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PHYSICAL REVIEW B VOLUME 45, NUMBER 18 1 MAY 1992-II

Wave acoustics for propagation of ultrasound along a vortex array in super8uid He- A

E. B.Sonin, K. Torizuka, J. M. Kyynariinen, and J. P. Pekola
Low Temperature Laboratory, Helsinki Uniuersity of Technology, 02150 Espoo, Finland

G. K. Tvalashvili
Institute ofPhysics of the Georgian Academy ofSciences, 380077 Tbilisi, Georgia

(Received 29 April 1991;revised manuscript received 29 January 1992)

A wave-acoustics theory has been developed to describe the propagation of zero sound parallel to vor-
tex lines in rotating 'He-A. We show that a diffraction "shadow" is formed in which the wave amplitude
is suppressed by interference around vortices. This phenomenon contributes to the experimentally ob-
served effect of rotation on the sound amplitude and exceeds the attenuation at large core radii. The
dependence of the diffraction contribution on the angular velocity changes drastically at the transition
from vortices with a finite core to coreless vortices when the magnetic field is decreased to zero. We
derive conditions for the applicability of the effective-medium theory and the classical geometrical
acoustic method in describing sound propagation along vortices.

I. INTRODUCTION II. EXPERIMENT

Ultrasonics is helpful for studying order-parameter col-
lective modes' in the superfluid phases of He and struc-
tures of vortices in the rotating superAuid. For interpre-
tation of experiments, an effective-medium approach,
with parameters of the fIuid averaged over the periodical
vortex array or, alternatively, a geometrical acoustics
method have been used. Our paper develops an acoustic
wave theory for interpretation of ultrasonic experiments
in rotating He-A. We consider the phenomenon of
sound wave diffraction around vortex cores, and explain
the observed drastic change in the character of u1-

trasound propagation along vortices when the magnetic
field is decreased to zero. Our theory provides another
length scale (diffraction length d) for sound propagation,
which is important when it is larger than the size of the
vortex core.

A remarkable property of He-A is the possibility of
coreless vortices in which V Xv, is not confined to a core
of definite size, unlike in He II or in He-8. In contrast
to vortices with a hard (coherence length go=10 cm)
or a soft (magnetic length gH

) 10 cm) core, there is, in
this case, no length scale besides the size of the vortex cell
(vortex lattice constant b =10 cm). This structure may
exist only in very low magnetic fields: H ((Hd, where
Hd-—3 mT is the dipolar field. Especially such a vortex
can expand over the whole vessel in the limit H ~0. In a
rotating Quid, when the vortex density is fixed by the
solid-body rotation condition, each coreless vortex occu-
pies the whole cell in the vortex array. In the wave-
acoustic theory presented here, we discuss diffraction of
sound by vortices with and without a core, and show that
ultrasound is a suitable probe to detect the coreless vor-
tex. In fact, we have experimentally observed the con-
tinuous crossover between the two types of vortices in
low magnetic fields.

Our experimental setup has been described in detail
elsewhere. The sound cell consists of two X-cut quartz
crystals, L =4 mm apart, and the cylindrical volume be-
tween them has a diameter of 6 mm. Pulses of ultrasound
at odd harmonic frequencies of 8.9 MHz, 12 psec long,
were transmitted parallel to the magnetic field H and the
axis of rotation Q. The propagation of ultrasound along
H in liquid at rest provides a convenient reference level
for the received signal in a rotating Quid. When H »Hd,
I is normal to H everywhere in the cell. Any deviation
from this "planar" texture contributes to the sound sig-
nal, and thus provides a probe for studies of the vortex
structure.

Figure 1 depicts the dependence of the received sound
amplitude on the angular velocity 0 in various magnetic
fields and for two frequencies, f=26.8 and 44.7 MHz.
Our procedure to obtain the data was as follows: Initial-
ly, a magnetic field Ho »Hd was applied to determine
the amplitude At ~ exp( ajL). The fiel—d was then swept
from Ho to the value H of Fig. 1. Next the He sample
was accelerated to the desired 0 and the sound amplitude
A(Q) in the equilibrium rotation state was recorded.
Figure 1 shows the relative change —6 A /A ~
:——[A(Q) —At]/Az, which is a function of Q and H.
We use amplitude A (0) rather than attenuation a(Q) in
the analysis of the data, since in general the signal A,
directly calculated in our theory and measured in an ex-
periment, cannot be presented by just one attenuation pa-
rameter a in the form exp( —ctL).

The main feature of Fig. 1 is the smooth evolution of
the 0 dependence of —4A/A~ with decreasing field.
When H &Hd, —AA /A~ increases linearly with 0 at
smail 0, whereas when H =0, —6 A /A ~ has a nonzero
value at all 0, and depends only weakly on Q. This indi-
cates evolution of the I texture: in large fields, the varia-
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2(a) and 2(b), respectively, as functions of 8, where co~ is

the zero sound velocity in the normal Fermi-liquid phase.
The MH texture corresponds to 0=0 at the center and
8=m. /2 at the perimeter of the chamber. In rotating He
the sound velocity c(r) and attenuation u(r) are periodic
functions of the position r, since the direction of I varies
periodically on the xy plane.

In the effective-medium approach the wave propaga-
ting along the rotation axis (the z axis) is assumed to be a
plane wave over the whole sound cell. Then the relative
change of the signal is given by

hA = l —exp( aL )—,
Aj

where the attenuation parameter a taking into account
the effect of vortices is calculated by averaging the at-
tenuation a over the unit cell of the vortex lattice:
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a= J [a(r) —a~]dS . (4)

The factor exp( ajL) d—etermines attenuation of the
plane wave in the perpendicular l texture as well and it
cancels out when we derive the expression for the relative
signal —b, A/Aj. At a low rotation velocity (r, «b),
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FIG. 1. Magnitude of the measured relative change in the

amplitude of ultrasound ( —hA/A~) vs the angular velocity

(Q} at p =29.3 bars with two different frequencies: (a) f=26.8

MHz at the relative temperature T/T, =0.9 and (b) f=44.7

MHz at T/T, =0.85. The symbols correspond to different mag-
netic fields employed: (a) (X), H=4 OmT; (6},. 1.6 mT; (0},
1.2 mT; (0), 0.8 mT; (), 0.5 mT; and (+), H=O; (b) ( X ),
H=3.4 mT; (k), 2.2 mT; (0), 1.4 mT; (), 0.7 mT; and (+),
H =0. The lines through different sets of data points were used

to obtain values of the extrapolated slopes ( —hA/A~)/0 in

Fig. 4. Most of the data in (a) are from Kyynarainen et al. (Ref.
2, Fig. 12).
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tion of I around each vortex takes place in an area much
smaller than the unit cell in the vortex array, whereas in
zero magnetic field nonsingular vorticity spans the whole
unit cell even at the lowest Q. Especially at Q~O, a
Mermin-Ho (MH) texture occupies the whole experi-
mental chamber.
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III. SIMPLE APPROACHES: EFFECTIVE MEDIUM
AND GEOMETRICAL ACOUSTICS
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and

a=aIIcos (8}+2a,cos (8)sin (8)+ajsin (8}

c =co+ —AcIIcos (8)—2hc, cos (8)sin (8)
—dc~sin (8), (2)

In anisotropic He-A, sound attenuation a and velocity
c can be written as

FIG. 2. (a) Attenuation and (b) relative velocity of zero
sound. Dashed and solid lines correspond to f=26.8 MHz and

T/T, =0.9, and to f=44.7 MHz and T/T, =0.85, respective-
ly. The values of attenuation and the velocity parameters were
computed by Wojtanowski (Ref. 10). Here 8 is the angle be-
tween the sound-wave vector k and the orbital vector I in the
vortex texture. In (a) the scale at left is for 26.8 MHz and at
right for 44.7 MHz; p =29.3 bars for both cases.
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Iq I

=
1/2

hck
0

Cp

dq Ac 1 ko2

dr cp qr,
Here rp is the position vector on the transmitter plane
where the ray is emitted, ko=co/co is the magnitude of
the wave vector of the plane wave propagating in the
fluid at rest with sound velocity co, and bc(r) =c(r)—co.
Since q is of the order of the inverse of the diffraction
length d which is —QL /ko, as will be discussed in Sec.
V, one may use the quasiclassical theory if

r2 '2
(7)

kpL cp

But the procedure employed in Ref. 2 did not take into
account all classical rays coming to a point on the re-
ceiver plane, but only the extremal ones which were emit-
ted normally by the transmitter plane. In fact, trajec-
tories from the area of the transmitter plane within a
scale =(Idq/drI) 'i contribute to the signal at a point
on the receiver. It is possible to restrict oneself to the ex-
tremal trajectories when this scale is smaller than the
scale r, over which the medium parameters vary consid-
erably. This gives the inequality

2
Ac

co

1))
r, k L

a=8,a(r, /b ), where b,a is the difference of the attenua-
tion inside and outside of the core, r, is the core radius,
and b is the lattice constant which is of the order of the
intervortex distance. At a high rotation velocity when
the vortex core occupies most of the unit cell (b -r, ) a is
of order Aa. However, one cannot expect that such a
simple approach is always valid since deviations of the
wave front from a plane develop when sound propagates
from the transmitter to the receiver.

In order to include the effect of deviation from a plane
wave, the geometrical acoustics methods were used in the
preliminary analysis of our ultrasonic experiments. In
such a picture the phenomenon of diffraction manifests
itself as interference of different rays at points in the re-
ceiver plane. The rays have been determined from the
wave equation for the sound pressure p (attenuation is
neglected):

d p(r, z, t) —V [c (r)Vp(r, z, t)]=0 .
at2

To determine the regime where this method is valid, one
may impose the standard condition d X/dr « 1: the
wavelength A, must not vary considerably over a distance
of order A, . However, an important feature of our
geometry is that the wavelength which satisfies this con-
dition is determined, not by the wave-number component
k, along the rotation axis, but by the wave number

q=Qco /c(r) —k, on the xy plane. Therefore, the re-

quirement for the validity of geometrical acoustics is

Idq/dr I «q . This is because the parameters of the
medium vary only across the xy plane. For the rays emit-
ted normally to the transmitter plane k, =co/c(ro) and

One cannot satisfy both conditions, Eqs. (7) and (S), un-
less the core radius r, exceeds the diffraction length d.
All shortcomings of the aforementioned simple ap-
proaches have prompted us to undertake a more general
analysis of the problem as presented below.

IV. WAVE ACOUSTICS IN VORTEX ARRAYS

When a wave is propagating along the rotation axis
(the z axis), it is natural to look for a solution of the wave
equation as a sum over the Bloch functions in the center
of the Brillouin zone of the vortex lattice. We thus write
for the sound pressure p at frequency f=co/2n.

p(r, z, t ) =exp( i ~—t ) g A„f„(r)exp(iK„z ) . (9)

After substitution of Eq. (9) into the wave equation, Eq.
(5), one sees that the functions f„(r), periodic on the xy
plane, are solutions of equations

—V f„(r)— V[bc(r)] Vf„(r}c(r)

2+ ko —,f„(r)=q„'f„(r) . (10)
c(r)

—V f„(r)+U(r)f„(r)=q„f„(r) .

The "potential"

U(r)=2k' " (12)

is smallest when the sound velocity is at its minimum.
The solution of Eq. (11}for a wave propagating over a

chamber of length L is obtained as follows: The trans-
mitter at z =0 sends a plane wave, which means, assum-
ing unit strength for the emitted wave, that the ampli-
tudes A„of harmonics are the coeScients of the expan-
sion for unity. If f„(r) are orthonormalized, then

1= g A„f„(r} (13}

and

A„=J f„*(r)dS . (14)

Here integration is carried over the area S of the unit
vortex cell. The receiver at z=L detects a signal aver-
aged over this plane. The averaged pressure p at the re-
ceiver [the ratio of the averaged pressure to the pressure
exp(ikoL isn't ) of the plane w—ave in the fluid at rest] is

Here V is spatial gradient on the xy-plane, q„=kp —E„.
The eigenvalues q„are determined by periodic boundary
conditions for the unit cell of the vortex lattice. The
periodic perturbation in Eq. (10) is due to the two last
terms on the left-hand side. However, the first of them
will be neglected here since its effect is proportional to
the parameter (b /cc )o(1/q„r, ), which is small for cases
under consideration. Equation (10) is then similar to the
equation of a quantum particle in the field produced by
the space variation of the sound velocity, viz. ,
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p= g A„exp[i(K„—ko)L]—f f„(r)ds1

S

= gp„exp[i(K„—ko)L], (15)

V. WAVE ACOUSTICS FOR VORTICES
WITH A CORE

We shall further approximate the real cell of the non-
axisymmetric vortex array by the axisymmetric Wigner-
Seitz cell of radius b (called the lattice constant earlier
and hereafter), determined by Q:

where the weight of the nth harmonic

p„= I
A„l'IS

is introduced. The experimental quantity —b A /A j is to
be compared with 1 —

lp l.

ic. However, keeping only n =0 in the sum causes no
effect other than some variation in the phase of the re-
ceived signal, the amplitude remaining the same as for
the fluid at rest. But the signals from different harmonics
arrive at the receiver with different phases, and the in-
terference between them may result in a variation hA of
the signal amplitude. In order to find the weight of the
harmonics for n & 0 in the sum, Eq. (15), the asymptotic
expressions of the Bessel functions at large arguments qb
were used to calculate A„. We thus obtain

n'U r, [2—q„r, ln(1/q„r, )]
(21)

2q„b [2—q„' r, ln(1/q„r, )] +(n Ur, )2

For small Q (large b) the amplitude variation is propor-
tional to 0 and is determined by the amplitudes of higher
harmonics. The sum of these contributions is well es-
timated by the integral over q„=n.n /b:

K K0=
2~b2

=1—Re(p) (22)

Here ~= vh /2m 3 is the circulation per unit cell, where v
is the number of circulation quanta, and m3 is the mass
of a He atom. Only axisymmetric harmonics should be
taken into account, and n is a radial "quantum number. "
For vortices with a core it is assumed that the variation
of the sound velocity is restricted to the core region,
whose radius is considered as r, . A steplike simple model
may be used: c(r)=co for r &r„and c(r)=co+bc for
r &r, where hc is a constant. The harmonics are then
given by the zeroth-order Bessel functions:

D„JO(q'„r ) for r & r,
f„(r)~ ' (18)Jo(q„r )+B„Yo(q„r) for r & r, .

Here q„' =q„—U=q„—2(bc/co)kc. The factors D„and
S„are determined from the conditions of continuity of
f„(r) and f„'(r) at r=r, . Using expansions of Bessel
functions at small arguments q„'r, and q„r, one obtains

~Ur,

2[2—q„' r, ln(1/q„r, )]

2 —q„r, ln(1/q„r, )

2—q„' r, ln(1/q„r, )

(19)

The eigenvalues q„can be determined from the condi-
tion f„'(b)=0 at the boundary of the Wigner-Seitz cell,
imitating the periodic boundary condition for the real
vortex lattice. For the basic harmonic, i.e., for the first
term in the sum, the eigenvalue is

(1 /)bQ[2 in/( br,l)] for ln (blr, ) »2/Ur,
(20)

(r, lb)v'U for ln(blr, ) «2IUr, .

We then find that p0=1. Together with the sum rule
g„p„=1, this means that the total weight of the higher
harmonics is rather small and, therefore, that the energy
of the sound wave is carried mostly by the basic harmon-

2 1 co
IU =r, exp 2

=r, exp (23)

characterizing the potential inside of the core. If d &&IU,
the sound wave does not penetrate into the core and the
approximate formula for the signal variation is

[1 cos(q L l2k—o)]—b A/Aj = dqb2 q (lnqr, )

mI.

b ko[ln(L/2kor, )]
(24)

The impenetrable-core model is valid both for repulsive
(bc & 0) and for attractive (hc &0) potentials in the core.
In the latter case, lU is the characteristic linear dimension
of the localized state which corresponds to the lowest
harmonic, but its contribution is not important compared
to that of continuum states when the impenetrable-core
model is valid. In the opposite limit of a weak core po-
tential, when q =Qko/L exceeds 1 llU, the contribution
of rotation to the signal amplitude is

U2 4
—b. A /A i = f dq [1—cos(q L /2k)]o

2b2 0 3

2

Lk3 4 (25)
4b2 0 c

In the limit b ~ ca (Q~O), according to the integral ap-
proximation for the sum of Eq. (15), the signal —5A /A ~

is linearly increasing as a function of Q.

=—f dq p(q )[1—cos(q L /2ko) ].
7T 0

Equation (22) introduces a new spatial scale which is
crucial for the present analysis: the diffraction length
d = (IL /ko. The wave numbers q —1/d are relevant for
the integral in Eq. (22). The effect of the core depends on
the ratio between d and another spatial scale
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Length scale

TABLE I. Important length scales. Hd-3 mT.

Symbol Value

Sound path length
Sound wavelength
Diffraction length
Vortex-lattice constant
Dipolar length
Magnetic length
Radius of a vortex core

L

d=+L/ko
b =&~/2mB

d

kH
—4IId /H

r, =max(gd, gH )

0.4 cm
-2X 10 cm

—10 cm
—10 /&0 cm (0 in units of rad/s)

—10 cm (29 bars)
-2.5X10 /H cm (29 bars, H in units of mT)

The calculated decrease of amplitude was obtained
without including attenuation terms in the wave equa-
tion, and it results only from interference of a large num-
ber of harmonics at the receiver. This phenomenon may
be considered as diffraction of the sound wave by the cy-
lindrical vortex core.

A more detailed analysis of the signal distribution over
the receiver at z =L shows that a shadow, or a diffraction
region with a characteristic linear dimension
d =QL /ko —10 cm arises around the core, where the
signal is suppressed, down to zero for the impenetrable
core. It is natural to expect that the signal variation will
be proportional to 0 as long as the diffraction regions of
vortices do not overlap, i.e., when b )&d. At small b ~ d,
the distance between eigenvalues, q„+,—q„=~/b be-
comes larger than a typical q=d ' determining the
diffraction effect, causing the integral approximation of
the sum to become poor. In the limit b «d, the whole
sum is reduced to the first term and diffraction disap-
pears. It is thus expected that at b ~d the amplitude
variation —6 A /A ~ vs 0 deviates from a straight line
with a constant slope and drops to zero after a few oscil-
lations. One should remember, however, that we have
discussed the variation of the signal due to diffraction
only, having neglected attenuation in the bulk liquid. In
the case of pure diffraction, the energy carried by the
sound wave is not lost in the bulk, but is distributed
among numerous interfering harmonics leading to non-
vanishing —6 A /A ~.

Concluding this section, we refer to Table I where im-

portant length scales are given. It shows that diffraction
on vortices is relevant for ultrasound experiments on
He- A vortices.

r 4ao=ha
b U(0)r, ln(b/r, )

2 &o 0,
2

=ha QC

b kor, ln(b/r, ) bc lnQ
(27)

then differs from the result of the efFective-medium
theory by the factor in the large parentheses which be-
comes small for the strong core potential. This suppres-
sion occurs as long as b exceeds lU.

Attenuation is taken into account assuming that it does
not influence the form of the harmonics f„essentially.
We expect a to be weak if its contribution to the sound
wave spectrum,

co =c (k 2ik ba—), (28)

is small, i.e., if ba «k =ko. However, in our geometry
the wave propagates normally to the plane at which the
parameters of the liquid vary. Therefore, a stronger con-
dition is necessary to neglect the attenuation when solv-

ing the two-dimensional wave equation on the xy plane
for the harmonics f„:the attenuation contribution, pro-
portional to hako, must be small compared to the poten-
tial U. Together with Eq. (12) this gives an inequality

effective-medium theory (see Sec. II). On the other
hand, if the core potential is strong (d » IU), the sound
wave inside is strongly suppressed (it is repelled from the
core), attenuation in the core affects the signal only mar-
ginally, and its effect vanishes altogether in the limit of
the impenetrable core (lU —+0). The basic harmonic at-
tenuation

VI. ATTENUATION IN WAVE ACOUSTICS ha «(Ac/co)ko . (29}

In the wave-acoustic theory presented here sound at-
tenuation in the bulk liquid may be included by introduc-
ing the factor exp( a„L) for each h—armonic in the sum
of Eq. (15) where

a„=f [a(r) —a~]~f„(r)~ dS (26}

takes into account the effect of vortices. The most impor-
tant term is ao since the weight of the basic harmonic
considerably exceeds the weights of the higher com-
ponents. When the potential inside the core is weak
(d « lU), the basic harmonic fo is nearly constant over
the xy plane and the attenuation parameter ao coincides
with the attenuation parameter a =b ar, /b of the

If this condition is not valid one should include the at-
tenuation terms when solving the equations for harmon-
ics. But then one must deal with a problem of the wave
equation with a complex-valued potential.

In Fig. 3 the dependence of the signal on the angular
velocity 0 is shown for different attenuation parameters.
The curves have been calculated numerically on the basis
of the simplified core-structure model given above, but
the other approximations of the solutions were not made.
The analytical expressions for the strong potential [Eq.
(24)] or for the weak potential [Eq. (25)] are not accurate
enough for the parameters of the core to correspond to
the experimental curve at f=26.8 MHz and H =0.5 mT
in Fig. l. The attenuation parameter was varied from
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zero up to b,a=1 cm ', corresponding to the data in Fig.
2. At zero attenuation two diffraction maxima are seen
on the calculated curve up to 0=1.6 rad/sec. Attenua-
tion removes the second maximum and makes the first
much weaker, although the diffraction contribution to
the slope of the —6A /A ~ vs Q curve remains consider-
able, in comparison with the attenuation effect. The
curves in Fig. 3 were not calculated to higher angular ve-
locities since the model is valid only if the core radius r,
is smaller than b.

FIG. 3. Dependence of —hA/A~ on Q, computed in the
acoustic-wave theory for the core radius r, =50 pm and for the
experimental conditions of Fig. 1(a), with H=0. 5 mT. The
thick solid line is the pure diffraction contribution neglecting at-
tenuation. The dashed and thin solid lines represent the total
value of —AA /A j when attenuation inside the vortex core is

increased by ha=0. 5 cm ' and by ha=1 cm ', respectively.
The latter case should best correspond to the experimental data
at H=0. 5 mT. Parameters employed in the calculation were
bc/co-—10 'and v=1.

r, ~ g~ cr: 1/H". On the other hand, the attenuation con-
tribution to the slope, which may be determined in the
case of a weak core potential from the effective-medium
theory, is expected to be proportional to r, ~ g~ ~ 1/H~.
It is seen from Fig. 4 that the experimental curve for
f=26. 8 MHz [data from Fig. 1(a)] and for not too strong
magnetic fields corresponds to the 1/H law rather well.
However, the curve for f=44.7 MHz [data from Fig. 1

(b)], with the variation of attenuation at the xy plane
about ten times stronger, lies between the 1/H and
1/H laws, corresponding to the diffraction slope and the
effective-medium slope, respectively. It should be men-
tioned that the condition of Eq. (29) is violated because of
strong attenuation when f=44.7 MHz. Thus the effect
of diffraction can be clearly revealed only at f=26. 8
MHz [Fig. 1(a)].

Using the experimental values of the slope at f=26.8
MHz and the theoretical expression of Eq. (25), one can
find the core radius by a fit to the experimental data.
This gives values of r„not much different from the mag-
netic length g& (1.4' ~ r, ~ l.8'), which confirms that
the diffraction contribution to the experimental slope is
strong, despite the fact that a maximum in the —5 A /A ~

vs 0 curves was not observed experimentally. In
stronger magnetic fields, when H~Hd, we expect that
r, =gd and that the slope should become independent of
H. This explains the deviation from the 1/H law at
strong fields (H ~ 2 mT-Hd ), but the range of the exper-
imental magnetic fields is not sufficient to follow perfectly
such a crossover.

10-

3

VII. COMPARISON BETWEEN EXPERIMENTAL
RESULTS AND WAVE-ACOUSTIC

THEORY OF CORE VORTICES
0.3

cj
I 0

«H4-

!H
The strong dependence of the diffraction signal on the

core radius [the r, law, see Eq. (23)] makes a direct com-
parison with the experimental signal difficult: any inac-
curacy, inevitable when determining r, is strongly
amplified. Therefore, primarily we prefer to compare the
power laws. As a second step, when the power law has
been found, we compare quantitatively the values of r,
from the theory of vortices with soft cores with the
values of r, providing the best fit to the experiment.

In order to check how strong the effect of diffraction is
on the linear slope of the curve —AA /A~ vs 0 at small
0, the values of the slopes for the curves of Fig. 1 were
plotted as a function of 1/H on a log-log scale in Fig. 4.
It is expected that the core radius r, does not differ sub-
stantially from the magnetic length gH= gdHd/H, if r, '

exceeds the dipole length g„=10 cm. Such values of r,
show that the experiment is better described in the case
of a weak core potential and, according to Eq. (25), the
slope due to diffraction should be proportional to

0.03

0.01
0.1 0.3 10

FIG. 4. Initial slopes ( —AA/A~)/0 of the experimental
curves in Fig. 1, plotted as functions of 1/H on a log-log scale at
f=26.8 MHz (lower set of points) and at f=44 7MHz (upper.
set). The horizontal error bars correspond to the experimental
inaccuracy in the value of H, which is negligible except at the
lowest fields employed. The vertical error bars show the
difference between the values of the slopes, obtained from the
experimental points in Fig. 1 at the smallest 0 (0,o) and from
the extrapolation of smooth curves to 0=0, drawn through
many experimental points (C',) in Fig. l. The diffraction slope
( ~ 1/H } and the effective-medium attenuation slope ( ~ 1/H )
are shown for comparison; the location of these lines in the
figure is arbitrary.
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VIII. CARELESS VQRTICKS

Let us consider the propagation of sound waves along
coreless vortices. One of their distinctive features is that
there is no other characteristic length scale except b.
When b increases the space distribution of c(r) trans-
forms conformly. The sound wave has a tendency to lo-
calize inside the region with minimum velocity, and we
consider the case when the velocity is smallest on a cylin-
drical surface of radius r around the axis of the
Wigner-Seitz cell, i.e.,

with a large number of vortices.
The relevant harmonics contributing to the integral in

Eq. (34) correspond to large quantum numbers
n =q I ~ b, and may be described quasiclassically using
the geometrical-acoustic theory. The linear dimension of
the region they occupy is on the order of 1&n =ql, and
it should be smaller than Ar, which is of order b. The
latter condition assures that all relevant harmonics are lo-
calized within the well. Using Eq. (32) for 1 and bearing
in mind that hr =b and that the relevant q's are inversely
proportional to d, this condition leads to the inequality

b,c(r) =Aco(r r) —/2(b, r ) (3O) koL Aco/co )) 1 (35)

f„~H„
r —r (r —r )2

l
exp

j'2

(31}

Here H„(x ) are the Hermite polynomials of nth order
and the length

1/2 1/2

I= hr co

ko waco
(32)

determines the linear dimension of the ground state
which is proportional to v'b and is, therefore, small com-
pared to b at large lattice constants. The weight of the
different harmonics at the bottom of the well is (only even
harmonics n =2m contribute to the sum)

The parameter hco shows the scale of the sound velocity
variation within a vortex cell and Ar describes the width
of the annular potential well for the sound wave. We as-
sume that r and hr are on the order of b and increase
linearly with it. We shall see later that for a large b the
sound wave is localized at the bottom of the potential.
This justifies the use of a parabolic form for the well, and
Eq. (11) gives harmonics similar to eigenfunctions of the
linear quantum oscillator:

q„=&2n + 1/l,

Approximating the sum by an integral is valid until
typical values of q=d ', contributinj. to the integral,
exceed the distance -1/(ql )=QkoL(co/hco)/br be-
tween eigenvalues of the wave vectors in the potential
well. This imposes the inequality

b -b, r &&L+bco/co . (36)

pa=

(37)

In contrast to Eq. (34}, this result cannot be obtained
from the quasiclassical theory since it refers to the
ground state of the harmonic oscillator, which is poorly
described by quasiclassics. Deriving Eq. (37), we as-
sumed that the ground-state size I is smaller than the in-
tervortex distance b. This is valid if

1/2

At smaller b &&L+b,c /0c Othe sum is approaching the
value of the first term related to the ground state in the
potential well, since other terms vanish owing to the fast
variation of their phases:

4&mr l 4&m.r gr co

ko Aco

(2m)! r l 4 r 1

2( —1) 2 2 - 22 (m!) b v'm b

1 cob»
ko Aco

(38)

(33)

and by replacing the sum in Eq. (15) by an integral one
obtains the relative amplitude of the received signal

4r I
~p ~

= f dq exp( qL/2ko)—

4V2mr 1 ko

b

4&2rrr hr
b2

1 co

koL waco

1/2

(34)

Since r -Ar ~b, the signal amplitude does not depend
on b (i.e., on Q). A distinctive feature of the propagation
of ultrasound along careless vortices is that at Q & 0 (even
in the limit Q~O) the signal differs from that at Q=O.
When rotation is started, the signal amplitude jumps to a
new value during formation of a periodic vortex array

At larger 0 when this condition is violated, the sound ap-
proaches a plane wave and the wave-acoustics effects
should vanish.

Therefore, in the case koLhco/co))1, our analysis
presents the following picture. At small
Q (b &)L+b,co/co), the wave is localized in a narrow
region around points with minimum sound velocity (gui-
dance effect). Because of the interference between tightly
lying harmonics, the signal at the receiver for the rotat-
ing liquid is strongly suppressed, in comparison to the
signal from Quid at rest, and is on the order of the small
parameter +co/Aco/QkoL (

—hA /A~ is about unity).

When Q increases in the interval L Qb, co /co
&)b )&(I/ko)+co/bco, the basic harmonic contribu-
tion is mostly registered by the receiver, the phase of
higher harmonics varying fast even between neighboring
harmonics. The signal

~ p ~
is on the order of

[(c ob/c )'o/ko b ]
' ~, according to Eq. (37), and in-

creases (
—b, A /A ~ decreases) in proportion to v'Q.
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With further increase of Q [b «(I/ko)+co/hco], the
interference suppression effects disappear and ~P ~

ap-
proaches unity. In this region the most important signal
is due to the bulk attenuation, which may be determined
using the effective-medium theory since the form of the
wave is weakly modulated. This gives an 0 independent
signal.

Comparing with the experiment, we should take into
account that the relevant inequalities of our theory [Eq.
(35) above all] are not satisfied very well. The presented
scenario assumes also that the potential well for ul-
trasound has a shape of the valley on the cylindrical sur-
face of radius r . The deviation from cylindrical symme-

try breaks this valley into a set of minima along vertical
lines around the center of each cell in the vortex array.
Then our scenario only gives an averaged qualitative pic-
ture. The deviations are more important for the MH
structure, since the surface of minima is close to the
boundary of the unit vortex cell.

It is worth pointing out that the effective-medium
theory, ignoring the wave guidance effects, predicts an
Q-independent signal for straight vortices (see, however,
discussion on attenuation for vortex loops in Ref. 9). The
guidance is expected to decrease the attenuation suppres-
sion of the signal if the attenuation is weaker in the re-
gion of smaller sound velocity, as was the case in our ex-
periment. This means that the attenuation-governed sig-
nal suppression, —hA/A~, increases with 0, unlike in
the case of interference suppression. On the other hand,
in accordance with the latter scenario, the signal
—b, A/Aj for zero magnetic field in Fig. 1(a) decreases
while Q increases up to Q=3 rad/sec, where a phase
transition in the I texture is suggested. But parameters
of the coreless vortex in our experiment are not favorable
for quantitative comparison. The quantity koL bco/co,
assumed to be large in our analysis, is only 1.6 but, never-
theless, the region where a decrease in —b, A/A~ is ex-

pected lies around 0=1 rad/sec, as in our experiment.

IX. SUMMARY

A wave-acoustics theory has been developed for ul-

trasound propagating along vortices in rotating
superfiuid He. Within this framework, conditions have
been derived for the validity of the effective-medium
theory and the geometrical-acoustics methods, which
were used in earlier analyses of zero-sound propagation
in a vortex array. It is shown experimentally that the
difFraction phenomenon, which was not considered in
those theories, contributes significantly to the magnitude
of the effect of vortices on the ultrasound signal when the
diffraction length is on the order of or larger than the
core radius. A simple analytical model has been suggest-
ed to describe the effect of diffraction on propagation of
ultrasound along coreless vortices.

The theory, as presented, still has a number of
shortcomings, which can be overcome by more sophisti-
cated models: (i) The theoretical investigations imply
that the vortices in He-A are nonaxisymmetric, unlike
those in our simplified discussion. The real vortex unit
cell is also nonaxisymmetric. This weakness in the theory
can be removed by including nonaxisymmetric harmonics
into sound-wave expansions. (ii) A more realistic shape,
instead of a steplike variation, can be introduced for the
velocity profile around the vortex. (iii) In the experiment
attenuation is rather strong sometimes, and the effect of u
on the shape of the harmonic eigenfunctions should be
taken into account as well.

ACKNOWLEDGMENTS

We thank G. A. Kharadze, O. V. Lounasmaa, and G.
E. Volovik for stimulating discussions, A. J. Manninen
for contributions to the experiment, and W. Wojtanowski
for providing us with a computer program to calculate
attenuation and velocity parameters in He-A. E.B.S.
and G.K.T. thank the Low Temperature Laboratory of
the Helsinki University of Technology for hospitality.

'Permanent address: A. F. Ioffe Physico-Technical Institute, St.
Petersburg, 194021, Russia.

'W. P. Halperin and E. Varoquaux, in Helium Three, edited by
W. P. Halperin and L. P. Pitaevskii (Elsevier, Amsterdam,
1990), Chap. 7.

J. M. Kyynarainen, J. P. Pekola, K. Torizuka, A. J. Manninen,
and A. V. Babkin, J. Low Temp. Phys. 82, 325 (1991);J. P.
Pekola, K. Torizuka, A. J. Manninen, J. M. Kyynarainen,
and G. E. Volovik, Phys. Rev. Lett. 65, 3293 (1990); 67, 1055
(E)(1991).

A. L. Fetter, J. A. Sauls, and D. L. Stein, Phys. Rev. B 28, 5061
(1983); M. Nakahara, T. Ohmi, T. Tsuneto, and T. Fujita,
Frog. Theor. Phys. Jpn. 62, 874 (1979).

Wave acoustics in textures of stationary He- A
&

were discussed
by P. G. de Vegvar, R. Movshovich, E. L. Ziercher, and D.
M. Lee, Phys. Rev. Lett. 57, 1028 (1986); see also P. G. de

Vegvar, Ph.D. thesis, Cornell University, 1986 (unpublished).
~P. W. Anderson and G. Toulouse, Phys. Rev. Lett. 38, 508

(1977);T.-L. Ho, Phys. Rev. B 18, 1144 (1978).
N. D. Mermin and T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976);

36, 832(E) (1976).
7J. W. Serene, Ph.D. thesis, Cornell University, 1974 (unpub-

lished); P. WolAe, in Progress in Lou Temperature Physics,
edited by D. F. Brewer (North-Holland, Amsterdam, 1978),
Vol. 7A, Chap. 3; P. Wolfle and V. E. Koch, J. Low Temp.
Phys. 30, 61 (1978).

M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533
(1987);60, 573(E) (1988).

K. Torizuka, J. P. Pekola, A. J. Manninen, and G. E. Volovik,
Pis'ma Zh. Eksp. Teor. Fiz. 53, 263 (1991).
W. Wojtanowski (private communication).


