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We study the effect of Markovian environmental noise on the dynamics of a two-level quantum system
which is steered adiabatically by an external driving field. We express the master equation taking consistently
into account all the contributions to the lowest nonvanishing order in the coupling to the Markovian environ-
ment. We study the master equation numerically and analytically and we find that, in the adiabatic limit, a
zero-temperature environment does not affect the ground-state evolution. As a physical application, we discuss
extensively how the environment affects Cooper-pair pumping. The adiabatic ground-state pumping appears to
be robust against environmental noise. In fact, the relaxation due to the environment is required to avoid the
accumulation of small errors from each pumping cycle. We show that neglecting the nonsecular terms in the
master equation leads to unphysical results, such as charge nonconservation. We discuss also a possible way to
control the environmental noise in a realistic physical setup and its influence on the pumping process.
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I. INTRODUCTION

During the past three decades along with a greatly in-
creased interest in quantum mechanics and its applications,
we have witnessed a growing demand for accurate control of
quantum systems. However, these systems are difficult to
manipulate and very sensitive to external noise.

A possible solution to the accurate control problem may
be the adiabatic manipulation. This approach not only elimi-
nates the need for fine tuning the time control but recently
it has been proposed to solve complex computational
problems1 and shown to be able to produce any unitary
transformation.2 Within the same framework, it is also pos-
sible to perform nontrivial periodic control to manipulate
the quantum system by geometric means. This approach
originates from the famous work of Berry3 but later it has
been extended to more general cases4 and analyzed for its
possible applications in the so-called geometric quantum
computing.5–8 The main advantage is that the geometric de-
pendence of the applied unitary operator renders it robust
against fast fluctuations in the control signal.9,10 The main
drawback of this proposal is that to exploit all the advan-
tages, the evolution time has to be long with respect to the
time scale of the system. However, the evolution time cannot
be increased indefinitely because the system undergoes
dephasing and relaxation leading potentially to serious prob-
lems in maintaining the quantum state. Even if some efforts
have been made to clarify the effect of the environment and
its possible elimination in the context of geometric quantum
computation,11,12 a complete analysis is still missing.

In this paper, we consider a two-level system initially in
the ground state and study how it is influenced by the envi-
ronment and an adiabatically changing external driving field.
The time-dependent control makes the usual treatment13 by
means of Markovian master equation nontrivial.14 Similar
problems have been studied with different approaches15–17 in
the aim to estimate the decoherence effect induced by the

environment. Here, we use a particular master equation de-
rived taking consistently into account the drive, the environ-
ment and the combined effect. In particular, we include the
usually neglected secular terms and find that, in our case,
they be handled with extreme care since it can lead to un-
physical results. Our result that zero-temperature environ-
ment does not affect the ground-state adiabatic dynamics
suggests that geometric quantum computation in the ground
state18 could be robust against decoherence. The analytical
derivation of the solutions of the master equation for differ-
ent coupling and adiabatic evolution is discussed in detail.
Similar results are obtained in the more realistic case of
finite-temperature environment.

As a physical example, we study Cooper-pair pumping19

and discuss in detail the effect of the environment in the
pumping process. In this case, we find that the physical ob-
servables are robust during the ground-state pumping. How-
ever, neglecting the nonsecular terms in the master equation
leads to a decrease in the predicted pumped charge and a
difference in the average charge pumped through the two
junctions, i.e., charge nonconservation. These results are ob-
tained analytically by direct calculation and confirmed by
numerical analysis. We propose a way to implement in situ
the environmental noise by coupling a thermal resistor to the
system through an array of superconducting quantum inter-
ference devices �SQUIDs�. The main advantage of this pro-
posal is that, by controlling the flux through the SQUID ar-
ray, we can experimentally change the effective noise
spectrum of the environment.

This paper is organized as follows. In Sec. II the model is
described. In Sec. III, we write the master equation, solve it
in the quasistationary limit, and discuss different approxima-
tions. In Sec. IV, we apply the present model to Cooper-pair
pumping in the presence of environment and discuss differ-
ent regimes, the effect of temperature, and the implication of
the secular approximation. Furthermore, we describe a way
to engineer the environment in situ and calculate the pumped
charge. Section V concludes the paper.
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II. MODEL

We consider a quantum system subject to external time-
dependent control fields and interacting with the environ-
ment. The total Hamiltonian is H�t�=HS�t�+HE+V, where
HS�t� denotes the time-dependent system Hamiltonian with
nondegenerate eigenvalues, HE is the environment Hamil-
tonian and V is the system-environment coupling. We as-
sume that V=Y � X, where X is the environment and Y is the
system part of the coupling operator. The simplest way to
study the dynamics of the system is to use the instantaneous
eigenbasis of HS�t�, i.e., the adiabatic basis composed of
states ��n�t�� with energies En such that HS�t���n�t��
=En�t���n�t��. We denote by D�t� the transformation from a
given fixed basis to the adiabatic one. To properly take into
account the time dependence of the basis, we study the dy-
namics of �̃tot=D†�t��tot�t�D�t� in the fixed basis. Here �tot�t�
is the usual density operator of the total system in the
Schrödinger picture. The evolution of �̃tot is governed by the
effective Hamiltonian

H̃�1��t� = H̃S�t� + �w�t� + Ṽ�t� + HE, �1�

where H̃S�t�=D†�t�HS�t�D�t�, Ṽ�t�=D†�t�VD�t�= Ỹ�t� � X,

and w=−iD†�t�Ḋ�t�.
We define the local adiabatic parameter as ��t�

=��w�t�� / ���t��, where ��t� is the instantaneous minimum-
energy gap in the spectrum and �w�t��=TrS

�w†�t�w�t� is the

trace norm of w�t�. This instantaneous adiabatic parameter
gives an accurate estimate of the local degree of adiabaticity
of the evolution. Denoting with Tp the time interval for the
adiabatic evolution and setting �min=min���t��, a rough es-
timate of � is given by �̄=� / ��minTp� which represents a
global adiabatic parameter. The w�t� scales as 1 /Tp and then,
for adiabatic evolution ���1� it is usually neglected.20

However, as discussed in Ref. 14, it can be crucial to include
its influence for the correct description of the dynamics of
the system. In fact, the full Hamiltonian �1� suggests that the
environment leads to relaxation to the instantaneous eigen-

states of H̃S�t�+�w�t�. If we neglect w�t�, the environment

produces relaxation in the adiabatic basis of H̃S�t� which usu-
ally differs from the correct one at the order O���. As we
will discuss in detail, this contribution can be important in
determining the expectation value of a physical observable.

III. MASTER EQUATION

Let us study the dynamics of a generic two-level system
steered by a time-dependent Hamiltonian and subject to en-
vironmental noise. If the evolution is adiabatic and the sys-
tem interacts weakly with the environment, we can treat

�w�t�+ Ṽ�t� as a perturbation and derive a master equation
for the density matrix in the interaction picture.14 Up to the
first order in � and the second in the system-environment
coupling, we obtain

d�̃I�t�
dt

= i��̃I�t�,wI�t�� −
1

�2TrE	

0

t

dt����̃I�t� � �E,ṼI�t���,ṼI�t�� +
i

�2TrE	

0

t

dt�

0

t�
dt����̃I�t� � �E,�wI�t��,ṼI�t����,ṼI�t�� ,

�2�

where �̃I�t� is the density matrix of the system in the
interaction picture, TrE indicates trace over the environmen-
tal degrees of freedom, and �E is the stationary density op-
erator of the environment. The interaction picture operators

are defined as ÕI�t�=eiHEt/�US
†�t ,0�Õ�t�US�t ,0�e−iHEt/�, where

US�t ,0�=Te−i/��0
t H̃S���d� is the time-evolution operator, with T

denoting time ordering. In this frame, we can address and
interpret the contributions of Eq. �2�. The first contribution

on the right is the driving term without system-environment
interaction, the second one leads to the standard dissipative
contribution of the Bloch-Redfield theory. The third contri-
bution is a cross term of the drive and dissipation. This last
term is usually neglected as discussed above, Appendix.21

Denoting the ground and excited state of HS as �g� and �e�,
respectively, the master equation arising from Eq. �2� in the
Schrödinger picture assumes the form

�̇gg = − 2Im�wge
� �ge� + S��0��m2�2 − �S�− �0� + S��0���m2�2�gg + 2�Im�m2�Im��ge� + Re�m2�Re��ge��S�0�m1

− 2
2S�0� − S�− �0� − S��0�

�0
��Im�m2�Im�wge� + Re�m2�Re�wge���Im�m2�Im��ge� + Re�m2�Re��ge���

+ 2
2S�0� − S�− �0� − S��0�

�0
m1�Im�m2�Im�wge� + Re�m2�Re�wge���gg − 2

S�0� − S��0�
�0

m1�Im�m2�Im�wge�

+ Re�m2�Re�wge�� �3�

and
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�̇ge = iwge�2�gg − 1� + i�wee − wgg��ge + i�0�ge − S��0�m1m2 + �S�− �0� + S��0��m1m2�gg − 2S�0�m1
2�ge − i�S�− �0�

+ S��0��m2�Re�m2�Im��ge� − Im�m2�Re��ge�� − 2
2S�0� − S�− �0� − S��0�

�0
m1

2wge�gg + 2
S�0� − S��0�

�0
m1

2wge

− im2
S�− �0� − S��0�

�0
�Im�m2�Re�wge� − Re�m2�Im�wge�� − 2

2S�0� − S�− �0� − S��0�
�0

m1�im2��Im�wge�Re��ge�

− Re�wge�Im��ge��� − �Im�m2�Im�wge� + Re�m2�sRe�wge���ge� , �4�

where ��0 is the �instantaneous� energy gap between �g� and
�e�, m1=Ygg�t� /�=−Yee�t� /�, m2=Yge�t� /�, and S�	�0� and
S�0� are obtained from the power spectrum of the noise
S���=�−



 �XI���XI�0��ei��d�.22 Here, the matrix element of a
generic operator O is denoted by Okl= �k�O�l� �with k , l

=g ,e� except for wkl=−i�k � l̇�. Notice that the present equa-
tions generalize the ones presented in Ref. 14 because they
are obtained for a generic system-environment coupling
operator.

In the derivation of Eqs. �3� and �4�, we have implicitly
assumed that our system is in the Markovian regime. This
implies that the bath correlation time � is short compared to
the relaxation time of the system. In addition, since the evo-
lution is adiabatic, �0, m1, m2, and w change slowly in time
and we can approximate w�t+���w�t�.

In writing the above equation we have neglected the cor-
rections due to the Lamb shift. However, we expect it to have
small influence on the dynamics of the system in the adia-
batic limit. A detailed analysis is underway.23

Notice that Eqs. �3� and �4� are, strictly speaking, valid
only for adiabatic evolution and weak system-environment

coupling. In addition, they are not in the standard Lindblad
form and they do not a priori conserve the positivity of the
density matrix. For this reason, particular attention must be
paid to the parameters used in the numerical simulations
since they can lead to inaccurate results in the nonadiabatic
case and strong-coupling regime.

A. Secular approximation

In Eqs. �3� and �4�, we have included all the contributions
up to the second order in � and V contrary to the usually
adopted secular approximation.13 In the interaction picture,
the nonsecular terms oscillate rapidly with respect to the
relaxation-dephasing dynamics generated by the environ-
ment and thus their contribution averages to zero. Even
though this approximation does not lead to problems in many
cases, we show that it is inadequate in describing adiabatic
evolution.

To compare the results with and without these terms, we
explicitly write the master equations corresponding to Eqs.
�3� and �4� but obtained with the secular approximation as

�̇gg
sec = − 2Im�wge

� �ge� + S��0��m2�2 − �S�− �0� + S��0���m2�2�gg + 2
2S�0� − S�− �0� − S��0�

�0
�Im�m2�Im�wge�

+ Re�m2�Re�wge��m1�gg − 2m1
S�0� − S��0�

�0
�Im�m2�Im�wge� + Re�m2�Re�wge�� �5�

and

�̇ge
sec = iwge�2�gg − 1� + i�wee − wgg��ge + i�0�ge − �1

2
S�− �0��m2�2 +

1

2
S��0��m2�2 + 2S�0�m1

2��ge

+
2S�0� − S�− �0� − S��0�

�0
�2m2weg + wgem2

��m1�ge. �6�

Notice that, in the time-independent basis �i.e., wkl�0�,
these reduce to the usually adopted Bloch equations for a
nondriven system,

�̇gg
B = �↓�ee − �↑�gg,

�̇ge
B = i�0�ge − �ge�ge, �7�

where �↓=S��0��m2�2, �↑=S�−�0��m2�2, and �ge

= � 1
2S�−�0��m2�2+ 1

2S��0��m2�2+2S�0�m1
2�. These equations

have immediate interpretation in terms of relaxation and
dephasing processes.
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B. Adiabatic quasistationary solutions for the ground state
and the role of secular approximation

In absence of system-environment interaction, i.e., S���
=0, Eqs. �3� and �4� become the standard von Neumann
equations for the density matrix

�̇gg = − 2Im�wge
� �ge� ,

�̇ge = iwge�2�gg − 1� + i�wee − wgg��ge + i�0�ge. �8�

Since we are interested in the evolution in the quasistationary
limit for adiabatic evolution ���1�, we look for the solution
of �̇gg=0 and �̇ge=0. Up to the linear order in � we have

�gg = 1 + O��2� ,

�ge = −
wge

�0
+ O��2� . �9�

In general, Eqs. �3� and �4� can be integrated only numeri-
cally. However, we can obtain analytical information if we
exploit the adiabatic limit. As above, the correction to the
ground-state population �gg is of order �2 and the off-
diagonal element �ge scales as �.

In the following, we consider first the finite-temperature
case, in which we assume that the excitation rates are expo-
nentially small with respect to the relaxation ones; for ex-
ample, �ge=�eg exp�−��0 / �kBT��, where T is the tempera-
ture of the bath. To the lowest order in � and in the
quasistationary limit, the solution for �gg has a simple ex-
pression

�gg =
�eg

�eg + �ge
+ O��2� � 1 − e−��0/kBT + O��2� . �10�

The system remains in the ground state in the linear order in
�, apart from leakage due to the finite-temperature environ-
ment.

Within the same approximation and using the above re-
sult, the equation for the off-diagonal term reads

�̇ge = �i�0 − 2S�0�m1
2��ge,1 + iIm�m2�m2S��0�Re��ge,2�

− iRe�m2�m2S��0�Im��ge,2� = 0, �11�

where we have defined

�ge,1 =
�1 − 2e−��0/kBT�wge

�0
+ �ge,

�ge,2 = �1 + e−��0/kBT��ge +
�1 − e−��0/kBT�wge

�0
. �12�

At low but finite temperatures, the solution of Eq. �11� is

�ge = −
wge

�0
�1 − 2e−��0/kBT� . �13�

Notice that, in the zero-temperature limit, solutions in Eqs.
�10� and �13� coincide with the environment-free solutions,
Eq. �9�: the ground-state evolution is robust and not influ-
enced by the zero-temperature environment.

This can be explained in a simple way.14 The effective
Hamiltonian in the absence of system-environment coupling

is H̃S+�w. In the adiabatic limit, the second term can be
treated as a perturbation and the correction to the eigenstates
of HS can be calculated. This basis is usually called
superadiabatic.21 Up to the linear order in �, the superadia-
batic ground state is �g��= ��g�−wge

� /�0�e��. In the adiabatic
evolution, if the system starts in the ground state �g��0��, we
can assume that it remains in the eigenstate �g��t�� and the
corresponding density matrix is ��= �g��t���g��t��. Thus, the
density-matrix elements in the HS basis, �gg= �g����g� and
�ge= �g����e� satisfy Eq. �9�.

This result helps to understand the robustness of ground-
state evolution subject to zero-temperature noise. In this re-
gime, the environment cannot produce transitions toward the
excited state �e��t�� but induces only relaxation to the ground
state �g��t��. Since the system starts from the ground state
and evolves adiabatically, it remains always in the ground

state of H̃S+�w and the environment has no influence on its
dynamics. In this framework, it is clear that neglecting the

w�t� terms leads to relaxation with respect to the basis of H̃S
and hence to different dynamics.

The above result demonstrates the importance of the
choice of the proper master equation. To emphasize this
point further, we use a similar approach to solve the master
equation arising from the secular approximation �Eqs. �5�
and �6��. In particular, in the zero-temperature limit and up to
the order of the product of � and the square of the system-
environment coupling, we obtain

�gg
sec = 1,

�ge
sec = −

2iwge

2i�0 − �
, �14�

where �=S��0��m2�2+4S�0�m1
2. The expression of the diag-

onal term is not influenced by the secular approximation but
the off-diagonal one depends on the coupling between the
system and the environment. This is in contrast with both the
physical picture discussed above and analytical results in Eq.
�13�. This difference leads to different expectation values for
physical observables.

We can obtain analytical information also in the opposite
regime in which the evolution is fast enough that nonadia-
batic transitions determine the dynamics of the system. In
this limit, neglecting the relaxation terms in Eqs. �3� and �4�,
we obtain again Eq. �8�. The system is initially in the ground
state with �gg�0�=1 and �ge�0�=0. We expect that, due to
sequential nonadiabatic excitations, in the quasistationary
limit both the ground and the excited state are equally popu-
lated, i.e., �gg=�ee=1 /2. With this assumption, the differen-
tial equation for �ge in Eq. �8� can be solved to obtain the
quasistationary solution

�gg = 1/2,

�ge = 0 �15�

apart from corrections of the second order in the system-
environment coupling. The system undergoes sequential
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transitions from the ground to the excited state and vice
versa forming a fully mixed state.

Thus, in the two limits in which relaxation dominates
nonadiabatic transitions and nonadiabatic slight transitions
dominate relaxation, it is possible to find an analytical qua-
sistationary solution which correctly describes the system be-
havior �Eqs. �9� and �15�, respectively�. No such solution is
available in the intermediate regime in which relaxation and
nonadiabatic transitions occur on the same time scale.

IV. APPLICATION TO COOPER-PAIR PUMPING

In the previous section, we showed that ground-state evo-
lution can be robust against environmental noise. The infor-
mation about the dynamics of the system is contained in the
off-diagonal term of the density matrix, see Eq. �13�. Thus to
test our theoretical model, it is natural to focus on a physical
observable which depends on �ge. An interesting candidate
for the observable is the pumped charge in a superconducting
circuit. Recently, it has been subject to intense study both
theoretically24 and experimentally25 because of its connec-
tion to geometric phases,24,26,27 and its potential application
in quantum metrology.19,28,29

In particular, we consider the Cooper-pair sluice19 shown
in Fig. 1. It consists of a single superconducting island,
coupled to superconducting leads via two SQUIDs. The
SQUIDs operate as Josephson junctions whose critical cur-
rents can be tuned by magnetic fluxes. The electrostatic po-
tential on the island can be controlled by varying a gate
voltage, Vg, and there is a constant superconducting phase
difference, �=�R+�L between the two leads. The operator
nk=−i��k

�k=L ,R� represents the Cooper-pair number opera-
tor of the kth SQUID. In the absence of noise, the Hamil-
tonian of the sluice can be expressed as14

HS = EC�n − ng�2 − JL cos��

2
− � − JR cos��

2
+ � . �16�

Here = ��R−�L� /2 and n=−i� are the operators for the
superconducting phase and the number operator of excess
Cooper pairs on the island. The Josephson couplings to the
left and right lead are denoted by JL and JR, respectively,
ng=CgVg / �2e� is the normalized gate charge, and EC
=2e2 /C� is the charging energy of the sluice; Cg is the gate
capacitance and C� the total capacitance of the island. For
further convenience, we define the deviation of the gate
charge from the degeneracy point as �ng=ng−1 /2.

The average value given by the current through the kth
SQUID is Ik=−2e Tr��̇totnk� where the trace is over the de-

grees of freedom of both the system and the environment,
and �tot is the total density matrix of the system and the
environment. Using the von Neumann equation for �tot, we
obtain

Ik =
2ie

�
i Tr��tot�nk,HS�t��� + Tr��tot�nk,HE�� + Tr��tot�nk,V�� .

�17�

Writing the complete trace in terms of partial traces and trac-
ing out only the environmental degrees of freedom, we ob-
tain TrS���nk ,HS�t��� which is the usual definition of the cur-
rent for a closed system.26 The second term gives no
contribution since nk and HE commute. The third term is the
current directly induced by the environment. Notice that, the
last contribution is present only if �nk ,V��0. In all the other
cases, we can use the standard definition of current operator:
Ik= 2ei

� �nk ,HS�t��.
We study the case in which the noise is due to gate volt-

age fluctuations coupled capacitively to the sluice island.30

The charging part of the Hamiltonian in Eq. �16� has the
form EC�n−Cg / �2e�Vg�2. If an additional noisy gate potential
�VE is coupled to the system through a capacitance CE, we
can use the above expression to write the Hamiltonian de-
scribing the interaction between the system and the environ-
ment. At the lowest order in �VE the Hamiltonian can be
written as V=−2egn � �VE�t�, where g=CE /C� is the cou-
pling constant between the system and environment. Notice
that since �nk ,V�=0, the current operator of the kth SQUID
is determined only by the first term in Eq. �17�. Its average
value reads

Ik = ��ggIk,gg + �eeIk,ee� + 2Re��geIk,eg� , �18�

where Ik,nm= �n�Ik�m� with m ,n=g ,e. The last term is the
geometric contribution corresponding to the pumped charge

Qk
G = 


0

Tp

2Re��geIk,eg�dt . �19�

If EC�max�JL ,JR� and ng�1 /2, only the two lowest
charge states are important for the dynamics and we can
adopt the two-state approximation. Let �0� and �1� denote the
states with no and one excess Cooper pair on the island,
respectively. Thus the coupling between the sluice and
charge noise has the form V=eg�z � �VE�t�, where �z
= �0��0�− �1��1� a part terms proportional to identity.

(a)
JL

M

JL
m

JR
M

JR
m

ng
M

ng
m

0 1t�Tp

(b) FIG. 1. �Color online� �a� Circuit scheme of
the Cooper-pair sluice �physical realization of an
adiabatic two-level system�. The time-dependent
control parameters are JR, JL, and ng. The phase
difference across the device is denoted by �. The
circuit in the dashed box is used to engineer the
environmental noise characterized and modeled
by a resistor R, a voltage �VE and coupled to the
system with an effective capacitance CE. �b� The
time dependence of the parameters �JL ,JR ,ng� in
a pumping cycle.
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A. Gate charge noise

With the above notations and in this approximation, we
can express all the relevant quantities in terms of the control
parameters JL, JR, and ng as

E12 =
1

2
�JL

2 + JR
2 + 2JLJR cos � ,

� = arctan� JR − JL

JR + JL
tan

�

2
� ,

� =
�ng

��ng
2 + �E12

EC
�2

,

�0 =
2E12

��1 − �2
, �20�

and the instantaneous eigenstates assume the form

�g� =
1
�2

��1 − ��0� + e−i��1 + ��1�� ,

�e� =
1
�2

��1 + ��0� − e−i��1 − ��1�� . �21�

Further, the matrix elements of Y�V=Y � X� read �m1=−g�
and �m2=g�1−�2.

The w matrix elements we need are

wgg = −
1

2
�1 + ���̇ ,

wee = −
1

2
�1 − ���̇ ,

wge =
1

2
��1 − �2�̇ − i

�̇

�1 − �2� . �22�

Using Ik=2e��k
HS /�,26 the current operators are IL

= �2e /��JL sin� �
2 −� and IR= �2e /��JR sin� �

2 +�. We can
write the current operators restricted to the ��0� , �1�� basis
using the formulas ei= �1��0� and e−i= �0��1�. Inserting them
in Eq. �19�, the charge pumped through each junction reads

QL
G =

2e

�



0

Tp

dtJL��Re��ge�sin�� +
�

2
� − cos�� +

�

2
�Im��ge�� ,

QR
G =

2e

�



0

Tp

dtJR�cos�� −
�

2
�Im��ge� − �Re��ge�sin�� −

�

2
�� . �23�

We define the average pumped charge as QG��QL
G

+QR
G� /2 and charge conservation implies that QG=QL

G=QR
G.

In our simulations the spectral density is taken to be
ohmic such that S���=2��R / �1−e−��/�kBT��, where R is the
effective resistance of the environmental noise. For finite
temperatures, we have S�−��=e−��/�kBT�S��� and S�0�
=2kBT0R, where T0 is the effective temperature of the
dephasing process. We note that the master equations pre-
sented in this paper are also valid for other types of environ-
ment spectra.

B. Numerical results

The pumping cycle taken into consideration is shown in
Fig. 1�b� and the corresponding evolution of the quantum
system is obtained by numerical integration of Eqs. �3� and
�4�. The physical observable here is the pumped charge
through the junction in the stationary regime which is
reached after several sequential pumping cycles, i.e., after
the initial transient is over. In fact, during the first cycles the
pumped charge oscillates due to simultaneous effects of
nonadiabatic excitation and environmental relaxation and it

takes several cycles to stabilize to the stationary values
which are measured in the experiments.

In Fig. 2�a�, the pumped charge is shown as a function of
the phase � across the device � and for different values of
the coupling strength g while the pumping frequency is kept
constant. The ideal pumped charge in the absence of noise19

is also shown and it coincides with the numerical result in
the strong-coupling limit. For weak coupling to the environ-
ment, the pumped charge differs substantially from the ideal
one but an increment of the system-environment coupling
resumes the ideal pumping.

In Fig. 2�b�, we present the numerically simulated
pumped charge as a function of g, for different pumping
frequencies. For an adiabatic loop �e.g., f =1 /Tp=10 MHz�,
the pumped charge is close to the ideal value. This confirms
the first analytical results: in the adiabatic limit and T=0, the
environmental noise does not influence the evolution. For
faster pumping frequencies, the behavior is more complex
because it is determined by the competing effects of nona-
diabatic transitions and environmental relaxation. When the
nonadiabatic transitions dominate over the relaxation process
the predicted pumped charge is smaller than the ideal one.
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This is due to the fact that the excited state �e�� of H̃S+�w is
populated during the evolution and it pumps in the opposite
direction with respect to the ground state �g��. Increasing the
coupling we enter the regime in which the relaxation process
dominates. Here, the system is forced to remain in the
ground state �g�� and we restore the ideal pumping. Thus, the
numerical simulations confirm the analytical results obtained
in Sec. III B for different value of � /g ratio.

To check this interpretation of the numerical results, we
calculate the population of �g�� during the pumping cycles
for different environmental coupling strengths. This is ob-
tained by solving Eqs. �3� and �4� numerically and projecting
the obtained density matrix into the ��g�� , �e��� basis. Figure
3�a� shows how increasing the frequency leads to a leakage
from the ground �g�� to the excited �e�� state. The figure
shows that increasing the coupling strength from the region
g���1 to ��g�1, the system begin to remain in the
ground state �g��, thus restoring the evolution expected in the
adiabatic limit without noise. This is a generic feature and
we have chosen 75 MHz pumping frequency to illustrate the
phenomenon.

Even if the convergence to the ideal evolution has strong
physical motivation, we stress that the details of the numeri-

cal simulations in the extreme regime must be taken with
care. In fact, in the intermediate regime both the analytical
and numerical approaches fail to predict the correct behavior
of the pumped charge. In this regime, the numerical simula-
tions in Fig. 2�b� are inaccurate and present an excess of
pumped charge with respect to that in the adiabatic limit.
This unphysical prediction is due to the fact that the master
equation does not guarantee a priori the positivity of the
density matrix and that we have truncated at the first order in
� and g in the derivation of the master equation. Strictly
speaking the g and � used are always small compared to 1
�see Fig. 2�b�� and thus, at least formally, they can be used as
expansion parameters. Unfortunately, such analysis gives
only an estimate of the corrections we are neglecting and
proper analysis should include the higher-order terms.31

However, there are indications that the features in the �
and g regimes presented are realistic. The convergence to the
ideal solution predicted by the analytical analysis is present
in the simulations for all the range of parameters used. It
seems unlikely that such common behavior, which is realistic
for small � and g, is a numerical artifact. The violation of
positivity, which has a role in the intermediate regime, be-
comes less important for the maximum value of g presented.
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FIG. 2. �Color online� Pumped charge per cycle in a Cooper-pair sluice for zero-temperature environment �a� as a function of phase �
with coupling constant g=CE /C�=0.01, 0.0125, 0.015, and 0.1 from bottom to top for f =1 /Tp=75 MHz, and �b� as function of coupling
g with �=� /2 and at frequencies f =10, 25, 50, 65, and 75 MHz from bottom to top in the region in which the arrow is plotted. In the
numerical simulations, the parameters are Ji

M /EC=0.1, Ji
m /Ji

M =0.03 �with i=L ,R�, �ng
M =−�ng

m=0.3, EC /kB=1 K �EC / �2���=21 GHz�,
R=300 k�, environment temperature T=0, S��0�=2��0R, S�−�0�=0, and S�0�=2kBT0R with T0=0.1 K. In inset we show the time
evolution of the adiabatic parameter ��t� for f =75 MHz.
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FIG. 3. �Color online� Population of the ground state of H̃S+�w in the quasistationary evolution. �a� Evolution with g=0.01 and f
=10, 75, and 100 MHz from top to bottom. �b� Evolution in presence of environmental noise for a nonadiabatic 75 MHz cycle with g
=0.01, 0.0125, and 0.015 from bottom to top. The other parameters are the same as in Fig. 2.
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In fact, the analysis performed confirms that in these extreme
regimes the positivity tends to be restored.

C. Finite-temperature pumping

In Fig. 4, we compare Cooper-pair pumping with zero-
and finite-temperature environments. We observe that the
features of the zero-temperature simulation are still present
although, at finite temperature, we obtain in general a smaller
pumped charge with the same parameter values. This is ex-
pected since the presence of finite-temperature environment
leads to an additional leakage from the ground state to the
excited state, leading to a reduced pumped charge since the
adiabatically pumped charge in the excited state is equal in
magnitude but opposite in sign to that in the ground state.26

D. Pumped charge with secular approximation and charge
conservation

All the results presented above depend on whether one
includes in the master equation the nonsecular terms and the
combined effect of the environment and the driving or not.
From the analytical calculation presented in Sec. III A, we
know that, in the quasistationary limit, the off-diagonal ele-
ments of density matrix within the secular approximation
�Eq. �14�� have a different form compared with the full ex-
pression �Eq. �13��. Thus we expect this to lead to different
values of physical observables. To compare the two methods,
the pumped charge is again a privileged candidate since it
depends directly on the off-diagonal matrix element �ge.

In the quasistationary limit, within the secular approxima-
tion, at zero temperature, and for weak system-environment
coupling, we obtain from Eq. �14�,

�ge
sec � −

wge

�0
�1 −

i�

2�0
−

�2

4�0
2� = �ge − �� , �24�

where �� denotes the correction with respect to the full so-
lution. From this expression it results that �ge

sec is damped
because of the interaction with the environment and this ef-
fect should reduce the pumped charge. To demonstrate this
effect, we have chosen an asymmetric pumping loop in the
flux and gate voltage parameters and performed a numerical
integration of Eqs. �3�–�6�. The results with and without the

secular approximation are presented in Fig. 5. The pumped
charge predicted with the secular approximation decreases
when the coupling increases whereas if we include the non-
secular terms, we obtain a result which is essentially immune
to g. Importantly, if the nonsecular terms are included in the
master equation, the two charges through the left and right
junctions are equal but if we apply the secular approxima-
tion, we obtain a significant difference in these charges. The
difference leads to charge nonconservation since no charge
can be accumulated on the island for the quasistationary so-
lution.

We can also estimate analytically this charge nonconser-
vation. Let us define the charge asymmetry between the junc-
tions as �Q=QL

G,sec−QR
G,sec, where Qk

G,sec is the charge
through junction k described by Eq. �14�. Using Eqs. �20�
and �23�, and JR=−JL sin��+ �

2 � /sin��− �
2 �, we obtain

�Q =
2e

�



0

Tp

dt���̇

2
− 2E12Im����� . �25�

The first term in the integral gives no contribution since
��0�=��Tp�. This is itself an important result since it means
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FIG. 4. �Color online� Pumped charge per cycle for finite-temperature environments �dashed curves� in comparison to the zero-
temperature environment case �solid lines�: �a� as a function of phase � for f =75 MHz and g=0.01, 0.0125, 0.015, and 0.1 from bottom to
top and �b� as a function of the coupling strength g with �=� /2 and frequency f =10, 50, and 75 MHz from bottom to top. The other
parameters are as in Fig. 2 except for T=0.03 K for the finite-temperature simulations.
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FIG. 5. �Color online� Pumped charge obtained using different
master equations presented for f =10 MHz cycle. The straight line
is the solution of the full master Eqs. �3� and �4�, the solid lines are
the solutions of the master equation with secular approximation,
Eqs. �5� and �6�. In the latter case, the central solid line is the
average pumped charge while the other two lines are the pumped
charges through the left and right junctions. Here, the parameter
cycle is strongly asymmetric with JL

M /EC=0.1, JL
m /JL

M =0.006,
JR

M /EC=0.2, JR
m /JR

M =0.04, �ng
M =0.4 �ng

m=−0.03, T=0, and the
other parameters are as in Fig. 2.
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that, if we keep the nonsecular terms �i.e., ��=0�, we obtain
immediately that the charge is conserved.

With the help of Eq. �24�, the second term can be explic-
itly written as

Im���� = �Re�wge��
2�0

2 +
Im�wge��2

4�0
3 � . �26�

Using Eqs. �20� and �22�, and the definition of � and S���
at zero temperature given in Secs. III B and IV A, respec-
tively, we can write explicitly the charge asymmetry as a
function of time-dependent parameters,

�Q = 2eg2�

0

Tp

dt	− �̇�1

2
R�1 − �2�2 +

�1 − �2�3/2S�0��2

2E12
�

+ �̇g2��1

2
R2�1 − �2�2 −

��2 − 1�S2�0��4

2E12
2

+
R�1 − �2�3/2S�0��2

E12
� . �27�

In this expression, we can address five contributions. Since
the third term depends only on � and its derivative, it yields
no contribution when integrated along the cycle. The remain-
ing terms can be calculated if we fix the phase to �=� /2 and
in the regime in which Ji

m�Ji
M �EC and �ng

M , ��ng
m�

�Ji
M /EC. Using Eqs. �20� and �22�, we can write Eq. �27� in

terms of the experimentally controlled parameters JL, JR, and
ng, and take advantage of the control cycle in Fig. 1�b�. To
have an idea of how the final terms look like we write the
first term in Eq. �27� as

A1 = 

0

Tp

dt� �J̇RJL − J̇LJR��2�1 − �2�3/2g2RS0

2�JL
2 + JR

2�3/2 � . �28�

It is convenient to divide the integration in six parts �see Fig.
1�b��: for example, in the first path only JL depends on time.
The remaining � function can be approximated, since, for
Ji

m�Ji
M �EC, it tends to a box function switching between

	1 �see Eq. �20��.

With this further approximation, we obtain four leading
contributions

A1 =
�JL

mJR
M + JR

mJL
M����ng

M�3 − ��ng
m�3�g2�2S0

16�EC�ng
m�ng

M�3 ,

A2 =
�JR

m�JL
M�3 + JL

m�JR
M�3����ng

M�4 − ��ng
m�4�g2R�2

96�EC�ng
m�ng

M�4 ,

A4 =
��JL

M�2 − �JR
M�2����ng

m�4 + ��ng
M�4�g4�3S0

2

64�EC�ng
m�ng

M�4 ,

A5 =
��JL

M�4 − �JR
M�4����ng

m�5 + ��ng
M�5�g4�3S0

2

128�EC�ng
m�ng

M�5 , �29�

where �Q=�i=1,5Ai with A3=0. The first two contributions
are present only if the loop is asymmetric in the �ng param-
eter �i.e., �ng

M � ��ng
m�� whereas A4 and A5 yield nonvanishing

contributions if the loop is asymmetric in the flux parameters
�i.e., JL

M �JR
M�.32 If the loop is asymmetric in both parameters

as the one used in the simulations of Fig. 5, all the Ai terms
in Eq. �29� contribute to �Q.

E. Environment engineering

The experimental setup described in this paper has al-
ready been used for the measurement of the Berry phase in
adiabatic pumping of Cooper pairs.25,26 To study the effects
of the environment in the pumping, it is beneficial to control
the coupling between the system and its environment. This
can be achieved by adding to the already present intrinsic
environment an experimentally controlled artificial noise
source. Similar approaches have been developed in different
physical systems for both testing the robustness of the stud-
ied quantum system and the crossover between the quantum
and classical behavior.33,34 Here, we present a way to engi-
neer in situ the environment noise in the superconducting
circuits discussed above.

The environment is controlled by the circuit in Fig. 1
which is composed of a thermal resistor R with noise voltage
spectrum �VE. We place an array of m SQUIDs between the
resistor and the island of the sluice as shown in Fig. 6. The
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FIG. 6. �Color online� �a� Engineered environment connected to the sluice pump. The system-environment interaction is controlled by the
flux through the SQUID array. �b� Pumped charge as a function of the flux through the SQUID array for RS=500 �, CS=0.3 fF �solid line�
and RS=1 k�, CS=0.1 fF �dashed line�. The other parameters are f =10 MHz, �=� /2, g=0.025, m=100 �number of SQUIDs in the array�,
CE=1 fF, IC=4 nA, and R=1.5 k�. In both cases, the simulations are performed with zero–temperature environment.
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array can be represented as a series of RLC parallel circuits
with resistance RS, inductance L, and capacitance CS. The

impedance of a single SQUID is ZRLC=
RSZCS

ZL

RSZCS
+ZLZCS

+RSZL

=
iL����RS

iL����+RS�1−L����2CS� , where L���=L0 /cos��� /�0�, ZL and

ZCS
are the impedances associated to the inductance L and

capacitance CS, respectively, � /�0 is the flux through the
SQUID in units of the flux quantum, and L0=� / �2�eIC�,
where IC is the maximum critical current of the SQUID.

Note that the Josephson inductance L��� can be modulated
by applying flux through the SQUID.

The total series impedance of the circuit with respect to
the noise source in Fig. 6 is Ztot=R+ZCE

+mZRLC, and the

voltage at the capacitor CE is Ṽ=VZCE
/Ztot. Here, we neglect

the impedance of the sluice and possible parasitic capaci-
tance directly to ground inside the tunable environment. In
this way, the gate voltage noise spectrum perceived by the
system is

S̃��,�� = �ZCE

Ztot

�2

S��� =
S���

	1 − m
L����2RS

2CE − mL2����4RS
2CSCE

L2����2 + RS
2�1 − L����2CS�2 2

+	 mL2���RSCE�3

L2����2 + RS
2�1 − L����2CS�2

+ RCE�2
.

�30�

Controlling the flux through the SQUID array, we can

change the spectrum S̃�� ,�� and hence we effectively tune
the coupling between the system and the environment.

The pumped charge expected as a function of the flux
through the SQUIDs in the array is presented in Fig. 6. The
results are obtained solving the master Eqs. �3� and �4� nu-
merically with the effective spectrum given by Eq. �30�. This
modulation of the pumped charge could be large enough to
be experimentally observable.

V. CONCLUSIONS

In conclusion, we have presented a detailed study of the
effect of environmental noise on the adiabatic evolution of a
two-level quantum system. In the zero-temperature limit, we
find that the adiabatic evolution in the ground state is not
influenced by the presence of the noise implying that the
evolution is robust against environmental noise.

These results are obtained taking consistently into account
the contributions in the master equation for the dynamics of
the density matrix. In particular, we keep the nonsecular
terms and the terms describing the combined effect of the
environment and the drive. This step is important to obtain
the robustness of the ground-state dynamics and, at the same
time, to guarantee charge conservation.

We have tested our theory by applying it to Cooper-pair
pumping in presence of system-environment coupling. The
numerical simulations confirm the theoretical prediction
about the robustness of the ground-state pumping and sug-
gest that in the nonadiabatic regime, relaxation can help to
restore the desired ground-state evolution. In the same sys-
tem, we studied the pumped charge in the secular approxi-
mation and observed that the pumped charge decreases with
increasing system-environment coupling strength. Further-
more, the pumped charges through the first and the second
junction become different implying unphysical charge non-

conservation. Thus we conclude that the secular approxima-
tion in this form cannot be pursued in adiabatic evolution.

We have proposed a way to engineer the environmental
noise in the discussed physical system. This allows us to
modify the effective spectrum of the environment by chang-
ing the magnetic flux through an array of SQUIDs. The con-
sequent change in the pumped charge could be experimen-
tally observable.

The results obtained concerning the robustness of adia-
batic ground-state evolution are quite general and it would be
interesting to extend our analysis. For example, adiabatic
quantum computing1 is based on the adiabatic evolution in
the ground state. Another possible extension is the construc-
tion of decoherence-free logical gates in the geometric quan-
tum computation paradigm.6 In this case, the evolution oc-
curs in a degenerate subspace and the manipulation of the
quantum state is performed with the help of adiabatic evolu-
tion. In many of the proposals for geometric quantum gates,
one of the main disadvantages is that the degenerate sub-
space is not the one with the lowest energy. This likely leads
to problems in controlling the relaxation to the effective
ground state. However, geometric quantum computing can,
in principle, be performed in the ground-state manifold.18 A
detailed study of its robustness can be carried out by extend-
ing the theory presented here beyond the two-level approxi-
mation. However, this is left for future research.
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APPENDIX: DERIVATION OF THE MASTER EQUATION

The master Eq. �2� is obtained with a development taking
into account all the terms up to the order wVV. As in stan-
dard derivation of the master equation,13 we assume that the
density matrix of the environment is stationary and that the
average of V over the environment degrees of freedom van-
ishes.

Denoting the total density matrix of the system and envi-
ronment as �̃tot�t� and employing the transformation to the
adiabatic basis as �̃I

tot=D†�̃totD, the von Neumann equation
in the interaction picture reads

�̇̃I
tot�t� =

i

�
��̃I

tot�t�,�wI�t� + ṼI�t�� . �A1�

Notice that, in the weak coupling and in the adiabatic limit,

wI�t� and ṼI�t� are perturbative contributions of different or-
der. Tracing over the degree of freedom of the environment
Eq. �A1� becomes

�̇̃I�t� = i��̃I�t�,wI�t�� +
i

�
TrE���̃I

tot�t�,ṼI�t��� , �A2�

where �̃I
tot=TrE��̃I

tot�.
Together with Eq. �A1�, we employ the identity

�̃I
tot��� = �̃I

tot��1� + 

�1

�

d���̇̃I
tot���� . �A3�

Using iteratively Eqs. �A1� and �A3� we can obtain a pertur-
bation expansion of Eq. �A2�.

Substituting Eq. �A3� in the last term in Eq. �A2� we have

�̇̃I�t� = i��̃I�t�,wI�t�� +
i

�
TrE���̃I

tot�0�,ṼI�t��

+ 

0

t

dt���̇̃I
tot�t��,ṼI�t��� . �A4�

Since the average of V over the environment degrees of
freedom vanishes, TrE���̃I

tot�0� , ṼI�t���=0 and using Eq. �A1�,
we obtain

�̇̃I�t� = i��̃I�t�,wI�t��

−
1

�2TrE	

0

t

dt����̃I
tot�t��,�wI�t���,ṼI�t��

−
1

�2TrE	

0

t

dt����̃I
tot�t��,ṼI�t���,ṼI�t�� . �A5�

The term �̃I
tot�t�� can be transformed using Eq. �A3�; in par-

ticular, we substitute �̃I
tot�t��= �̃I

tot�0�+�0
t�dt��̇̃I

tot�t�� and
�̃I

tot�t��= �̃I
tot�t�−�t�

t dt��̇̃I
tot�t�� in the second and in the third

term on the right, respectively. Consistently, we have that
TrE����̃I

tot�0� ,wI�t��� , ṼI�t���=0 and hence

�̇̃I�t� = i��̃I�t�,wI�t�� −
1

�2TrE	

0

t

dt����̃I
tot�t�,ṼI�t���,ṼI�t��

−
1

�2TrE	

0

t

dt�

0

t�
dt����̇̃I

tot�t��,�wI�t���,ṼI�t��
+

1

�2TrE�

0

t

dt�

t�

t

dt����̇̃I
tot�t��,ṼI�t���,ṼI�t��� . �A6�

Using Eq. �A1� we eliminate �̇̃I
tot�t�� from the above equa-

tion and keeping the terms up to order wVV, we obtain

�̇̃I�t� = i��̃I�t�,wI�t�� −
1

�2TrE	

0

t

dt����̃I
tot�t�,ṼI�t���,ṼI�t�� −

i

�2TrE	

0

t

dt�

0

t�
dt�����̃I

tot�t��,ṼI�t���,wI�t���,ṼI�t��
+

i

�2TrE	

0

t

dt�

t�

t

dt�����̃I
tot�t��,wI�t���,ṼI�t���,ṼI�t�� . �A7�

The third and fourth terms on the right are both of order
wVV, namely, the highest order in our expansion. The last
step in our derivation is to use Eq. �A3� to substitute �̃I

tot�t��
with �̃I

tot�t�+�t
t�dt��̇̃I

tot�t��; however, since the terms with de-
rivative of �̃I

tot give contributions either of order w or V, they

can be neglected. Thus, we can effectively substituted �̃I
tot�t��

with �̃I
tot�t� in Eq. �A7� without introducing further approxi-

mations. The master Eq. �2� is obtained by rearranging the
integration limits and the commutators of the last two terms
of the resulting equation.
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