In the case of BDG oxygen precipitation affects more as a 

higher thermal budget is needed to obtain similar sheet resistance to that of PDG. High gettering 

efficiency at least in the case of BDG seems to be related to an electrically inactive part of doping 

and the efficiency of BDG can not be concluded from measured sheet resistance. However, the 

gettering efficiency of PDG can be concluded from the sheet resistance, even though we speculated 

that the exact gettering mechanism is related to electrically inactive part of doping. This has 

practical influences in a process control environment. 
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