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1 Introduction
In everyday situations, we often encounter noisy environments in which speech per-
ception turns to be a difficult task. This is specially true for older adults, hearing-
impaired listeners [1] and children with learning disorders [2]. Past research has
proven the importance of social interaction in well-being [3], communication being
a key part in social relations. In oral communication, it is essential that the listener
perceives and understands correctly the speech signal that is being uttered. As a
result of the aforementioned, plenty of research has been done on speech enhance-
ment methods, which aim to improve the quality or intelligibility of speech signals
degraded by noise [4, 5].

The situations in which the speech signal of interest is disturbed by competing
voices is commonly called the cocktail party problem [6], which was formulated by
[7] as: "How do we recognize what a person is saying when others are speaking
at the same time?". Solving the cocktail party problem is quite complex for man-
made systems, like automatic speech recognizers (ASR), while in contrast listeners
with normal hearing are able to extract the desired speech signal and neglect the
interfering sources with small effort. How the human auditory system solves the
cocktail party problem takes advantage of human binaural hearing, and therefore,
of the acoustic information gathered at our two ears. The benefits of binaural
hearing leads us to source separation algorithms that use multiple microphones, i.e. a
microphone array, as a promising approach to solve the cocktail party problem [8, 9].
Source separation approaches using multiple microphones are called multichannel
source separation methods, in contrast to single-channel source separation, which
employs only one microphone.

Multichannel source separation methods can be classified into two main cate-
gories: beamforming and blind source separation (BSS). Beamforming is a tech-
nique that performs source separation by means of spatial filtering using an array of
sensors. Spatial filtering means that the beamformer discriminates between signals
based on the physical location of the original sources. Beamformers can be adaptive
or fixed, depending on whether the design of the beamformer relies on the signals
observed by the array or not [10]. Beamforming techniques require knowledge of the
sensor array configuration as well as the position of the sources. In contrast, BSS
methods are able to recover the original sources from the observed mixed signals
without any knowledge about sources, sensors or mixing process, but adding some
constraints to the method [11, 9].

In this work, we focus on independent vector analysis (IVA) methods [12, 13, 14],
included in the category of BSS techniques. IVA is an efficient multichannel source
separation method and a variant of independent component analysis (ICA), which
is a popular BSS method. However, IVA has at least two considerable drawbacks
when we are dealing with speech and noise separations tasks; these drawbacks are
related with the statistical source model assumed by IVA to achieve source sepa-
ration. Firstly, the source model conventionally assumed in IVA does not provide
an accurate representation for speech since it does not take into account its time-
varying nature. Secondly, the conventional source model does not reflect the spectral
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differences between the sources to be separated, which are speech and noise. The
spectrum of speech signals is non-stationary, while background noise spectrum tends
to be broadband and more stationary; but IVA assumes the same statistical model
for all the sources. The present work is mainly motivated by these source model
limitations of traditional IVA methods and our primary goal is to improve the source
separation performance of IVA when separating speech from background noise. In
this research, we hypothesize that we can achieve our goal by employing a new,
improved source model for IVA that better represents speech and its differences to
common noise signals. Specifically, in this work we assume a time-frequency-variant
Gaussian distribution as IVA’s source model. IVA implemented with the new pro-
posed source model will be called extended IVA from now on.

A secondary goal of our research is to further improve the performance of ex-
tended IVA by introducing methods to reduce diffuse noise that may remain in the
separated signals. This goal is motivated by the fact that removal of diffuse noise
is a weakness of BSS methods in general and thus of IVA as well. With that in
mind, we propose three post-processing filtering solutions to be concatenated with
extended IVA. These solutions are in line with previous work on the subject [15]
that have proved that this kind of approach enhances the performance of the mul-
tichannel source separation method under study. The goal of testing three different
post-filtering solutions is to find a filter that combines the best with extended IVA.

Finally, in the present study we will address which evaluation measures on source
separation and speech enhancement are more suitable in demonstrating the perfor-
mance of the methods. Common measures for BSS usually neglect the perceptual
aspects of the separated signals. In this work, we consider important to use measures
that could represent not only the quantity of interference reduction, but also the
perceptual quality of the separated signals. In this way, we can make more realistic
conclusions about the methods under evaluation in real speech enhancement tasks.

The structure of this thesis is as follows. Theoretical background is first presented
in Section 2; we start with a general view, by introducing the broader BSS topic
and then more specifically the ICA methods. In Section 3, we introduce the central
topic of the thesis, IVA methods, and our proposed approach to improve their source
separation performance in speech and noise separation tasks, which is our main
contribution in this work. In Section 4, the speech enhancement techniques used
as support method for our approach are presented. Next, in Section 5, theory on
post-processing of BSS methods for noise reduction is introduced, along with our
contribution in relation to this. In Section 6, the experimental setup and evaluation
methods of the source separation experiments performed in this work are presented.
Results of these experiments are then shown in Section 7. The thesis concludes with
Section 8, where the research done is summarized and some discussion points, such
as possible future work of this research, are presented.
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2 Independent component analysis

2.1 Blind source separation

BSS methods recover the source signals of interest from a set of observed mixed
signals. The separation process is performed blindly, i.e. the source signals are
unknown and so it is the mixing process. However, the so-called "blind methods"
also include generic constraints, since otherwise the source separation problem would
be unsolvable. There are several approaches to the BSS problem, depending on the
constraint assumed. Some of the most important BSS approaches include ICA
[16, 17], non-negative matrix factorization (NMF) [18, 19], and sparse component
analysis (SCA) [20, 21]. In many BSS applications, the generic constraints are either
complemented or replaced by specific constraints based on prior information such as
the spectral content of the sources or the form of their probability densities. These
specific constraints allow the design of more efficient and simpler source separation
algorithms, which can be understood as semi-blind source separation (SBSS) instead
of fully blind [11].

There are numerous applications for BSS such as speech separation, cross-talk
removal in telecommunications, and analysis of brain imaging data like electroen-
cephalographs (EEGs) or magnetoencephalographs (MEGs). Figure 1 shows an
example of the BSS process for a speech separation task.

Figure 1: Blind source separation process.

2.2 Mixing models

The difficulty of a source separation task is highly dependent on the way the source
signals are mixed in the physical environment in which they are transmitted [22].
Therefore, it is important that the mixing model assumed by the BSS method reflects
as accurately as possible the real mixing process. The theory presented in this section
is based on [23, 24, 25, 22], unless otherwise stated.
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2.2.1 Instantaneous mixtures

Typically, the problem of BSS has been addressed with a simple mixing model called
instantaneous mixtures and in consequence, most early BSS algorithms were de-
signed according to this model. In instantaneous mixing, we assume that all signals
arrive at the sensors at the same time. Then, each of theM observed signals {xj(k)},
1 ≤ j ≤ M consists of a weighted sum of N source signals {si(k)}, 1 ≤ i ≤ N . In
practice, the observed signals can be noisy, with the noise component corresponding
to sensor noise or error noise from model inaccuracies [16]1. In consequence, a noise
term vj(k) is added to the mixing model. The instantaneous mixture model can be
expressed then as

xj(k) =
N∑
i=1

ajisi(k) + vj(k), (1)

where {aji} are the coefficients of the linear time-invariant (LTI) mixing system
represented by theM×N mixing matrix A. The estimation of the sources is difficult
when noise vj(k) is present. As a result, most of the research has neglected the noise
term and applied a noise-free model [26]. In this work, we assume the simplified
noise-free case for all the mixing models presented. Then, the instantaneous mixture
model becomes

xj(k) =
N∑
i=1

ajisi(k), (2)

which can be expressed in matrix notation as

x(k) = As(k), (3)

where x(k) = [x1(k), · · · , xM(k)]T and s(k) = [s1(k), · · · , sN(k)]T ; and T denotes
vector transpose.

Before going further in the theory of mixing models, we will address how the
number of source signals and sensors affect BSS. Under reasonable constraints, the
BSS problem remains linear if the number of sensors is greater than or equal to the
number of sources (M ≥ N), and sources can be obtained by estimating mixing
matrix A. In the determined case (M = N), the mixing matrix is square and
the sources can be recovered by multiplying the observed signals with the inverse
of the mixing matrix W = A−1; W is commonly denoted as demixing matrix. In
the overdetermined case (M > N), the separation task is still solvable with the
pseudo-inverse.

Nevertheless, in situations in which the M ≥ N condition is not met, and the
BSS problem becomes undetermined and thus cannot be solved linearly. In this case,

1The meaning of the noise term presented here differs with the definition of noise that we employ
in the rest of the thesis: an acoustic signal from the environment that interferes with the signal of
interest.
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we are unable to obtain separated sources by simply inverting the mixing matrix.
Now two different problems have to be solved, by first estimating the mixing matrix,
and then the sources [16].

We focus here on the overdetermined and determined case (M ≥ N). BSS is
achieved by adjusting the coefficients wij of N ×M demixing matrix W such that

yi(k) =
M∑
j=1

wij(k)xj(k), (4)

is an estimate of the original source si(k). In matrix notation, Equation (4) becomes

y(k) = Wx(k), (5)

where y(k) = [y1(k), · · · , yN(k)]T . In Figure 2, the block diagram of the instanta-
neous mixture BSS process is shown. The simplicity of this model makes it useful
for theoretical derivations, but it has limited applicability in real-world applications
such as speech separation.

A W
s(k) x(k) y(k)

N M N

Mixing system Demixing system

Figure 2: Block diagram of the instantaneous BSS task.

2.2.2 Convolutive mixtures

The instantaneous mixture model is rarely applicable for real-world situations, such
as for acoustic mixtures, where the source signals are affected by the environment,
and suffer from propagation delays, reverberation, etc. Therefore, it is often more
appropriate to use models based on convolutive mixtures, in which the N source
signals {si(k)}, 1 ≤ i ≤ N , are mixed in a convolutive manner, since they are filtered
by the impulse response of the environment through which they are propagated.
Theoretically, the filters in the model should be of infinite length L, but in practice
it is usually sufficient to assume finite length (L < ∞). Therefore, the signals
{xj(k)} observed at the M sensors are given by

xj(k) =
N∑
i=1

L−1∑
l=0

aji(l)si(k − l), (6)
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where {aji(l)} represent the impulse responses from source i to sensor j and are the
coefficients of the M × N mixing matrices Al. Therefore for convolutive mixtures,
we have a discrete-time LTI mixing system A, which is a matrix of linear filters2
{Al}L−1

l=0 instead of scalars like it was for the case of instantaneous mixtures.
In convolutive separation, the separation or demixing system typically consists of

a set of FIR filters wij(l) of length L that are found blindly and produce N separated
signals {yi(k)} as follows:

yi(k) =
M∑
j=1

L−1∑
l=0

wij(l)xj(k − l), (7)

where wij(l) are the coefficients of the multichannel separation system W , which is
composed by {Wl}L−1

l=0 with demixing matrices Wl of size N ×M . Figure 3 shows
the BSS process for convolutive mixtures.

{ A
l 
}

l=0
{ A

l 
}L-1 { W

l 
}

l=0
{ W

l 
}L-1

s(k) x(k) y(k)

N M N

Mixing system Demixing system

Figure 3: Block diagram of the convolutive BSS task.

In BSS, we would like, ideally, to separate the observed mixtures xj(k) and
obtain the source signals {si(k)}, 1 ≤ i ≤ N . However, this is a difficult task in
case of signals "coloured" by the acoustical environment in which they propagate. A
practical alternative goal is to obtain the convolved version of a source signal si(k)
observed at sensor j [24, 27]. In other words, the aim is to obtain the contribution
of source si(k) in channel j, called source image simgji (k), such that

xj(k) =
N∑
i=1

simgji (k) (8)

For consistency, we will denote the estimate of simgji (k) as yimgji (k).

2.3 Statistical constraints

ICA is one of the most important approaches in BSS. In ICA, we place certain
restrictions and make assumptions, addressed here, in order to find the optimal

2Note that a matrix of filters, that is, a matrix with vector components, is marked in bold, in
the same manner as vectors.
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demixing matrix and in turn separate the components (what we designated before
as sources). Firstly and most importantly, we assume the components are statisti-
cally independent. This contrasts with the mixed signals that are not independent
since they have contributions from the same source signals. Therefore, to estimate
the N independent components from the mixtures, our aim is to get statistically
independent signals at the output. The components of vector y = [y1, · · · , yN ]T ,
considered random variables, are independent if the value of any of these compo-
nents yi is not affected by the occurrence of any of the others (yj for j 6= i). Sta-
tistical independence can be defined mathematically in terms of probability density
functions (p.d.f). The components of vector y are independent if and only if their
joint probability py(y) can be factorized as follows

py(y) = py1(y1)py2(y2) · · · pyN (yN), (9)

where pyi(yi) is the marginal p.d.f of component yi [16].
Another assumption of ICA is that the components follow non-Gaussian distri-

butions. Gaussian distributions can be considered "too simple" in the sense that
their higher-order cumulants are zero-valued, and these statistics are fundamental
for estimation of an ICA solution. Therefore, basic ICA is not applicable when the
sources follow a Gaussian distribution3 [16]. Nevertheless, in many cases we are
mixing time signals, which have more structure than simple random variables. Ad-
ditional statistics could be extracted from the time signal’s structure in those cases
and in turn, this information may enable the estimation of the components even in
a situation in which basic ICA methods are unable; for example in case the sources
are Gaussian distributed but correlated in time [16].

Finally, many times for simplicity the mixing matrix is assumed to be square,
that is, we have as many sources as sensors. In consequence, we are assuming
that the mixing matrix is invertible. This assumption, however, can be sometimes
relaxed, we can deal with non-square cases (mentioned at the end of Section 2.2.1).

With the given assumptions, the separation problem is solvable, and we can
find the demixing matrix up to some trivial ambiguities, discussed in Section 2.4.2
[16]. As we said earlier, to separate the components from the mixtures, we have
to maximize the statistical independence of the estimated sources. For that, we
first define a cost (or objective) function J , which is a measure of the statistical
independence of all components in estimated source vector y. Then, we minimize
this cost function and find the optimal demixing matrix such that

Ŵ = arg min
W

J(W ) (10)

The variety of ICA algorithms can be differentiated mainly on the principle
used for estimating the demixing matrix. Many of the most common methods are
included in one of the following categories [16]:

3Strictly speaking, ICA model is still solvable if all sources are non-Gaussian except for one.
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• ICA by maximization of nongaussianity. The algorithms in this cate-
gory are motivated by the central limit theorem (CLT), which tell us, loosely
speaking, that a sum of independent random variables has usually a distri-
bution closer to Gaussian than any of the separate random variables. In this
kind of algorithms, metrics such as kurtosis or negentropy are used to measure
the nongaussianity of the estimated source signals. FastICA [28] is a popular
ICA algorithm that belongs to this group.

• ICA by maximum likelihood estimation. ICA algorithms in this cate-
gory employ the classic maximum likelihood (ML) estimation method to select
the demixing matrix that gives the highest probability for the observed data.
ML estimation requires prior knowledge of the densities of the source signals.
Therefore, a common solution to this is to approximate the densities of the
source signals by a family of (simple) parametric densities. In other words, we
assume a statistical source model for the signals. Infomax is a well-known ICA
algorithm that uses an estimation principle equivalent to the ML principle in
case of source separation [29, 30].

• ICA by minimization of mutual information. This ICA approach, in-
spired by information theory, uses metrics like Kullback-Leibler (KL) diver-
gence, which checks the difference between the real joint density of estimated
source vector, py(y), and the product of its approximated marginal densities
(see Equation 9) to measure the independence of the estimated sources. Mu-
tual information and maximum likelihood approaches are strongly connected
and often lead to the same algorithms.

• ICA by tensorial methods. In this approach, higher-order cumulant tensors
are used to estimate the sources. A popular ICA method included in this
category is the JADE algorithm [31, 32].

2.4 Approaches in convolutive-mixture ICA

As discussed in Section 2.2, the difficulty of the source separation task is highly
dependent on the mixing process of the source signals. In case of instantaneous
mixtures, an instantaneous ICA algorithm can be employed directly to perform
time-domain BSS. However, in case of convolutive mixtures, the task is more com-
plex and ICA has to be extended to be applicable. Nevertheless, for convolutive
mixtures, we can address the source separation problem by means of three different
BSS approaches, depending on the domain where the operations are performed [33].
These three approaches are presented next.4

2.4.1 Time-domain approach

The first approach is time-domain BSS. Here the instantaneous ICA methods are
directly extended to the convolutive case [33] and the demixing system, a matrix

4Without loss of generalization, we focus here on ICA instead of BSS.
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of FIR filters, is computed in time domain (Equation 7) [34]. These algorithms
give good separation results once the algorithm has reached convergence. This is
because these methods evaluate quite accurately the statistical independence be-
tween the estimated source signals. However, convolutive-mixture ICA methods in
time domain are more demanding than instantaneous ICA techniques, because of
the need to compute convolution operations. This is especially true in case of re-
verberant mixtures that require the use of long filters to separate the mixed signals
[33].

2.4.2 Frequency-domain approach

A second approach is frequency-domain BSS, where the time-domain signals are
converted into frequency-domain using short-time Fourier transform (STFT) instead
of global transform. The time-domain signals are split in blocks (typically called
windows or frames) and a discrete Fourier transform (DFT) is computed for each
block. Usually, smooth windowing functions are used, like a Hamming window, that
tapers smoothly to zero at each end, and they overlap to some extent. Once the
signal is transformed into frequency domain, the demixing system is estimated [34].
This is feasible since filtering the data before performing BSS does not change the
mixing matrix, and applying Fourier transform does not modify the mixing matrix
either [16].

In the frequency-domain approach, the convolutive mixtures in Equation (6) are
approximated as one instantaneous mixture for each frequency bin [33]. In other
words, we decompose the separation problem into several easier problems: now we
have one complex-valued instantaneous ICA problem per frequency bin. There-
fore, in the frequency-domain approach for convolutive mixtures, the dependencies
between the source signals and observed mixtures are modeled as a linear mixing
process. If we assume that N source signals are observed by M sensors, and that
their STFT representations are obtained, the mixing process for frequency-domain
BSS can be expressed as

Xτω = AωSτω, (11)

where Xτω = [X1τω, . . . , XMτω]T denotes the Mx1 observation vector and Sτω =
[S1τω, . . . , SNτω]T the Nx1 source vector at frequency channel ω in time frame τ , and
Aω is the unknown mixing matrix associated with channel ω. The vector component
Xmτω denotes the mixture observed with sensor m and Smτω the mth source signal
at channel ω at time frame τ . The separated source signals Y τω are obtained via
the linear demixing process:

Y τω = WωSτω, (12)

where Y τω = [Y1τω, . . . , YNτω]T and Wω is the demixing matrix at channel ω.
The main advantage of the frequency-domain approach for convolutive mixtures

is that it reduces significantly the computational complexity of the task. Other
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advantage is that any complex-valued instantaneous ICA algorithm can be directly
applied to each frequency bin. Besides, the method can be computationally more
efficient if we perform parallel computing of multiple frequency bins [33]. Finally,
frequency-domain approaches have faster convergence [34].

Nevertheless, the frequency-domain approach also presents some drawbacks, two
of which we address here. One problem is the circularity effect of the DFT rep-
resentation of the convolutive mixtures. When the signals are converted to the
frequency domain, the convolution becomes separate multiplications, one per fre-
quency channel, but this is just an approximation that is only exact when source
signal s(k) is periodic, or equivalently, if the time convolution is circular. For lin-
ear convolution however we have errors at the frame boundaries of the STFT. A
solution to this problem is to use the overlap-save method when going from time
to frequency domain. However, a correct overlap-save algorithm is in some cases
difficult to implement [23]. Parra and Spence [35] addressed also the circular/linear
convolution problem and noted that a linear convolution can be approximated by
a circular convolution, and therefore the errors due to the circular convolution can
be reduced, if the frame length used in the STFTs is much larger than the length of
the room impulse response (RIR). Specifically, the errors are reduced if the frame
is at least two times longer than the RIR [36, 37]. However, the fixed resolution of
STFTs implies that when long time frames are used, the number of samples in each
frequency bin is small. As a result, the independence assumption of ICA collapses,
since with poor frequency resolution it is difficult to get correct estimates of the
statistics. Therefore, both short and long time frames fail at getting good results.
An optimum frame size is determined then by the trade-off between having enough
samples per frequency bin to get to estimate the statistics, and having a long enough
time frame to cover the RIR [36].

Another problem of the frequency-domain approach is the permutation and scal-
ing ambiguities that are inherent to the ICA solution. This means that even if we
permute the rows of demixing matrixWω or multiply one row with a constant value,
we will still have an ICA solution. This is expressed in mathematical form as

Wω ← ΛωPωWω, (13)

so updated Wω is also an ICA solution for any permutation matrix Pω and scaling
(diagonal) matrix Λω [33]. Permutation ambiguity involves that, if the order of
the separated signals is not consistent across all the frequency channels, when the
signals are transformed back to time domain, they will present contributions from
different sources. This, in consequence, destroys the separation obtained in the
frequency domain. On the other hand, the scaling ambiguity at each frequency bin
causes an overall filtering of the estimated sources. Therefore, even when we would
have perfect separation, the estimated sources would present different spectrum
characteristics than the original sources, that is, distortion [23]. The scaling problem
is easily solvable, but the permutation problem is more complex. Several solutions
have been proposed to overcome the scaling problem, and a brief overview of them
can be found in [23, 33]. One of the latest and successful approaches to solve
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the permutation ambiguity was independent vector analysis (IVA), which will be
explained in detail in Section 3.

2.4.3 Hybrid approach

Finally, the third approach to BSS is a hybrid of time-domain and frequency-domain
approaches. The methods included here work in both time domain and frequency
domain, taking advantage of the positive aspects of each domain. For example,
some of these methods update the filter coefficients in frequency domain and evalu-
ate the degree of independence between the sources in time domain. By evaluating
the independence in time domain, we avoid de permutation problem. However, an
important drawback of this approach is the increase of required computations of
DFTs and inverse DFTs, due to the back and forth transformations of the signals
between the time and frequency domains at each iteration. Therefore, the advan-
tages of frequency-domain BSS are good enough to overlook its limitations, and it
is in fact the most common approach in convolutive BSS [33].
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3 Independent vector analysis
A multivariate variant of ICA, called IVA, was proposed some years ago to avoid the
permutation ambiguity present in frequency-domain ICA [12]. Next, we present the
connection of IVA to ICA and theoretical background of conventional IVA. Then,
the IVA method proposed in this work, extended IVA, is explained in detail.

3.1 Conventional independent vector analysis

As we discussed in Section 2.3, to obtain estimates of the source signals in the ICA
framework, we need to define a cost function J that measures statistical indepen-
dence of the estimated sources, and we minimize it to find optimal demixing matrix
W . Depending on the estimate principle used for separation, we have a different ap-
proach of ICA, and different forms of cost function. Mutual information (MI) could
be seen as the canonical ICA cost function since it focuses on the key property of
ICA, which is the independence of the sources [38]. The MI approach does not
assume anything about the data other than the independence [16]; however, direct
estimation of MI measure is computationally expensive in most cases. As a result,
a common solution is to approximate MI by taking an approximation of the source
signals densities and plug it into MI’s definition in terms of entropies [16]. In other
words, we are assuming a statistical source model for each source signal.

IVA methods originated as a solution to the permutation ambiguity problem
of frequency-domain ICA [12]. The key difference between ICA and IVA is the
source model: IVA employs multivariate source models, while ICA uses univariate
models instead. In IVA, all the frequency components are modelled as stochastic
vector variables (a source-wise vector Ỹ mτ = [Ymτ1, . . . , YmτΩ]T , where Ω is the total
number of spectral channels and m is the number of source channel) and the sources
are separated vector-wise instead of frequency wise, as it was the case for ICA.
Therefore, the dependencies between the frequency channels are represented via the
source model, a multivariate probability density function py(Ỹ mτ ), and the method
estimates the source signals by looking for statistically independent sources while
keeping the dependencies between the spectral channels. With this, the permutation
ambiguity is avoided.

From what we have explained, it is clear that in the IVA framework a cost
function for multivariate random variables is needed. The cost function of IVA to
be minimized is, in terms of the MI approach, [13, 14] given by

J1 =
∑
m

H(Ỹ m)−H(Ỹ ), (14)

where H(Ỹ m) is the differential entropy of Ỹ mτ , the source-wise vector of the mth
estimated source signal, and H(Ỹ ) is the joint entropy of Ỹ τ = [Ỹ 1τ , . . . , Ỹ Nτ ]. J1

is the expression of mutual information, extended to measure dependency between
multivariate random variables . Also, J1 is equivalent to the KL divergence of the
real joint probability of estimated source signals py(Ỹ τ ) and the factorized density
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q = py(Ỹ 1τ )py(Ỹ 2τ ) . . . py(Ỹ Nτ ), where py(Ỹ mτ ) is the marginal density of mth
estimated source.

The entropy of a linear transformation r = Db is given by H(r) = log det |D|+
H(b), where r and b are vector random variables and D is a matrix. If we express
the estimated source signals in function of the observed signals (Equation 12) and
use the aforementioned property, cost function J1 becomes

J1 =
∑
m

H(Ỹ m)−
∑
ω

log det |Wω| −H(X̃), (15)

where H(X̃) is the joint entropy of X̃τ = [X̃1τ , . . . , X̃Mτ ], with (source-wise) ob-
served vectors X̃mτ = [Xmτ1, . . . , XmτΩ]T . H(X̃) is a constant, so we can discard
it to simplify the cost function expression. Finally, if we express the entropy as an
expectation, we get one of the most common forms of IVA cost function:

J1 =
∑
m

1

T

∑
τ

G(Ỹ mτ )−
∑
ω

log det |Wω|, (16)

where G(Ỹ mτ ) is called contrast function, computed as G(Ỹ mτ ) = − log py(Ỹ mτ ),
and T is the total number of frames. The demixing matrices are iteratively estimated
by minimizing this objective function with regards toWω. Minimizing Equation (16)
is equivalent to ML estimation.

As discussed above, the source models in IVA take into account the dependency
between the spectral channels for each source. The dependency is modeled by as-
suming a multivariate probability density function py(Ỹ mτ ) as source model, for
a source-wise vector Ỹ mτ . The conventional source models in IVA are spherical,
time-invariant, and super Gaussian distributions [12, 13], such as

py(Ỹ mτ ) ∝ exp

{
−K

√
‖Ỹ mτ‖2

2

}
, (17)

where K is a time-invariant constant and ‖ · ‖2 denotes the L2 norm of a vector.

3.2 Extended independent vector analysis

In this work, we focus on IVA in speech and noise separation tasks, and propose so-
lutions to overcome two important limitations of IVA in these kind of tasks. Firstly,
the models commonly used in IVA are time-invariant and therefore they do not model
the time-varying nature of speech. In addition, baseline IVA typically assumes the
same source model for all the sources. In case of speech and noise separation tasks,
this assumption is not correct, since the spectra of these sources have very different
characteristics. The spectrum of a speech signal is non-stationary and it is charac-
terized by its pitch and formant frequencies. In contrast, background noise usually
has a broad band spectrum and might be temporally stationary.

In the present work, we propose an extension of IVA with a new source model
more suitable for speech and noise separation. From now on, we call the proposed
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method as extended IVA. The new source model takes into account the issues we have
described above, and that are neglected by conventional source models. Therefore,
this source model no longer follows a spherical, time-invariant, and super Gaussian
distribution, like the one shown in Equation (17). In contrast, the source model
assumed now is a time-frequency variant Gaussian distribution, such as

py(Ymτω) ∝ 1

σ2
mτω

exp

{
−Y

2
mτω

σ2
mτω

}
, (18)

where σ2
mτω is the variance of mth source at time frame τ and frequency ω.

The model proposed here includes the temporal power variations of the sources.
IVA has been evaluated before with time-variant source models in [39, 40], where
distribution variances were assumed constant across frequency channels. However,
in our case, the distribution variances σ2

mτω have a different value for each frequency
channel. Besides, we assume to have available a single-channel source separation
method. Then, the variances σ2

mτω are computed as

σ2
mτω = |Ŝmτω|

2
, (19)

where Ŝmτω is the output from the single-channel source separation method for the
mth source at time frame τ and frequency ω. Most single-channel source separation
methods rely on the spectral differences between the sources. Therefore, by plug-
ging information from a single-channel separation method into our source model,
extended IVA takes also into account the differences between sources. With the
proposed source model, the source separation performance of IVA is expected to
improve in speech and noise separation tasks.

Using the proposed source model, the cost function of conventional IVA (Equa-
tion 16) is transformed into the following expression,

J2 =
∑
ω

(∑
m

1

T

∑
τ

‖wH
mωXτω‖2

2

σ2
mτω

− log det |Wω|

)
, (20)

where wH
mω is the mth row of the demixing matrix Wω and H denotes Hermitian

transpose. J2 is the cost function for extended IVA.

3.3 AuxIVA: IVA based on an auxiliary function technique

The extension of IVA evaluated on this work was implemented on AuxIVA, an IVA
method based on an auxiliary function technique [41]. Typically, IVA algorithms,
which compute the demixing matrix, are based on natural gradient updates [12, 13,
14]. This type of algorithms have a trade-off between the convergence speed and
stability. The approach in AuxIVA, first developed in the ICA framework [42] and
later extended to IVA, presents more effective update rules [41]. AuxIVA method
involves two alternative update steps. The update rules in case of extended AuxIVA
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are as follows. First the weighted covariances matrices Vmω are once calculated for
all ω as

Vmω =
1

T

∑
τ

(
XτωX

H
τω

σ2
mτω

)
(21)

Then the demixing matrices are updated. No close form for updating simulta-
neously wmω in Equation (20) has been proposed yet. Therefore, we consider an
update of only wmω while keeping the other wlω(l 6= m) fixed. Then, the demixing
matrix update rules, for all ω, are

wmω ← (WωVmω)−1em, (22)

wmω ←
wmω√

wH
mωVmωwmω

, (23)

where em is a unit vector with the mth element unity em = [0, . . . , 1, . . . , 0]. The
update rules are applied iteratively until convergence is achieved.

A variant of AuxIVA for stereo signals exists; it achieves faster convergence than
the general AuxIVA method [43]. In this work, we used general AuxIVA for the
empirical evaluations.
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4 Speech enhancement techniques as support meth-
ods

Next, we introduce briefly the speech enhancement techniques used in the present
work as support methods to obtain source estimates for the source model of extended
IVA.

4.1 REPET SIM

REpeating Pattern Extraction Technique (REPET) is a speech enhancement tech-
nique that separates repeating background from non-repeating foreground in a mix-
ture. The separation is based on finding the repeating patterns in an audio mixture,
deriving the underlying repeating models and finally extracting the repeating back-
ground by comparing the models to the mixture. REPET SIM is a generalization
of the REPET method that can handle non-periodically repeating structures. In
this case, similarity matrices are used to identify the repeating elements in the mix-
ture, based on the assumption that the background, noise for example, is dense and
low-ranked, while the foreground, speech for example, is sparse and varied [44]. Ac-
cording to what we explained in Section 3.2, source estimates to use in Equation (19)
are obtained with a single-channel source separation method, since most of these
methods rely on the spectral differences between the sources. REPET SIM is a mul-
tichannel source separation technique, but it can be applied also to single-channel
data. Since this technique relies on differences between the frequency spectrums
of the sources, as single-channel source separation techniques do, REPET SIM is a
good option to use for computation of the source estimates.

4.2 Spectral subtraction

Spectral subtraction is a single-channel speech enhancement method used for noise
reduction. Like many single-channel methods, spectral subtraction relies on the
spectral differences between the sources, and therefore it is also a good choice to
obtain the source estimates. In these methods, the enhancement of the speech signal
corrupted by noise is achieved by subtracting an estimate of the noise spectrum
from the noisy speech spectrum. In the present work, the spectral subtraction
implementation used is based on [45]. This approach differs slightly from the basic
principle of spectral subtraction in two main ideas. First, now an overestimate of the
noise spectrum is subtracted from the noisy speech spectrum; this means that we
subtract a factor (α) times the noise spectrum estimate, where α is a number larger
than one. The value of α varies from frame to frame, according to the signal to
noise ratio (SNR) measured; the larger the SNR value, the smaller the value of α is.
Second, the resultant spectrum is lower-bounded by a minimum value called spectral
floor. With the aforementioned changes, the approach eliminates "musical noise"
that the original spectral subtraction method introduces in the enhanced signal [45].
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5 Post-processing of multichannel source separation

5.1 Background

BSS methods have a limited capability to reduce diffuse noise. In a diffuse noise field,
the noise propagates from many directions and, because of the acoustic properties of
the environment, it is perceived at the sensors as coming from all directions. Diffuse
noise field has proven to be a reasonable model for many real-life noise environments,
like for example babble noise in cafeterias and car noise environments [46, 47].

The diffuse noise reduction limitation also occurs in other multichannel source
separation methods. For example, adaptive beamformers (ABF), such as minimum
variance distortionless response (MVDR) beamformers, have also a limited noise
reduction capacity when the noise field is diffuse [48, 15]. Frequency-domain BSS
has been proved to be equivalent to frequency-domain ABFs and as ABF, BSS
mainly removes the sound coming from the direction of interference. It must be
noted, though, that ABF does not involve an assumption of independency of the
source signals as BSS does. Therefore, the source separation performance of ABF
is not affected in case the independency assumption collapses. This means that the
performance of BSS is upper bounded by that of ABF [49].

The research on noise reduction has attracted much interest in the past years,
and part of it has been focused on multichannel speech enhancement methods with
post-filtering [15]. Post-filtering methods can be divided into two main groups:
single-channel post-filters and multichannel post-filters. Multichannel Wiener filter
(MWF) is the best possible linear filter for multichannel noise reduction of broad-
band inputs in the minimum mean squared error (MMSE) sense [15]. Simmer et al
[15] proved that, assuming the target signal and noise are mutually uncorrelated,
MWF can be factorized into a MVDR beamformer followed by a single-channel
Wiener post-filter. A MVDR beamformer coupled to a single-channel Wiener post-
filter produces a higher output SNR than the MVDR beamformer alone.

5.2 Post-processing in this work

In the present work, we focus on single-channel post-filtering as an approach to
further improve the source separation performance of IVA when diffuse noise is
present. Our approach originates from the theoretical principle of MWF and its
factorization into two stages [15] (see Section 5.1). We present an analogous setup,
where the proposed extended IVA method is concatenated with a time-variant single-
channel post-filter (Figure 4). In this setup, the source estimates Y ′mτω are calculated
based on the multichannel estimates Ymτω from extended IVA (with source estimates
Ŝmτω information from single-channel source separation) as

Y ′mτω = HmτωYmτω (24)

where Hmτω is the STFT representation of the single-channel post-filter applied on
the mth source estimate in time frame τ and frequency channel ω. In this work,
we evaluate three time-variant post-filters Hmτω based on the multichannel source
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Figure 4: Block diagram of the setup proposed: the multichannel source separation
system proposed earlier, extended IVA with single-channel source separation, con-
catenated with one single-channel post-filter per source. X denote the observation
vector and Y ′ the estimated sources vector.

estimates Ymτω and source estimates Ŝmτω calculated with a single-channel source
separation method. For reference, we also evaluated a setup of extended IVA plus
single-channel source separation. Next, we present the three single-channel post-
filter approaches we propose.

Wiener post-filters

The first two post-filters proposed are both Wiener filters. We chose this type of
filter based on the MWF factorization proved in [15] (see Section 5.1). A Wiener
filter is designed such that it meets the MMSE criteria, and according to the Wiener-
Hopf equation, the general expression in the frequency domain is φys/φyy, where φys
is the cross power spectrum density (CSD) of observed signal y(k) and target signal
s(k) and φyy is the power spectral density (PSD) of y(k). When the target signal
and noise are uncorrelated, the CSD term can be reduced to φys = φss and the PSD
term in the denominator can be expressed as φyy = φss + φnn, where φss is the PSD
of the desired signal and φnn the noise PSD [15, 50, 51]. Given these simplifications
of the general expression, the first post-filter is calculated as

H(1)
mτω =

|Ŝmτω|
2

|Ŝmτω|
2

+ |Nmτω|2
, (25)

where the noise Nmτω is calculated as Nmτω = Ymτω − Ŝmτω.
In the second post-filter, we use the simplified form of the general expression’s

numerator, obtained from the assumption of uncorrelated signal and noise. However,
we keep the denominator as it is given by the general expression. In consequence,
for guaranteeing that the post-filter amplitudes fall between the range [0, 1], simply
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clipping is applied. Then, this filter can be represented as

H(2)
mτω = min

{
|Ŝmτω|2

|Ymτω|2
, 1

}
. (26)

Amplitude replacing post-filter

Most single-channel source separation methods estimate the sources with time-
frequency masking that modifies the amplitudes while keeping the phase of the
observed mixed signals. It has been proven that the phase is as important as the
amplitude for correct separation of the signals [52], and using simply the phase of
observed signals as the phase of estimated source signals causes problems in that
traces of interfering signals remain in the source signals. In contrast, extended IVA
does not have these problems as it estimates the phase as well as the amplitude
of the separated signals. With this in mind, our third post-filter approach com-
bines the amplitude estimation from single-channel source separation and the phase
estimation from extended IVA. That is, when the post-filter H(3)

mτω, given by

H(3)
mτω =

|Ŝmτω|
|Ymτω|

, (27)

is applied to the multichannel estimates Ymτω from extended IVA (Equation 24), the
amplitude of estimates Ymτω are substituted by the amplitudes of the source esti-
mates Ŝmτω from single-channel separation, while keeping the phase from extended
IVA.
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6 Experimental work
In this section, the experiments performed in the current work are presented. The
experiments focus on BSS utilized for speech separation and speech and noise separa-
tion. The speech and noise separation task involves diffuse noise (see Section 6.1.2),
which is challenging for BSS methods, as discussed in Section 5.1. For that reason,
prior to the speech and noise separation experiments, we performed a speech separa-
tion experiment with localized sources, the optimal sources IVA can handle, to first
test that our proposed extended IVA method was working. In other words, with
this experiment we would be able to validate our hypothesis that a new improved
speech source model for IVA would lead to an improvement of its source separation
performance on speech data. The new source model is designated improved since
this model would represent speech more accurately than the original source model
does.

The section is organized as follows. First, the data employed in the experi-
ments is described in Section 6.1. Then, the setup of the methods applied in our
work is presented on Section 6.2. Finally, the evaluation metrics used are shown in
Section 6.3.

6.1 Data

6.1.1 Speech separation experiment

We first evaluated extended IVA on a speech separation task with data from the
Signal Separation Evaluation Campaign (SISEC) 2008 [53]. The samples employed
were a selection from the development data set of the undetermined speech and
music mixtures task. This set contains mixtures of female speech, male speech and
music. The mixtures originate from three or four sources that are observed at two
microphones (stereo microphone). Since it is a development set, this set also includes
the source signals and source images corresponding to the mixtures. A source image
is the contribution of the corresponding source signal to the mixtures observed at the
sensors (more detailed explanation at the end of Section 2.2.2). The data set includes
different mixing conditions: three kinds of mixtures (live recording, its artificial
counterpart, synthetic convolution, and instantaneous mixture), two reverberation
times (130 ms and 250 ms), and two cases for microphone spacing (5 cm and 1 m).
The duration of all the samples in the set is 10 s. and their sampling frequency is
16000 Hz.

For the experiment, all the speech samples, female and male speech, correspond-
ing to live recording mixtures that originate from four sources were selected. How-
ever, the extended IVA method proposed in this work is implemented on the AuxIVA
algorithm [41], which works under the assumption of determined or overdetermined
case, that is, the number of microphones is equal to or larger than the number of
sources. For this reason, in the experiment the number of sources and microphones
were both set to two, and we created our own test samples instead of using the
original SISEC samples. The mixtures (or test samples) were created by mixing the
source images observed at each microphone such that each mixture consisted of 2
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source signals instead of 4 sources in the original SISEC data. All possible source
signals’ permutations were obtained for each mixture condition (reverberation time
and microphone spacing); with a total of 48 mixtures for evaluation.

6.1.2 Speech and noise separation experiments

Extended IVA was also evaluated on a block of experiments focused on speech and
noise separation, with part of the material from SISEC 2013 [54]. Specifically, we
used the development data set of the two-channel mixtures of speech and real-world
background noise task. In this case, we employed all the development set samples
for evaluation. This set consists of nine stereo recordings of a speech source that is
contaminated by real-world diffuse noise. The diffuse noise was recorded in three
kinds of public environments: a subway car, cafeterias and squares. Apart from the
nine stereo mixtures, the set also includes the corresponding source signals (speech
and noise) and source images. All samples of this data set have a duration of 10 s.
and their sampling frequency is 16000 Hz. Also in these experiments, extended IVA
assumes 2 sources and microphones, but now the data set employed attains this.
Therefore, we did not need to regenerate data as in the previous experiment, and
used for evaluation in these experiments the original 9 mixtures of the development
set.

6.2 Experimental setup

6.2.1 IVA settings

The extended IVA method evaluated in this work was implemented on AuxIVA [41].
We addressed in Section 2.4.2 the STFT frame length effects in the source separation
performance. Too short or too long STFT time frames may fail at getting good
source separation results, since even though each case involves some benefits they
also bring some problems, which will vary depending on the conditions of the BSS
task at hand. Therefore, we conducted experiments over a range of STFT frame
lengths in order to find an value: IVA was applied on STFTs computed on 512, 1024,
2048, and 8192-sample Hamming windows with 50% overlap. An identity matrix was
employed as initial value for the demixing matrix, and the algorithm was iterated 20
times to ensure convergence. In addition, the source variances used in extended IVA
were computed based on source estimates as indicated in Equation (19). For the
speech separation task, we evaluated extended IVA with variances calculated based
on oracle information, with Ŝmτω = Smτω. The oracle variances were computed
from the true source images. This is because the IVA method used in this work,
AuxIVA, gives at its output the estimate of the source images observed at the
specified microphone. By using the oracle variances, extended IVA is not dependent
on the performance of the support method used to obtain the source estimates
needed to compute the variances. In consequence, as stated already in Section 6, this
experiment is used to validate the improved source model hypothesis (see Section 1).
In addition, we can determine the upper performance limit for extended IVA in the
given conditions.
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In case of the speech and noise separation experiments, the speech and noise
source estimates were calculated with two different speech enhancement methods,
REPET SIM (Section 4.1) and spectral subtraction (Section 4.2). We used two
different methods to ensure the final source separation results would not be directly
dependant on the method used for obtaining the source estimates. In addition,
we also ran the speech and noise separation experiments using oracle variances for
extended IVA, as we did for the speech separation task. This was done to have
an idea of the potential that extended IVA has in more challenging situations like
speech in diffuse noise - the condition in these experiments. Finally, we note that
while in these experiments we get both speech and noise as outputs of IVA, we only
evaluate speech, which is the focus of this work.

6.2.2 REPET SIM settings

REPET SIM is one of the speech enhancement methods whose source estimates
were used to compute the source variances (see Section 4.1 for more details on the
method). In our experiments, the parameters of the REPET SIM algorithm were
fixed as follows: minimum similarity threshold between a repeating frame and the
given frame t = 0, minimum distance between two consecutive repeating frames
d = 0.1 seconds, maximum number of repeating frames k = 20, and maximal past
and future buffer size buf = [2, 2] seconds. The rest of parameters were set to default
values. All parameters’ values were based on the optimal parameters proposed in
[44] for the data under evaluation (detailed in Section 6.1.2). In the algorithm script,
the similarity parameters were taken as input argument in the form par = [t, d, k].

6.2.3 Spectral subtraction settings

In our experiments, we also employed the spectral subtraction method implemented
in Matlab toolbox VOICEBOX [55] to obtain the source estimates used for com-
puting the source model variances. In the experiments, we employed the default
parameters of the spectral subtraction script specsub, which was modified to output
the noise signal in addition to the speech signal that was the only output in the
original script. The noise estimate was computed by applying to the spectrum of
the mixture a soft-decision mask that is complementary to the one specsub computes
to obtain the speech estimate.5

6.3 Evaluation

6.3.1 Standard measures for BSS performance evaluation

About ten years ago not much attention was paid to evaluation metrics for BSS
in speech applications. There was research on the subject, such as [56], but most
literature was focused on the development of new BSS algorithms. Very different
evaluation metrics were used on the research papers published at the time due to

5A soft-decision mask has elements ranging [0, 1]; by complementary mask we mean that if we
have soft-decision mask M1, the complementary soft-decision mask will be M2 = 1−M1.
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the lack of a "benchmark", not only for BSS in speech-related tasks, but also for
BSS algorithms in general. In consequence, the comparison between algorithms was
difficult [57].

Later, efforts have been made to establish a standardized evaluation framework
for BSS, such as the work from Vincent et al. [58]. In this work, a new perfor-
mance criterion was proposed for evaluation of BSS in audio signals. This criterion
consisted of four energy ratios, in which the estimated source signal yi is compared
to the corresponding true source si. These measures do not take into account the
permutation indeterminacy of BSS. Therefore, if necessary, yi would have to be
compared with all the sources {si}, 1 ≤ i ≤ N . Besides, the criterion involves two
assumptions. First, the true source signals and noise signals (if any) are known.
Second, the user chooses a family of allowed distortions F for the target signal ac-
cording to the application, but independently of the mixture or algorithm used. This
means that we allow our target signal starget(k) = f(s(k)) to be a version of source
signal s(k) modified by an allowed distortion f ∈ F . An advantage of this criterion
is that the mixing system and demixing technique do not need to be known.

The aforementioned criterion was developed for evaluation of estimated single-
channel source signals. Inspired on it, a similar criterion was developed that evalu-
ates estimated source images [59]. Both criteria are computed on two steps. First,
decomposition of the estimated signal. In case of the source image criterion, the
source image from source i observed at microphone j yimgji (k), is decomposed as

yimgji (k) = simgji (k) + espatji (k) + einterfji (k) + eartifji (k), (28)

where simgji (k) is the true source image and espatji (k), einterfji (k) and eartifji (k) are the
error components representing the spatial (or filtering) distortion, interference and
artifacts, respectively. In the second step, the energy ratio measures are computed.
The energy ratio measures proposed in the source image criterion, expressed in dB,
evaluate spatial distortion, interference and artifacts. They are the source image to
spatial distortion ratio (ISRi), the signal to interferece ratio (SIRi) and the signal
to artifacts ratio (SARi), respectively. Also, the signal to distortion ratio (SDRi)
measure encompasses all the previous error terms: spatial distortion, interference
and artifacts. All these measures are similar to the ones from the previous criterion
[58], but now the target signal is split in two terms, simgji (k) and espatji (k).

The source image criterion has the advantage that it allows the evaluation of
source signals that cannot be represented as single-channel signals, such as common
audio signals that are typically presented in stereo (two-channel) format: radio,
television, music CDs and MP3s, etc. Besides, potential gain or filtering indeter-
minacies about the estimated single-channel source signal si(k) disappear when the
source image is considered for evaluation instead [27].

For convolutive mixtures, source to interference ratio (SIR) is a common metric
to report the performance of BSS algorithms [23], as it is the source to distortion
ratio (SDR). In the present work, we used SDR since it is a summarizing metric
in contrast with the rest of energy ratios that deal with specific error components.
Specifically, the source image counterpart of SDR, which is SDRi, was used for
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evaluation since as we mentioned already in Section 6.2.1, AuxIVA gives estimates
of source images. Another reason to use this measure was that SDRi was one of the
evaluation metrics of SISEC 2008 and SISEC 2013, campaigns from which the two
data sets employed in our experiments are from. The SDRi metric is defined as

SDRi = 10 log10

∑M
j=1

∑
k s

img
ji (k)2∑M

j=1

∑
k(e

spat
ji (k) + einterfji (k) + eartifji (k))2

(29)

In this work, SDRi measures were computed with the BSS Eval Matlab toolbox
[59, 60].

Even though the evaluation criteria based on energy ratios are commonly used,
they present the following two limitations. First, the numerical precision of the
measures is lower for high-performance values than for low ones. For example, in
case we have a high value of SDR, this means that the denominator of this energy
ratio is very small. In consequence, small amplitude errors in the numerator, such as
signal quantization errors, will cause large SDR deviations. Second, these measures
cannot explain certain properties of the auditory properties. For example, the energy
ratios, at high values, have limited auditory significance; and the ratio SDR does
not measure the total perceived distortion [58].

6.3.2 Perceptual measures

Quality evaluation of the separated signals should take into account the final task
where the signals are to be used. In applications where the final result is going
to be listened by humans, perceptual quality is much more important than perfect
reconstruction of the original waveform. Speech quality assessment using listening
tests with human subjects is often accurate and reliable when it is performed un-
der stringent conditions, however it involves high costs in time and resources [61].
Consequently, several objective quality measures have been proposed to predict the
subjective quality of speech [62]. Most of these measures were developed originally
in the telecommunication field for evaluation of the distortion introduced by speech
codecs and/or communication channels. Therefore, at first, the suitability of these
measures on predicting subjective quality of enhanced speech was not clear. A re-
cent study [61] has tested the correlation of several of these objective measures with
subjective listening tests, when evaluating enhanced speech. Of the seven objective
measures under study, the perceptual evaluation of speech quality (PESQ) measure
[63] presented the highest correlation to the subjective assessments. However, a
drawback of PESQ is its computational complexity. The same study [61] reported
that the objective measure called frequency-weighted segmental SNR (fwSNRseg)
performed nearly as well as PESQ at much less computational cost. In the present
work, we decided to employ fwSNRseg as a complementary measure to SDRi, to
take into account the perceptual aspects of the separated signals in the evaluations.
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fwSNRseg is computed as follows

fwSNRseg =
10

T

K∑
τ=1

∑Ω
ω=1wgt(τ, ω) log10

|Sτω |2

|Sτω−Ŝτω |
2∑Ω

ω=1 wgt(τ, ω)
, (30)

where wgt(τ, ω) is the weight in the mel frequency band ω at time frame τ , T is
the total number of time frames, Ω is the total number of mel frequency channels,
Sτω and Ŝτω are the clean signal spectrum and the enhanced signal spectrum, re-
spectively, at time frame τ and mel filter channel ω. Weighting function wgt(τ, ω)
is computed as

wgt(τ, ω) = |S(τ, ω)|γ, (31)

where γ is a power exponent that can be varied for maximum correlation. In the
present work, we used a exponent value of γ = 0.2, as proposed in [61]. The spectra
of clean and enhanced signals were obtained by first computing their STFTs with
Hamming windows of 25 ms, shifts of 5 ms between adjacent frames, and 1024-
point Fourier transforms. The signal bandwidth was then grouped into 21 bands
using a mel filter bank, which was computed using VOICEBOX Matlab toolbox
[55]. Besides, for computing the average on Equation (30), the SNRs obtained at
each time frame were limited to the range of -10 to 35 dB as in [61]. We chose the
above settings based on [64], where they proved to work for perceptual evaluation
of enhanced signals.
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7 Results

7.1 Speech separation

First, the results of the speech separation experiments conducted on extended IVA
are presented in Tables 1 and 2. In this experiment we computed extended IVA
with oracle variances and compared with baseline IVA. For both of the evaluation
metrics employed, SDRi and fwSNRseg, the average over all sources and trials was
computed and used as final evaluation value. The task was evaluated with four
different STFT frame lengths in IVA: 512, 1024, 2048 and 8192 samples. Extended
IVA with oracle variances shows an improvement over baseline IVA for all frame
length cases. When comparing baseline IVA results against extended IVA results,
we also note that the optimal frame length for baseline IVA is 2048 samples, while
for extended IVA it is 8192 samples. Besides, the results suggest that extended IVA
is more sensitive to frame length, since the variation of results between 512 and 8192
frame lengths is larger for extended IVA than for baseline IVA.

Table 1: SDRi results [dB] for baseline IVA and extended IVA (oracle) in four STFT
frame length [samples] cases. The best SDRi value in each case is underlined.

512 1024 2048 8192

Baseline IVA 3.30 4.20 4.84 3.48
Extended IVA (oracle) 5.10 6.99 9.71 14.01

Table 2: fwSNRseg results [dB] for baseline IVA and extended IVA (oracle) in
four STFT frame length [samples] cases. The best fwSNRseg value in each case is
underlined.

512 1024 2048 8192

Baseline IVA 16.03 16.32 16.52 15.27
Extended IVA (oracle) 19.29 20.52 22.02 24.24

7.2 Speech and noise separation

Next, the results of the speech and noise separation experiments on extended IVA
are presented; first, the results for the experiments on extended IVA without post-
processing and then the results for the experiments involving post-processing.

7.2.1 Without post-processing

As it was explained in Section 6.2.1, source estimates used to compute the source
model variances for extended IVA were obtained with two different speech enhance-
ment methods: REPET SIM (see Section 6.2.2) and spectral subtraction (see Sec-
tion 6.2.3). For clarity, these variants of extended IVA will be called from now on
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extended IVA with REPET SIM and extended IVA with spectral subtraction, re-
spectively. Also, we evaluated extended IVA with oracle variances as a reference of
upper-bound performance. These variants of the extended IVA method were evalu-
ated with four STFT window lengths in IVA, the same as for the speech separation
experiment: 512, 1024, 2048 and 8192 samples. In each experiment, results were
averaged over each of the three noise conditions of the data set: (a) cafeterias, (b)
squares and (c) a subway car. The average result over the three noise environments
is also shown. In these experiments the main comparison is between extended IVA
with REPET SIM (or spectral subtraction) and baseline IVA. However, extended
IVA with oracle variances, REPET SIM (or spectral subtraction) and the unpro-
cessed observed mixtures were also evaluated for reference.

Figures 5 and 6 show the results for extended IVA with REPET SIM case.
The results indicate that in general extended IVA with REPET SIM performed
better than baseline IVA. For noise (a), SDRi metric suggests that extended IVA
with REPET SIM, with optimal frame length of 8192, performed nearly as good as
REPET SIM, which was the best method for this noise condition. However, based
on fwSNRseg, baseline IVA performs the best, with optimal frame length of 512
samples; the next best with a small margin of difference was extended IVA with
REPET SIM (2048 optimal frame length). In case of noise (b), according to the
SDRi metric, the best method is extended IVA with REPET SIM (512 frame length);
fwSNRseg in contrast favoured REPET SIM. For noise condition (c), extended IVA
with REPET SIM is the method with best performance according to both metrics
(at 1024 frame length for SDRi, and 512 for fwSNRseg). On average, extended IVA
with REPET SIM performed the best for both SDRi and fwSNRseg (with 1024 and
512 frame lengths, respectively).

SDRi and fwSNRseg results for extended IVA with spectral subtraction are pre-
sented in Figures 7 and 8, respectively. Extended IVA with spectral subtraction
performs better than baseline IVA for all noise conditions for both SDRi and fwS-
NRseg metrics. For noise (a), extended IVA with spectral subtraction gives the
best performance, at 512 frame length for SDRi and 1024 for fwSNRseg. For noise
(b) extended IVA with spectral subtraction (at 512 frame length) achieves the best
performance for SDRi metric, while fwSNRseg indicates that spectral subtraction is
superior in performance. In case of noise condition (c), extended IVA has the best
performance, with 8192 frame length for SDRi and 2048 frame length for fwSNRseg.
On average, extended IVA with spectral subtraction is also the best method in both
measures SDRi and fwSNRseg (with frame lengths 512 and 2048, respectively).

On average, fwSNRseg measure favours extended IVA with REPET SIM (or
extended IVA with spectral subtraction) over REPET SIM (or spectral subtraction)
more than SDRi does. Baseline IVA presents also better performance with respect to
the other methods with fwSNRseg; for SDRi, baseline IVA’s performance is similar to
that of the unprocessed observed mixtures. The difference on results obtained with
the two measures is due to the different aspects of the signal each metric emphasizes.
Listening to the audio samples indicated that REPET SIM and spectral subtraction
remove more background noise than their extended IVA counterparts. Nonetheless,
these two techniques introduce audible distortion in the speech signal, REPET SIM
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Figure 5: SDRi results of the observed mixtures, REPET SIM and extended IVA with oracle variances (for reference), and the
methods under comparison: baseline IVA and extended IVA with REPET SIM. Results for three street noise
environments: (a) cafeterias, (b) squares and (c) a subway car, and the average over the three.
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Figure 6: fwSNRseg results of the observed mixtures, REPET SIM and extended IVA with oracle variances (for reference), and
the methods under comparison: baseline IVA and extended IVA with REPET SIM. Results for three street noise
environments: (a) cafeterias, (b) squares and (c) a subway car, and the average over the three.
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being the one that adds more distortion.
Finally, we address some details that stand out from the results presented. First,

there is a clear difference between noise condition (b) (noise in public squares)
and the other noise conditions (noise in cafeterias and noise in a subway car), for
fwSNRseg measure. For noise (b), both REPET SIM and spectral subtraction have
much better performance than their extended IVA counterparts and they are even
better than the ideal case of extended IVA with oracle variances; this does not occur
in the other noise cases. Second, in theory extended IVA with oracle variances
should obtain the upper limit performance for extended IVA method. However,
our results present several cases that do not follow this behaviour: in noise (c) and
8192 frame length, SDRi metric indicates that both extended IVA with REPET
SIM and extended IVA with spectral subtraction perform better than extended IVA
with oracle variances; also, in noise (a) at 512 frame length, the SDRi result from
extended IVA with spectral subtraction is better than the result from the oracle
version of extended IVA. Other detail we must point out is that, according to what
we explained on frame length selection in Section 2.4.2, there should be a unique
optimal frame length for extended IVA in each noise condition. However, we have
seen that the results do not follow this behaviour: we have a different optimal frame
length for each extended IVA variant (with REPET SIM, with spectral subtraction
and with oracle variances). Finally, we note that optimal frame lengths also differ
between the two metrics for the same noise condition, when actually we should
have just one optimal frame length per method and noise condition. This could be
explained by the fact that each metric emphasizes different qualities of the signal. In
any case, even though we pick here an optimal frame length, in general, the results
for each method do not fluctuate much within frame lengths 512-8192.

7.2.2 With post-processing

The following experiments, involving post-processing, were conducted on only one
of the two extended IVA variants compared to baseline IVA in the experiments of
Section 7.2.1. Extended IVA with spectral subtraction was chosen over extended IVA
with REPET SIM based on informal listening of the audio samples that indicated
that spectral subtraction was perceptually better than REPET SIM.

We performed experiments in which extended IVA was evaluated with several
post-filters and with spectral subtraction post-filtering. The post-processing aimed
to reduce the noise present in the separated speech obtained with extended IVA to
further improve the source separation performance. Details on our post-processing
approach and the post-filters employed are given in Section 5.2. As in the experi-
ments without post-processing (Section 7.2.1), these experiments were carried out
with four different frame lengths of IVA: 512, 1024, 2048 and 8192 samples. Here
also the results were averaged over each of the three noise conditions in the data
set, and the average result over these three noises was also computed.

The results of extended IVA with spectral subtraction without and with post-
processing from each of the three post-filters and spectral subtraction technique are
shown in Figures 9 and 10. Results on the SDRi and fwSNRseg metrics indicate
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Figure 7: SDR results of the observed mixtures, spectral subtraction and extended IVA with oracle variances (for reference),
and the methods under comparison: baseline IVA and extended IVA with spectral subtraction. Results for three street noise
environments: (a) cafeterias, (b) squares and (c) a subway car, and the average over the three.
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Figure 8: fwSNRseg results of the observed mixtures, spectral subtraction and extended IVA with oracle variances (for reference),
and the methods under comparison: baseline IVA and extended IVA with spectral subtraction. Results for three street noise
environments: (a) cafeterias, (b) squares and (c) a subway car, and the average over the three.
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that extended IVA is generally better with post-processing than without. In noise
condition (a), the results of the different post-filtering solutions are very tight for
SDRi metric; the best performance is obtained using extended IVA with H(1) post-
filter and extended IVA with spectral subtraction post-filtering (both at frame length
512), and H(2) and H(3) post-filters are almost as good. In case of fwSNRseg metric,
both extended IVA without post-filtering and with spectral subtraction post-filtering
give the best results (with frame length 1024). Therefore in this case, except for
spectral subtraction post-filtering, extended IVA gives better results without post-
processing. For noise (b), extended IVA with H(1) post-filter and extended IVA
with spectral subtraction post-filtering show the best results, with frame length
512, according to SDRi metric. In case of fwSNRseg, all the post-filtering solutions
improve the performance of extended IVA with a clear margin. Among these post-
filtering solutions, spectral subtraction post-filtering is the one that gives the best
results (with frame length 8192). In case of noise (c), the best result is obtained for
extended IVA with H(1), at frame length 8192 for SDRi metric. For fwSNRseg, the
best result is obtained also for extended IVA with H(1) (at frame length 2048). On
average, the best result with SDRi measure is obtained with spectral subtraction
post-filtering and H(1) post-filter (at frame length 512). The SDRi results also
indicate that on average H(3) performs worse than H(1) and H(2). This suggests
that the two Wiener filters H(1) and H(2) are in general more efficient at noise
reduction than H(3), the amplitude replacing filter. Besides, listening to the audio
samples support this. In case of fwSNRseg, the best method on average is extended
IVA with spectral subtraction post-filtering, for frame length 2048.

Figures 11 and 12 show a comparison of results from the best post-filter solution
at each noise case against the results from the observed mixtures, spectral subtrac-
tion technique, baseline IVA and extended IVA; H(1) was selected the best post-filter
for all noise conditions. We excluded from the selection spectral subtraction post-
filtering, since it is computationally much more complex than the post-filter solutions
and does not present substantially better performance. In addition, we should note
that the selection of best post-filter in each case is not definitive; as we stated before,
in many cases the results between several post-filtering solutions were very similar,
which suggests that the differences between these post-filters are not statistically
significant.
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Figure 9: SDRi results of extended IVA (with spectral subtraction), and extended IVA (with spectral subtraction) with
post-filters H(1), H(2) and H(3); and extended IVA (with spectral subtraction) with spectral subtraction post-filtering.
Results for three street noise environments: (a) cafeterias, (b) squares and (c) a subway car, and the average over the three.
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Figure 10: fwSNRseg results of extended IVA (with spectral subtraction), and extended IVA (with spectral subtraction) with
post-filters H(1), H(2) and H(3); and extended IVA (with spectral subtraction) with spectral subtraction post-filtering.
Results for three street noise environments: (a) cafeterias, (b) squares and (c) a subway car, and the average over the three.
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Figure 11: SDRi results of extended IVA (with spectral subtraction) without and with post-filter (best post-filter for each case);
and observed mixtures, spectral subtraction technique and baseline IVA for reference. Results for three street noise environments:
(a) cafeterias, (b) squares and (c) a subway car, and the average over the three.
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Figure 12: fwSNRseg results of extended IVA (with spectral subtraction) without and with post-filter (best post-filter for each
case); and observed mixtures, spectral subtraction and baseline IVA for reference. Results for three street noise environments:
(a) cafeterias, (b) squares and (c) a subway car, and the average over the three.
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8 Discussion
Three main points of discussion are presented in this section, based on the goals
we had and which were introduced in Section 1: first, the improvement of IVA’s
performance by using new, improved source models for speech and noise separation
(Section 8.1); second, to diminish the diffuse noise reduction limitation of IVA with
post-processing solutions (Section 8.2); and third, the selection of suitable measures
for evaluation of the method proposed (Section 8.3). In addition, we discuss in
Section 8.4 about possible future directions of our research.

8.1 Improving IVA with new source models

In the present work, we extended IVA methods with a new, improved source model
for speech and noise separation. The proposed approach of IVA is referred as ex-
tended IVA, and the source model employed is a time-frequency-variant Gaussian
distribution. With this model, we aimed to overcome the limitations for speech and
noise separation tasks of traditional source models used in IVA, and as a result im-
prove the source separation performance of IVA. Even though this work focuses on
IVA for speech and noise separation (specifically, diffuse noise), we also ran a pre-
liminary experiment on a speech separation task, where the signals to be separated
consisted of mixtures of two speech signals.

A signal originating from a speaker is considered a localized source, that is, a
source that originates from an specific direction. Localized sources are the optimal
source signals that IVA can handle, since IVA is basically performing spatial filter-
ing: it filters the arriving signals according to the location on the space. In contrast
to localized sources, diffuse noise originates from many directions, and therefore it
is a difficult task for IVA. What we pretended with the speech separation exper-
iment was to validate the extended IVA approach first under the best conditions
for IVA, with localized sources. If the results from this experiment would have not
proved successful, there would have not been reason to continue further with the
approach proposed. In addition, in the speech separation task, extended IVA used
oracle source models, meaning that the true sources were employed for comput-
ing the source model. We did this to test extended IVA without dependency on
the performance of the support method used to compute the source variances. In
other words, we avoid the situation in which extended IVA might fail because of
the support method but not because of the extended IVA approach itself. Once
this experiment was performed with success, we could evaluate extended IVA un-
der more challenging conditions, in which speech had to be separated from diffuse
noise. We evaluated extended IVA first using oracle source models that showed the
upper limit performance of the method for this condition. Finally, extended IVA
was evaluated in a more realistic situation, using source variances computed with a
support method.

As we said, extended IVA was evaluated with two tasks: a speech separation task
with two-channel mixtures of two speech signals and a speech and noise separation
task with two-channel mixtures of speech and diffuse noise. Comparing the results of
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extended IVA and baseline IVA from both tasks validated our hypothesis that IVA
source separation performance improves when improved source models are employed.
Our results are consistent with the work presented in [39]: the proposed IVA method,
which uses a time-varying source model, performs better than the baseline IVA
method used for comparison. In addition to this, our results for the speech and
noise separation task can be directly compared to the SISEC 2013’s results6 of the
same task and data set; three methods were evaluated for this task in SISEC 2013.
The comparison is based on SDRi results, since this is the common metric of both
works. The results obtained with extended IVA (with REPET SIM or spectral
subtraction), at optimal frame length, are comparable to those from the methods
evaluated in SISEC 2013; in average, the performance of extended IVA is close to
the performance of the SISEC 2013’s method ranked as second best. Nevertheless,
the performance of extended IVA with oracle variances, at optimal frame length,
is close to the performance of the best method; this shows clearly the potential of
extended IVA.

Finally, we comment on the significance of the results of the tasks in this work.
The datasets of the speech separation and speech and noise separation tasks con-
sisted of 48 and 9 mixtures, respectively. Given the limited amount of samples
tested, specially in the speech and noise separation task, one may conclude that the
results obtained cannot be generalized to other noise conditions.

8.2 Post-processing for diffuse noise reduction

A second goal of this work was to further improve the performance of extended
IVA. For that, we applied post-filtering to the speech outputs of extended IVA.
We hypothesized that the post-filtering would reduce the diffuse noise that IVA
is not capable of removing because of the multi-directional nature of this kind of
source signal. Our hypothesis is based on previous research in which applying post-
filtering to a beamformer has proven to reduce the diffuse noise remaining on the
output signals of the beamformer [15]. We evaluated extended IVA with three
different post-filter solutions, and also with spectral subtraction post-filtering. The
results indicated that the performance of extended IVA improved with post-filtering.
Informal listening of the audio samples indicates there is a noise reduction with the
post-filtering, as expected, at the cost of some distortion added to the samples.
This is reflected also in the SDRi and fwSNRseg results, since the post-filtering
improvement is more prominent with the SDRi metric. In conclusion, these results
confirm our hypothesis. Besides, they are in line with previous works on the topic [15,
47], in which applying post-filtering after the multichannel source separation system
increases the noise reduction from the source estimates. The improvement obtained
by applying post-processing after extended IVA is also reflected when comparing our
results with SISEC 2013’s results for the same task; as we discussed in Section 8.1,
the results from extended IVA without post-processing are in average close to the
results obtained with the second best ranked method in SISEC 2013, while the

6http://www.onn.nii.ac.jp/sisec13/evaluation_result/BGN/homepage_BGN_dev.html

http://www.onn.nii.ac.jp/sisec13/evaluation_result/BGN/homepage_BGN_dev.html
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performance of extended IVA with post-processing is in general superior to the
performance of the second best method.

Out of the three post-filters, the Wiener post-filter H(1) showed the best per-
formance. Compared to H(1) performance, spectral subtraction post-filtering got
similar results for SDRi metric and performed better for fwSNRseg. However, in
extended IVA with spectral subtraction post-filtering we have to compute spectral
subtraction in two different stages: first, spectral subtraction’s source estimates are
computed for the source model of extended IVA, and then when spectral subtrac-
tion is computed for post-processing. In contrast, extended IVA with post-filter
H(1), H(2) or H(3) only needs to compute spectral subtraction in the first step, but
the post-filter does not involve spectral subtraction. Therefore, the post-filters have
the advantage that they are computationally less complex.

8.3 Evaluation measures

The last goal of this work was to select suitable measures to evaluate accurately the
performance of the method proposed. We started our work with one of the standard
metrics for source separation: an energy ratio, SDRi [59, 60]. Some early exper-
iments evaluated with SDRi, compared to audio listening of the actual samples,
made us realize that this metric did not reflect much about the perceptual quality
and focused more on the interference present in the enhanced signal. As a result, we
decided to use also another measure that would emphasize more perceptual aspects
of the signals, and it could complement the evaluation with SDRi. We chose fwS-
NRseg as a suitable measure because of its high correlation to subjective listening
tests [61].

The results of the experiments with these two metrics, matched with informal
audio listening, proved that using both measures was important for the proper eval-
uation of the method. Each one of the two metrics focused on different aspects of
the signal. In consequence, the method that was the best for one metric may not be
also the best for the other. That was the case, for example, when comparing spectral
subtraction and extended IVA: on average SDRi favoured spectral subtraction over
extended IVA, but in case of fwSNRseg extended IVA obtained better results.

8.4 Future work

In the present work, we obtained improvements with extended IVA over baseline
IVA; even when the source models are provided by simple support methods like the
ones used, REPET SIM and spectral subtraction. However, it must be noted that
even though in our work the source variances were calculated as Equation (19), based
on source estimates from a support method, they do not need to be determined
in this manner. In fact, since the source variances are computed as proposed in
Equation (19), extended IVA can be used in speech separation tasks only for the
oracle case in which the true sources are known. This is because the support methods
that we employ are only able to separate a target signal from a background signal.
Therefore, other approach for computing the source variances could be used; one
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that does not require obtaining source estimates from a support method and as a
result, extended IVA could be employed in speech separation without needing oracle
information.

Other possible next step for research in extended IVA could be using other sup-
port methods that are more sophisticated than REPET SIM or spectral subtraction.
For example, methods like NMF [65] or deep neural networks (DNN) [66] could be
good candidates for obtaining better source estimates. This should lead to better
results of extended IVA, since our results of extended IVA with oracle variances have
proved that there is still margin for improving the performance of extended IVA.
With regards to the current support methods employed, it must be mentioned that
extended IVA with spectral subtraction was also evaluated on CHiME dataset [67],
and the results of extended IVA did not turn out to be successful. CHiME dataset
consists of noisy speech and the noise component is often non-stationary. Spectral
subtraction technique works under the assumption of stationary noise, and therefore
it fails to give satisfactory source estimates for non-stationary noise. Therefore, this
suggests that the negative outcome obtained in this experiment was a result of the
bad performance of the support method and not of extended IVA; reinforcing the
idea that using other support methods would be beneficial for extended IVA, since
they could also make extended IVA more versatile if they get good estimates for
varying real-world noisy conditions.
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