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Model of qubits as devices to detect the third moment of current fluctuations
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Under appropriate conditions, controllable two-level systems can be used to detect the third moment of
current fluctuations. We derive a master equation for a quantum system coupled to a bath valid to the third
order in the coupling between the system and the environment. In this approximation the reduced dynamics of
the quantum system depends on the frequency-dependent third moment. Specializing to the case of a control-
lable two-level system �a qubit� and in the limit in which the splitting between the levels is much smaller than
the characteristic frequency of the third moment, it is possible to show that the decay of the qubit has additional
oscillations whose amplitude is directly proportional to the value of the third moment. We discuss an experi-
mental setup where this effect can be seen.

DOI: 10.1103/PhysRevB.74.024524 PACS number�s�: 03.67.Lx, 85.25.Dq, 42.50.Lc

I. INTRODUCTION

A comprehensive understanding of the transport proper-
ties of mesoscopic conductors can be achieved with the study
of both the average current and its fluctuations. The investi-
gation of shot noise1–3 has proven to be a valuable tool to
determine properties which are elusive to the study of
current-voltage characteristics. One of the most celebrated
examples in this respect is probably the measurement of the
fractional charge by means of the study of shot noise in point
contacts in the fractional quantum Hall regime.4,5

In the case of non-Gaussian fluctuations, moments beyond
the second one are relevant in characterizing the transport. In
the last few years, numerous theoretical studies �see Ref. 6�
analyzed the properties of higher moments and of the full
counting statistics.7 In contrast to the large theoretical activ-
ity, experiments are very difficult and only few have ap-
peared so far. The first pioneering measurement of the third
moment, performed by Reulet et al.8 has been hindered by
environmental effects.9 The first three moments of the cur-
rent fluctuations in a tunnel barrier were measured very re-
cently by Bomze et al.10 confirming the Poisson statistics
associated with the discreteness of the charge. Further ex-
perimental indications on the non-Gaussian character of
noise were obtained by Lindell et al.,11 who observed its
effects on a Coulomb blockade Josephson junction.

In parallel with the first experiments, and with the hope of
finding more effective ways to measure higher moments,
several theoretical papers appeared suggesting ways to find
signatures of non-Gaussian noise in the nonequilibrium prop-
erties of mesoscopic systems used as detectors. The first
practical way to probe high moments of current was sug-
gested by Lesovik in Ref. 12. In Ref. 13, Aguado and Kou-
wenhoven considered the possibility of using a double quan-
tum dot system as a detector of high-frequency noise. More
recently, Josephson junctions were shown to be able to act as
detectors of the third14 and fourth moments of current

fluctuations.15 Their use as threshold detectors to measure the
full counting statistics has been discussed by Tobiska and
Nazarov16 and by one of the present authors.17

Qubits have already been proven very sensitive spectrom-
eters of noise19,20 and more recently proposed for the mea-
surement of the characteristic function of the full counting
statistics.18 In this work we want to further explore the use of
controllable two-level systems as noise spectrometers and
analyze the possibility to employ them for the measurement
of the third moment as well. With this scope in mind, we
derive a perturbative equation for the dynamics of two-level
systems in the presence of noise up to the third order in the
system-noise coupling to see if, under some circumstances,
we can extract some information on the third moment. In
general, the third-order effects are masked by the dominant
second-order ones, since they are a result of a perturbative
expansion. There are, however, situations in which the
second-order correction vanishes and therefore the third or-
der is the leading contribution. We will show that, in the
usual rotating wave approximation �RWA� of the system
equations of motion, the contribution of the third moment is
a small correction to the dominant effect of the second mo-
ment �and hence difficult to measure�. A treatment beyond
RWA is therefore needed and it leads to the presence of ad-
ditional effects solely due to the third moment of current
fluctuations.

The is paper is organized as follows. In Sec. II we intro-
duce the model. We then derive the master equation for the
reduced dynamics of the quantum system up to third order in
the coupling with the environment. The reduced dynamics of
the quantum system will also depend on the third-order cor-
relations of noise and therefore it may act as a detector of
these higher-order moments. In Sec. III A we concentrate on
the case in which the quantum system is a two-level system
and show that the presence of the third order may induce
coherent oscillations in the ground-state population of the
quantum system. Furthermore, we show that the amplitude
of these oscillations is proportional to the three-point cor-
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relator of the fluctuations. In Sec. III B we discuss the case
where the two-level system is subject to an external micro-
wave field. In particular, we discuss how Rabi oscillations
can be influenced by the presence of the third-order noise.
The motivation here is to lower the frequency of the coherent
oscillations into a regime which would be more accessible to
experiments. Possible experimental setups where these ef-
fects can be measured are discussed in Sec. IV. In the same
section, we analyze various complications which may
emerge in the actual measurement. Specifically, we consider
the case of a dc-SQUID as a third-moment detector. Section
V is devoted to a summary of the results and possible per-
spectives of this approach in measuring higher-order current
fluctuations. Recently a similar detection scheme has been
discussed in Ref. 21; our approach is different in spirit and
we will point out the difference with Ref. 21 where the RWA
is taken for granted.22

II. DYNAMICS OF THE QUBIT

A. The model

In this section we discuss the general formalism that will
be used in the remainder of the paper. The setup under con-
sideration is composed of a quantum system S weakly inter-
acting with a quantum bath B. As explained in the Introduc-
tion, the quantum system will be used to investigate the
properties of the bath, which for example may be another
nanostructure �a tunnel barrier, a point contact,¼� biased at a
fixed voltage and of which we want to study current fluctua-
tions. The Hamiltonian of the total system S+B can be writ-
ten as follows:

ĤT = HS + HB + V̂ , �1�

where HS and HB are, respectively, the free Hamiltonian of

the system and of the bath. The interaction potential V̂ is
chosen to be of the form

V̂ = g�
�

N̂� � Q̂�. �2�

In the definition of V̂, g is an adimensional coupling constant

and N̂� and Q̂� are operators of the bath and system, respec-
tively. The interaction is chosen to be weak so that the dy-
namics of the reduced density matrix of the system can be
obtained by a perturbation expansion in g. The procedure is
well known and described in various textbooks.24 It is typi-
cally performed up to second order in the coupling g; here,
we do a step forward and go to the next order in the cou-
pling. As we focus our attention on the study of the time
evolution of the system S in the presence of a stationary bath,
we have ��B ,HB�=0, �B being the bath density matrix. More-
over, we assume the dynamics of the whole system to be
Markovian. This means that at each order of perturbation
theory we can neglect all the terms that are nonlocal in time.

B. Third-order master equation

The time evolution of the reduced density matrix of the
system in the interaction representation is described by the

following third-order equation �the steps leading to the mas-
ter equation are standard24 and we do not repeat them�:

�̇I = TrB�−
g2

�2�
0

�

dt�†V�t�,�V�t��,�I�t��B�‡

+
ig3

�3 �
0

�

dt��
0

t�
dt��V�t�,†V�t��,�V�t��,�I�t��B�‡�� ,

�3�

where we denoted, respectively, with �I and V�t�, the density
matrix of the system and the interaction potential in the in-
teraction representation. In deriving Eq. �3� we made the
further assumption that 	V
=TrB��BV�=0, where TrB denotes
the trace over the bath degrees of freedom. Taking the matrix
elements of Eq. �3� between two eigenstates of the Hamil-
tonian of the system, after some algebra, we obtain the fol-
lowing third-order master equation for the density matrix
of S:

�̇I,mn = �
kl

�I,lkDknmle
i�Em−En−Ek+El�t, �4�

where we set HS �m
=Em �m
, �I,mn= 	m ��I �n
 and the third-
order relaxation matrix Dknml is given by the sum of two
contributions

Dknml =
g2

�2Rknml −
ig3

�3 Cknml. �5�

In the previous equation, Rknml is the second order relaxation
matrix and Cknml is a third-order correction crucial to our
treatment. We chose not to show the explicit expression of
Rknml, as is well known and can be found in textbooks.24

The third-order kernel Cknml can be written as follows:

Cknml = Aknml − Almnk
* + Bmlkn − Bnklm

* , �6�

with

Aknml = �
���

�
i
��

j

Qmi
� Qij

�Qjl
��knF�����li,�ij�

− Qmi
� Qil

�Qkn
� F�����lm,�mi�
 , �7�

Bmlkn = �
���

�
i

�Qml
� Qki

� Qin
� G�����lm + �ik,�ml�

− Qmi
� Qil

�Qkn
� G�����li + �nk,�il�� , �8�

and where ��mn=Em−En. The functions F���, G��� are the
three-point correlators of the noise operators

F�����1,�2� = �
0

�

dt1�
0

t1

dt2	N��t1�N��t2�N��0�
Bei�1t1ei�2t2,

�9�
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G�����1,�2� = �
0

�

dt1�
0

t1

dt2	N��0�N��t1�N��t2�
Bei�1t1ei�2t2.

�10�

We used Qmn
� instead of 	m � Q̂� �n
, to denote the matrix ele-

ments of a system operator in the Schrödinger picture.
The average 	. . .
B�TrB��B . . . � is taken over the density

matrix of the bath. Note that we do not need the bath to be in
equilibrium but we do assume that it is stationary. An ex-
ample is the noise generated by a nonequilibrium current in a
voltage-biased tunnel junction.

Equation �4� is quite general and many specific cases can
be studied starting from it. In the rotating wave approxima-
tion, i.e., neglecting oscillating terms in the sum on the right-
hand side of Eq. �4�, one can recover the result of Ref. 21. In
this case the presence of the third order causes simply a
small correction of the second-order transition amplitudes
and therefore it might be difficult to detect in the presence of
a large background due to the second-order contribution. In
the following sections, we will analyze in more detail some
special cases in which the effects of the third-order relax-
ation matrix can be well characterized and distinguished
from the second order. In particular, we will study how the
third-order contribution affects the decay and the Rabi oscil-
lations of a two-level probe quantum system.

III. RESULTS

We now specialize to the case in which the probe is a
two-level quantum system. We assume that the effective
Hamiltonian of the system in the presence of noise has the
form

Ĥef f = − ��0	̂z + NT�t�	̂x �11�

when expressed in the eigenbasis of S, NT�t� is the noise
operator, and 	̂i are the Pauli matrices. Moreover, we make
the hypothesis that the relevant frequencies of the noise
source are much larger than the level splitting �0. We thus
neglect the frequency dependence of the third-order correla-
tors on scale up to �0. Consequently, in the calculation of the
third order coefficients of the relaxation matrix, we set
F��1 ,�2��F�0,0� and G��1 ,�2��G�0,0�, if �1 ,�2��0.
In the following section we will comment on these assump-
tions.

A. Relaxation in the presence of non-Gaussian noise

In the case of a two-level system, the third-order master
equation �Eq. �4�� in the Schrödinger representation, reduces
to

�̇11 = �D1111 − D2112��11 + �D1112 + D2111�Re��12�

− i�D1112 − D2111�Im��12� + D2112, �12�

�̇12 = �D1211 − D2212��11 + D2212 − i�D1212 − D2211 − i�0�


Im��12� + �D2211 + D1212 + i�0�Re��12� , �13�

where ��0=E2−E1. The different elements of the third-order

relaxation matrix Dknml can be calculated using the definition
given in the previous paragraph �Eqs. �5�–�10��. Within our
hypothesis, the only nonzero second-order contributions are

D2112 =
g2

�2�
−�

�

dt�	NT�t��NT�0�
ei�0t� = W21, �14�

D1111 = − D2112�− �0� = − W12, �15�

D1212 =
g2

�2�
0

�

dt�	�NT�t��,NT�0��
ei�0t�, �16�

D2211 = − D1212
* , �17�

where we have introduced the second-order transition rates
W12 and W21.

Note that, due to our transverse coupling assumption, the
third-order contribution to the previous matrix elements, Eqs.
�14�–�17�, is zero. The other coefficients of the relaxation
matrix are of the third order in the coupling constant g. In the
limit of a flat spectrum, all these elements can be defined as
follows, using only one independent parameter:

D1112 = D2212 = − i��3�, D2111 = D1211 = i��3�. �18�

The third-order coefficient ��3� is real and it can be written a
sum of time-ordered products as follows:

��3� =
g3

�3 � dt1� dt2�	NT�t1�T�NT�t2�NT�0��


+
1

3
	T̃�NT�t1�NT�t2�NT�0��

 , �19�

where T and T̃ denote, respectively, the time-ordering and
the anti-time-ordering operator.

Third moment fluctuations can be measured by measuring
the probability that the system is in the ground state once it is
initially prepared in the state

���t = 0�
 =
1
�2

��1
 + �2
� .

The ground-state population as a function of time can be
easily calculated from the integration of Eqs. �12� and �13�;

�11�t� =
W21

W12 + W21
+ e−�W12+W21�t�A + 2B cos��Rt�� .

�20�

In the previous equation, we have introduced the renormal-
ized frequency

�R
2 = �0

2 + �0 Im�D1212� − 1
4 �W12 + W21�2 �21�

and the coefficients A and B which are defined by the fol-
lowing equations:

A =
1

2

W12 − W21

W12 + W21
−

��3�

2�R
+ O�g4� , �22�
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B =
��3�

4�R
+ O�g4� . �23�

The presence of the third order, or more precisely, the
presence of nonzero odd moments of noise fluctuations, in-
duces measurable effects in the dynamics of the probe quan-
tum system. As one can see from Eqs. �20�–�23�, it induces
coherent oscillations in the ground-state population of ampli-
tude proportional to the third-order parameter ��3�.

In Fig. 1 we show the ground-state population as a func-
tion of time and its Fourier transform. As one can see, �11�t�
is given by the superposition of two terms: a damped expo-
nential whose asymptotic value is fixed by the ratio between
the two transition amplitudes W12 and W21, and a damped
cosine term proportional to the third moment. The structure
of �11�t� can be analyzed by studying its Fourier transform
�shown in Fig. 1 �lower panel�� defined as

f̄��� = ��
−�

�

dtei�t�f�t� − f�t = ���� .

The zero-frequency peak is related to the second-order
nonoscillating contribution, while the smaller peak at fre-
quency �0 is a pure third-order effect. In the absence of the
third moment, the time dependence of the ground-state popu-
lation would be simply described by a damped exponential
and no third-order peak would appear in the Fourier trans-
form at �=�0.

The assumption that the noise couples to the system only
through 	x �transverse coupling� was crucial in our analysis
to separate the second- and the third-order contributions in

different elements of the relaxation matrix. This assumption
can be relaxed by introducing in the Hamiltonian a longitu-
dinal term of the form: VL�t�=gLNL�t�	z, provided that the
two noise operators NT�t� and NL�t� can be considered as
uncorrelated and that VL�t� is weak. In this case the final
result is essentially the same except for a redefinition of or-
der gL

2 of the transition amplitudes and of the renormalized
frequency �R.

B. Effects of a microwave field

As shown in the previous section, the presence of odd
moments in the current fluctuations has a distinct signature in
the oscillations of the ground-state population in the case of
transverse coupling to the noise �Eq. �11��.

However, the actual measurement of these oscillations can
be very difficult as their characteristic frequency �R��0 is
typically of the order of 10 GHz and the time resolution
required to follow such oscillations in detail is hardly acces-
sible. In this section we discuss a generalization of the case
discussed before, to account for the presence of an external
microwave field. Our aim is to clarify under which condi-
tions a microwave field can shift the third-order peak to a
lower value fixed by the detuning frequency.

In the presence of microwaves, the dynamics of the quan-
tum system can be described by the effective Hamiltonian:

Ĥef f =HS+ V̂+M̂. The effect of the applied field leads to the

term M̂ = Ô cos�
t� where Ô is a system operator, which,
quite generally, can be expressed in the form

Ô =
�

2
�ML	̂z + MT	̂x� . �24�

The corresponding master equation for a two-level quantum
system in the presence of a microwave field is

�̇11 = �D1111 − D2112��11 + �D1112 + D2111�Re��12� + D2112

− i�D1112 − D2111 − iMT cos�
t��Im��12� , �25�

�̇12 = �D1211 − D2212 + iMT cos�
t���11 + �ML cos�
t� − �0

− i�D1212 − D2211��Im��12� + �D2211 + D1212

− i„ML cos�
t� − �0…�Re��12� + D2212 − iMT cos�
t� .

�26�

Due to the assumption of transverse coupling to the noise
source and of the frequency independence of the third-order
correlators, the different coefficients of the third-order relax-
ation matrix are given by Eqs. �14�–�19�. Note that, setting
the coefficients Dknml and the longitudinal microwave contri-
bution ML to zero, one easily recovers Rabi theory. In this
case, solving the eigenvalue equation, one finds the known
Rabi frequency: �Rabi=�MT

2 /4+ �
−��2.
We first discuss the outcomes of a numerical integration

of Eqs. �25� and �26�. The coupling constant and the renor-
malized frequency are the same in all the figures: �R=�0,
g2=0.1.

In Fig. 2 we show �11�t� and its Fourier transform in the
presence of a weak transverse microwave field. The structure

FIG. 1. Ground-state population as a function of time �upper
panel� and its Fourier transform �lower panel� calculated for the
following values of the parameters: W12+W21=�0g2, W12−W21

=0.05�0g2, ��3��0.3�0g3, �R=�0, g2=0.1.
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superimposed to the damped Rabi oscillation can be better
understood by looking at the Fourier transform. We see in-
deed four peaks. The zero-frequency peak corresponds to a
pure damping term. At the detuning frequency, 
−�0, we
see a large Rabi peak whose amplitude does not essentially
depend on ��3� and whose width is fixed by the relaxation
rate �=W21+W12. At frequency �0 we find the contribution
arising from the third moment fluctuations which is essen-
tially not modified by the presence of a weak transverse mi-
crowave and that depends on ��3� linearly. The last small
peak at 
+�0 does not originate from the third moment but
is due to nonsecular terms already present in second order in
the coupling to the environment.

In Fig. 3 we show our results in the case of a strong
longitudinal field. In order to suppress the second-order ef-
fects, we set W12=W21; then, in the absence of third-order
effects, one would simply have a constant ground-state popu-
lation equal to its asymptotic value �11�t�=��=0.5. The non-
trivial time dependence in the ground-state population is
therefore completely related to the presence of the third-
moment fluctuations. In the case of the longitudinal field in
Fig. 3 �lower panel�, there are two peaks of non-negligible
amplitude in the Fourier transform at the frequency �0 and at
the detuning frequency, respectively. The �0 peak is the peak
present also in the absence of the microwaves �both its am-
plitude and position are essentially not affected by the pres-
ence of the microwave field�. The second peak, located at
frequency 
−�0, is a combined effect of the third moment
fluctuations and of the microwave field; its amplitude is di-
rectly proportional both to the value of ��3� and of ML. The

position of this peak is determined solely by the detuning
frequency and it is not affected by the amplitude of the mi-
crowave field ML.

In the case of pure longitudinal field, an approximate ana-
lytical solution of Eqs. �25� and �26� can be found. Up to
third order in the coupling constant g we obtain

�11�t� = a + be−�W12+W21�t + c �
k=−�

�

Jk�ML



�


sin���0 − k
�t + �k� . �27�

In the previous equation, Jk�z� is the kth Bessel function;25

the phases �k and the real constants a, b, and c are defined as

�k = arctan� k
 − �0

W12 + W21
� , �28�

a =
W21

W12 + W21
−

��3�

4

�

k=−�

�

Jk�ML



�sin��k� , �29�

b =
1

2
−

W21

W12 + W21
, �30�

c =
��3�

4

. �31�

The peak at �0 is associated with the k=0 contribution of the
sum while the detuning frequency peak and the peak at fre-
quency 
+�0 are related, respectively, to the k= ±1 terms.

FIG. 2. Ground-state population as a function of time �upper
panel� and its Fourier transform �lower panel� calculated in the
presence of a weak transverse microwave field. We chose W12

=W21=0.5g2�0, ��3�=0.6g3�0�0.002, 
=1.3�0, MT=0.1�0, and
ML=0.

FIG. 3. Ground-state population as a function of time �upper
panel� and its Fourier transform �lower panel� calculated in the
presence of a strong longitudinal microwave field. The parameters
are W12=W21=0.5g2�0, ��3�=0.3g3�0�0.001, 
=1.3�0, ML

=0.8�0, and MT=0.
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The small contribution connected with the k=2 Bessel func-
tion is also visible in Fig. 3 at frequency �=2
−�0.

In the hope to apply the method discussed in this paper to
the diagnostics of the third moment of current fluctuations is
useful to analyze the amplitudes of the different peaks in
some detail. In Fig. 4 the height of the peak at �0 is shown as
a function of ��3�. In Fig. 4�a� we show the results in the case
of weak fields. In this case, the presence of the longitudinal
or the transverse field does not affect the height and the
position of the third-order peak. In Fig. 4�b� we display the
results in the case of strong fields. As one could expect from
Eqs. �25� and �26�, a strong transverse field masks com-
pletely the third-order dependence of the �0 peak; on the
other hand, even a strong longitudinal microwave field does
not essentially modify the height and the position of the
third-order peak at frequency �0. Note that the range �0,0.03�
for ��3� /�0 is chosen so that the ratio between second- and
third-order contribution varies between 0 and g. Figures 5
and 6 are devoted to the study of the amplitude of the peak at
the detuning frequency 
−�0 in case of pure longitudinal
field. In order to compare the numerical results shown in
these figures with the approximate analytical solution �27�,
we now give the explicit expression of the k=1 term, which
is responsible for the peak at the detuning frequency. This
term can be rewritten as

cJ1�ML



�sin��t + �1�

�
��3�ML

8


�W12 + W21�sin��t� − � cos��t�
�W12 + W21�2 + �2 , �32�

where we set �=
−�0 and in the last step we kept only the
linear term in the field amplitude. In Figs. 5�a� and 5�b� we
display the amplitude of the peak, respectively, as a function
of ��3� and of ML. As one could expect, the amplitude of the
peak is proportional to ��3�; moreover, as one can see in Fig.
5�b�, the linear approximation is fulfilled also in the case of

FIG. 4. Amplitude of the peak at �0 as a function of the third-
order correlator ��3� in the absence of a microwave field �solid
line�, and in the presence of transverse �dotted line� and longitudi-
nal �dot-dashed line� fields. �a� Weak microwave fields, respec-
tively, with MT=0.1�0 or ML=0.1�0. �b� Strong microwave fields,
respectively, with MT=0.8�0 or ML=0.8�0. The other parameters
are the same in both the cases: W12+W21=g2�0, W12−W21

=0.05�0g2, 
=1.3�0.

FIG. 5. Amplitude of the peak at the detuning frequency 

−�0 as a function of the amplitude of the microwave field ML �a�
and of the third-order correlator ��3� �b�. The parameters are W12

=W21=0.5�0g2, 
=1.3�0, MT=0. In �a�, ML=0.8�0, while in �b�,
��3�=0.01�0.

FIG. 6. Amplitude of the peak at the detuning frequency as a
function of the 
−�0 under longitudinal microwave coupling. The
parameters are W12=W21=g2�0, MT=0, ML=0.8�0, ��3�=0.01�0.
The inset is a magnification in the region 
��0.
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strong fields. In Fig. 6, we show the amplitude of the peak as
a function of the detuning frequency; again the result is as
expected based on Eq. �32�.

IV. EXPERIMENTAL CONSIDERATIONS

Starting from the results presented in the previous sec-
tions, we would like to discuss an experimental protocol for
the measurement of third-order noise using a two-level probe
quantum system. The experimental realization of this kind of
measurement is rather delicate. The basic reason for this is
that a set of inequalities has to be satisfied. First, the level
spacing has to exceed the temperature in the experiment T in
order to avoid thermal excitations: ��0�kBT. Second, the
time resolution in the experiment �t has to be good enough
to follow the detuned coherent oscillations at angular fre-
quency 
−�0, i.e., �t� �
−�0�−1. Yet the oscillation in the
ground-state population has to be measurable, which means
that ��
−�0� /�0� should not be too close to zero. This con-
dition is determined by the resolution in measuring the popu-

lation variations: for very small ��
−�0� /�0�, P̃0�
−�0� is
significantly suppressed as demonstrated in Fig. 6. Collecting
these conditions we have

��
 − �0�/�0� �
1

�0�t
�

�

kBT�t
. �33�

As to a concrete realization, one may employ a hysteretic
dc-SQUID in the tunneling regime.23 The strength of the
method lies in the high contrast in resolving level occupa-
tions: tunneling rate from the excited state is typically two to
three orders higher from the excited state as compared to that
from the ground state. Measurement of this decay is straight-
forward by observing the switching statistics, i.e., the mea-
surement is typically repetitive in nature. Occupation prob-
abilities of order 0.1 or even below are measurable with
adiabatic detection pulses of �t�1 ns duration. Measure-
ments are typically carried out at T�30 mK. Using this tem-
perature, the condition at the right end of Eq. �33� then states
that �0�3
109 s−1. Typical level separations �plasma fre-
quencies� of Josephson junctions are in the range 1 GHz
��0 /2��100 GHz; thus, these values are compatible with
the operation temperature. With �0�1010 s−1 and �t=1 ns,
we match the frequency versus temperature condition with a
margin of factor 3. The other critical condition in Eq. �33�,
��
−�0� /�0�� ��0�t�−1, can then be matched by requesting

��
−�0� /�0��0.1. Since the maximum of P̃0 is obtained at
�
 /�0−1��0.05, we notice that both the inequalities can be
satisfied, although barely.

The remaining questions then concern the coupling of the
noise to the detector. As we have already pointed out, in
order to see oscillations in the occupation probability due to
purely third-order effects, one needs to couple the noise
source to 	x and the microwaves to 	z. In the case of a
dc-SQUID detector, this means that one should couple the
noise source through the current, and the external microwave
field through the flux. A schematic diagram of a possible
measuring apparatus is shown in Fig. 7. The detector is con-
stituted by a dc-SQUID of negligible inductance formed with

two identical Josephson junctions of critical current I0 and of
capacitance C0 /2 biased by external flux � and current I.
The nonequilibrium noise source, which can be a tunnel
junction or another nanostructure, induces time-dependent
fluctuations in the biasing current �I�t�. Finally, the external
microwave field is coupled inductively to the SQUID ring
and leads to monochromatic flux fluctuations ���t�. The ef-
fective two-level Hamiltonian of this system including flux
and current fluctuations can be written as follows:

H = −
��p

2
	z − ��p�NT�t�	x − ND�t�	z� . �34�

The operators NT�t� and ND�t� are defined by the following
equations:

NT�t� = tI
�I�t�

I0
+ �t� − 2�d��

����t�
�0

, �35�

ND�t� = �d� + 2�t��
����t�

�0
+ 2�tI

�I�t�
I0

, �36�

where �0 is the elementary flux quantum. In the previous
equations we denoted with � and �p, respectively, the
SQUID anharmonicity and the SQUID plasma frequency;

� =
�

6

I

Ic
�1 −

I2

Ic
2�−5/8

, �p
2 =

2�

�0C0

�Ic
2 − I2, �37�

with Ic=2I0 cos ��
�0

and �=�1/2�C0Ic�−1/4� �0

2�
�−3/4

.
Moreover, we have introduced the adimensional param-

eters tI , t� , d�;

tI =
1

�

I0

Ic
�1 −

I2

Ic
2�−3/8

, t� =
I

I0
tI tan

��

�0
, d� = tan

��

�0
.

�38�

As it is clear from Eqs. �34�–�38�, a transverse coupling to
current fluctuations and a longitudinal coupling to flux fluc-
tuations �i.e., to the microwave field�, can be simultaneously

FIG. 7. Schematic diagram of a possible experimental setup to
detect third-order fluctuations.
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realized only in the case of zero or very small dc component
of the external biasing current. Experimentally this condition
could be obtained subtracting the dc component of I�t� by
means of a superconducting line, as it was shown in Ref. 26.
In this case the SQUID potential becomes harmonic and one
should also take into account the possibility to have transi-
tions to higher levels. Anyway, if initially only the first two
levels are occupied, this effect is of order higher than the
third in the system-noise coupling g.

Assuming that the transverse coupling condition is ful-
filled, that is, I� Ic, we now evaluate the amplitude of the
third-order oscillations for noise source �see Fig. 7� gener-
ated by a scatterer �for example, a normal metal junction�
and characterized by a set of transmissioned eigenvalues Tn.
Comparing Eqs. �34�–�38� to the model Hamiltonian in Eq.
�11� and using the definition given in Eq. �19�, we rewrite
��3� as follows:

��3� = � �p

�Ic
�3� dt1� dt2�	�I�t1�T��I�t2��I�0��


+
1

3
	T̃��I�t1��I�t2��I�0��

 . �39�

Using the results derived by in Ref. 27 within the framework
of scattering theory,2 we can obtain an explicit expression of
��3� in terms of the transmission eigenvalues Tn and of the
voltage bias V across the junction. In particular, in the case
of energy-independent scattering and in the limit of zero
temperature of the noise source, we obtain

��3� =
4

3
� e�p

�Ic
�3eV

h
�

n

Tn�1 − Tn��1 − 2Tn�; �40�

as one can see, in this limit, ��3� is proportional to the third
cumulant of current fluctuations.7,28 Moreover, by means of
Eq. �40�, it is possible to check the validity of the perturba-
tive hypothesis and give an estimate of the ratio between the
third- and the second-order contributions to the qubit dynam-
ics. In the limit of zero frequency and zero temperature one
gets

��3�

W21
�

2

3
g̃

F3

F2
, �41�

where g̃=e�p / ��Ic� and F2 and F3 are the Fano factors of
the second and of the third order, respectively: F2=�nTn�1

−Tn� /�nTn and F3=�nTn�1−Tn��1−2Tn� /�nTn. In deriving
Eq. �41�, the relation between the second-order transition
amplitude and the Fano factor F2 has been used �see, for
example, Refs. 1 and 13�.

V. CONCLUSIONS

In this paper we analyzed the possibility to use solid-state
qubits as detectors for higher moments of current fluctua-
tions. We showed that in some cases there are distinct fea-
tures, due to the nonsecular terms in the master equation,
solely related to the presence of the third moment of current
fluctuations. This may be a very interesting circumstance as
usually these additional effects are masked by the large back-
ground coming from the noise �second-order cumulant in the
fluctuations�. After having derived the general form of the
master equation up to the third order in the coupling between
the environment and the bath, we considered in some detail a
two-level system coupled to a noise source. Indeed we found
that, in the presence of purely transverse noise, the popula-
tion in the ground state oscillates at a frequency �0 if the
two-level system is initially prepared in a superposition. The
difficulty of measuring these high-frequency oscillations can
be alleviated by applying a microwave field. In this case the
oscillations associated with the third moment are pushed
down to the detuning frequency 
−�0.

A possible experimental implementation of this scheme of
detection has been discussed in Sec. IV. As a two-level sys-
tem �the detector� we considered a dc-SQUID and discussed
the range of applicability of the scheme. Combining the nar-
row margins in experimental parameters and the rather unfa-
vorable coupling of noise to the detector, it is obvious that
measurement of the effects predicted here is not straightfor-
ward using a dc-SQUID as a sensor. It remains to be ana-
lyzed if other controllable two-level systems �charge qubits,
for example� may be more suited as detectors. Nevertheless,
we find interesting the existence of features entirely due to
the higher moments of current fluctuations.
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