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Measuring charge-based quantum bits by a superconducting single-electron transistor
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Department of Physics, P.O. Box 35 (YFL), FIN-40014, University of Jyva¨skylä, Finland

J. P. Pekola
Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 3500, 02015 HUT, Finland

~Received 3 June 2003; published 30 July 2003!

Single-electron transistors have been proposed to be used as a read-out device for Cooper pair charge qubits.
Here we show that a coupled superconducting transistor at a threshold voltage is much more effective in
measuring the state of a qubit than a normal-metal transistor at the same voltage range. The effect of the
superconducting gap is to almost completely block the current through the transistor when the qubit is in the
logical state 1, compared to the mere diminishment of the current in the normal-metal case. The time evolution
of the system is solved when the measuring device is driven out of equilibrium, the effect of higher-order
contributions is examined and the setting is analyzed numerically for parameters accessible by lithographic
aluminum structures.

DOI: 10.1103/PhysRevB.68.020506 PACS number~s!: 85.35.Gv

Nanoscale devices, such as Cooper pair boxes or coupled
quantum dots, have been suggested as scalable and inte-
grable realizations of quantum bits. The two logical states of
a qubit are the different charge states, or in the case of a flux
qubit, flux states of the system. There are several proposals
for quantum gates1,2 and for interqubit couplings,3 as well as
for measuring devices.4–7 Permanently couplednormal-
metal transistors have been suggested as a device for mea-
suring the state of a Cooper pair charge qubit.8,9 Also, a
superconductingsingle-electron transistor~SET! in the Jo-
sephson current regime~low biasing voltage! has been ex-
perimentally tested.10 In this work, we show that in the re-
gime of high biasing voltages, the superconducting SET11–13

leads to a highly efficient quantum nondemolition
measurement14 due to the blocking effect of the gap.

The setting is shown in Fig. 1. In the upper part, the
Cooper pair box forms the qubit, its state characterized by
the number of excess Cooper pairs in the boxn. In the lower
part, the superconducting single-electron transistor is capaci-
tively coupled to the qubit with its state characterized by the
excess charge on the islandeN. In addition, the quantum
numberm counts the number of charges passing through the
SET in left-to-right direction. Without a biasing voltageVbias

across the SET, there is no dissipative current and no infor-
mation is received. Moreover, in the absence of a dissipative
environment, no dephasing of the composite system will oc-
cur and quantum operations on the qubit can be performed.

In order to perform the measurement, a biasing voltage is
applied. As different qubit eigenstates correspond to different
conductance in the SET, by observing the current, one re-
ceives information on the state of the qubit. The time needed
for the current to give the essential information is called the
measurement time. The back action caused by the SET
dephases the qubit, and eventually also destroys the logical
state of the qubit. The corresponding time scales are called
thedephasingand themixing times, respectively. For a good
nondemolition measurement of the logical state (uau2 and
ubu2 in au0&1bu1&), one expects to have a much longer mix-

ing than a measurement time scale. We show that for a su-
perconducting SET, this is the case.

The total Hamiltonian8 consists of three parts: the Hamil-
tonians of the SET, the qubit, and the interactionHset, Hqb,
andH int , respectively. The SET Hamiltonian is defined as

Hset5Eset~N2Qset!
21HT1HL1HR1H I , ~1!

whereEset is the charging energy,Qset the gate charge of the
transistor, and

HT5 (
kk8s

Tkk8s
L cks

†I ck8s
L eif1Tkk8s

R cks
†Rck8s

I e2 ifeiC1H.c.

~2!

FIG. 1. A Cooper pair charge qubit is capacitively coupled to a
measuring single-electron transistor. The quantum numbersn, N,
and m are explained in the text. The SET is symmetrically biased
with voltage Vbias, and the voltageVset is the gate voltage. The
energy scales are determined by the interaction capacitanceCint ,
the tunnel junction’s capacitancesCT , and the gate capacitance
Cset.
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describes quasiparticle tunneling within the SET. The phase
differencesf and C are the conjugate variables ofN and
m, respectively. Thus, the operatoreif (eiC) corresponds
to quasiparticle tunneling onto the island~right electrode!
of the SET, increasing the quantum numberN(m) by one.
The last three terms in Eq.~1! are defined asHr

5(ksekscks
†r cks

r , (r 5L,R,I), wheres labels the transverse
channels including the spin andk labels the wave vector
within one channel. These describe the noninteracting elec-
trons in the left electrode, the right electrode, and the island,
respectively. The Cooper pair tunneling is excluded from the
SET Hamiltonian due to the high biasing voltage. However,
this approximation is not valid for a low voltage, and the
contribution from the Cooper pair tunneling should be added
when analyzing the effect of the SET on the qubit during
logical operations.

Using the two-state approximation, the qubit Hamiltonian
can be written as1

Hqb52
1

2
DEsz , ~3!

where the energyDE5A@Eqb(122Qqb)#21EJ
2. The inter-

action Hamiltonian describes the Coulomb interaction be-
tween the qubit and the transistor and is defined as

H int5EintnN, ~4!

whereEint is the charging energy. All charging energies
Eint , Eset, Eqb and gate chargesQqb, Qset are determined by
the capacitances and voltages of the system as given in Ref.
1. By rearranging the operators, the final form for the total
Hamiltonian can be written asH5H01HT , where H0
5HL1HR1H I1Hqb1Eset(N2Qset)

21H int .
We analyze the measurement process by master equation

techniques. The master equation for the system reads

]s~ t !

]t
1

i

\
@H0 ,s~ t !#5TrL,R,IE

0

t

S~ t2t8!s~ t8!dt8, ~5!

where the trace is taken over the microscopic degrees of
freedom of the transistor’s left and right electrodes and the
island. The elements of the transition matrixS(t2t8)
52(1/\2)(@V,U(t2t8)@V,•#U(t82t)#) are calculated by
using the diagrammatic technique developed in Refs. 15 and
3 and the superconducting density of statesN(x)
5(uxu/Ax22D2)N0, for uxu.D. In zero-temperature limit,
these elements are given by the so-called Basset function of
first order,17 which must be analyzed numerically.

By performing the Laplace transform on master equation
~5!, the right-hand side becomesS(s)s(s). Assuming the
density matrixs to change slowly in a time scale of\/E
~typically of order 10212s), the calculations can be restricted
to the regimes!E. In the normal-metal case,S(s) varies
only slowly as a function of smalls, and therefore, the
zeroth-order approximation is reasonably good. However,
when the energyE/2 is close to the gap energyD, S(s) has
a strongs dependence which is approximately linear for
small s, as shown by Fig. 2. Using the linear approximation
S(s)5S(s0)1b(s2s0) and performing the inverse Laplace

transform, the right-hand side becomes (G1L]/]t)s(t).
The coefficientsG andL depend on the bias voltage and the
energies of the system. Moving all the derivatives of the
density matrix to the left-hand side gives a master equation

~12L!
]s~ t !

]t
1

i

\
@s~ t !,H0#5Gs~ t !, ~6!

where G and L are tridiagonal matrices consisting of the
zeroth- and first-order terms of theS(s) matrix, respectively.
To guarantee the existence of the inverse of (12L), the
elements of theL coefficient are required to be small. This
requirement is fulfilled when the tunneling rate within the
SET is small ~that is, uTLu,uTRu!1). Multiplying Eq. ~6!
from the left by (12L)21, the final form of the master
equation is obtained as

]s~ t !

]t
5~12L!21F2

i

\
@s~ t !,H0#1Gs~ t !G5G̃s~ t !.

~7!

The elements of theS(s) matrix are analyzed by explic-
itly writing the Laplace transform as

FIG. 2. The complex transition coefficientS(s1 iE) plotted as
a function ofs with fixed D52.3 for different values of the energy
E. The real components are drawn in solid curves and the imaginary
parts in dotted ones. The corresponding energy values are in the
order from the topmost curve to the lowest curve:E53.4, E
53.8, E54.2, E54.35, E54.85, E55.0, E55.4, andE55.8.
For small values ofs, the real components are nearly linear and the
linear approximation discussed in the text is shown in a dashed line
for the curveE54.35.
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S~s!5E
0

`

S~ t !e2stdt5E
0

`

F~ t !2e(2s1 iE)tdt. ~8!

The coefficientb for the linear approximation is determined
by calculatingS(s) for two values ofs50.0 ands50.1 and
fitting a line. Approximation is valid for values ofs up to
0.25 as shown in Fig. 2, corresponding to a time scale of
10211s. The zero-order termG describes sequential tunnel-
ing in the transistor and the first-order termL contains some
higher-order processes.

Doing the linear approximationS(s)5S(s050.0)1bs
gives zero current in the Coulomb blockade regime: zeros in
the transition matrixG smear out the higher-order correc-
tions. However, by using a nonzero value ofs0, one obtains
small transition probabilities inG matrix and nonvanishing
current even in the Coulomb blockade regime. This allows
one to estimate approximately the effect of higher-order con-
tributions by varyings0. The IV-curves corresponding to dif-
ferent choices of parameters0 are shown in Fig. 3, showing
rounding of the steplike behavior, and for a suitable choice of
s0, one obtains the differential conductancee2/2p\ at the
threshold, which are observed in Ref. 12.

Varying the parameters0 on a small range@0.0, 0.15# has
a rather small effect on time scales~measurement timetms
varies on range@1.0310210s, 2.4310210s#, while mixing
time tmix of 131028 s is unaffected!, so one can argue that
the effect of the higher-order contributions is small. This can
be understood by observing that for our choice of interaction
energyEint50.50 K, the rounding has only small effect on
the two values of the conductivity. ForEint→0, the effect of
higher-order contributions is increased. However, one should
notice that the above treatment becomes increasingly accu-
rate asEint approaches zero as the parameters0 is determined
using the differential conductance at the threshold.

Elements of the matrixG̃ describing the transitions within
the qubit are proportional to a small mixing anglee defined

by tane5Eintsinh/(DE1Eintcosh), where the angleh is de-
fined as tanh5EJ/@Eqb(122Qqb)#. By approximating these

elements by zeros, the matrixG̃ separates into four parts: one
part describing the system when the qubit is in~diagonal!
state 00, one part when the qubit is in state 11, and two parts
for the nondiagonal qubit states 01 and 10. The first two
parts describe slowly damping conductance peaks that propa-
gate in time. They give raise to the measurement, and the
measurement time is defined as the time when the width of
the peaks is smaller than the distance between their centers.
For a detailed description see Ref. 1. The coherence of the
qubit is described by the strength of the nondiagonal ele-
ments, and thus the rate at which the nondiagonal elements
vanish gives the dephasing time. For the mixing time, one
has to include the small mixing elements proportional toe
and one obtains eight eigenvalues of the transition matrix.
Four of the eigenvalues describe the dephasing, two describe
the measurement, and one eigenvalue is zero~describing the
trace preserving symmetry!. The remaining real eigenvalue
lmix gives the mixing time astmix51/lmix .

If the mixing time is very long compared to the measure-
ment time, the measuring device disturbs the probability am-
plitudes of the qubit (uau2 and ubu2 in au0&1bu1&) only a
little. The uncertainties of the chargeDQ and its conjugate
variable~phase or flux! DF are linked to each other by the
uncertainty principleDQDF>\/2. According to this prin-
ciple, if the precision of the charge measurement is very
high, the phase becomes completely undetermined. The in-
formation that can be gathered from the SET contains no
information of the phase, and thus the precision of measuring
the charge within the qubit (uau2 andubu2) can be very high.

The time scales are calculated for a specific set of param-
eters including the higher-order effects by doing the linear
approximation withs050.10 as explained above. With alu-
minum structures in mind, the superconducting gap of the
SET is chosen to beD52.3 K and the charging energies
Eqb'1.0 K, Eset'5.2 K andEint'0.50 K. The gate charges
and tunneling coefficients are chosen asQqb50.35, Qset
50.15, uTLu25uTRu250.01. To justify the charge-qubit ap-
proximationEqb@EJ, the strength of the Josephson coupling
is chosen asEJ50.10 K. Finally, the biasing voltage is cho-
sen aseV516.5 K. This set of values gives the measurement
time tms'2.0310210s, the dephasing timetf'1.1
310210s, and the mixing timetmix'1.331028 s. The ratio
between the mixing and the measurement times is high, i.e.,
tmix /tms'65, in agreement with the results in Ref. 6. Though
the measurement times of order 10210s are beyond the reach
of actual measuring devices, the short measurement time
shows that the SSET is capable of distinguishing the two
qubit states even if, in practice, one is incapable of distin-
guishing between the two values of current quickly. On the
other hand, the mixing time of order 1028 s well exceeds the
time scales of typical current electrometers 1029 s. For
NSET, the same set of parameters givestms'6.031028 s,
tf'1.0310210s, andtmix'1.031028 s. Our approach can-
not be used for the NSET at the Coulomb blockade thresh-
old, but this region has already been studied in Ref. 9. How-
ever, low voltage slows the measurement process, and the

FIG. 3. The IV-curves of SSET using the linear approximation
S(s)5S(s0)1b(s2s0) for the transition matrix. Higher-order
processes are simulated by varyings0. The topmost curve is for
NSET and the following ones are for SSET withs050.12, s0

50.10, s050.05, s050.01, ands050.0, out of whichs050.10
gives differential conductance at the threshold close toe2/2p\.
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excluded effect of environment may become significant,
making the measurement more difficult.

The system has been simulated numerically by solving
Eq. ~7! using the Euler’s method for the above parameter
values. The probabilitiesP(m,t) for m electrons having been
tunneled during timet are plotted for the superconducting
and normal-metal cases in Fig. 4. For SSET, the measure-

ment time is very short, as the other peak~corresponding to
the qubit staten51) propagates in time very slowly. The
mixing effects are small, as the peaks remain separated and
the small visible spreading is caused mainly by the shot
noise. The definition of the mixing time is very conservative,
as the peaks are clearly distinguishable in SSET well beyond
the mixing time calculated from the eigenvalues. The time
taken for significant transitions to occur in the qubit is a
longer order of magnitude~i.e., 1027 s). For NSET the sepa-
ration of the peaks is not clear and it is, therefore, unlikely to
be a sensitive enough quantum measurement device at the
parameter range used above. Using niobium for the qubit
allows one to use higher charging energyEqb improving the
charge-qubit approximationEJ!Eqb. This has the effect of
increasing the mixing time by more than order of magnitude
without affecting other timescales.

To understand the higher signal-to-noise ratio of the
SSET, note that for NSET the currentsI 0 andI 1 correspond-
ing to different qubit states are determined byEint , which
leads to small differenceI 02I 1. On the contrary, the sharp-
ness of theIVgate-curve of SSET results in the factorI 02I 1
being almost independent of the interaction energy and rela-
tively large. Thus one can achieve short measurement
times ~cf. Ref. 18!. Even the small rounding of the steplike
behavior caused by higher-order contributions does not
significantly affect this picture. The mixing times for NSET
and SSET are nearly equal because the back-action processes
do not differ qualitatively. Therefore, signal-to-noise ratio for
SSET becomes considerably higher than that for NSET.

This work was supported by the Academy of Finland
~project 53903! under the Finnish Center of Excellence
Project 2000-2005~Project No. 44875, Nuclear and Con-
densed Matter Programme at JYFL!. We thank M. Aunola
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FIG. 4. The probabilityP(m,t) that m electrons have tunneled
in a superconducting SET plotted as a function of timet for initial
amplitudesA0.75 (n50) andA0.25 (n51). The parameters are
given in the text. The graph shows the separation of the two peaks,
the faster corresponding to the qubit’s state 0 and the slower to the
state 1. The two peaks are clearly distinguishable from each other,
and thus the measurement time is very short. The curve in the box
shows the corresponding evolution for normal-metal NSET.
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